
Machine Learning Driven Latency Optimization for
Internet of Things Applications in Edge Computing

Uchechukwu Awadaa, Jiankang Zhangb,∗, Sheng Chenc,d, Shuangzhi Lia,∗,
Shouyi Yanga

aSchool of Information Engineering, Zhengzhou University, Zhengzhou, 450001, China
bDepartment of Computing and Informatics, Bournemouth University, Poole, BH12

5BB, UK
cSchool of Electronics and Computer Science, University of

Southampton, Southampton, SO17 1BJ, UK
dFaculty of Information Science and Engineering, Ocean University of

China, Qingdao, 266100, China

Abstract

Emerging Internet of Things (IoT) applications require faster execution time

and response time to achieve optimal performance. However, most IoT devices

have limited or no computing capability to achieve such stringent application

requirements. To this end, computation offloading in edge computing has been

used for IoT systems to achieve the desired performance. Nevertheless, ran-

domly offloading applications to any available edge without considering their

resource demands, inter-application dependencies and edge resource availability

may eventually result in execution delay and performance degradation. We in-

troduce Edge-IoT, a machine learning-enabled orchestration framework in this

paper, which utilizes the states of edge resources and application resource re-

quirements to facilitate a resource-aware offloading scheme for minimizing the

average latency. We further propose a variant bin-packing optimization model

∗Corresponding author
Email addresses: awada@gs.zzu.edu.cn (Uchechukwu Awada),

jzhang3@bournemouth.ac.uk (Jiankang Zhang), sqc@ecs.soton.ac.uk (Sheng Chen),
ielsz@zzu.edu.cn (Shuangzhi Li), iesyyang@zzu.edu.cn (Shouyi Yang)

URL: https://orcid.org/0000-0002-2300-0586 (Uchechukwu Awada),
https://orcid.org/0000-0001-5316-1711 (Jiankang Zhang),
https://orcid.org/0000-0001-6882-600X (Sheng Chen),
https://orcid.org/0000-0002-2801-5779 (Shuangzhi Li),
https://orcid.org/0000-0002-5149-5280 (Shouyi Yang)

Preprint submitted to ZTE Communications May 15, 2023

that co-locates applications firmly on edge resources to fully utilize available

resources. Extensive experiments show the effectiveness and resource efficiency

of the proposed approach.

Keywords: Edge computing, Execution time, IoT, Machine learning, Resource

efficiency

1. Introduction

The Internet of Things (IoT) describes physical devices that are connected

to the Internet or networks for the purpose of exchanging and sharing data.

IoT enables direct fusion of physical devices into computer systems, resulting

in efficiency, more reliable services and economic benefits without human inter-5

vention. However, most IoT devices have limited or no computing capability to

meet some application-specific requirements. For example, emerging IoT tech-

nologies such as the smart city [1], healthcare-IoT [2], Internet of Vehicles (IoV)

[3, 4, 5], connected and autonomous vehicles (CAVs) [6], and industry 4.0 [7],

require substantial resources to execute their applications. In addition, most10

of these applications are structured as a collection of loosely-coupled services

that communicate with one another and are often latency-sensitive. A conven-

tional approach is to offload these applications to a cloud computing (CC) [8]

data center for execution. CC provides an on-demand availability of compute

resources over multiple locations, each of which is a data center. However, a CC15

data center could be hundreds or thousands of miles away from the data sources,

thereby jeopardizing the application performance through longer response time.

A recent innovative distributed computing paradigm referred to as edge com-

puting (EC) [9] brings computation and storage resources closer to the locations

where they are needed, to reduce response time and save bandwidth. This en-20

abling architecture deploys computation and storage resources at the edge of a

network, and even beyond the edge of the network. It is important to note that

EC computational resources are also limited compared to CC resources, but EC

benefits IoT systems by deploying computing resources closer to end devices,

2

thus reducing network traffic and latency to enable real-time insights. To this25

end, existing research works have exploited EC for task offloading in various IoT

systems [3, 4, 5, 10, 11]. Nevertheless, one fundamental challenge is where and

how to offload and schedule complex applications so that their average latency

is minimized and high resource efficiency is achieved. A common practice is to

randomly offload applications or tasks individually to available edges without30

jointly considering tasks resource demands, tasks dependencies, and edge re-

source availability. Such a disjointed approach would result in execution delays

due to insufficient resource availability or tasks unable to communicate with

their dependent tasks. Hence, it is not suitable for latency-sensitive tasks.

For example, the video classification application shown in Fig.1(a) consists35

of 12 sub-applications T1, · · · , Tn, where T1, T2 and T3 are independent tasks,

whereas T4 and T5 require inputs from T1 to be able to complete their execu-

tions. Similarly, T6, T7 and T8 depend on the completion of T4, T5 and T2,

respectively. These make the execution of complex IoT applications very chal-

lenging. It is naturally important to offload and schedule such applications, so40

as to minimize their average latency. For instance, suppose each sub-application

or tasks T1, · · · , Tn of the application in Fig. 1(a) is randomly offloaded to dif-

ferent EC deployments, then each dependent task would require the execution

result(s) or input data from other task(s) to be transmitted back to its host

edge deployment in order to complete its execution, as shown in Fig. 2(a). This45

transfer of input data is referred to as an input data flow, and such transmis-

sion would incur additional delay, thereby further affecting the average latency,

given the rate and number of transmissions that could occur.

More specifically, assuming the video classification application in Fig. 1(a)

is to be executed, the work in [5] proposed an approach as shown in Fig. 2(a),50

wh ich offloads tasks T1, T2 and T3 to Edge 1, offloads tasks T4, T5, T6 and

T7 to Edge 2, and offloads the remaining tasks T8, T9, T10, T11 and T12 to

Edge 3. Since these tasks are inter-dependent tasks, it means that the execu-

tion result of task T1 needs to be transmitted from Edge 1 to Edge 2, to serve

as the input data to tasks T4 and T5, while the execution results of tasks T655

3

$T_{1}\big(\langle c_{1}, m_{1}
\rangle, E_{ex_{1}}\big)$

<latexit sha1_base64="XyoVBODtT/PFdKjT2kSzQ70MQGs=">AAAB7nicbZC7SgNBFIbPJl5ivEXFymYxEazCrohaBmwsI+QGyRJmJ2eTIbOzy8ysEJY8hI2FIra+hq9gIVj5KDq5FJr4w8DH/5/DnHP8mDOlHefTymRXVtfWcxv5za3tnd3C3n5DRYmkWKcRj2TLJwo5E1jXTHNsxRJJ6HNs+sPrSd68Q6lYJGp6FKMXkr5gAaNEG6tZqnVTd1zqFopO2ZnKXgZ3DsVK9uP77fALq93Ce6cX0SREoSknSrVdJ9ZeSqRmlOM430kUxoQOSR/bBgUJUXnpdNyxfWKcnh1E0jyh7an7uyMloVKj0DeVIdEDtZhNzP+ydqKDKy9lIk40Cjr7KEi4rSN7srvdYxKp5iMDhEpmZrXpgEhCtblQ3hzBXVx5GRpnZfeifH7rFisOzJSDIziGU3DhEipwA1WoA4Uh3MMjPFmx9WA9Wy+z0ow17zmAP7JefwDzpJMK</latexit>

T1
<latexit sha1_base64="XyoVBODtT/PFdKjT2kSzQ70MQGs=">AAAB7nicbZC7SgNBFIbPJl5ivEXFymYxEazCrohaBmwsI+QGyRJmJ2eTIbOzy8ysEJY8hI2FIra+hq9gIVj5KDq5FJr4w8DH/5/DnHP8mDOlHefTymRXVtfWcxv5za3tnd3C3n5DRYmkWKcRj2TLJwo5E1jXTHNsxRJJ6HNs+sPrSd68Q6lYJGp6FKMXkr5gAaNEG6tZqnVTd1zqFopO2ZnKXgZ3DsVK9uP77fALq93Ce6cX0SREoSknSrVdJ9ZeSqRmlOM430kUxoQOSR/bBgUJUXnpdNyxfWKcnh1E0jyh7an7uyMloVKj0DeVIdEDtZhNzP+ydqKDKy9lIk40Cjr7KEi4rSN7srvdYxKp5iMDhEpmZrXpgEhCtblQ3hzBXVx5GRpnZfeifH7rFisOzJSDIziGU3DhEipwA1WoA4Uh3MMjPFmx9WA9Wy+z0ow17zmAP7JefwDzpJMK</latexit>

T1

<latexit sha1_base64="5As7Gkv2LCHlCnJMyUfUmXXn6Jg=">AAAB7nicbZC7SgNBFIbPGi8x3qJiZbOYCFZhN4haBmwsI+QGyRJmJ2eTIbOzy8ysEJY8hI2FIra+hq9gIVj5KDq5FJr4w8DH/5/DnHP8mDOlHefTWsmsrq1vZDdzW9s7u3v5/YOGihJJsU4jHsmWTxRyJrCumebYiiWS0OfY9IfXk7x5h1KxSNT0KEYvJH3BAkaJNlazWOum5XGxmy84JWcqexncORQqmY/vt6MvrHbz751eRJMQhaacKNV2nVh7KZGaUY7jXCdRGBM6JH1sGxQkROWl03HH9qlxenYQSfOEtqfu746UhEqNQt9UhkQP1GI2Mf/L2okOrryUiTjRKOjsoyDhto7sye52j0mkmo8MECqZmdWmAyIJ1eZCOXMEd3HlZWiUS+5F6fzWLVQcmCkLx3ACZ+DCJVTgBqpQBwpDuIdHeLJi68F6tl5mpSvWvOcQ/sh6/QH1KpML</latexit>

T2
<latexit sha1_base64="5As7Gkv2LCHlCnJMyUfUmXXn6Jg=">AAAB7nicbZC7SgNBFIbPGi8x3qJiZbOYCFZhN4haBmwsI+QGyRJmJ2eTIbOzy8ysEJY8hI2FIra+hq9gIVj5KDq5FJr4w8DH/5/DnHP8mDOlHefTWsmsrq1vZDdzW9s7u3v5/YOGihJJsU4jHsmWTxRyJrCumebYiiWS0OfY9IfXk7x5h1KxSNT0KEYvJH3BAkaJNlazWOum5XGxmy84JWcqexncORQqmY/vt6MvrHbz751eRJMQhaacKNV2nVh7KZGaUY7jXCdRGBM6JH1sGxQkROWl03HH9qlxenYQSfOEtqfu746UhEqNQt9UhkQP1GI2Mf/L2okOrryUiTjRKOjsoyDhto7sye52j0mkmo8MECqZmdWmAyIJ1eZCOXMEd3HlZWiUS+5F6fzWLVQcmCkLx3ACZ+DCJVTgBqpQBwpDuIdHeLJi68F6tl5mpSvWvOcQ/sh6/QH1KpML</latexit>

T2

T_{1}

<latexit sha1_base64="NO6AnLrebstat71i3wp5SWN1vNs=">AAAB7nicbZC7SgNBFIbPGi8x3qJiZbOYCFZhV0UtAzaWEXKDZAmzk7PJkNnZZWZWCEsewsZCEVtfw1ewEKx8FJ1cCk38YeDj/89hzjl+zJnSjvNpLWWWV1bXsuu5jc2t7Z387l5dRYmkWKMRj2TTJwo5E1jTTHNsxhJJ6HNs+IPrcd64Q6lYJKp6GKMXkp5gAaNEG6tRrHbSs1Gxky84JWciexHcGRTKmY/vt4MvrHTy7+1uRJMQhaacKNVynVh7KZGaUY6jXDtRGBM6ID1sGRQkROWlk3FH9rFxunYQSfOEtifu746UhEoNQ99UhkT31Xw2Nv/LWokOrryUiTjRKOj0oyDhto7s8e52l0mkmg8NECqZmdWmfSIJ1eZCOXMEd37lRaifltyL0vmtWyg7MFUWDuEITsCFSyjDDVSgBhQGcA+P8GTF1oP1bL1MS5esWc8+/JH1+gP2sJMM</latexit>

T3
<latexit sha1_base64="NO6AnLrebstat71i3wp5SWN1vNs=">AAAB7nicbZC7SgNBFIbPGi8x3qJiZbOYCFZhV0UtAzaWEXKDZAmzk7PJkNnZZWZWCEsewsZCEVtfw1ewEKx8FJ1cCk38YeDj/89hzjl+zJnSjvNpLWWWV1bXsuu5jc2t7Z387l5dRYmkWKMRj2TTJwo5E1jTTHNsxhJJ6HNs+IPrcd64Q6lYJKp6GKMXkp5gAaNEG6tRrHbSs1Gxky84JWciexHcGRTKmY/vt4MvrHTy7+1uRJMQhaacKNVynVh7KZGaUY6jXDtRGBM6ID1sGRQkROWlk3FH9rFxunYQSfOEtifu746UhEoNQ99UhkT31Xw2Nv/LWokOrryUiTjRKOj0oyDhto7s8e52l0mkmg8NECqZmdWmfSIJ1eZCOXMEd37lRaifltyL0vmtWyg7MFUWDuEITsCFSyjDDVSgBhQGcA+P8GTF1oP1bL1MS5esWc8+/JH1+gP2sJMM</latexit>

T3

<latexit sha1_base64="LWmeScCnt5t4yzgq5fAp//nnP3Y=">AAAB7nicbZC7SgNBFIbPGi8x3qJiZbOYCFZhV4JaBmwsI+QGyRJmJ2eTIbOzy8ysEJY8hI2FIra+hq9gIVj5KDq5FJr4w8DH/5/DnHP8mDOlHefTWsmsrq1vZDdzW9s7u3v5/YOGihJJsU4jHsmWTxRyJrCumebYiiWS0OfY9IfXk7x5h1KxSNT0KEYvJH3BAkaJNlazWOum5XGxmy84JWcqexncORQqmY/vt6MvrHbz751eRJMQhaacKNV2nVh7KZGaUY7jXCdRGBM6JH1sGxQkROWl03HH9qlxenYQSfOEtqfu746UhEqNQt9UhkQP1GI2Mf/L2okOrryUiTjRKOjsoyDhto7sye52j0mkmo8MECqZmdWmAyIJ1eZCOXMEd3HlZWicl9yLUvnWLVQcmCkLx3ACZ+DCJVTgBqpQBwpDuIdHeLJi68F6tl5mpSvWvOcQ/sh6/QH4NpMN</latexit>

T4
<latexit sha1_base64="LWmeScCnt5t4yzgq5fAp//nnP3Y=">AAAB7nicbZC7SgNBFIbPGi8x3qJiZbOYCFZhV4JaBmwsI+QGyRJmJ2eTIbOzy8ysEJY8hI2FIra+hq9gIVj5KDq5FJr4w8DH/5/DnHP8mDOlHefTWsmsrq1vZDdzW9s7u3v5/YOGihJJsU4jHsmWTxRyJrCumebYiiWS0OfY9IfXk7x5h1KxSNT0KEYvJH3BAkaJNlazWOum5XGxmy84JWcqexncORQqmY/vt6MvrHbz751eRJMQhaacKNV2nVh7KZGaUY7jXCdRGBM6JH1sGxQkROWl03HH9qlxenYQSfOEtqfu746UhEqNQt9UhkQP1GI2Mf/L2okOrryUiTjRKOjsoyDhto7sye52j0mkmo8MECqZmdWmAyIJ1eZCOXMEd3HlZWicl9yLUvnWLVQcmCkLx3ACZ+DCJVTgBqpQBwpDuIdHeLJi68F6tl5mpSvWvOcQ/sh6/QH4NpMN</latexit>

