
Citation: Fernandez-Gonzalo, R.;

Willis, C.R.G.; Etheridge, T.; Deane,

C.S. RNA-Sequencing Muscle

Plasticity to Resistance Exercise

Training and Disuse in Youth and

Older Age. Physiologia 2022, 2,

164–179. https://doi.org/10.3390/

physiologia2040014

Academic Editor: Marta Murgia

Received: 24 October 2022

Accepted: 2 December 2022

Published: 7 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

RNA-Sequencing Muscle Plasticity to Resistance Exercise
Training and Disuse in Youth and Older Age
Rodrigo Fernandez-Gonzalo 1,2 , Craig R. G. Willis 3, Timothy Etheridge 4 and Colleen S. Deane 5,*

1 Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet,
141 52 Stockholm, Sweden

2 Unit of Clinical Physiology, Karolinska University Hospital, 141 57 Stockholm, Sweden
3 School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
4 Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter,

Exeter EX1 2LU, UK
5 Human Development & Health, Faculty of Medicine, University of Southampton,

Southampton General Hospital, Southampton SO16 6YD, UK
* Correspondence: c.s.deane@soton.ac.uk

Abstract: Maintenance of skeletal muscle mass and function is critical to health and wellbeing
throughout the lifespan. However, disuse through reduced physical activity (e.g., sedentarism),
immobilisation, bed rest or microgravity has significant adverse effects on skeletal muscle health.
Conversely, resistance exercise training (RET) induces positive muscle mass and strength adaptations.
Several studies have employed microarray technology to understand the transcriptional basis of mus-
cle atrophy and hypertrophy after disuse and RET, respectively, to devise fully effective therapeutic
interventions. More recently, rapidly falling costs have seen RNA-sequencing (RNA-seq) increasingly
applied in exploring muscle adaptations to RET and disuse. The aim of this review is to summarise
the transcriptional responses to RET or disuse measured via RNA-seq in young and older adults. We
also highlight analytical considerations to maximise the utility of RNA-seq in the context of skeletal
muscle research. The limited number of muscle transcriptional signatures obtained thus far with
RNA-seq are generally consistent with those obtained with microarrays. However, RNA-seq may
provide additional molecular insight, particularly when combined with data-driven approaches such
as correlation network analyses. In this context, it is essential to consider the most appropriate study
design parameters as well as bioinformatic and statistical approaches. This will facilitate the use of
RNA-seq to better understand the transcriptional regulators of skeletal muscle plasticity in response
to increased or decreased use.
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1. Introduction

Skeletal muscle represents the largest tissue in the human body, providing structural
support, facilitating locomotion and regulating metabolism of glucose, lipids [1,2] and
amino acids for systemic release in times of need [3]. Skeletal muscle is highly dynamic
and capable of rapid changes in size and function. For example, skeletal muscle can lose up
to 3.5% of its mass and 9% of its maximum strength after only 5 days of unloading [4], and
90 days of bed rest causes an 18–29% reduction in lower limb muscle volume [5]. This loss
of mass and function is accompanied by increased fatigability and insulin resistance, and a
shift toward a faster muscle fibre phenotype [5–7]. Conversely, resistance exercise training
(RET) induces muscle hypertrophy in younger adults [8]. For example, ≥3 weeks RET
can increase muscle mass by >5% [9] and strength by >20% [10], whilst improving insulin
sensitivity [9,11] and mitochondrial function [12]. RET also remains the most effective
non-pharmacological intervention to minimise disuse- [13] and age-related [10] declines in
muscle mass and strength.
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Given the adaptability of skeletal muscle (albeit highly variable [14]), numerous stud-
ies have attempted to delineate the molecular mechanisms underpinning disuse muscle
atrophy and RET-induced hypertrophy [15–17]. Microarray investigations laid the founda-
tions for understanding the transcriptional basis of muscle adaptation [18]. For example,
microarray-based analysis combined with co-expression network analysis (which accounts
for the intrinsic organisation of the transcriptome by placing focus on the co-regulation of
genes as a function of expression similarity [19–21]) has highlighted the role of endothelial-,
angiogenesis- and mitochondria-related genes in regulating muscle plasticity [22]. Fur-
thermore, we reported transcriptional profiles implicated in opposing disuse atrophy vs.
RET hypertrophy phenotypes [17]. Specifically, genes related to translational regulation
were upregulated during disuse and downregulated post-RET, whereas mitochondrial
function genes were downregulated in disuse but upregulated in RET [17], implicating
these processes in the divergent regulation of muscle mass.