T4

<latexit sha1_base64="bysBo/Bm8DkSN+ezntjuu+kXULw=">AAAB7nicbZDJSgNBEIZrjEuMW1Q8eRlMBE9hRtyOAS8eI2SDZAg9nZqkSU/P0N0jhCEP4cWDIl59DV/Bg+DJR9HOctDEHxo+/r+Krio/5kxpx/m0ljLLK6tr2fXcxubW9k5+d6+uokRSrNGIR7LpE4WcCaxppjk2Y4kk9Dk2/MH1OG/coVQsElU9jNELSU+wgFGijdUoVjvp+ajYyReckjORvQjuDArlzMf328EXVjr593Y3okmIQlNOlGq5Tqy9lEjNKMdRrp0ojAkdkB62DAoSovLSybgj+9g4XTuIpHlC2xP3d0dKQqWGoW8qQ6L7aj4bm/9lrUQHV17KRJxoFHT6UZBwW0f2eHe7yyRSzYcGCJXMzGrTPpGEanOhnDmCO7/yItRPS+5F6ezWLZQdmCoLh3AEJ+DCJZThBipQAwoDuIdHeLJi68F6tl6mpUvWrGcf/sh6/QH5vJMO</latexit>

T5
<latexit sha1_base64="bysBo/Bm8DkSN+ezntjuu+kXULw=">AAAB7nicbZDJSgNBEIZrjEuMW1Q8eRlMBE9hRtyOAS8eI2SDZAg9nZqkSU/P0N0jhCEP4cWDIl59DV/Bg+DJR9HOctDEHxo+/r+Krio/5kxpx/m0ljLLK6tr2fXcxubW9k5+d6+uokRSrNGIR7LpE4WcCaxppjk2Y4kk9Dk2/MH1OG/coVQsElU9jNELSU+wgFGijdUoVjvp+ajYyReckjORvQjuDArlzMf328EXVjr593Y3okmIQlNOlGq5Tqy9lEjNKMdRrp0ojAkdkB62DAoSovLSybgj+9g4XTuIpHlC2xP3d0dKQqWGoW8qQ6L7aj4bm/9lrUQHV17KRJxoFHT6UZBwW0f2eHe7yyRSzYcGCJXMzGrTPpGEanOhnDmCO7/yItRPS+5F6ezWLZQdmCoLh3AEJ+DCJZThBipQAwoDuIdHeLJi68F6tl6mpUvWrGcf/sh6/QH5vJMO</latexit>

T5

<latexit sha1_base64="SbKlgzyf7g0DP7yHhIBkSW+IIgk=">AAAB7nicbZC7SgNBFIbPGi8x3qJiZbOYCFZhVyRaBmwsI+QGyRJmJ2eTIbOzy8ysEJY8hI2FIra+hq9gIVj5KDq5FJr4w8DH/5/DnHP8mDOlHefTWsmsrq1vZDdzW9s7u3v5/YOGihJJsU4jHsmWTxRyJrCumebYiiWS0OfY9IfXk7x5h1KxSNT0KEYvJH3BAkaJNlazWOum5XGxmy84JWcqexncORQqmY/vt6MvrHbz751eRJMQhaacKNV2nVh7KZGaUY7jXCdRGBM6JH1sGxQkROWl03HH9qlxenYQSfOEtqfu746UhEqNQt9UhkQP1GI2Mf/L2okOrryUiTjRKOjsoyDhto7sye52j0mkmo8MECqZmdWmAyIJ1eZCOXMEd3HlZWicl9xy6eLWLVQcmCkLx3ACZ+DCJVTgBqpQBwpDuIdHeLJi68F6tl5mpSvWvOcQ/sh6/QH7QpMP</latexit>

T6
<latexit sha1_base64="SbKlgzyf7g0DP7yHhIBkSW+IIgk=">AAAB7nicbZC7SgNBFIbPGi8x3qJiZbOYCFZhVyRaBmwsI+QGyRJmJ2eTIbOzy8ysEJY8hI2FIra+hq9gIVj5KDq5FJr4w8DH/5/DnHP8mDOlHefTWsmsrq1vZDdzW9s7u3v5/YOGihJJsU4jHsmWTxRyJrCumebYiiWS0OfY9IfXk7x5h1KxSNT0KEYvJH3BAkaJNlazWOum5XGxmy84JWcqexncORQqmY/vt6MvrHbz751eRJMQhaacKNV2nVh7KZGaUY7jXCdRGBM6JH1sGxQkROWl03HH9qlxenYQSfOEtqfu746UhEqNQt9UhkQP1GI2Mf/L2okOrryUiTjRKOjsoyDhto7sye52j0mkmo8MECqZmdWmAyIJ1eZCOXMEd3HlZWicl9xy6eLWLVQcmCkLx3ACZ+DCJVTgBqpQBwpDuIdHeLJi68F6tl5mpSvWvOcQ/sh6/QH7QpMP</latexit>

T6

<latexit sha1_base64="AapBm/6oWnyAoV58HKquWF1vctY=">AAAB7nicbZC7SgNBFIbPGi8x3qJiZbOYCFZhV8RYBmwsI+QGyRJmJ2eTIbOzy8ysEJY8hI2FIra+hq9gIVj5KDq5FJr4w8DH/5/DnHP8mDOlHefTWsmsrq1vZDdzW9s7u3v5/YOGihJJsU4jHsmWTxRyJrCumebYiiWS0OfY9IfXk7x5h1KxSNT0KEYvJH3BAkaJNlazWOum5XGxmy84JWcqexncORQqmY/vt6MvrHbz751eRJMQhaacKNV2nVh7KZGaUY7jXCdRGBM6JH1sGxQkROWl03HH9qlxenYQSfOEtqfu746UhEqNQt9UhkQP1GI2Mf/L2okOrryUiTjRKOjsoyDhto7sye52j0mkmo8MECqZmdWmAyIJ1eZCOXMEd3HlZWicl9zL0sWtW6g4MFMWjuEEzsCFMlTgBqpQBwpDuIdHeLJi68F6tl5mpSvWvOcQ/sh6/QH8yJMQ</latexit>

T7
<latexit sha1_base64="AapBm/6oWnyAoV58HKquWF1vctY=">AAAB7nicbZC7SgNBFIbPGi8x3qJiZbOYCFZhV8RYBmwsI+QGyRJmJ2eTIbOzy8ysEJY8hI2FIra+hq9gIVj5KDq5FJr4w8DH/5/DnHP8mDOlHefTWsmsrq1vZDdzW9s7u3v5/YOGihJJsU4jHsmWTxRyJrCumebYiiWS0OfY9IfXk7x5h1KxSNT0KEYvJH3BAkaJNlazWOum5XGxmy84JWcqexncORQqmY/vt6MvrHbz751eRJMQhaacKNV2nVh7KZGaUY7jXCdRGBM6JH1sGxQkROWl03HH9qlxenYQSfOEtqfu746UhEqNQt9UhkQP1GI2Mf/L2okOrryUiTjRKOjsoyDhto7sye52j0mkmo8MECqZmdWmAyIJ1eZCOXMEd3HlZWicl9zL0sWtW6g4MFMWjuEEzsCFMlTgBqpQBwpDuIdHeLJi68F6tl5mpSvWvOcQ/sh6/QH8yJMQ</latexit>

T7

<latexit sha1_base64="ftaxbszL/knkRVpTSCyX/60SgYo=">AAAB7nicbZC7SgNBFIbPGi8x3qJiZbOYCFZhV0RTBmwsI+QGyRJmJ2eTIbOzy8ysEJY8hI2FIra+hq9gIVj5KDq5FJr4w8DH/5/DnHP8mDOlHefTWsmsrq1vZDdzW9s7u3v5/YOGihJJsU4jHsmWTxRyJrCumebYiiWS0OfY9IfXk7x5h1KxSNT0KEYvJH3BAkaJNlazWOum5XGxmy84JWcqexncORQqmY/vt6MvrHbz751eRJMQhaacKNV2nVh7KZGaUY7jXCdRGBM6JH1sGxQkROWl03HH9qlxenYQSfOEtqfu746UhEqNQt9UhkQP1GI2Mf/L2okOyl7KRJxoFHT2UZBwW0f2ZHe7xyRSzUcGCJXMzGrTAZGEanOhnDmCu7jyMjTOS+5l6eLWLVQcmCkLx3ACZ+DCFVTgBqpQBwpDuIdHeLJi68F6tl5mpSvWvOcQ/sh6/QH+TpMR</latexit>

T8
<latexit sha1_base64="ftaxbszL/knkRVpTSCyX/60SgYo=">AAAB7nicbZC7SgNBFIbPGi8x3qJiZbOYCFZhV0RTBmwsI+QGyRJmJ2eTIbOzy8ysEJY8hI2FIra+hq9gIVj5KDq5FJr4w8DH/5/DnHP8mDOlHefTWsmsrq1vZDdzW9s7u3v5/YOGihJJsU4jHsmWTxRyJrCumebYiiWS0OfY9IfXk7x5h1KxSNT0KEYvJH3BAkaJNlazWOum5XGxmy84JWcqexncORQqmY/vt6MvrHbz751eRJMQhaacKNV2nVh7KZGaUY7jXCdRGBM6JH1sGxQkROWl03HH9qlxenYQSfOEtqfu746UhEqNQt9UhkQP1GI2Mf/L2okOyl7KRJxoFHT2UZBwW0f2ZHe7xyRSzUcGCJXMzGrTAZGEanOhnDmCu7jyMjTOS+5l6eLWLVQcmCkLx3ACZ+DCFVTgBqpQBwpDuIdHeLJi68F6tl5mpSvWvOcQ/sh6/QH+TpMR</latexit>

T8

<latexit sha1_base64="sf1SnS3SV9JDNoF3HZaMx5kVt6M=">AAAB7nicbZDJSgNBEIZrjEuMW1Q8eRlMBE9hRsTlFvDiMUI2SIbQ06lJmvT0DN09QhjyEF48KOLV1/AVPAiefBTtLAdN/KHh4/+r6KryY86UdpxPaymzvLK6ll3PbWxube/kd/fqKkokxRqNeCSbPlHImcCaZppjM5ZIQp9jwx9cj/PGHUrFIlHVwxi9kPQECxgl2liNYrWTXo2KnXzBKTkT2YvgzqBQznx8vx18YaWTf293I5qEKDTlRKmW68TaS4nUjHIc5dqJwpjQAelhy6AgISovnYw7so+N07WDSJontD1xf3ekJFRqGPqmMiS6r+azsflf1kp0cOmlTMSJRkGnHwUJt3Vkj3e3u0wi1XxogFDJzKw27RNJqDYXypkjuPMrL0L9tOSel85u3ULZgamycAhHcAIuXEAZbqACNaAwgHt4hCcrth6sZ+tlWrpkzXr24Y+s1x//1JMS</latexit>

T9
<latexit sha1_base64="sf1SnS3SV9JDNoF3HZaMx5kVt6M=">AAAB7nicbZDJSgNBEIZrjEuMW1Q8eRlMBE9hRsTlFvDiMUI2SIbQ06lJmvT0DN09QhjyEF48KOLV1/AVPAiefBTtLAdN/KHh4/+r6KryY86UdpxPaymzvLK6ll3PbWxube/kd/fqKkokxRqNeCSbPlHImcCaZppjM5ZIQp9jwx9cj/PGHUrFIlHVwxi9kPQECxgl2liNYrWTXo2KnXzBKTkT2YvgzqBQznx8vx18YaWTf293I5qEKDTlRKmW68TaS4nUjHIc5dqJwpjQAelhy6AgISovnYw7so+N07WDSJontD1xf3ekJFRqGPqmMiS6r+azsflf1kp0cOmlTMSJRkGnHwUJt3Vkj3e3u0wi1XxogFDJzKw27RNJqDYXypkjuPMrL0L9tOSel85u3ULZgamycAhHcAIuXEAZbqACNaAwgHt4hCcrth6sZ+tlWrpkzXr24Y+s1x//1JMS</latexit>

T9

<latexit sha1_base64="yvFxdrUrKpEyKFu0QdJ+4PXc+LA=">AAAB73icbZDJSgNBEIZrjEuMW1Q8eWlMBE9hRkQ9Brx4jJANkiH0dGqSJj2L3T1CGPISXjwo4tXH8BU8CJ58FO0sB038oeHj/6voqvJiwZW27U9rKbO8srqWXc9tbG5t7+R39+oqSiTDGotEJJseVSh4iDXNtcBmLJEGnsCGN7ga5407lIpHYVUPY3QD2gu5zxnVxmoWq53UsUfFTr5gl+yJyCI4MyiUMx/fbwdfWOnk39vdiCUBhpoJqlTLsWPtplRqzgSOcu1EYUzZgPawZTCkASo3ncw7IsfG6RI/kuaFmkzc3x0pDZQaBp6pDKjuq/lsbP6XtRLtX7opD+NEY8imH/mJIDoi4+VJl0tkWgwNUCa5mZWwPpWUaXOinDmCM7/yItRPS8556ezGKZRtmCoLh3AEJ+DABZThGipQAwYC7uERnqxb68F6tl6mpUvWrGcf/sh6/QFjRpNE</latexit>

T10
<latexit sha1_base64="yvFxdrUrKpEyKFu0QdJ+4PXc+LA=">AAAB73icbZDJSgNBEIZrjEuMW1Q8eWlMBE9hRkQ9Brx4jJANkiH0dGqSJj2L3T1CGPISXjwo4tXH8BU8CJ58FO0sB038oeHj/6voqvJiwZW27U9rKbO8srqWXc9tbG5t7+R39+oqSiTDGotEJJseVSh4iDXNtcBmLJEGnsCGN7ga5407lIpHYVUPY3QD2gu5zxnVxmoWq53UsUfFTr5gl+yJyCI4MyiUMx/fbwdfWOnk39vdiCUBhpoJqlTLsWPtplRqzgSOcu1EYUzZgPawZTCkASo3ncw7IsfG6RI/kuaFmkzc3x0pDZQaBp6pDKjuq/lsbP6XtRLtX7opD+NEY8imH/mJIDoi4+VJl0tkWgwNUCa5mZWwPpWUaXOinDmCM7/yItRPS8556ezGKZRtmCoLh3AEJ+DABZThGipQAwYC7uERnqxb68F6tl6mpUvWrGcf/sh6/QFjRpNE</latexit>

T10

<latexit sha1_base64="L9ceAuanSE+TpOXhrkV3cXumpj0=">AAAB73icbZDLSgMxFIbPWC+13qriyk2wFVyViYi6LLhxWaE3aIeSSTNtaCYzJhmhDH0JNy4Ucetj+AouBFc+iqaXhbb+EPj4/3PIOcePBdfGdT+dpczyyupadj23sbm1vZPf3avrKFGU1WgkItX0iWaCS1Yz3AjWjBUjoS9Ywx9cjfPGHVOaR7JqhjHzQtKTPOCUGGs1i9VOivGo2MkX3JI7EVoEPINCOfPx/XbwxSqd/Hu7G9EkZNJQQbRuYTc2XkqU4VSwUa6daBYTOiA91rIoSci0l07mHaFj63RRECn7pEET93dHSkKth6FvK0Ni+no+G5v/Za3EBJdeymWcGCbp9KMgEchEaLw86nLFqBFDC4QqbmdFtE8UocaeKGePgOdXXoT6aQmfl85ucKHswlRZOIQjOAEMF1CGa6hADSgIuIdHeHJunQfn2XmZli45s559+CPn9QdkzJNF</latexit>