Although microarrays may be more suitable for certain experimental purposes,
e.g., gene network reverse engineering [23], RNA-sequencing (RNA-seq) has emerged
as an alternative technology for gene expression profiling. RNA-seq permits sequencing of
the entire transcriptome, facilitating identification of novel transcripts and single nucleotide
variants, whereas microarrays are confined to detecting predefined transcripts via hybridis-
ation [24–26]. Additionally, RNA-seq can detect a higher number of differentially expressed
genes and low abundance transcripts and can quantify expression across a larger dynamic
range than microarrays [25,26]. Nonetheless, direct comparisons show that microarray and
RNA-seq platforms perform comparably when predicting cancer associated clinical end-
points [27], although RNA-seq may more accurately identify disease (cancer [27]) and tissue
injury [28] transcriptomic characteristics. As the cost of RNA-seq continues to fall [28], it
is quickly becoming a cost-effective method to probe transcriptional responses. Indeed,
RNA-seq has been employed to examine muscle transcriptional basis of ageing [29], sexual
dimorphism [30] and responses to acute resistance and aerobic exercise [20,31,32]. It is,
therefore, a powerful tool for probing the precise molecular underpinnings of muscle
adaptations to disuse and RET.

Despite previous reviews addressing the transcriptional basis of muscle adaptation,
these have focused exclusively on microarray analysis and exercise interventions (i.e., omit-
ting disuse) (e.g., [18]). Therefore, the aim of this review is to summarise the transcriptional
responses, exclusively measured using RNA-seq, to RET or disuse in youth and older age.
Due to the narrative nature of this review, we apologise to those authors whose work we
may have unintentionally omitted.

2. Transcriptional Responses to RET

Since microarray can provide powerful transcriptional insight and RNA-seq is only
recently becoming more cost accessible, only a handful of independent studies have utilised
RNA-seq to probe the transcriptional responses to RET to date. Due to this, we opted to
include in our discussion studies that have investigated long-term resistance trained adults,
in addition to studies that have performed controlled RET interventions lasting ≥3 weeks
(due to the associated hypertrophic phenotype [8]) (Table 1).

Table 1. A summary of transcriptional responses to resistance exercise training or disuse in young
and older adults. F = females; M = males; yr = years.

Reference Population Study Design Transcriptomic Responses Phenotypic Adaptations

RET

Robinson et al. [11]

Young adults
(n = 11, 5 M/6 F,
23.7 ± 3.5 yr).
Older adults
(70.3 ± 3.9 yr,
n = 9, 5 M/4 F).

12 weeks RET.
(another group: 12 weeks
high intensity
interval training)
(another group: 12 weeks
combined aerobic and
resistance exercise).

Regulation of mitochondrial, muscle
growth and insulin-related genes
(albeit to a lesser extent than high
intensity interval training).
Upregulation of genes pertaining to
angiogenesis and regulation
of angiogenesis.

Significant improvements in fat
free mass, muscle strength and
insulin sensitivity in both
age groups.
No change in mitochondrial
respiration in either age group.
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Table 1. Cont.

Reference Population Study Design Transcriptomic Responses Phenotypic Adaptations

RET

Lim et al. [33] Young males
(n = 21, 23.7 ± 2.5 yr). 10 weeks RET.

Up-regulation in genes related to
muscle development, stress
response, metabolism, tran-scription
factor and cell death (albiet to a
lesser extent than acute RE).

Increase in muscle strength and
fibre cross-sectional area [34].

Chapman et al. [35]

RET-trained males
(n = 7, 42.1 ± 5.8 yr).
Age-matched untrained
females (n = 8) and males
(n = 7).

+15 yr RET experience

Upregulation in genes related to
cellular respiration pathways
compared to untrained controls.
Downregulation in pathways
associated with the negative
regulation of cell proliferation
compared untrained controls.

Greater muscle fibre cross
sectional area in RET
trained adults
(vs. untrained controls).

Kulkarni et al. [36]

Older males and females
with placebo (n = 48,
≥65 yr).
Older males and females
with metformin (n = 46,
≥65 yr).

14 weeks RET.

Increased expression of genes related
to extracellular matrix remodelling
pathways (compared to baseline).
Downregulation in genes related to
RNA processing pathways
(compared to baseline).

Increased lean body mass, thigh
muscle mass and muscle
strength [37].