T11
<latexit sha1_base64="L9ceAuanSE+TpOXhrkV3cXumpj0=">AAAB73icbZDLSgMxFIbPWC+13qriyk2wFVyViYi6LLhxWaE3aIeSSTNtaCYzJhmhDH0JNy4Ucetj+AouBFc+iqaXhbb+EPj4/3PIOcePBdfGdT+dpczyyupadj23sbm1vZPf3avrKFGU1WgkItX0iWaCS1Yz3AjWjBUjoS9Ywx9cjfPGHVOaR7JqhjHzQtKTPOCUGGs1i9VOivGo2MkX3JI7EVoEPINCOfPx/XbwxSqd/Hu7G9EkZNJQQbRuYTc2XkqU4VSwUa6daBYTOiA91rIoSci0l07mHaFj63RRECn7pEET93dHSkKth6FvK0Ni+no+G5v/Za3EBJdeymWcGCbp9KMgEchEaLw86nLFqBFDC4QqbmdFtE8UocaeKGePgOdXXoT6aQmfl85ucKHswlRZOIQjOAEMF1CGa6hADSgIuIdHeHJunQfn2XmZli45s559+CPn9QdkzJNF</latexit>

T11

<latexit sha1_base64="U5gD9DA91JwL6XreaT850d2vduE=">AAAB73icbZDJSgNBEIZrEpcYt6h48tKYCJ7CTBD1GPDiMUI2SELo6dQkTXoWu3uEMOQlvHhQxKuP4St4EDz5KNpZDpr4Q8PH/1fRVeVGgitt259WKr2yurae2chubm3v7Ob29usqjCXDGgtFKJsuVSh4gDXNtcBmJJH6rsCGO7ya5I07lIqHQVWPIuz4tB9wjzOqjdUsVLuJUxoXurm8XbSnIsvgzCFfTn98vx1+YaWbe2/3Qhb7GGgmqFItx450J6FScyZwnG3HCiPKhrSPLYMB9VF1kum8Y3JinB7xQmleoMnU/d2RUF+pke+aSp/qgVrMJuZ/WSvW3mUn4UEUawzY7CMvFkSHZLI86XGJTIuRAcokN7MSNqCSMm1OlDVHcBZXXoZ6qeicF89unHzZhpkycATHcAoOXEAZrqECNWAg4B4e4cm6tR6sZ+tlVpqy5j0H8EfW6w9mUpNG</latexit>

T12
<latexit sha1_base64="U5gD9DA91JwL6XreaT850d2vduE=">AAAB73icbZDJSgNBEIZrEpcYt6h48tKYCJ7CTBD1GPDiMUI2SELo6dQkTXoWu3uEMOQlvHhQxKuP4St4EDz5KNpZDpr4Q8PH/1fRVeVGgitt259WKr2yurae2chubm3v7Ob29usqjCXDGgtFKJsuVSh4gDXNtcBmJJH6rsCGO7ya5I07lIqHQVWPIuz4tB9wjzOqjdUsVLuJUxoXurm8XbSnIsvgzCFfTn98vx1+YaWbe2/3Qhb7GGgmqFItx450J6FScyZwnG3HCiPKhrSPLYMB9VF1kum8Y3JinB7xQmleoMnU/d2RUF+pke+aSp/qgVrMJuZ/WSvW3mUn4UEUawzY7CMvFkSHZLI86XGJTIuRAcokN7MSNqCSMm1OlDVHcBZXXoZ6qeicF89unHzZhpkycATHcAoOXEAZrqECNWAg4B4e4cm6tR6sZ+tlVpqy5j0H8EfW6w9mUpNG</latexit>

T12

(a) Video classifica-

tion application

T1

�
hc1,m1i, Eex1

�
T1

�
hc1,m1i, Eex1

�

T2

�
hc2,m2i, Eex2

�
T2

�
hc2,m2i, Eex2

�

T3

�
hc3,m3i, Eex3

�
T3

�
hc3,m3i, Eex3

�

T4

�
hc4,m4i, Eex4

�
T4

�
hc4,m4i, Eex4

�

T5

�
hc5,m5i, Eex5

�
T5

�
hc5,m5i, Eex5

�

T6

�
hc6,m6i, Eex6

�
T6

�
hc6,m6i, Eex6

�

T7

�
hc7,m7i, Eex7

�
T7

�
hc7,m7i, Eex7

�

T8

�
hc8,m8i, Eex8

�
T8

�
hc8,m8i, Eex8

�

T9

�
hc9,m9i, Eex9

�
T9

�
hc9,m9i, Eex9

�

T10

�
hc10,m10i, Eex10

�
T10

�
hc10,m10i, Eex10

�

T11

�
hc11,m11i, Eex11

�
T11

�
hc11,m11i, Eex11

�

T12

�
hc12,m12i, Eex12

�
T12

�
hc12,m12i, Eex12

�

(b) Video classification application, with each sub-application’s

CPU and memory resource requirements denoted as ⟨c,m⟩, and

execution time denoted as Eex.

Figure 1: Directed acyclic graph (DAG) of representative application.

Edge 1

.

.

.

Edge 2

Edge N

.

.

.

offloading

Deployments

<latexit sha1_base64="JX4+LLyG7epb8VZEbzqL3veexqI=">AAACAHicbVC7TsMwFHXKq5RXgAEJFosWiQFVSUHAWImFgaGV+pKaKHJct1h1nMh2kKooCyufwcIAQqys/AEbf8En4KYdoOVIvjo6515d3+NHjEplWV9GbmFxaXklv1pYW9/Y3DK3d1oyjAUmTRyyUHR8JAmjnDQVVYx0IkFQ4DPS9odXY799R4SkIW+oUUTcAA047VOMlJY8c6/kJA0vsdMTXStZPU2dtOSZRatsZYDzxJ6SYtWsf3/c7D/UPPPT6YU4DghXmCEpu7YVKTdBQlHMSFpwYkkihIdoQLqachQQ6SbZASk80koP9kOhH1cwU39PJCiQchT4ujNA6lbOemPxP68bq/6lm1AexYpwPFnUjxlUIRynAXtUEKzYSBOEBdV/hfgWCYSVzqygQ7BnT54nrUrZPi+f1e1i1QIT5MEBOATHwAYXoAquQQ00AQYpeATP4MW4N56MV+Nt0pozpjO74A+M9x+J4Jix</latexit>

{T1, T2, T3}
<latexit sha1_base64="JX4+LLyG7epb8VZEbzqL3veexqI=">AAACAHicbVC7TsMwFHXKq5RXgAEJFosWiQFVSUHAWImFgaGV+pKaKHJct1h1nMh2kKooCyufwcIAQqys/AEbf8En4KYdoOVIvjo6515d3+NHjEplWV9GbmFxaXklv1pYW9/Y3DK3d1oyjAUmTRyyUHR8JAmjnDQVVYx0IkFQ4DPS9odXY799R4SkIW+oUUTcAA047VOMlJY8c6/kJA0vsdMTXStZPU2dtOSZRatsZYDzxJ6SYtWsf3/c7D/UPPPT6YU4DghXmCEpu7YVKTdBQlHMSFpwYkkihIdoQLqachQQ6SbZASk80koP9kOhH1cwU39PJCiQchT4ujNA6lbOemPxP68bq/6lm1AexYpwPFnUjxlUIRynAXtUEKzYSBOEBdV/hfgWCYSVzqygQ7BnT54nrUrZPi+f1e1i1QIT5MEBOATHwAYXoAquQQ00AQYpeATP4MW4N56MV+Nt0pozpjO74A+M9x+J4Jix</latexit>

{T1, T2, T3}

Edge 3

input data flow

$\
{T_{1},T_{2},

T_{3}\}$

<latexit sha1_base64="bs9C+e8KODrth06gKHpI6fp3yaE=">AAACBnicbVC7SgNBFJ2Nrxhfq3aKMJgIFhJ2JSaWARsLiwTyguyyzE4myZDZBzOzQli2shH8EhsLRWwF/8DOv/ATnGxSaOKFORzOuZc797gho0IaxpeWWVpeWV3Lruc2Nre2d/TdvZYIIo5JEwcs4B0XCcKoT5qSSkY6ISfIcxlpu6Orid++JVzQwG/IcUhsDw182qcYSSU5+lHBihtOXErOFF6kWE6xklhJwdHzRtFICy4Sc0byVb3+/XFz8FBz9E+rF+DII77EDAnRNY1Q2jHikmJGkpwVCRIiPEID0lXURx4RdpyekcATpfRgP+Dq+RKm6u+JGHlCjD1XdXpIDsW8NxH/87qR7F/aMfXDSBIfTxf1IwZlACeZwB7lBEs2VgRhTtVfIR4ijrBUyeVUCOb8yYukdV40y8VS3cxXDTCtLDgEx+AUmKACquAa1EATYHAHHsEzeNHutSftVXubtma02cw++FPa+w/I3JsE</latexit>

{T4, T5, T6, T7}
<latexit sha1_base64="bs9C+e8KODrth06gKHpI6fp3yaE=">AAACBnicbVC7SgNBFJ2Nrxhfq3aKMJgIFhJ2JSaWARsLiwTyguyyzE4myZDZBzOzQli2shH8EhsLRWwF/8DOv/ATnGxSaOKFORzOuZc797gho0IaxpeWWVpeWV3Lruc2Nre2d/TdvZYIIo5JEwcs4B0XCcKoT5qSSkY6ISfIcxlpu6Orid++JVzQwG/IcUhsDw182qcYSSU5+lHBihtOXErOFF6kWE6xklhJwdHzRtFICy4Sc0byVb3+/XFz8FBz9E+rF+DII77EDAnRNY1Q2jHikmJGkpwVCRIiPEID0lXURx4RdpyekcATpfRgP+Dq+RKm6u+JGHlCjD1XdXpIDsW8NxH/87qR7F/aMfXDSBIfTxf1IwZlACeZwB7lBEs2VgRhTtVfIR4ijrBUyeVUCOb8yYukdV40y8VS3cxXDTCtLDgEx+AUmKACquAa1EATYHAHHsEzeNHutSftVXubtma02cw++FPa+w/I3JsE</latexit>

{T4, T5, T6, T7}

<latexit sha1_base64="SkEUvbUaIQb+41CIfe7k3HKults=">AAACD3icbVDLSsNAFJ3UV62vqDvdDLaKCylJEa27ghsXLlroC5oQJtNJHTp5MDMRSsgX6MZfceNCEcGVW3f+hZ/gtOlCWw/MvYdz7+XOPW7EqJCG8aXlFhaXllfyq4W19Y3NLX17py3CmGPSwiELeddFgjAakJakkpFuxAnyXUY67vByXO/cEi5oGDTlKCK2jwYB9ShGUkmOflSykqaTVNMTFS8m0TSyZGapklppydGLRtmYAM4Tc0qKNb3x/X69d1d39E+rH+LYJ4HEDAnRM41I2gnikmJG0oIVCxIhPEQD0lM0QD4RdjK5J4WHSulDL+TqBRJO1N8TCfKFGPmu6vSRvBGztbH4X60XS69qJzSIYkkCnC3yYgZlCMfmwD7lBEs2UgRhTtVfIb5BHGGpLCwoE8zZk+dJu1I2z8qnDbNYM0CGPNgHB+AYmOAc1MAVqIMWwOAePIJn8KI9aE/aq/aWtea06cwu+APt4wdngZ32</latexit>

{T8, T9, T10, T11, T12}
<latexit sha1_base64="SkEUvbUaIQb+41CIfe7k3HKults=">AAACD3icbVDLSsNAFJ3UV62vqDvdDLaKCylJEa27ghsXLlroC5oQJtNJHTp5MDMRSsgX6MZfceNCEcGVW3f+hZ/gtOlCWw/MvYdz7+XOPW7EqJCG8aXlFhaXllfyq4W19Y3NLX17py3CmGPSwiELeddFgjAakJakkpFuxAnyXUY67vByXO/cEi5oGDTlKCK2jwYB9ShGUkmOflSykqaTVNMTFS8m0TSyZGapklppydGLRtmYAM4Tc0qKNb3x/X69d1d39E+rH+LYJ4HEDAnRM41I2gnikmJG0oIVCxIhPEQD0lM0QD4RdjK5J4WHSulDL+TqBRJO1N8TCfKFGPmu6vSRvBGztbH4X60XS69qJzSIYkkCnC3yYgZlCMfmwD7lBEs2UgRhTtVfIb5BHGGpLCwoE8zZk+dJu1I2z8qnDbNYM0CGPNgHB+AYmOAc1MAVqIMWwOAePIJn8KI9aE/aq/aWtea06cwu+APt4wdngZ32</latexit>

{T8, T9, T10, T11, T12}

<latexit sha1_base64="MAH5YzjpzNbJkJ5599/nCis3IK0=">AAAB8nicbZDLSgMxFIYz9VbrbdSdboKt4KrMiKjLghsXLlroDWaGkkkzbWgmGZKMUIZ5AtduXCji1rfwDdz5Fj6C6WWhrT8EPv7/HHLOCRNGlXacL6uwsrq2vlHcLG1t7+zu2fsHbSVSiUkLCyZkN0SKMMpJS1PNSDeRBMUhI51wdDPJO/dEKip4U48TEsRowGlEMdLG8ip+1uxlbu7nlZ5ddqrOVHAZ3DmUa3bj++Pu6KHesz/9vsBpTLjGDCnluU6igwxJTTEjeclPFUkQHqEB8QxyFBMVZNORc3hqnD6MhDSPazh1f3dkKFZqHIemMkZ6qBaziflf5qU6ug4yypNUE45nH0Upg1rAyf6wTyXBmo0NICypmRXiIZIIa3OlkjmCu7jyMrTPq+5l9aLhlmsOmKkIjsEJOAMuuAI1cAvqoAUwEOARPIMXS1tP1qv1NistWPOeQ/BH1vsP5FaT9Q==</latexit>

{T1}
<latexit sha1_base64="MAH5YzjpzNbJkJ5599/nCis3IK0=">AAAB8nicbZDLSgMxFIYz9VbrbdSdboKt4KrMiKjLghsXLlroDWaGkkkzbWgmGZKMUIZ5AtduXCji1rfwDdz5Fj6C6WWhrT8EPv7/HHLOCRNGlXacL6uwsrq2vlHcLG1t7+zu2fsHbSVSiUkLCyZkN0SKMMpJS1PNSDeRBMUhI51wdDPJO/dEKip4U48TEsRowGlEMdLG8ip+1uxlbu7nlZ5ddqrOVHAZ3DmUa3bj++Pu6KHesz/9vsBpTLjGDCnluU6igwxJTTEjeclPFUkQHqEB8QxyFBMVZNORc3hqnD6MhDSPazh1f3dkKFZqHIemMkZ6qBaziflf5qU6ug4yypNUE45nH0Upg1rAyf6wTyXBmo0NICypmRXiIZIIa3OlkjmCu7jyMrTPq+5l9aLhlmsOmKkIjsEJOAMuuAI1cAvqoAUwEOARPIMXS1tP1qv1NistWPOeQ/BH1vsP5FaT9Q==</latexit>

{T1}

<latexit sha1_base64="7K423aayN0laYpq9smEXmoKr0ec=">AAACBnicbVC7SgNBFJ2Nrxhfq3aKMJgIFhJ2oySWARsLiwTyguyyzE4myZDZBzOzQli2shH8EhsLRWwF/8DOv/ATnGxSaOKFORzOuZc797gho0IaxpeWWVpeWV3Lruc2Nre2d/TdvZYIIo5JEwcs4B0XCcKoT5qSSkY6ISfIcxlpu6Orid++JVzQwG/IcUhsDw182qcYSSU5+lHBihtOXErOFJ6nWE6xklhJwdHzRtFICy4Sc0byVb3+/XFz8FBz9E+rF+DII77EDAnRNY1Q2jHikmJGkpwVCRIiPEID0lXURx4RdpyekcATpfRgP+Dq+RKm6u+JGHlCjD1XdXpIDsW8NxH/87qR7F/aMfXDSBIfTxf1IwZlACeZwB7lBEs2VgRhTtVfIR4ijrBUyeVUCOb8yYukVSqa5eJF3cxXDTCtLDgEx+AUmKACquAa1EATYHAHHsEzeNHutSftVXubtma02cw++FPa+w/CgJsA</latexit>