Lavin et al. [38] Older adults (n = 31,
18 F/13 M, 70 ± 4 yr) 14 weeks RET.

Two modules of genes significantly
and positively related to the change
in mid-thigh muscle cross-sectional
area, of which the hubs were related
to immune and inflammatory
processes, specifically: defence
response to virus, regulation of
leukocyte activation, positive
regulation of defence response,
positive regulation of cytokine
production, and negative regulation
of immune system processes (part of
“prediction analysis”).

Decreased percentage body fat,
increased mid-thigh muscle
cross-sectional area and thigh
muscle mass.

Bolotta et al. [39]

Life-long exercise trained
older adults (n = 9,
65–80 yr).
Sedentary older adults
(n = 5, 70–76 yr).

Life-long RET (n = 4) or
aerobically exercise trained
(n = 5).

Upregulation in genes related to
insulin signalling, energy production
(e.g., TCA cycle), mTOR signalling,
mitochondria, calcium-regulated
energy processes and the
cytoskeleton/focal
adhesions (compared to
sedentary controls).

Fast type fibres were larger in
RET versus aerobically
trained adults.

Disuse

Willis et al. [40] Healthy young (22 yr)
males (n = 8).

Four-day unilateral lower
limb immobilisation.

Downregulation of mitochondrial
and myogenesis.
Upregulation of ribosome
biogenesis, UPS catabolism, and
ribonucleoprotein complex
organization/mRNA processing.

Decreased muscle mass (−1.7%)
and MPS (−16.2%), with high
inter-individual variability.
Associations between gene
networks phenotypic changes.

Sarto et al. [41]
Active young (22 yr)
male adults (n = 12).
Focus on NMJ.

Ten-day unilateral lower limb
suspension (ULLS) followed
by a 21-day
readaptation program.

Upregulation of ACh receptor
subunits genes.
Downregulation of Homer
proteins genes.
Changes in expression of other genes
(e.g., neuregulings, neurotrophins,
ErbBs, Wnts) indicative of NMJ
molecular instability.
Downregulation of ion channels
gene set.
Most ULLS-induced transcrioptional
changes were restored after the
readapatation program.

Deacreased muscle volume
(−4.5%).
NMJ transmission stability was
unchanged after ULLS.
Increased motor unit potential
complexity and decreased
motor unit firing rates
after ULLS.
Most ULLS-induced phenotypic
changes were restored after the
readapatation program.

McFarland et al. [42]

Healthy men (n = 22)
and women (n = 3)
(20–54 yrs) randomized
in two groups.

Five-week −6◦ head down tilt
bed rest. Two parallel groups:
bed rest only (n = 9) and bed
rest with exercise (n = 16).

Downregulation of virtually all
aspects of mitochondrial activity.
Upregulation of ligands with a key
role in pain.
The exercise countermeasure
normalized most of the genes related
to mitochondrial activity.

Reported in other manuscript
[43]. Decreased muscle volume
(quadriceps; −9%). Exercise
during bed rest reduced the
muscle atrophy (quadriceps;
−5%)
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Table 1. Cont.

Reference Population Study Design Transcriptomic Responses Phenotypic Adaptations

Disuse

Mahmassani et al. [44]

Healthy older and
younger male (n = 13)
and female (n = 13)
adults (mean age;
~52 yrs).

Five-day bed rest.
Participants were categorized
into high or low susceptibility
for insuling resistance after
bed rest.

Gene ontologies (GO) that changed
in both high and low susceptibility
groups: muscle contraction, muscle
filament sliding, mitonchondrial
ATP synthesis.
GOs altered only in
high-susceptibility group: lipid
metabolic processes, lipid storage,
protein homotetramerization.

Both high and low susceptibility
groups become insulin-resistant
after bed rest but the “High”
group had 49% lower insulin
sensitivity after bed rest, versus
15% in the “Low” group.

Mahmassani et al. [45]

Healthy young (23 yr;
n = 9) and older (68 yr,
n = 18) participants
(13 men and 14 women).

Five-day bed rest.

Common pathways altered in both
young and older: Acting
cytoskeleton signaling, ILK and
RhoA signaling, Mitochondrial
dysfunction and calcium signaling.
Increased inflammation and fibrotic
gene expression in older group only.
51 genes changed in young but not
older; after bed rest, the expression
of these genes in young nearly
matched that in older participants.