{T2, T3, T6, T7}
<latexit sha1_base64="7K423aayN0laYpq9smEXmoKr0ec=">AAACBnicbVC7SgNBFJ2Nrxhfq3aKMJgIFhJ2oySWARsLiwTyguyyzE4myZDZBzOzQli2shH8EhsLRWwF/8DOv/ATnGxSaOKFORzOuZc797gho0IaxpeWWVpeWV3Lruc2Nre2d/TdvZYIIo5JEwcs4B0XCcKoT5qSSkY6ISfIcxlpu6Orid++JVzQwG/IcUhsDw182qcYSSU5+lHBihtOXErOFJ6nWE6xklhJwdHzRtFICy4Sc0byVb3+/XFz8FBz9E+rF+DII77EDAnRNY1Q2jHikmJGkpwVCRIiPEID0lXURx4RdpyekcATpfRgP+Dq+RKm6u+JGHlCjD1XdXpIDsW8NxH/87qR7F/aMfXDSBIfTxf1IwZlACeZwB7lBEs2VgRhTtVfIR4ijrBUyeVUCOb8yYukVSqa5eJF3cxXDTCtLDgEx+AUmKACquAa1EATYHAHHsEzeNHutSftVXubtma02cw++FPa+w/CgJsA</latexit>

{T2, T3, T6, T7}

<latexit sha1_base64="JX4+LLyG7epb8VZEbzqL3veexqI=">AAACAHicbVC7TsMwFHXKq5RXgAEJFosWiQFVSUHAWImFgaGV+pKaKHJct1h1nMh2kKooCyufwcIAQqys/AEbf8En4KYdoOVIvjo6515d3+NHjEplWV9GbmFxaXklv1pYW9/Y3DK3d1oyjAUmTRyyUHR8JAmjnDQVVYx0IkFQ4DPS9odXY799R4SkIW+oUUTcAA047VOMlJY8c6/kJA0vsdMTXStZPU2dtOSZRatsZYDzxJ6SYtWsf3/c7D/UPPPT6YU4DghXmCEpu7YVKTdBQlHMSFpwYkkihIdoQLqachQQ6SbZASk80koP9kOhH1cwU39PJCiQchT4ujNA6lbOemPxP68bq/6lm1AexYpwPFnUjxlUIRynAXtUEKzYSBOEBdV/hfgWCYSVzqygQ7BnT54nrUrZPi+f1e1i1QIT5MEBOATHwAYXoAquQQ00AQYpeATP4MW4N56MV+Nt0pozpjO74A+M9x+J4Jix</latexit>

{T1, T2, T3}
<latexit sha1_base64="JX4+LLyG7epb8VZEbzqL3veexqI=">AAACAHicbVC7TsMwFHXKq5RXgAEJFosWiQFVSUHAWImFgaGV+pKaKHJct1h1nMh2kKooCyufwcIAQqys/AEbf8En4KYdoOVIvjo6515d3+NHjEplWV9GbmFxaXklv1pYW9/Y3DK3d1oyjAUmTRyyUHR8JAmjnDQVVYx0IkFQ4DPS9odXY799R4SkIW+oUUTcAA047VOMlJY8c6/kJA0vsdMTXStZPU2dtOSZRatsZYDzxJ6SYtWsf3/c7D/UPPPT6YU4DghXmCEpu7YVKTdBQlHMSFpwYkkihIdoQLqachQQ6SbZASk80koP9kOhH1cwU39PJCiQchT4ujNA6lbOemPxP68bq/6lm1AexYpwPFnUjxlUIRynAXtUEKzYSBOEBdV/hfgWCYSVzqygQ7BnT54nrUrZPi+f1e1i1QIT5MEBOATHwAYXoAquQQ00AQYpeATP4MW4N56MV+Nt0pozpjO74A+M9x+J4Jix</latexit>

{T1, T2, T3}

(a) An approach for Video classification application

offloading

Edge 1

Edge 2

Edge N

.

.

.

Edge 3

<latexit sha1_base64="ZGtl0I/WqXhE0e9Edtu9E/TlqaI=">AAACO3icbVC7TsMwFHV4lvIKsMES0SIxVFVcSlu2SiwMDIAoVGqqynHd1qrzkO0gVVG+gB9iYeIP2FhYGECIgYUd12GAliv53ONz7pV9rxsyKqRtPxkzs3PzC4uZpezyyuraurmxeSWCiGPSwAELeNNFgjDqk4akkpFmyAnyXEau3eHx2L++IVzQwL+Uo5C0PdT3aY9iJJXUMS/yTnzZiWFSUFjSeKCxrPFQYyUpOI7KVX2rJUWFR5pDO01pPywlTpLvmDm7aOuwpgn8Ibm6ef75cLp9e9YxH51ugCOP+BIzJEQL2qFsx4hLihlJsk4kSIjwEPVJS1EfeUS0Yz17Yu0ppWv1Aq6OLy2t/u6IkSfEyHNVpYfkQEx6Y/E/rxXJXq0dUz+MJPFx+lAvYpYMrPEirS7lBEs2UgRhTtVfLTxAHGGp1p1VS4CTI0+Tq1IRVorlc5ir2yCNDNgBu2AfQFAFdXACzkADYHAHnsEreDPujRfj3fhIS2eMn54t8CeMr28d3661</latexit>

{T1, T2, T3, T4, T5, T6, T7, T8.T9, T10, T11, T12}
<latexit sha1_base64="ZGtl0I/WqXhE0e9Edtu9E/TlqaI=">AAACO3icbVC7TsMwFHV4lvIKsMES0SIxVFVcSlu2SiwMDIAoVGqqynHd1qrzkO0gVVG+gB9iYeIP2FhYGECIgYUd12GAliv53ONz7pV9rxsyKqRtPxkzs3PzC4uZpezyyuraurmxeSWCiGPSwAELeNNFgjDqk4akkpFmyAnyXEau3eHx2L++IVzQwL+Uo5C0PdT3aY9iJJXUMS/yTnzZiWFSUFjSeKCxrPFQYyUpOI7KVX2rJUWFR5pDO01pPywlTpLvmDm7aOuwpgn8Ibm6ef75cLp9e9YxH51ugCOP+BIzJEQL2qFsx4hLihlJsk4kSIjwEPVJS1EfeUS0Yz17Yu0ppWv1Aq6OLy2t/u6IkSfEyHNVpYfkQEx6Y/E/rxXJXq0dUz+MJPFx+lAvYpYMrPEirS7lBEs2UgRhTtVfLTxAHGGp1p1VS4CTI0+Tq1IRVorlc5ir2yCNDNgBu2AfQFAFdXACzkADYHAHnsEreDPujRfj3fhIS2eMn54t8CeMr28d3661</latexit>

{T1, T2, T3, T4, T5, T6, T7, T8.T9, T10, T11, T12}

$\{T_{1},T_{2},T_{3},T_{4},T_{5},T_{6},\
\T_{7},T_{8}.T_{9},T_{10},T_{11},T_{12}\}$

(b) Machine learning (ML)-enabled approach for

Video classification application offloading

Figure 2: Application offloading strategies.

4

and T7 need to be transmitted from edge Edge 2 to edge Edge 3, to serve as

the input data to task T10. Finally, the execution results of tasks T2 and T3

need to be transmitted from edge Edge 1 to edge Edge 3 to complete the video

classification application execution. In this paper, we show that machine learn-

ing (ML) techniques can enable effective IoT tasks offloading and scheduling in60

edge computing systems. We propose a ML linear regression model to predict

or estimate the application’s resource requirements and execution time of an ap-

plication, as shown in Fig. 1(b), and intelligently offload them to an edge with

sufficient resource availability, as shown in Fig. 2(b). This approach eliminates

the need of input data flow, as sub-applications can be able to communicate and65

share data quickly. However, upon arrival of an applications in the a suitable

edge, the application may perform poorly if the sub-applications are scheduled

naively, e.g., in an edge deployment which that can only execute one task at any

time, where each task is scheduled individually, the application would perform

poorly. Therefore, we further propose a variant bin-packing optimization that70

gang- schedules [12, 13] and co-locates applications firmly on EC resources so as

to fully utilize available resources. Hence, our We aim is to schedule and execute

all the tasks by considering dependencies and resource demands, such that the

actual scheduling and execution time is minimized. In summary, to achieve our

Edge-IoT implementation, we address the following critical areasissues:75

• We investigate a situation whereby multiple IoT systems can intelligently

offload their complex applications to an edge deployment with sufficient re-

source availability to meet the resource-level demands of the applications,

thus facilitating a resource-aware offloading scheme by enabling faster in-

teractions among the applications to maximize their performance.80

• Specifically, we derive a multi-task ML resource requirement and execution

time estimation, so as to aid the selection of edge deployment with suitable

resource availability.

• To guarantee optimal usage of edge resources and faster execution of

tasks, we further propose a variant bin-packing optimization approach85

5

through gang scheduling of multi-dependent tasks, which co-schedules and

co-locates tasks firmly on available nodes to avoid resource wastage.

• We show that Edge-IoT is capable of minimizing the response time of

IoT applications using minimum resources, and conduct extensive exper-

iments to compare the performance of our Edge-IoT with several existing90

approaches using real-world data-trace from Alibaba cluster trace1, which

provides information on task dependencies.

2. Related Works

Edge computing has been proven to make the IoT smarter by implementing

smart connections and operation of IoT devices [14]. Emerging IoT technolo-95

gies, such as the smart city [1], healthcare-IoT [2], Internet of Vehicles (IoV)

[3, 4, 5], connected and autonomous vehicles (CAVs) [6], and industry 4.0 [7], are

utilizing EC for data analysis, processing and monitoring within their networks

to improve both the efficiency and response speed. There are a huge number

of existing works that have addressed the use of EC for IoT applications. For100

example, in [15], the authors studied multi-user IoT application offloading for a

mobile edge computing (MEC) system and both the resources of computation

and communication were cooperatively allocated. The proposed system focuses

on minimizing both the weighted overhead of local IoT devices and the offload

measured by the delay and energy consumption. The authors in [16] formulated105

two novel optimization problems for delay-sensitive IoT applications, i.e., the

total utility maximization problems under both static and dynamic offloading

task request settings, to maximize the accumulative user satisfaction on the use

of the services provided by an MEC system and show the non-deterministic

polynomial time (NP)-hardness of the defined problems. Aiming to maximize110

the number of IoT devices through jointly optimizing the unmanned aerial ve-

hicle (UAV) trajectory and service indicator as well as resource allocation and

1https://github.com/alibaba/clusterdata

6

computation offloading, the authors in [17] formulated the optimization prob-

lem as a mixed integer nonlinear programming (MINLP) problem, where the

chosen IoT devices would complete their computation tasks on time under given115

energy budgets and co-channel interference was taken into account. In [18], the

authors studied the service home identification problem of service provisioning

for multi-source IoT applications in an MEC network, by identifying a service

home (cloudlet) of each multi-source IoT application for its data processing,

querying and storage. They considered two novel service home identification120

problems. The work in [19] presented a joint optimization objective to evaluate

the unavailability level, communication delay and resource wastage while allo-

cating the same batch of IoT applications to multiple edge clouds. Then, the

authors proposed an approach to minimizing the joint optimization objective

under the condition of certain communication delays. In [20], the authors inves-125

tigated the issue of joint cooperative edge caching and recommender systems to

achieve additional cache gains by the soft caching framework. To measure the

cache profits, they formulated the optimization problem as an Integer Linear

Programming (ILP) problem, which is NP-hard. The above methods leverage

EC to offload IoT applications. They promise efficiency and better performance,130

but lack the consideration of a learning-based resource-aware offloading scheme

with joint optimization of task resource demands and edge deployment resource

availability. Therefore, we propose a joint optimization solution that guarantees

faster offloading and execution of IoT applications in edge computing systems.

3. System Model and Problem Formulation135

We consider an urban vehicular network environment where the iInternet

of vVehicles (IoV) applications are offloaded from vehicles to EC deployments

across various, EC-enabled road side units (RSUs), EC-enabled base stations

(BSs), etc. We focuses on V2I application offloading as illustrated in Fig. 3,

where each vehicle is equipped with a powerful wireless interface that can be140

used to connect with RSUs, BSs, etc. We also consider the possibility that each

7

RSU 2RSU 1BS 1

.

.

.

Estimator

CP

Dispatcher

Edge N

.

.

.

Edge 1

Edge 2

Integrated Edge Computing System

.

.

.

Edge N

.

.

.

Edge 1

Edge 2
<latexit sha1_base64="dmUpu3H6sEra0FENRIdXZH6X9iU=">AAACDnicbVC7SgNBFJ2NryS+opY2g0nAQsKuiFoGRBCrKOYB2WWZnZ3dDJl9MDOrhCWNjYWNP2JhY6GIrbWdX6OzSQpNPDBw5px7ufceJ2ZUSF3/0nJz8wuLS/lCcXlldW29tLHZElHCMWniiEW84yBBGA1JU1LJSCfmBAUOI22nf5L57WvCBY3CKzmIiRUgP6QexUgqyS5VK2aAZM9x0vMhNC+p35OI8+gGnro+sVNTqO+wYpfKek0fAc4SY0LK9cKd+/h9u9ewS5+mG+EkIKHEDAnRNfRYWinikmJGhkUzESRGuI980lU0RAERVjo6ZwirSnGhF3H1QglH6u+OFAVCDAJHVWa7i2kvE//zuon0jq2UhnEiSYjHg7yEQRnBLBvoUk6wZANFEOZU7QpxD3GEpUqwqEIwpk+eJa39mnFYO7gwynUdjJEH22AH7AIDHIE6OAMN0AQY3IMn8AJetQftWXvT3selOW3SswX+QPv4Ac1Qn5o=</latexit>

J) Edge?
<latexit sha1_base64="dmUpu3H6sEra0FENRIdXZH6X9iU=">AAACDnicbVC7SgNBFJ2NryS+opY2g0nAQsKuiFoGRBCrKOYB2WWZnZ3dDJl9MDOrhCWNjYWNP2JhY6GIrbWdX6OzSQpNPDBw5px7ufceJ2ZUSF3/0nJz8wuLS/lCcXlldW29tLHZElHCMWniiEW84yBBGA1JU1LJSCfmBAUOI22nf5L57WvCBY3CKzmIiRUgP6QexUgqyS5VK2aAZM9x0vMhNC+p35OI8+gGnro+sVNTqO+wYpfKek0fAc4SY0LK9cKd+/h9u9ewS5+mG+EkIKHEDAnRNfRYWinikmJGhkUzESRGuI980lU0RAERVjo6ZwirSnGhF3H1QglH6u+OFAVCDAJHVWa7i2kvE//zuon0jq2UhnEiSYjHg7yEQRnBLBvoUk6wZANFEOZU7QpxD3GEpUqwqEIwpk+eJa39mnFYO7gwynUdjJEH22AH7AIDHIE6OAMN0AQY3IMn8AJetQftWXvT3selOW3SswX+QPv4Ac1Qn5o=</latexit>

J) Edge?