Leg lean mass decreased 3.4% in
the older group, but did not
change in the young group
(similar results for total lean
mass and myofiber CSA). Leg
strength decreased after bed rest
in both groups.

Standley et al. [46]
Healthy older (between
60–79 yrs) men (n = 11)
and women (n = 10).

Ten-day bed rest. Two groups;
bed rest only (n = 9), and bed
rest with nutritional
supplementation (n = 12).

Downregulation of genes related to
mitochondria, ribosomes, and
oxidative metabolism.
Upregulation of genes involved in
extracellular matrix, focal adhesion,
and collagen.
The nutritional supplementation
offset some of these changes.

CSA of type IIa fibers decreased
in the bed rest group.

Mahmassani et al. [47]
Healthy older adults
(~72 yrs; n = 8, 6 females
and 2 males).

Two-week reduced activity
period (from 11,000
steps/day to 2200 steps/day).
RNA-seq of muscle and
ribosomal profiling.

Altered response for several
transcripts (e.g., PFKFB3, GADD45A,
NMRK2) in response to leucine
stimulation. Uncoupled translation
for mTORC1 pathway. Reduction in
genes related with ribosomal
proteins and alteration of
circadian regulators

Unchanged leg lean mass.
Tendency for reduced Type I
fiber size. Glucose tolerance and
insulin sensitivity did
not change.

In a comprehensive study, Robinson and co-authors [11] aimed to identify the tran-
scriptomic (and proteomic) differences between RET, combined training (aerobic and
resistance exercise) and high intensity interval training, in both young and older adults.
The authors demonstrated that 12 weeks RET regulated a number of genes including
mitochondrial-, muscle growth-, and insulin-related genes, albeit to a lesser extent than
high intensity interval training. These transcriptional changes were coupled with signifi-
cant improvements in fat free mass, muscle strength and insulin sensitivity in the absence
of enhanced mitochondrial respiration, in both age groups [11]. Two interesting findings
are highlighted from these results: (i) the mitochondrial transcriptional response seems
not to translate to mitochondrial function and (ii) the lack of blunted age-related responses
in functional outcomes (e.g., muscle strength) contradicts previous work (e.g., [10]). The
lack of correspondence between mitochondrial gene and organelle adaptations may be
explained by the fact that only a small number of mitochondrial genes were regulated.
Nonetheless, it is interesting to note the lack of mitochondrial functional adaptation to RET,
contradicting previous work in young adults [12]. Similarly, comparable functional gains
across age could be seen as unexpected due to the known age-related anabolic resistance to
RET [48], but could reflect the long-term RET protocol employed by Robinson et al. The
authors also demonstrated that RET (and all other exercise modalities) upregulated genes
pertaining to angiogenesis and regulation of angiogenesis, suggesting that cardiovascular
remodelling is a global adaptation to exercise regardless of age and exercise type [11].

A subsequent study in young adults demonstrated that 10-weeks lower-limb RET,
which was associated with an increase in muscle strength and fibre cross-sectional area [34],
significantly up-regulated genes related to muscle development, stress response, metabolism,
transcription factor and cell death [33], indicating that these pathways are likely to be in-
volved in the RET-induced hypertrophic response. Interestingly, the authors compared
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the transcriptional response to acute resistance exercise (RE) versus RET and noted that,
while acute RE elicited drastic changes in gene expression, gene regulation following RET
was considerably attenuated, denoted by the far fewer differentially expressed genes. It is
worth highlighting that in this particular study the authors performed RNA-seq on nine
biopsy samples chosen at random from a larger cohort, from which the phenotypic data is
reported [34]. Thus, a caveat here is that the authors do not report the phenotypic data for
the nine volunteers who had RNA-seq performed and so there is no confirmation that a
phenotypic response is present in this smaller collective.

Supporting the previous work, Chapman and colleagues [35] found that long-term
RET (+15 years) did not have a sizeable influence on the resting muscle transcriptome
(i.e., muscle biopsy taken in the rested state, not after exercise), with only 26 genes regu-
lated in middle aged adults compared to age-matched untrained controls. It should be
noted that this study did not implement a RET programme; rather it recruited resistance
trained volunteers and thus the “post-RET” samples were compared to untrained “control”
volunteers [35]. Validating the volunteers’ exercise history, resistance trained individuals
displayed greater muscle fibre cross sectional area compared to controls. Nonetheless,
despite the low number of regulated genes by long-term RET, pathway analysis revealed
an upregulation in cellular respiration pathways and a downregulation in pathways associ-
ated with the negative regulation of cell proliferation [35]. Indeed, this work corroborates
microarray-based analysis demonstrating an upregulation in mitochondrial respiration [17]
and more targeted work which demonstrated enhanced mitochondrial respiration/function
following RET in young adults [12]. In an attempt to explain the low number of regulated
genes by long-term RET, which is also supported at the microarray level [49], the authors
speculate that many of the accumulated differences that accrue due to RET are at the protein
level—as opposed to the transcriptomic level—although this requires extensive proteomic
investigations, in which some recent progress has been made (e.g., [50]).

In another study, progressive RET in older adults significantly increased expression
of genes related to extracellular matrix remodelling pathways and downregulated genes
related to RNA processing pathways [36]. Interestingly, the authors noted an attenuated
extracellular matrix transcriptional response in a parallel group taking metformin, who
also displayed attenuated gains in muscle growth, perhaps indicating extracellular matrix
processes as important for the hypertrophic response [36]. While the functional/phenotypic
consequences of downregulated RNA processing pathways remain unknown, it could
promote a reduction in the number of genes that are differentially spliced and the number of
splicing errors that produce non-functional proteins [36], which may perhaps lead to more
effective muscle remodelling/adaptation. The same authors later probed transcriptional
responses in order to better understand individual variability to RET [38]. To do this, thigh
muscle biopsies obtained from older adults pre- and post-14 weeks of RET were subjected
to RNA-seq and subsequent data-driven network and pathway-level information extractor
analyses [38]. Of note, prediction analysis (correlating baseline gene expression to change
in functional outcomes) identified two modules of genes significantly and positively related
to the change in mid-thigh muscle cross-sectional area, of which the hubs were related to
immune and inflammatory processes, specifically defence response to virus, regulation
of leukocyte activation, positive regulation of defence response, positive regulation of
cytokine production and negative regulation of immune system processes. Thus, immune
and inflammatory processes may underpin the ability to adapt to RET.

In a recent study comparing life-long exercise trained older adults to sedentary con-
trols, the authors found that training upregulated genes related to insulin signalling, energy
production (e.g., TCA cycle), mTOR signalling, mitochondria, calcium-regulated energy
processes and the cytoskeleton/focal adhesions [39]. Although the life-long exercise trained
older group represents both resistance trained and aerobically-trained volunteers, when
comparing the gene profiles independently the authors only identified 20 genes differen-
tiating RET versus aerobically trained volunteers and none of the genes appeared to be
functionally related to the specific characteristics of the exercise training modality [39].
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This may imply that exercise modality is not relevant for the pathways leading to the
prevention of sarcopenia, although this could be specific to the highly trained cohort re-
cruited [39]. Thus, at the transcriptional level, long-term (resistance) exercise training
counteracted many molecular pathways that are associated with age-related muscle de-
cline such as mitochondrial dysfunction, impairment of proteo-static mechanisms and
metabolic inefficiency.

3. Transcriptional Responses to Disuse

Similar to the RET literature, RNA-seq investigations into the molecular basis of
muscle disuse are only starting to emerge, with microarray technology still being commonly
utilised. In light of this, herein we highlight studies in young and middle-aged adults
followed by investigations in older adults involving ≥4 days disuse/immobilisation (due
to the associated atrophy phenotype [40,51]) (Table 1).

Willis et al. [40] employed a short-term (4-day) unilateral lower limb immobilisation
protocol to examine the associations between transcriptional changes and muscle protein
synthesis (MPS) and atrophy. The differentially expressed genes induced by immobili-
sation represented biological processes such as energy metabolism and muscle develop-
ment/contraction. At the network-level, they reported downregulation of mitochondrial
function and myogenesis and upregulation of proteasomal ubiquitin-(in)dependent protein
catabolism. These results are consistent with previous signatures of muscle disuse detected
by microarrays [15,17]. An interesting aspect of this study is that the authors were able to
associate molecular networks with the phenotype of short-term disuse. In doing so, they
found several networks associated with both immobilisation-induced loss of muscle mass
and decreased MPS. Their analysis indicated that extracellular matrix organisation and
protein folding networks may be two transcriptional processes that play critical roles in
muscle atrophy and decreased MPS, an idea supported by the highly mechanosensitive
nature of these processes [52,53].