<latexit sha1_base64="xbMRFvcBTN0T2i3zgaGw5Levh0c=">AAACC3icbZDLSgMxFIYz9VbrbdSlLkJbwYWUGRF1WSiCuKpgL9DWIZNmpqFJZkgyQhm6d+Pep3DjQhG3voA7n8WN6WWhrT8EPv5zTpLz+zGjSjvOl5VZWFxaXsmu5tbWNza37O2duooSiUkNRyySTR8pwqggNU01I81YEsR9Rhp+vzKqN+6IVDQSN3oQkw5HoaABxUgby7PzxYqXXnRD4tHhbdpmSISMQHzEYVuOeVj07IJTcsaC8+BOoVDerze+6eNV1bM/290IJ5wIjRlSquU6se6kSGqKzYW5dqJIjHAfhaRlUCBOVCcd7zKEB8bpwiCS5ggNx+7viRRxpQbcN50c6Z6arY3M/2qtRAfnnZSKONFE4MlDQcKgjuAoGNilkmDNBgYQltT8FeIekghrE1/OhODOrjwP9eOSe1o6uXYLZQdMlAV7IA8OgQvOQBlcgiqoAQzuwRN4Aa/Wg/VsvVnvk9aMNZ3ZBX9kffwAXA+dlw==</latexit>

Chc,mi
Edgei

<latexit sha1_base64="xbMRFvcBTN0T2i3zgaGw5Levh0c=">AAACC3icbZDLSgMxFIYz9VbrbdSlLkJbwYWUGRF1WSiCuKpgL9DWIZNmpqFJZkgyQhm6d+Pep3DjQhG3voA7n8WN6WWhrT8EPv5zTpLz+zGjSjvOl5VZWFxaXsmu5tbWNza37O2duooSiUkNRyySTR8pwqggNU01I81YEsR9Rhp+vzKqN+6IVDQSN3oQkw5HoaABxUgby7PzxYqXXnRD4tHhbdpmSISMQHzEYVuOeVj07IJTcsaC8+BOoVDerze+6eNV1bM/290IJ5wIjRlSquU6se6kSGqKzYW5dqJIjHAfhaRlUCBOVCcd7zKEB8bpwiCS5ggNx+7viRRxpQbcN50c6Z6arY3M/2qtRAfnnZSKONFE4MlDQcKgjuAoGNilkmDNBgYQltT8FeIekghrE1/OhODOrjwP9eOSe1o6uXYLZQdMlAV7IA8OgQvOQBlcgiqoAQzuwRN4Aa/Wg/VsvVnvk9aMNZ3ZBX9kffwAXA+dlw==</latexit>

Chc,mi
Edgei

<latexit sha1_base64="m+GLI3XP5g9h8cjG0yk0hZqC9v8=">AAACVXicbVFNSyMxGM6MXT+669rVk+wl2O6yyFpmZHG9CAVZ2GOFVgudOmQyb9vQJDMkGZcS5h/467yI/8SLsOnHQWtfCDw8H+TNkyTnTJsgePL8jcqHza3tnerHT7uf92pf9q91VigKXZrxTPUSooEzCV3DDIderoCIhMNNMrmc6Td3oDTLZMdMcxgIMpJsyCgxjoprvBHpQsSWXYTlrZ2U6a2NOJEjDpj+FDhSc1zGNvrHUjCMp2A7MStLfIGdF68x4yhXTABeCZVlI67Vg2YwH/wehEtQb30/rJzcH/9px7WHKM1oIUAayonW/TDIzcASZRh1W1WjQkNO6ISMoO+gJAL0wM5bKfE3x6R4mCl3pMFz9nXCEqH1VCTOKYgZ61VtRq7T+oUZng8sk3lhQNLFRcOCY5PhWcU4ZQqo4VMHCFXM7YrpmChCjfuIqishXH3ye3B92gzPmr+uwnorQIvZRl/REfqBQvQbtdBf1EZdRNEDevY8z/cevRe/4m8urL63zBygN+Pv/QcZkbY1</latexit>

kX

i=1

dhc,mi
eTi

= dhc,mi0
eT

<latexit sha1_base64="m+GLI3XP5g9h8cjG0yk0hZqC9v8=">AAACVXicbVFNSyMxGM6MXT+669rVk+wl2O6yyFpmZHG9CAVZ2GOFVgudOmQyb9vQJDMkGZcS5h/467yI/8SLsOnHQWtfCDw8H+TNkyTnTJsgePL8jcqHza3tnerHT7uf92pf9q91VigKXZrxTPUSooEzCV3DDIderoCIhMNNMrmc6Td3oDTLZMdMcxgIMpJsyCgxjoprvBHpQsSWXYTlrZ2U6a2NOJEjDpj+FDhSc1zGNvrHUjCMp2A7MStLfIGdF68x4yhXTABeCZVlI67Vg2YwH/wehEtQb30/rJzcH/9px7WHKM1oIUAayonW/TDIzcASZRh1W1WjQkNO6ISMoO+gJAL0wM5bKfE3x6R4mCl3pMFz9nXCEqH1VCTOKYgZ61VtRq7T+oUZng8sk3lhQNLFRcOCY5PhWcU4ZQqo4VMHCFXM7YrpmChCjfuIqishXH3ye3B92gzPmr+uwnorQIvZRl/REfqBQvQbtdBf1EZdRNEDevY8z/cevRe/4m8urL63zBygN+Pv/QcZkbY1</latexit>

kX

i=1

dhc,mi
eTi

= dhc,mi0
eT

Figure 3: An example architecture of IoV multi-task offloading.

vehicle is equipped with in-vehicle edge devices or deployment. For example,

the an in-vehicle EC deployment may not be as large as those the deployments

of the RSUs, while those of the RSUs may not be as large as the deployments

of the BSs, etc., in terms of resource capacity. Therefore, IoV applications145

can be packaged in containers, i.e., Docker container provides a taskn offloading

solution forto isolation, portability and lightweight tasks offloading solution from

devices to edge clusters, and thenor to deploys it to the closest edge deployment

with sufficient resource availability whenever it is needed. For such applications,

let ⟨c,m⟩ represent the CPU and memory requirements, respectively.150

Let E = {Edge1, · · · , EdgeM} represent the set of each individual partici-

pating edge deployment (i.e., in-vehicle, RSU, BS, etc), as a cluster of container-

instances (such as i.e., edge device(s) with virtualized container-optimized nodes).

Let C⟨c,m⟩
Edgei

represent the resource availability of each participating edge deploy-

ment. With the resource availability of each participating edge deployment-155

this C
⟨c,m⟩
Edgei

, an informed decision on multi-task offloading can be made. Let

V = {V1, · · · ,VM} represent the index set of vehicles. A vehicle Vq can choose

to execute its ready applications locally in its in-vehicle edge device installation

if there is sufficient resource availability or it os offloaded to the closest edge de-

ployment Edgei⋆ ∈ E, with sufficient resource availability. Let ϑ [Vq(t)] denote160

the offloading decision variable, which is measured by

8

ϑ [Vq(t)] =

 1, tasks are offloaded,

0, tasks are processed locally.
(1)

A set of multi-task set C = {T1, · · · , TN} from the vehicles at time t re-

quires an amount of CPU and memory resources for execution. These resource

requirements along with execution time, are first predicted or estimated using

linear regression ML model. The multi-task features fmt(ω, ϵ, γ), where ω is the165

number of instances, ϵ is type of tasks , γ is dependency depth, are fed into the

model Θ⋆ to estimate the values of the resource requirement and execution time

according to

fmt ·Θ⋆ =
[
Ẽex1

T̃
⟨c,m⟩
1 Ẽex2 T̃

⟨c,m⟩
2 · · · ẼexN

T̃
⟨c,m⟩
N

]
, (2)

where T̃
⟨c,m⟩
i and Ẽexi are the estimated resource requirement (in terms of

CPU and memory ⟨c,m⟩) and estimated execution time for task i, respectively.170

We show that with these estimated values, suitable edge deployment can be

selected and multi-dependent tasks can be intelligently scheduled with the aim

of minimizing their actual response time, while maximizing available resources.

Assuming that fmt∈R1×d is a d-dimensional vector (tensor), then Θ is a (d×ϵ)-

dimensional parameter matrix. To build this predictor Θ, we train it using his-175

torical data from previously executed tasks/jobs based on Keras2. Keras is a

library which wraps TensorFlow3 complexity into simple and user-friendly ap-

plication programming interface (API). The dataset DS={(xi,yi)}ni=1 contain

d-dimensional tensors of data features xi ∈R1×d and ϵ-dimensional tensors of

labels (actual execution times) yi∈R1×ϵ. The learning problem is to solve the180

following optimization:

Θ⋆ = arg min
Θ∈Rd×ϵ

1

2n

n∑
i=1

∥xiΘ− yi∥22 +
λ

2
∥Θ∥2F , (3)

2https://keras.io/
3https://www.tensorflow.org/

9

where λ is the regularization parameter and ∥ · ∥F denotes the Frobenius norm.

The optimization (4) is solved using gradient-descent, where the model is up-

dated iteratively until convergence, i.e., Θt+1=Θt−η
(
1
ng(Θ

t)+λΘl
)
, in which

η is the learning rate, g(Θ)= 1
nX

T
(
XΘ−Y

)
denotes the gradient of the loss

function, X =
[
xT
1 · · ·xT

n

]T and Y =
[
yT
1 · · ·yT

n

]T are the feature set and label

set, respectively. To guarantee the accuracy of our model, we introduce the

normalized absolute estimate error (NAEE), defined as:

NAEE =

∣∣estimated value − actual value
∣∣

actual value , (4)

for both resource requirement and execution time estimation, which serves as

the estimation accuracy measure for the trained linear regression model.

At time t, while ϑ [Vq(t)] = 0, the multi-task set C ∈ Vq is decided to

perform local execution procedure in the vehicle Vq; otherwise while ϑ [Vq(t)] =185

1, C ∈ Vq is otherwise to be offloaded to the edge deployment (Edgei⋆) with

sufficient resources closest to Vq. A multi-task set C is a loosly coupled inter-

dependent application, as shown in Fig. 1), where each task T ∈ C has two

resource requirements: CPU and memory, as the total amount of estimated

resources needed for its execution, is denoted as d
⟨c,m⟩
T̃

. For each task T ∈ C,190

let Esh, Est and Ecp denote its scheduling time, starting time and completion

time, respectively. Therefore, the execution time of a task is thus:

Eex = Ecp − Est. (5)

Existing offloading strategies (i.e., [4, 5, 21], etc,) allow subtasks of an ap-

plication or a job to be offloaded seperately across different edge deployments,

thus creating additional delay in the application’s response time, as explained195

in Section 1. For example, when a vehicle in such approach begins to offload

its tasks, the delay includes three parts: (1) the time for offloading subtasks

from the vehicle to different edge deployments, given as Eof , (2) the time for

transmitting the results of executed subtasks (known as input data flow) from

one edge deployment to another edge deployment, given as Esub, and (3) the200

10

time for transmitting the final result from EC deployment to the vehicle, given

as Erst. Therefore, the response time of the vehicle’s job is given as:

Ersp =
∑
T∈C

(
Eof + Esub + Esh + Eex

)
+ Erst. (6)

In this paper, our aim is to offload or dispatch a set of applications C be-

longing to a parked or moving vehicle Vq directly to a single and the closest

edge deployment Edgei⋆ having sufficient resource capacity or availability to205

accommodate the tasks, such that Eof is minimized, Esub is avoided, as well as

the overall Esh and Eex are minimized, namely,

C ⇒ Edge⋆, (7)

hence, the response time of the vehicle’s job changes to:

Ersp = Eof +
∑
T∈C

(
Esh + Eex

)
+ Erst. (8)

Once C has been offloaded to Edge⋆, Edge-IoT utilizes the gang-scheduling

[12, 13] strategy to co-schedule all the applications at a time in Edge⋆. Given a

cluster of container-instances or nodes Ii∈ Edge⋆, let I⟨c,m⟩
Edge⋆

denote each node’s210

resource capacity or availability. In real scenario where multi-vehicle set V ∈V

offloads multi-job tasks at t, these applications are offloaded as a multi-job set

J, i.e., J ⇒ Edge⋆, where its collective estimated resource demand is denoted as∑k
i=1 d

⟨c,m⟩
T̃i

= d
⟨c,m⟩′
T̃

. Hence, we can offload J to Edge⋆ with suitable resource

availability. Therefore, the aggregate scheduling time and execution time of a215

multi-job set J is given as:

∑
J∈J

k∑
i=1

Eshi

k
= Esh′, (9)

and ∑
J∈J

k∑
i=1

Eexi

k
= Eex′, (10)

11

Table 1: Notations

Notation Description

E A set of edge deployments

T Individual application or task

⟨c,m⟩ CPU and memory resources

C A set of containerized applications

d
⟨c,m⟩
T Application resource requirements

Edgei Individual edge deployment or cluster

Edge⋆ Closest edge deployment or cluster

Ii Container-instance or node in a cluster

I
⟨c,m⟩
i Resource capacity or availability of a node

C
⟨c,m⟩
Edgei

Resource capacity/availability in an edge

U
⟨c,m⟩
Edgei

Resources used for execution

U
⟨c⟩
Edgei

, U ⟨m⟩
Edgei

CPU, memory resource used for execution

RU
⟨c,m⟩
Edgei

Actual resources usage of jobs

RU
⟨c⟩
Edgei

, RU
⟨m⟩
Edgei

Actual CPU, memory resources usage

Est, Ecp Application/task start, completion time

Eex Application or task execution time

U ⟨c,m⟩
Edgei

Cluster resource utilization

U ⟨c⟩
Edgei

, U ⟨m⟩
Edgei

Cluster CPU, memory resource utilization

J , J A Job, A set of Jobs

V, V A Vehicle, A set of Vehicles

12

respectively. The estimated resource utilization of the edge for multi-job tasks

is thus

Ũ ⟨c,m⟩
Edgei

=

∑
J∈J d

⟨c,m⟩′
T̃

C
⟨c,m⟩
Edgei

. (11)

Similarly, Ũ ⟨c,m⟩
Edgei

includes the CPU utilization Ũ ⟨c⟩
Edgei

and the memory utilization

Ũ ⟨m⟩
Edgei

, which are defined respectively by

Ũ ⟨c⟩
Edgei

=

∑
J∈J d

⟨c⟩′
T̃

C
⟨c⟩
Edgei

, (12)

Ũ ⟨m⟩
Edgei

=

∑
J∈J d

⟨m⟩′
T̃

C
⟨m⟩
Edgei

, (13)

where
∑

J∈J d
⟨c⟩′
T̃

and
∑

J∈J d
⟨m⟩′
T̃

are the total collective estimated CPU and

memory, respectively. After completing the multi-job executions, the final ex-

ecution results are immediately and deterministically transmitted back to the

vehicles.220

3.1. Problem Formulation

The basic notations adopted are described in Table 1. The objectives are

to minimize the response time, Ersp of (8) for all J ∈ J and to to maximize

the computation or cluster resource utilization U ⟨c,m⟩
Edgei

of (11), subject to certain

constraints. The response time Ersp in (8) comprises the dispatching or offload-225

ing time Eof , the scheduling time Esh′ in (9), the execution time Eex′ in (10),

and the transmission time of final execution results transmission time Erst. The

closest computation offloading policies are jointly adopted in Eof , thus enabling

faster offloading time.

Constraints230

The collective resource demand or request of a multi-job set J at any given

time t cannot exceed the collective resource capacity or available in the selected

EC deployment: ∑
J∈J

d
⟨c,m⟩′
T̃

≤ C
⟨c,m⟩
Edge⋆

, ∀c,m, (14)

13

and the unused or inactive nodes Ii ∈ Edge⋆ would be shut down. All the

nodes are in Active or Inactive states. An Active node is a node that is running

and is currently considered for allocation or has at least a job being started,

executed or completed. An Inactive node is a node that is not running and is

not currently considered for allocation or has no job. These two states can be

expressed as follows:

∀c,m β (Ii) =

 1, Active if Ji ∈ [Est, Ecp, Eex],

0, Inactive if Ji /∈ [Est, Ecp, Eex],
(15)

where the indicator β (Ii) = 1 indicates that the node Ii is ready to accept

new jobs, and at least a job Ji is being started, executed or completed, i.e.,

Ji∈ [Est, Ecp, Eex], on Ii; otherwise β (Ii)=0.

Optimization formulation

Hence, maximizing utilization of the selected edge deployment or cluster

depends on application orchestration:

Maximize Ũ ⟨c,m⟩
Edgei

=

∑
J∈J d

⟨c,m⟩′
T̃

C
⟨c,m⟩
Edgei

, (16)

subject to J ⇒ Edge⋆, ∃, (17)

β (Ii)∈ {0, 1}, ∃, (18)∑
J∈J

d
⟨c,m⟩′
T̃

≤ C
⟨c,m⟩
Edge⋆

, ∀c,m. (19)

The constraints in Eqs. (17) to (19) indicate the dispatching of multi-job set

J to the closest edge having sufficient resource capability or availability. More

specifically, Eq. (17) is the constraint for J offloading, guaranteeing that J

is dispatched to a cluster, such that dependent tasks within each J ∈ J can

communicate and execute faster. Condition (18) guarantees that active nodes

(β (Ii) = 1) are used for execution, and inactive nodes (β (Ii) = 0) are be shut

down. The constraint in Eq. (19) guarantees that d
⟨c,m⟩′
T of J does not exceed

C
⟨c,m⟩
Edgei

of any selected cluster. The details of our multi-job dispatching principle

will be discussed in Section 4.1 and Algorithm 1. We aim to minimize the

14

number of active nodes used for execution by co-locating jobs tightly on each

node to maximize resource utilization. The details of our co-location strategy

will be discussed in Section 4.2 and Algorithm 2. On the other hand, the

overall scheduling time and execution time can be minimized depending on

orchestration:

Minimize
∑
J∈J

k∑
i=1

Eshi

k
= Esh′, (20)

subject to J ⇒ Edge⋆, ∀c,m, (21)

and

Minimize
∑
J∈J

k∑
i=1

Eexi

k
= Eex′, (22)

subject to J ⇒ Edge⋆, ∀c,m. (23)

The constraint in Eqs. (21) and (23) guarantees that J is dispatched to the235

same cluster, such that dependent tasks within each J ∈ J can communicate

and execute faster. The details of our multi-job dispatching principle are given

in Section 4.1 and Algorithm 1.

4. Edge-IoT Algorithm Framework

The proposed EdgeIoT solution in this paper is focused on the offload-240

ing and scheduling. The offloading strategy is based on the orchestration of

ready multi-job tasks to the closest edge deployment with sufficient available

resources to accommodate the tasks, as expressed in Equation Eq. (17), while

the scheduling strategy involves packing or co-location these tasks tightly on

container-instances to fully utilize the available resources. These components245

aim at providing optimal performance for vehicular multi-task execution in EC

systems, such that the optimizations in Equation Eqs. (16), (20) and (22) are

achieved.

15

4.1. Offloading Policy

When sets of vehicular multi-job tasks J = J1, · · · , JN are ready to be of-250

floaded, our policy is to offload them to the closest edge Edge⋆ with the suf-

ficient resource capacity or availability, i.e., J ⇒ Edge⋆, while
∑

J∈J d
⟨c,m⟩′
T̃

≤

C
⟨c,m⟩
Edge⋆

. For the rationale of this strategy, consider the Ericsson Connected

Vehicle Platform4 (CVP), which serves about 5.5 million active vehicles across

more than 150 countries. Assuming that there are 0.1% of these vehicles at a lo-255

cation L and at time t deciding to offload their multiple tasks i.e., ϑ [V ∈ V] = 1,

we would see a total load of 4,000 requests. Executing these loads would re-

quire an edge deployment with 40 nodes or container-instances if we assume

that a container-instance can co-locate 100 containerized tasks. To serve these

vehicles efficiently, it is better to dispatch these tasks as units to a closest edge260

deployment, i.e., J ⇒ Edge⋆, having sufficient resource capacity or availability.

The closest heuristic given in Equation Eq. (17) is to minimize the offloading

time Eof and to further minimize the overall response time Ersp. Algorithm 1

describes the offloading procedure.

4.2. Scheduling Policy265

Once J is offloaded to Edge⋆, our scheduling algorithm uses the resource

availability I
⟨c,m⟩
i of each container-instance in Edge⋆, and the resource demand

d
⟨c,m⟩′
T of each J ∈ J to provide efficient co-location, such that fewer container-

instances are used for execution in Edge⋆. Specifically, the gang scheduling

approach is adopted alongside our bin-packing optimization to co-schedule and270

co-locate all J ∈ J at a time. Bin-packing is one of the most popular packing

problems. The goal is to minimize the number of nodes used as given in op-

timization in Eq. (31). Unlike other approaches, such as first fit bin packing

problem (FFBPP) [22], it requires the next Ji to be placed on the active node,

otherwise, it is placed on a new node. Our scheduling strategy co-locates multi-275

dependent tasks firmly on nodes (Algorithm 2), such that for any given job,

4https://www.ericsson.com/en/connected-vehicles/platform

16

Algorithm 1 Edge-IoT: Multi-Job Offloading
Input: J arrived at time t; Edgei∈E;

∑
J∈J d

⟨c,m⟩′
T̃

Output: Offload J to Edge⋆ with matching C
⟨c,m⟩
Edge⋆

, such that J ⇒ Edge⋆

1: for Edgei ∈ E do

2: if
∑

J∈J d
⟨c,m⟩′
T̃

≤C
⟨c,m⟩
Edgei

then

3: J ⇒ Edgei = Edge⋆

4: else

5: Offload J to next Edge⋆

6: end if

7: end for

8: if J cannot be offloaded as a whole then

9: for Edgei ∈ E do

10: for J ∈ J do

11: if d
⟨c,m⟩′
T̃

≤C
⟨c,m⟩
Edgei

then

12: J ⇒ Edgei = Edge⋆

13: else

14: Dispatch J to next Edge⋆

15: end if

16: end for

17: end for

18: end if

17

Algorithm 2 Edge-IoT: Multi-job Co-location
Input: J offloaded to closest Edge⋆, resource demand of each J ∈ J: d

⟨c,m⟩′
T̃

,

resource availability of each node Ii∈Edge⋆: I
⟨c,m⟩
i

Output: J is co-located, such that Minimize
∑

Ii∈Edge⋆
Ii ≡

Minimize RU
⟨c,m⟩
Edge⋆

1: for Ii ∈ Edge⋆ do

2: if β (Ii) = 1 then

3: I
⟨c,m⟩
i = ⟨c,m⟩, i.e., initial resource available

4: for J ∈ J do

5: if Γ [J, Ii]=0 and d
⟨c,m⟩′
T̃

≤I
⟨c,m⟩
i then

6: J ⇒ Ii

7: Γ [J, Ii] = 1

8: I
⟨c,m⟩
i = I

⟨c,m⟩
i − d

⟨c,m⟩′
T̃

9: end if

10: if I
⟨c,m⟩
i close to zero then

11: break

12: end if

13: end for

14: end if

15: end for

18

resource wastage is avoided and fewer nodes are used for execution. It takes the

resource demand of multi-job tasks and resource availability of nodes as input,

then scans all J ∈ J and maps them to active nodes in full utilization. Our

approach scans all J ∈ J and maps Ji to active nodes in full utilization (line 2280

). All J ∈ J are co-located firmly on active nodes, so that resource wastage is

avoided and fewer nodes are used to execute all jobs concurrently (line 4∼9).

Hence, for every J offloaded to Edge⋆, our co-location strategy is to find the

solution to the problem:

Minimize
∑

Ii∈Edge⋆

Ii ≡ Minimize RU
⟨c,m⟩
Edge⋆

=
U

⟨c,m⟩
Edge⋆

C
⟨c,m⟩
Edge⋆

, (24)

subject to J ⇒ Edge⋆, ∃, (25)∑
J∈J

Γ [J, Ii] · d⟨c,m⟩′
T̃

≤ I
⟨c,m⟩
i , ∀c,m, (26)

where

Γ [J, Ii] =

 1, if J ⇒ Ii,

0, otherwise.
(27)

Our aim is to minimize the number of nodes used for executing J, which is

equivalent to minimizing the actual resources usage in Edge⋆, given as RU
⟨c,m⟩
Edge⋆

,

which is the ratio of the resources used for execution U
⟨c,m⟩
Edge⋆

over the edge’s

resource capacity or availability C
⟨c,m⟩
Edgei

. The metric RU
⟨c,m⟩
Edge⋆

includes the actual

CPU resource usage RU
⟨c⟩
Edge⋆

and the actual memory resource usage RU
⟨m⟩
Edge⋆

,

which are defined respectively as

RU
⟨c⟩
Edge⋆

=
U

⟨c⟩
Edge⋆

C
⟨c⟩
Edge⋆

, (28)

RU
⟨m⟩
Edge⋆

=
U

⟨m⟩
Edge⋆

C
⟨m⟩
Edge⋆

, (29)

where U
⟨c⟩
Edge⋆

and U
⟨m⟩
Edge⋆

are the used CPU and memory resources, respectively,

while C
⟨c⟩
Edge⋆

and C
⟨m⟩
Edge⋆

are the edge’s CPU and memory resource capacity,

19

respectively. Then the actual CPU utilization ρ
⟨c⟩
DRi

and the actual memory

utilization ρ
⟨m⟩
DRi

are defined respectively by

U ⟨c⟩
Edgei

=

∑
J∈J d

⟨c,m⟩′
T

U
⟨c⟩
Edge⋆

(30)

U ⟨m⟩
Edgei

=

∑
J∈J d

⟨c,m⟩′
T

U
⟨c⟩
Edge⋆

(31)

Algorithms 1 and 2 are directly connected with minimizing Esh′, minimizing285

Eex′ as well as maximizing Ũ ⟨c,m⟩
Edgei

. Therefore, Eq. (25) is the constraint for

multi-job set J deployment, guaranteeing that J is offloaded to the closest cluster,

such that dependent tasks within each J ∈ J can communicate and execute

faster. As we have stated previously that if J cannot be dispatched as a whole

to a cluster, the dispatcher can allow fractional dispatching of each J ∈ J290

to the closest member edge. The constraint in Eq. (26) indicates that the

total estimated resource requirements of co-located jobs d
⟨c,m⟩′
T cannot exceed

I
⟨c,m⟩
i , the node resource availability. The condition in Eq. (27) means that

Γ [Ji, Ii] = 1 if job Ji is placed on the node Ii; otherwise, Γ [Ji, Ii] = 0. This is

to guarantee that each J ∈ J is placed in exactly one node. To solve this multi-295

job packing problem, we have adopted the solving Constraint Integer Programs

(SCIP) solver, which is currently one of the fastest mathematical programming

(MP) solvers for this problem.

4.3. Connection with optimization objectives

Our objectives are to minimize the total response time of multiple IoV appli-300

cations as stated in Eqs. (20) and (22) and maximize the edge cluster resource

utilization given in Eq. (16). Algorithms 1 and 2 together achieve these ob-

jectives. By offloading multi-job tasks to an edge having the sufficient resource

availability, Algorithm 1 ensures that any edge deployment selected has suffi-

cient resources C
⟨c,m⟩
Edge⋆

needed for multi-job execution, such that the dependent305

tasks can be executed faster, ultimately leading to a smaller aggregate schedul-

ing time Esh′ and execution time Eex′. By intelligently packing dependent tasks

20

tightly on nodes, Algorithm 2 is capable of fully utilizing available resources at

EC clusters, ultimately leading to the resource assigned for the execution of

jobs U
⟨c,m⟩
Edge⋆

to be fewer while guaranteeing it is sufficient for the multi-job310

tasks. More specifically, the resource usage (RU) of the cluster for multi-job

tasks is given in Eqs. (28) and (29).

5. Experiment Setup

Our experiment setup consists of six edge deployments distributed across

RSUs, BSs, and vehicles, as summarized in Table2. These platforms consist315

of large resource capacity EC devices. The input data flow time, final result

transmission time, vehicle’s speed and road area were drawn from a uniform

distribution range of (0.2, 0.4]s, (0.4, 4]s, (40, 80]km/h and [2km× 2km], re-

spectively [23]. Therefore, we conduct extensive experiments with orchestrated

sets of multi-dependent tasks with heterogeneous resource requests across the320

EC resources. For each deployment, we compare the performance of our Edge-

IoT with the existing state of the art.

As for applications, the v-2018 version of Alibaba cluster trace is used, which

records the activities of about 4000 machines in a perids of eight days. The

entire trace contains more than 14 million tasks with more than 12 million325

dependencies and more than four million jobs, among which we deployed a total

of 48 jobs with total of 204 tasks (including dependencies) for our experiments.

The task dependency depth among the jobs is in the ranges of (1, 17]. Table 3

list the details of our Multi-Job sets.

5.1. Heuristics and Baselines330

In our experiments, we assume that all tasks are of high priority. The pro-

posed Edge-IoT utilizes the closest heuristic and adopts the gang-scheduling

strategy and a variant bin-packing optimization to efficiently co-schedule and

co-locate multi-job tasks in a cluster or edge to minimize the overall response

time. We consider Edge-IoT as a Full Dependency and Full Packing (FDFP)335

approach.

21

We compare the scheduling approach of Edge-IoT with the following three

existing schemes, fixing their dispatching policy to that of Edge-IoT, as follows:

1. Full dependency and partial packing (FDPP) [5] is an approach that

executes subtasks of a job locally in the vehicle, offloads some subtasks to340

the cloud server and the remaining tasks to the RSU for execution at the

same time.

2. Full dependency and no Packing (FDNP-1) [3] is an approach that of-

floads all tasks of a job to the same EC deployment, but assumes that

at any EC deployment, a node can only execute one task at a time, and345

FDNP-1 schedules one task at a time. Therefore, unscheduled tasks must

wait in a queue until resources become available for the next task(s). Such

a queue is constructed based on the application priority, where it keeps

multiple applications in decreasing order of their priority.

3. FDNP-2 [4] is an approach that offloades different subtasks of a job to350

different EC deployment, where each node at the selected EC deployment

can only schedule and execute one task at a time, and the task with the

highest priority is first selected for scheduling.

4. No dependency and partial packing (NDPP) [21] is an approach that

offloads different multi-job subtasks to available EC deployment, by con-355

sidering each task completion deadline. However, this approach does not

respect inter-task dependencies, but colocates tasks on a node.