Two other studies have used RNA-seq of skeletal muscle during unloading in young
and/or middle-aged adults with a very specific focus [41,42]. Sarto and co-workers [41]
were interested in neuromuscular junction (NMJ) and motor unit changes induced by
10 days of unilateral lower limb suspension (ULLS). The data reported in this study in-
cluded only the RNA-seq results related to the regulation of NMJ and ion channels, which
were considered a possible cause of the changes in motor unit potential. ULLS induced
upregulation of acetylcholine (ACh) receptor subunits (CHRNA1, CHRNB1, CHRND,
CHRNG), which may indicate an altered innervation pattern, along with downregulation
of Homer proteins, which are involved in synaptic-related gene expression. In addition,
genes and pathways related to NMJ instability were differentially expressed after ULLS
(e.g., neuregulins, Wnts family, epidermal growth factor receptors and neurotrophins).
Despite these transcriptional changes, NMJ transmission stability remained unaltered after
ULLS, a result supported by a somewhat longer (i.e., 15 days) unilateral lower limb unload-
ing intervention [54]. The authors then examined 33 genes associated with skeletal muscle
ion channels and reported that ULLS caused a general downregulation of this group of
genes, particularly those associated with voltage-gated potassium channels. These results
resemble reports on animal models of unloading [55] and suggest unloading-induced
transcriptional regulation of ion channels that ultimately influence motor unit potential.
Finally, Sarto et al. [41] pointed out that most of the transcriptional changes triggered by
ULLS returned to normal after a period of active recovery.

Moving on to a systemic and longer model of unloading (i.e., 5-week bed rest), McFar-
land and colleagues performed skeletal muscle RNA-seq with the specific aim of investi-
gating possible unloading-induced changes in pain perception [42]. This study observed
a downregulation of virtually all aspects of mitochondrial activity after bed rest that was
normalized by exercise performed during the unloading intervention, confirming previ-
ous microarray data [15,17]. They also reported that ligands that play a key role in the
detection of pain and that are sensitized in chronic pain conditions were upregulated after
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bed rest. Interestingly, this study attempted to use an unbiased approach to predict the
two intervention groups (i.e., bed rest only vs. bed rest and exercise) [42]. This approach
was successful in dividing the volunteers into the two groups but failed to predict the
intervention. This was because the unbiased analysis assumed that exercise would release
only anti-inflammatory factors. However, it is known that skeletal muscle also secretes
pro-inflammatory molecules during exercise [56,57] and therefore the blinded analysis
failed. These results demonstrate the importance of a deep understanding of muscle and
exercise physiology to prepare RNA-seq analyses and to correctly contextualize the results
provided by this transcriptional platform.

Only young and middle-aged adults (20–49 years old) participated in the aforemen-
tioned studies. In contrast, Mahmassani and co-authors recruited both young and older
adults for a 5-day bed rest study and presented the transcriptional results in two indepen-
dent manuscripts [44,45]. In the first study, the authors examined susceptibility to insulin
resistance using skeletal muscle RNA-seq, among other methods, in a mixed population
of young and older adults (18–75 years) stratified into groups with high and low suscep-
tibility to unloading-induced insulin resistance [44]. Pathway analysis showed that lipid
metabolism and lipid storage pathways were among the top 10 biological processes that
were altered only in the high susceptibility group. There was also a remarkable increase
in the expression of inducible 6-phosphofructo-2-kinase (PFKFB3) and fatty acid synthase
gene (FASN). Thus, it appears that the muscles of adults at higher risk for developing in-
sulin resistance experience a metabolic fuel shift characterized by increased lipogenesis and
glycolysis after bed rest. Increased glycolysis after prolonged unloading (i.e., 5 weeks of
ULLS or 90 days of bed rest) has already been noted in healthy middle-aged adults [58,59].
Therefore, the response reported by Mahmassani et al. [44] for the high-susceptibility group
may not be a singular event occurring in a specific population but rather may represent an
accelerated process in a specific population of a general signature of skeletal muscle disuse.

The same authors, using the same cohort, performed a comparison of the transcrip-
tional response to 5 days of bed rest in young (23 years) and older (68 years) adults [45].
It is noteworthy that only the older adult’s lost leg lean mass (3.4%). Despite some sig-
nificant differences in gene expression between age groups at baseline (i.e., before bed
rest), ingenuity pathway analysis revealed common downregulated pathways in young
and older adults after short-term bed rest: actin cytoskeleton signalling, integrin-linked
kinase (ILK) signalling, and Ras homolog family member A (RhoA) signalling. However,
the extent of downregulation was greater in the older adults, suggesting greater changes in
the mechano-sensing machinery with aging. The most highly regulated pathway in older
muscle was the hepatic fibrosis/hepatic stellate cell activation pathway, which includes
fibrotic and inflammatory genes (e.g., NFkB, IL-6, CTGF, and VEGFA). Thus, it appears
that the model of disuse used here elicits a stronger fibrotic and inflammatory response
in older versus younger muscle. An interesting finding of the study was that there were
51 genes that changed after bed rest only in the young adults. Most of these genes had
group differences at baseline, and the differential expression induced by bed rest in the
young caused these genes to resemble the baseline condition in the older adults.

Another study of bed rest in older adults (>65 years), using RNA-seq in skeletal
muscle, showed that genes related to mitochondria, ribosomes and oxidative metabolism
were downregulated after 10 days of disuse, with concomitant upregulation of genes
involved in extracellular matrix, focal adhesion and collagen [46]. These are changes
typical of a disuse signature in skeletal muscle [15,17]. This study also tested a nutritional
countermeasure based on β-hydroxy-β-methyl-buturate (HMB) that was able to offset
some of the transcriptional changes induced by bed rest [46].

Moving away from total unloading models of disuse, Mahmassani et al. [47] used
a step reduction model (from ~11,000 to 2200 steps/day) to assess the effects of disuse
in the transcriptome-translatome response to leucine intake in older adults. In addi-
tion to skeletal muscle RNA-seq, ribosomal profiling or ribosomal sequencing, which
allows translational activity to be measured in a transcript-specific manner [60], was also



Physiologia 2022, 2 171

employed. The authors reported a clear disuse effect when analysing the response to
leucine stimulation and showed an altered response for several transcripts (e.g., PFKFB3,
GADD45A, NMRK2), supporting previous reports of bed rest [45]. Interestingly, there were
leucine-induced changes at the translational level that were not mirrored by transcriptional
alterations (i.e., “uncoupled translation”). This was the case for the key muscle mass
regulator mTORC1 pathway. Although the disuse intervention applied in this study can
be considered rather mild compared with other forms of unloading, it was strong enough
to cause a reduction in translation of mRNAs encoding ribosomal proteins and to alter
circadian regulators [47], a response that has already been described after long-term bed
rest in middle-aged adults [15].

4. Analytical Considerations

With RNA-seq becoming a more prevalent feature of human RET/disuse studies,
some key considerations are required when performing whole-transcriptome analyses in
these contexts. Whilst the following section is not exhaustive, several technical aspects
may be generalisable to other transcriptomic technologies that have been/are still used in
human RET/disuse studies (e.g., microarray), and it includes considerations that are just
as valid for transcriptomic analyses in physiological/biological settings outside the scope
of this review.

Firstly, it is important that the analytical intent of a RET/disuse RNA-seq study is
considered when generating reads, as parameters such as read length, depth and coverage
can all have an influence. For example, 50 bp single-end reads are generally sufficient for
standard gene expression profiling, whereas identification of novel variants or splice sites
typically benefits from longer (75–100 bp) paired-end reads [61]. Further, RNA-seq-based
quantification of gene expression commonly involves either (i) counting the number of
reads that align to a genomic feature of a reference genome or (ii) inferring from transcript-
level abundances that have been estimated via pseudoalignment of reads to a reference
transcriptome [62]. Either way, feature annotations defined in the context of the genome
are required [63], for which several genome annotation databases can serve as a source
(e.g., Ensembl, NCBI, etc.). It is not the intent of this review to make firm recommendations
on annotation data source, but rather highlight that, while considerable overlap often
prevails between/across them, methodological subtleties do exist [63], which may impact
on which features are included in downstream analyses (e.g., the Ensembl database contains
a substantial number of non-coding RNAs that are not present in the Entrez database).