5.2. Comparison of Offloading and Execution Results

The investigation focuses on the IoV multi-task response time, which in-

clude the multi-job offloading time, resource utilization/usage, scheduling time,360

execution time and response time. The multi-job execution information across

the edge deployments, obtained according to Alibaba data, are listed in Ta-

ble 3, where the actual resource consumed for the multi-job execution d
⟨c,m⟩′
T

are taken from the original data. NAEE defined in Eq. (4) and listed in Ta-

ble 3 for resource consumed serves as the estimation accuracy measure for the365

trained linear regression model. The average NAEE across six deployments is

22

Table 2: Edge deployments and their resource capacities

Edge Deployments Edge Devices CPU Capacity Mem Capacity

Edge 1 Acer aiSage (x2) 12 Cores 4 GiB

Edge 2 AWS Snowcone(x10) 20 Cores 40 GiB

Edge 3 Huawei AR502H Series(x6) 24 Cores 12 GiB

Edge 4 HIVECELL (x6) 36 Cores 48 GiB

Edge 5 NVIDIA Jetson Xavier NX (x3) 36 Cores 24 GiB

Edge 6 INTELLIEDGE G700 (x5) 40 Cores 80 GiB

Table 3: Multi-job execution, where the actual resource consumed for multi-job execution

d
⟨c,m⟩′
T are taken from the original Alibaba data, while the estimated resource demand d

⟨c,m⟩′
T̃

are calculated by linear regression model

Multi-Job J C T d
⟨c,m⟩′
T̃

d
⟨c,m⟩′
T NAEE

1 5 22 ⟨1195.24, 4.35⟩ ⟨1135, 3.77⟩ ⟨0.1, 0.15⟩

2 7 29 ⟨1501.5, 5.81⟩ ⟨1325, 4.23⟩ ⟨0.13, 0.37⟩

3 9 38 ⟨2011.55, 7.57⟩ ⟨1820, 5.76⟩ ⟨0.1, 0.3⟩

4 12 52 ⟨2762.25, 10.4⟩ ⟨2560, 8.2⟩ ⟨0.1, 0.26⟩

5 15 63 ⟨3369.68, 12.58⟩ ⟨3185, 10.17⟩ ⟨0.1, 0.23⟩

0.12 for CPU resource, 0.23 for memory resource. Note that we only focused

only on the resource demand estimation for multi-job tasks, as the execution

time stimation is not required to select suitable on-premise edge deployments

given in Table 2. The results obtained by Edge-IoT (FDFP), FDPP, FDNP-1,370

FDNP-2 and NDPP are compared.

5.2.1. Resource Usage and Resource Utilization

Fig. 4 shows the task deployment ratio of Edge-IoT with the four baseline

schemes. It can be seen that for each multi-job tasks offloaded, Edge-IoT is

able to deploy its constituent tasks to a single edge. This is because Edge-IoT375

selects the closest edge with sufficient resource availability to accomodate all the

tasks, and colocates them tightly in each node. Recall that some of the baseline

schemes, i.e., FDNP-1 and FDNP-2 do not co-locate tasks on each node, but

23

0

20

40

60

80

100

E
d

ge
-I

oT

E
d

ge
-I

oT

E
d

ge
-I

oT

E
d

ge
-I

oT

E
d

ge
-I

oT

Ta
sk

D
ep

lo
ym

en
t

R
at

io
%

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5

0

20

40

60

80

100

F
D

P
P

F
D

P
P

F
D

P
P

F
D

P
P

F
D

P
P

Ta
sk

D
ep

lo
ym

en
t

R
at

io
%

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5 Edge-6

Multi-Job1 Multi-Job2 Multi-Job3 Multi-Job4 Multi-Job5

0

20

40

60

80

100
F

D
N

P
-1

F
D

N
P

-1

F
D

N
P

-1

F
D

N
P

-1

F
D

N
P

-1

Ta
sk

D
ep

lo
ym

en
t

R
at

io
%

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5

0

20

40

60

80

100
F

D
N

P
-2

F
D

N
P

-2

F
D

N
P

-2

F
D

N
P

-2

F
D

N
P

-2

Ta
sk

D
ep

lo
ym

en
t

R
at

io
%

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5 Edge-6

0

20

40

60

80

100

N
D

P
P

N
D

P
P

N
D

P
P

N
D

P
P

N
D

P
P

Ta
sk

D
ep

lo
ym

en
t

R
at

io
%

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5 Edge-6

1

Figure 4: Tasks deployment ratio across the edge deployments.

0

50

100

150

200

E
d

ge
-I

oT

E
d

ge
-I

oT

E
d

ge
-I

oT

E
d

ge
-I

oT

E
d

ge
-I

oT

R
es

ou
rc

e
U

sa
ge

,R
U

⟨c
,m

⟩
E
d
g
e
i
%

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5

0

50

100

150

200

F
D

P
P

F
D

P
P

F
D

P
P

F
D

P
P

F
D

P
P

R
es

ou
rc

e
U

sa
ge

,R
U

⟨c
,m

⟩
E
d
g
e
i
%

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5 Edge-6

Multi-Job1 Multi-Job2 Multi-Job3 Multi-Job4 Multi-Job5

0

50

100

150

200

F
D

N
P

-1

F
D

N
P

-1

F
D

N
P

-1

F
D

N
P

-1

F
D

N
P

-1

R
es

ou
rc

e
U

sa
ge

,R
U

⟨c
,m

⟩
E
d
g
e
i
%

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5

0

50

100

150

200

F
D

N
P

-2

F
D

N
P

-2

F
D

N
P

-2

F
D

N
P

-2

F
D

N
P

-2

R
es

ou
rc

e
U

sa
ge

,R
U

⟨c
,m

⟩
E
d
g
e
i
%

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5 Edge-6

0

50

100

150

200

N
D

P
P

N
D

P
P

N
D

P
P

N
D

P
P

N
D

P
P

R
es

ou
rc

e
U

sa
ge

,R
U

⟨c
,m

⟩
E
d
g
e
i
%

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5 Edge-6

1

Figure 5: Average resource usage across the edge deployments.

24

0

50

100

150

200

250

300

E
d

ge
-I

oT

E
d

ge
-I

oT

E
d

ge
-I

oT

E
d

ge
-I

oT

E
d

ge
-I

oT

R
es

ou
rc

e
U

til
iz

at
io

n,
U

⟨c
,m

⟩
E
d
g
e
i
%

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5

0

50

100

150

200

250

300

F
D

P
P

F
D

P
P

F
D

P
P

F
D

P
P

F
D

P
P

R
es

ou
rc

e
U

til
iz

at
io

n,
U

⟨c
,m

⟩
E
d
g
e
i
%

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5 Edge-6

Multi-Job1 Multi-Job2 Multi-Job3 Multi-Job4 Multi-Job5

0

50

100

150

200

250

300

F
D

N
P

-1

F
D

N
P

-1

F
D

N
P

-1

F
D

N
P

-1

F
D

N
P

-1

R
es

ou
rc

e
U

til
iz

at
io

n,
U

⟨c
,m

⟩
E
d
g
e
i
%

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5

0

50

100

150

200

250

300
F

D
N

P
-2

F
D

N
P

-2

F
D

N
P

-2

F
D

N
P

-2

F
D

N
P

-2

R
es

ou
rc

e
U

til
iz

at
io

n,
U

⟨c
,m

⟩
E
d
g
e
i
%

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5 Edge-6

0

50

100

150

200

250

300
N

D
P

P

N
D

P
P

N
D

P
P

N
D

P
P

N
D

P
P

R
es

ou
rc

e
U

til
iz

at
io

n,
U

⟨c
,m

⟩
E
d
g
e
i
%

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5 Edge-6

1

Figure 6: Average resource utilization across the edge deployments.

Multi-Job1 Multi-Job2 Multi-Job3 Multi-Job4 Multi-Job5

0

50

100

150

200

250

300

3 4 4 4

50
35

48

79

120

148

48

116

152

208

252

35
48

79

120

148

48

116

152

208

252

Sc
he

du
lin

g
T

im
e,

E
s
h
′(
m
s)

Edge-IoT FDPP FDNP-1 NDPP FDNP-2

1

Figure 7: Task scheduling times across the edge deployments.

25

assumes each node can only execute one task at a time. Therefore, FDNP-1 can

neither offload all its subtasks nor execute them at a time, given the number380

of nodes at each edge. For example, Multi-Job1 that consists of five jobs is

deployed and co-located on edge Edge-1 by Edge-IoT, and in turn, allows for

faster input data flow transmissions. For the same Multi-Job1, FDPP, FDNP-2

and NDPP deploy the jobs across two edge deployments.

Although, FDPP and NDPP can partially co-locate tasks at each of the385

edge, the three schemes incur additional execution delays due to input data flow

transmissions across the two edge deployments. On the other hand, FDNP-1 is

not able to deploy all the jobs on edge Edge-1, because it executes a task on

each node at a time. Hence, it can only execute several tasks at a time, given the

number of nodes available in the edge cluster, while the remaining tasks waits in390

a queue. Fig. 5 shows the average resource usage of the multi-job tasks deployed

by Edge-IoT with those of the four baseline schemes across the edge clusters. It

can be seen that Edge-IoT consumes the fewest resources by using a single edge

for each multi-job task, while FDNP-2 uses the highest resources (up to three

edge deployments) for the same multi-job task. The average resource utilization395

comparisons is shown in Figs. 6. Again, Edge-IoT achieves the highest resource

utilization compared with the four baseline schemes. We now examine the

performance of Edge-IoT compared with the baseline schemes for each multi-

job offloaded (as shown in Table 3) in detail.

Multi-Job1: Edge-IoT dispatches 100% of the tasks in a single-hop offload-400

ing to Edge-1. It first optimizes the deployment by gang-scheduling and colo-

cating as many tasks in a node as possible to fully utilize the available resources

in the node. These tasks are tightly packed on nodes using the packing algo-

rithm, which uses all of Edge-1 resources to execute the tasks, and achieves 95%

resource utilization. For the same Multi-Job1, some of the baseline schemes405

such as FDPP, FDNP-2 and NDPP offload the tasks across two edge clusters

(Edge-1 and Edge-2), using up to two times more resources than Edge-IoT.

FDNP-1 schedules one task on a node at a time using a single edge deployment

(Edge-1). Thus, it uses all available resources (100%) at the edge deployment

26

and keeps the unscheduled tasks on a task queue until resources become avail-410

able. Overall, Edge-IoT achieves better resource usage and utilization compared

to the four baseline schemes, as shown in Fig. 5 and Fig. 6.

Multi-Job2: This multi-job task consists of seven jobs with total of 29

tasks, where each job has a task dependency in the range of (1, 5]. Edge-

IoT optimizes the deployment to ensure that the resources are fully utilized.415

Containers provide isolation to running applications, making it possible to co-

locate multiple applications on the same node without any interference. A single

container-optimized node can execute more containerized applications, given

that there are sufficient available resources. For scheduling, Edge-IoT deploys

all the tasks at a time on edge cluster Edge-2, using 70% of the resources, while420

with the three edge deployments, FDPP, FDNP-2 and NDPP use 50%, 20%

and 21% on Edge-1, 100%, 45% and 33% on Edge-2, 21%, 20% and 50% on

Edge-3. Edge-IoT and FDNP-1 utilize 95% and 55% of resources, respectively.

Although FDNP-1 uses all available resources in the cluster, it achieves low

resource utilization due to its inability to co-locate tasks on nodes, which results425

in resource under-utilization. Again Edge-IoT outperformes all the four baseline

schemes in terms of task deployment ratio, resource usage and utilization.

Multi-Job3: Edge-IoT offloads all tasks of Multi-Job3 to edge Edge-3.

This edge deployment is made up of six Huawei AR502H Series edge devices,

with CPU and memory capacity of 24 vCPU and 12 GiB, respectively. The430

multi-job task consists of nine jobs, with total of 38 tasks, where each job has

a task dependency range (1, 8]. Edge-IoT improves resource usage by using

a single edge and up to three times fewer resources compared with the four

baseline schemes, as can be seen from Fig. 5. It also achieves 76% resource

utilization in a single cluster. On the other hand, with three edge deployments,435

FDPP and NDPP achieve 85% and 89% resource utilization on Edge-2; 94% and

94% on Edge-3; 89% and 85% on Edge-4. FDNP-1 and FDNP-2 perform worst

with the highest resources consumption and the lowest resource utilization.

Multi-Job4 and Multi-Job5: These multi-job tasks are offloaded by Edge-

IoT to Edge-4 and Edge-5, respectively. Among all the schemes, Edge-IoT uses440

27

Multi-Job1 Multi-Job2 Multi-Job3 Multi-Job4 Multi-Job5

0

0.5

1

1.5

·104

14 12 13 13 13312 350 495 664 818
1,560

2,450

4,455

7,968

12,270

321 362 510 685 843
1,569

2,462

4,470

7,989

12,295

Ex
ec

ut
io

n
T

im
e,

E
e
x
′(
s)

Edge-IoT FDPP FDNP-1 NDPP FDNP-2

1

Figure 8: Task execution times across the edge deployments.

Multi-Job1 Multi-Job2 Multi-Job3 Multi-Job4 Multi-Job5

0

0.5

1

1.5

·104

34 40 49 61 73332 378 531 712 878
1,580

2,478

4,491

8,016

12,330

341 390 546 733 903
1,589

2,490

4,506

8,037

12,355

R
es

po
ns

e
T

im
e,

E
r
s
p
′(
s)

Edge-IoT FDPP FDNP-1 NDPP FDNP-2

1

Figure 9: Task response times across the edge deployments.

the least resources for each multi-job execution across the two edge clusters.

Specifically, Edge-IoT consumes 72% and 89% of resource at Edge-4 and Edge-5,

respectively. It also achieves the highest resource utilization of 98% and 99%

across the two clusters, compared to the four baseline schemes. FDPP consume

21%, 31% and 31% of resources across Edge-3, Edge-4 and Edge-5, and NDPP445

consumes 31%, 31% and 21% of resource across Edge-4, Edge-5, and Edge-6.

FDNP-1 consumes all available resources at Edge-3 and Edge-4 for Multi-Job4

and Multi-Job5, respectively, while recording the lowest resource utilization at

each cluster. FDNP-2 consumes the second highest resources and achieves the

second lowest resource utilization for the same multi-jobs execution.450

5.2.2. Multi-Task Scheduling, Execution and Response Time

The aggregate job scheduling time Esh′ defined in Eq. (9), which is the

time for placing multi-jobs tasks on the nodes in a cluster, is an important

28

performance metric to assess the integrated edge clusters. Another even more

important performance metric is the aggregate job execution time Eex′ defined455

in Eq. (10). The response time Ersp′ defined in Eq. (8) is even more important.

Figs. 7, 8 and 9 compare the scheduling time, execution time and response time,

respectively, attained by the five schemes.

It can be seen that the scheduling time is typically very small, and the ex-

ecution times and response times by contrast are significantly larger. Across460

the edge clusters, Edge-IoT consistently achieves the fastest scheduling, execu-

tion and response times, compared to other four benchmark strategies. Note

that we have focused on the scheduling time, execution time and result trans-

mission time components of the response time. This is because the offloading

time Eof ′ is relatively small due to our offloading policy which ensures that465

jobs are offloaded to the closest edge cluster and within a single-hop offloading.

Specifically, for Multi-Job1, Edge-IoT achieves a very fast scheduling, which is

11.6 times faster than FDPP and NDPP, and 16 times faster than FDNP-1 and

FDNP-2. For Multi-Job2 scheduling, Edge-IoT achieves significantly shorter

scheduling time than the four benchmark strategies, i.e., Edge-IoT is 12 times470

faster than FDPP and NDPP, and 29 times faster than FDNP-1 and FDNP-

2. For Multi-Job3, FDNP-1 and FDNP-2 attain the lowest scheduling times,

while FDPP and NDPP attain the second lowest scheduling time. Edge-IoT

achieves the best performance with up to 38 times faster than the other four

schemes. For Multi-Job4 and Multi-Job5, Edge-IoT again achieves the fastest475

scheduling, followed by FDPP and NDPP, while FDNP-1 and FDNP-2 have

the worst scheduling performance.

In terms of the execution time, it is important to note that the input data

flow time also contributes to the total execution time of a job. FDPP, FDNP-

2 and NDPP incur additional time due to their approaches of task offload-480

ing across multiple clusters, which leads to input data flows (which is in the

range of (0.2, 0.4]s) across the clusters. Edge-IoT is 111.4, 22.3, 112 and 23

times faster than FDNP-1, FDPP, FDNP-2 and NDPP, respectively, for exe-

cuting Multi-Job1, while for Multi-Job2 execution, it is approximately 204, 29,

29

205 and 30 times faster, respectively. Similarly, for Multi-Job3, Multi-Job4485

and Multi-Job5 executions, Edge-IoT achieves approximately up to 943.8, 63,

945.7 and 64.8 times shorter execution time than FDNP-1, FDPP, FDNP-2

and NDPP, respectively. The significant advantage of Edge-IoT in terms of

the aggregate job execution time can be explained as follows. It deploys sets

of multi-job tasks as a unit through the gang scheduling strategy in a single490

edge deployment. These applications are deployed and executed concurrently.

By contrast, the benchmark approaches schedule and execute the given DAGs

individually and in parts across multiple edge deployments, resulting in input

data flow transmission delays and longer time to execute the overall tasks.

Recall that the response time of a job as defined in Eq. (8) is the addition of495

its offloading time, scheduling time, execution time and final result transmission

time. Therefore, the ultimate aim is to minimzed the response time of IoV

applications offloaded to EC. Fig. 9 compares the response time of Edge-IoT

and the four benchmark schemes. Edge-IoT outperforms the four benchmark

schemes by achieving shorter response time for all the multi-job tasks, and up to500

169, 12, 169.2 and 12.4 times faster than FDNP-1, FDPP, FDNP-2 and NDPP,

respectively.

6. Discussion and Conclusion

Edge-IoT, a machine learning-enabled IoT application orchestration in an

EC system proposed in this paper, has demonstrated superior QoS in resource505

management and IoT multi-task orchestration in edge clusters. Unlike Edge-

IoT, the existing methods do not deploy all the ready tasks at a time or in a

single edge cluster or do not respect task dependencies, leading to more edge

resource usage and cluster under-utilization as well as causing longer task exe-

cution time. This paper has presented Edge-IoT to improve edge resource effi-510

ciency and performance. We have utilized a resource-aware offloading strategy

that selects the closest edge cluster suitable for a given job, and a container-

based bin packing optimization strategy that packs or co-locates tasks tightly

30

on nodes to fully utilize available resources. To evaluate our approach, we

have illustrated use cases of real-world CPU and memory-intensive tasks from515

Alibaba cluster trace, which records the activities of both long-running contain-

ers (for Alibaba’s e-commerce business) and batch jobs across eight days. We

have compared our approach with the state-of-the-art dependency-aware IoV

task orchestration baseline strategies. Our proposed algorithm achieves both

the highest edge cluster resource utilization and the minimum scheduling, ex-520

ecution and response time for IoV multi-job tasks compared to the baseline

strategies. The gains achieved by Edge-IoT as observed from our experiments

include faster response time of the overall tasks and improved usage of edge

resources.

Acknowledgements525

The financial support of the National Natural Science Foundation of China

under grants 61571401 and 61901416 (part of the China Postdoctoral Science

Foundation under grant 2021TQ0304), and the Innovative Talent of Colleges

and the University of Henan Province under grant 18HASTIT021 are gratefully

acknowledged.530

References

[1] L. U. Khan, I. Yaqoob, N. H. Tran, S. M. A. Kazmi, T. N. Dang,

C. S. Hong, Edge-computing-enabled smart cities: A comprehensive sur-

vey, IEEE Internet of Things Journal 7 (10) (2020) 10200–10232. doi:

10.1109/JIOT.2020.2987070.535

[2] S. U. Amin, M. S. Hossain, Edge intelligence and internet of things in

healthcare: A survey, IEEE Access 9 (2021) 45–59. doi:10.1109/ACCESS.

2020.3045115.

[3] Y. Liu, S. Wang, Q. Zhao, S. Du, A. Zhou, X. Ma, F. Yang, Dependency-

aware task scheduling in vehicular edge computing, IEEE Internet of Things540

Journal 7 (6) (2020) 4961–4971. doi:10.1109/JIOT.2020.2972041.

31

http://dx.doi.org/10.1109/JIOT.2020.2987070
http://dx.doi.org/10.1109/JIOT.2020.2987070
http://dx.doi.org/10.1109/ACCESS.2020.3045115
http://dx.doi.org/10.1109/ACCESS.2020.3045115
http://dx.doi.org/10.1109/JIOT.2020.2972041

[4] Q. Shen, B.-J. Hu, E. Xia, Dependency-aware task offloading and service

caching in vehicular edge computing, IEEE Transactions on Vehicular Tech-

nology 71 (12) (2022) 13182–13197. doi:10.1109/TVT.2022.3196544.

[5] H. Ren, K. Liu, F. Jin, C. Liu, Y. Li, P. Dai, Dependency-aware task545

offloading via end-edge-cloud cooperation in heterogeneous vehicular net-

works, in: 2022 IEEE 25th International Conference on Intelligent Trans-

portation Systems (ITSC), 2022, pp. 1420–1426. doi:10.1109/ITSC55140.

2022.9922334.

[6] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, W. Shi, Edge computing for au-550

tonomous driving: Opportunities and challenges, Proceedings of the IEEE

107 (8) (2019) 1697–1716. doi:10.1109/JPROC.2019.2915983.

[7] R. Mahmud, A. N. Toosi, K. Ramamohanarao, R. Buyya, Context-aware

placement of industry 4.0 applications in fog computing environments,

IEEE Transactions on Industrial Informatics 16 (11) (2020) 7004–7013.555

doi:10.1109/TII.2019.2952412.

[8] M. M. Othman, A. El-Mousa, Internet of things & cloud computing internet

of things as a service approach, in: 2020 11th International Conference

on Information and Communication Systems (ICICS), 2020, pp. 318–323.

doi:10.1109/ICICS49469.2020.239503.560

[9] J. Ren, D. Zhang, S. He, Y. Zhang, T. Li, A survey on end-edge-cloud or-

chestrated network computing paradigms: Transparent computing, mobile

edge computing, fog computing, and cloudlet, ACM Comput. Surv. 52 (6).

doi:10.1145/3362031.

[10] J. Hwang, L. Nkenyereye, N. Sung, J. Kim, J. Song, Iot service slicing and565

task offloading for edge computing, IEEE Internet of Things Journal 8 (14)

(2021) 11526–11547. doi:10.1109/JIOT.2021.3052498.

[11] J. Almutairi, M. Aldossary, A novel approach for iot tasks offloading in

32

http://dx.doi.org/10.1109/TVT.2022.3196544
http://dx.doi.org/10.1109/ITSC55140.2022.9922334
http://dx.doi.org/10.1109/ITSC55140.2022.9922334
http://dx.doi.org/10.1109/JPROC.2019.2915983
http://dx.doi.org/10.1109/TII.2019.2952412
http://dx.doi.org/10.1109/ICICS49469.2020.239503
http://dx.doi.org/10.1145/3362031
http://dx.doi.org/10.1109/JIOT.2021.3052498

edge-cloud environments, Journal of Cloud Computing 10 (1) (2021) 1–19.

doi:10.1186/s13677-021-00243-9.570

[12] U. Awada, J. Zhang, S. Chen, S. Li, Air-to-air collaborative learning: A

multi-task orchestration in federated aerial computing, in: 2021 IEEE 14th

International Conference on Cloud Computing (CLOUD), 2021, pp. 671–

680. doi:10.1109/CLOUD53861.2021.00086.

[13] U. Awada, J. Zhang, S. Chen, S. Li, Airedge: A dependency-aware multi-575

task orchestration in federated aerial computing, IEEE Transactions on

Vehicular Technology 71 (1) (2022) 805–819. doi:10.1109/TVT.2021.

3127011.

[14] Y. H. TU Yaofeng, DONG Zhenjiang, Key technologies and application of

edge computing, ZTE Communications 15 (2) (2017) 26. doi:10.3969/j.580

issn.1673-5188.2017.02.004.

[15] X. Li, L. Zhao, K. Yu, M. Aloqaily, Y. Jararweh, A cooperative resource

allocation model for iot applications in mobile edge computing, Computer

Communications 173 (2021) 183–191. doi:https://doi.org/10.1016/j.

comcom.2021.04.005.585

[16] J. Li, W. Liang, W. Xu, Z. Xu, X. Jia, W. Zhou, J. Zhao, Maximizing user

service satisfaction for delay-sensitive iot applications in edge computing,

IEEE Transactions on Parallel and Distributed Systems 33 (5) (2022) 1199–

1212. doi:10.1109/TPDS.2021.3107137.

[17] C. Zhan, H. Hu, Z. Liu, Z. Wang, S. Mao, Multi-uav-enabled mobile-edge590

computing for time-constrained iot applications, IEEE Internet of Things

Journal 8 (20) (2021) 15553–15567. doi:10.1109/JIOT.2021.3073208.

[18] J. Li, W. Liang, W. Xu, Z. Xu, Y. Li, X. Jia, Service home identification

of multiple-source iot applications in edge computing, IEEE Transactions

on Services Computing 16 (2) (2023) 1417–1430. doi:10.1109/TSC.2022.595

3176576.

33

http://dx.doi.org/10.1186/s13677-021-00243-9
http://dx.doi.org/10.1109/CLOUD53861.2021.00086
http://dx.doi.org/10.1109/TVT.2021.3127011
http://dx.doi.org/10.1109/TVT.2021.3127011
http://dx.doi.org/10.3969/j.issn.1673-5188.2017.02.004
http://dx.doi.org/10.3969/j.issn.1673-5188.2017.02.004
http://dx.doi.org/10.3969/j.issn.1673-5188.2017.02.004
http://dx.doi.org/https://doi.org/10.1016/j.comcom.2021.04.005
http://dx.doi.org/https://doi.org/10.1016/j.comcom.2021.04.005
http://dx.doi.org/10.1109/TPDS.2021.3107137
http://dx.doi.org/10.1109/JIOT.2021.3073208
http://dx.doi.org/10.1109/TSC.2022.3176576
http://dx.doi.org/10.1109/TSC.2022.3176576
http://dx.doi.org/10.1109/TSC.2022.3176576

[19] J. Liu, C. Liu, B. Wang, G. Gao, S. Wang, Optimized task allocation for

iot application in mobile-edge computing, IEEE Internet of Things Journal

9 (13) (2022) 10370–10381. doi:10.1109/JIOT.2021.3091599.

[20] S. C. W. X. L. V. C. M. HAN Suning, LI Xiuhua, Reccac:600

Recommendation-empowered cooperative edge caching for internet of

things, ZTE Communications 19 (2) (2021) 2. doi:10.12142/ZTECOM.

202102002.

[21] C. Liu, K. Liu, S. Guo, R. Xie, V. C. S. Lee, S. H. Son, Adaptive offloading

for time-critical tasks in heterogeneous internet of vehicles, IEEE Inter-605

net of Things Journal 7 (9) (2020) 7999–8011. doi:10.1109/JIOT.2020.

2997720.

[22] S. Rampersaud, D. Grosu, Sharing-aware online virtual machine pack-

ing in heterogeneous resource clouds, IEEE Transactions on Parallel and

Distributed Systems 28 (7) (2017) 2046–2059. doi:10.1109/TPDS.2016.610

2641937.

[23] Z. Hong, W. Chen, H. Huang, S. Guo, Z. Zheng, Multi-hop cooperative

computation offloading for industrial iot–edge–cloud computing environ-

ments, IEEE Transactions on Parallel and Distributed Systems 30 (12)

(2019) 2759–2774. doi:10.1109/TPDS.2019.2926979.615

Uchechukwu Awada is currently working toward the PhD de-

gree in the School of Information Engineering, Zhengzhou Univer-

sity, China. His current research interests include edge computing,

cloud computing, distributed systems, IoT and wireless communi-620

cations. He is a student member of the ACM.

34

http://dx.doi.org/10.1109/JIOT.2021.3091599
http://dx.doi.org/10.12142/ZTECOM.202102002
http://dx.doi.org/10.12142/ZTECOM.202102002
http://dx.doi.org/10.1109/JIOT.2020.2997720
http://dx.doi.org/10.1109/JIOT.2020.2997720
http://dx.doi.org/10.1109/TPDS.2016.2641937
http://dx.doi.org/10.1109/TPDS.2016.2641937
http://dx.doi.org/10.1109/TPDS.2016.2641937
http://dx.doi.org/10.1109/TPDS.2019.2926979

Jiankang Zhang is a Senior Lecturer at Bournemouth Univer-

sity. Prior to joining in Bournemouth University, he was a senior625

research fellow at University of Southampton, UK. Dr Zhang was

a lecturer from 2012 to 2013 and then an associate professor from

2013 to 2014 at Zhengzhou University. His research interests are in

the areas of aeronautical communications, aeronautical networks, evolutionary

algorithms and edge computing. He serves as an Associate Editor for IEEE630

ACCESS.

Sheng Chen received his BEng degree from the East China

Petroleum Institute, Dongying, China, in 1982, and his PhD de-635

gree from the City University, London, in 1986, both in control

engineering. In 2005, he was awarded the higher doctoral degree,

Doctor of Sciences (DSc), from the University of Southampton, Southampton,

UK. From 1986 to 1999, He held research and academic appointments at the

Universities of Sheffield, Edinburgh and Portsmouth, all in UK. Since 1999,640

he has been with the School of Electronics and Computer Science, the Univer-

sity of Southampton, UK, where he holds the post of Professor in Intelligent

Systems and Signal Processing. Dr Chen’s research interests include adaptive

signal processing, wireless communications, modeling and identification of non-

linear systems, neural network and machine learning, intelligent control system645

design, evolutionary computation methods and optimization. He has published

over 600 research papers. Professor Chen has 18,600+ Web of Science citations

with h-index 59 and 36,700+ Google Scholar citations with h-index 81. Dr.

Chen is a Fellow of the United Kingdom Royal Academy of Engineering, a Fel-

low of IEEE, a Fellow of Asia-Pacific Artificial Intelligence Association and a650

Fellow of IET. He is one of the original ISI highly cited researchers in engineer-

ing (March 2004). He is named a 2023 Electronics and Electrical Engineering

Leader in UK by Research.com.

35

655

Shuangzhi Li received the B.S. and Ph.D. degrees from the School

of Information Engineering, Zhengzhou University, Zhengzhou,

China, in 2012 and 2018, respectively. From 2015 to 2017, he was a

Visiting Student with the Department of Electrical and Computer

Engineering, McMaster University, Canada. He is currently a Lec-660

turer with the School of Information Engineering, Zhengzhou University, China.

His research interests include non-coherent space-time coding and ultra-reliable

low-latency communications.

665

Shouyi Yang received the Ph.D. degree from the Beijing Insti-

tute of Technology, Beijing, China, in 2002. He is currently a Full

Professor with the School of Information Engineering, Zhengzhou

University, Zhengzhou, China. He has authored or coauthored var-

ious articles in the field of signal processing and wireless communication. His670

current research interests include signal processing in communications systems,

wireless communications, and cognitive radio.

36

	Introduction
	Related Works
	System Model and Problem Formulation
	Problem Formulation

	Edge-IoT Algorithm Framework
	Offloading Policy
	Scheduling Policy
	Connection with optimization objectives

	Experiment Setup
	Heuristics and Baselines
	Comparison of Offloading and Execution Results
	Resource Usage and Resource Utilization
	Multi-Task Scheduling, Execution and Response Time

	Discussion and Conclusion