The vast majority of RNA-seq (and microarray) studies in human RET/disuse research
have centred on the application of traditional differential gene analysis—i.e., testing each
gene in the dataset individually to determine if it is differentially expressed [62]. Never-
theless, while its utility has helped generate many new insights and hypotheses on the
molecular mechanisms of muscle adaption to RET/disuse (e.g., [31]), traditional differ-
ential gene analysis is not without limitations. Indeed, focusing on genes in detachment
vastly overlooks the molecular complexity of muscle and is not wholly sensitive to the fact
that key molecular drivers of adaptation do not always display evidence of differential
regulation in isolation [20,64–66]—limiting the extent of information that can be delin-
eated from a muscle RET/disuse RNA-seq dataset. To overcome this, network analysis
can be leveraged as a useful complementary/alternative analysis. Network modelling of
underlying patterns in the expression data itself (i.e., ‘data-driven’ network analysis) is
an effective approach to unearth new interacting gene pathways involved in regulating
human muscle with RET/disuse [22,40,67]. A common tool for this in the systems biology
community is weighted gene co-expression network analysis (WGCNA), which focuses on
groups of co-regulated genes (‘modules’) and their most highly connected ‘hub’ compo-
nents [68,69]. Such module-centric analysis manifests as a powerful form of biologically
motivated data reduction, especially benefiting human RET/disuse RNA-seq studies, by
offering a strong framework for linking molecules to end-point physiology and, in turn,
pinpointing key candidates of individual responsiveness to RET/disuse for guiding per-
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sonalised intervention development [20,38,40]. When sample size is insufficient for true
data-driven network modelling (e.g., WGCNA recommendations are ≥15 samples [70]),
several databases/tools can be used to infer gene–gene interactions based on existing
knowledge (i.e., ‘knowledge-based’ network analysis) (e.g., [71–73]), though this is natu-
rally impeded by possible information loss and a suboptimal ability to leverage on new
molecular inferences.

Whether derived via gene-centric or via network-driven analysis, it is also important
to decipher coherent biological roles (if any) among genes associated with RET/disuse.
Accordingly, several databases exist which ‘functionally characterise’ genes. Largest is Gene
Ontology (GO), which groups genes into logically organised ‘terms’ across the domains
of biological process (BP), cellular component (CC), and molecular function (MF) [74].
Other popular database choices such as the Kyoto Encyclopaedia of Genes and Genomes
(KEGG) and Reactome databases categorise genes into pathways [75,76]. GO generally
provides greater human gene annotation coverage than KEGG or Reactome but perhaps
at the expense of a larger number of ‘inferred’ annotations. Utilising a compendium of
annotation databases may therefore be fruitful when elucidating functional characteristics
of a given muscle RET/disuse gene list [77]. From a ‘statistical’ standpoint, the gene list
could be directly tested to see if it is more ‘enriched’ with genes that map to a specific
functional term than expected by chance (i.e., relative to an appropriate background list,
which is typically all genes that were utilised throughout RNA-seq analysis [78,79]), a
process termed ‘overrepresentation analysis’ [80]. Alternatively, every gene in the data set
can be ranked in a biologically motivated manner (e.g., by log2 fold-change) and ‘gene
set enrichment analysis’ employed to determine if genes in a given term tend to display
concordant expression change based on their ranked position [80]. This is especially
beneficial if, e.g., the number of genes significantly regulated by a RET/disuse intervention
is too small to make sensible or definable functional assignments using overrepresentation
analysis. Regardless, numerous programmatic or online software tools provide a means
for overrepresentation an/or gene set enrichment analysis [81–86]. Naturally, a trade-off
often exists in terms of ease-of-use, statistical constraints/assumptions, ‘up-to-date-ness’,
parameter flexibility, and specific database incorporation, and one should therefore carefully
consider the relative merits of a given tool when utilising it.

The growing use of RNA-seq in human muscle RET/disuse research should also
translate into an increase in the total number of topical whole-transcriptome datasets
(RNA-seq or microarray) that are available in public data archives (e.g., the Gene Ex-
pression Omnibus [87]). Importantly, this facilitates re-use and integration of multiple
transcriptomic RET/disuse datasets, to enhance statistical power towards identifying ro-
bust gene signatures of RET/disuse muscle adaptations and/or help answer entirely new
research questions within these contexts [17,88]. An obvious methodological constraint
is dealing with how to aggregate within and/or across technologies and platforms. Up-
stream (i.e., pre-analysis) merging of different datasets into one large, singular dataset
(‘early-stage integration’ [89]) may make downstream analyses less arduous, but properly
accounting for non-biological noise is and remains a difficult challenge [90]. One could
instead focus on correctly processing and analysing each dataset separately, then aggre-
gate across primary (e.g., p-value, effect-size, etc) or secondary (e.g., gene ranking) test
statistics (‘meta-analysis’ [89]), or other useful downstream analytical features such as
enriched terms, to obtain a more unified cross-dataset molecular picture. Nevertheless,
while this may enable more flexibility when it comes to integrating data from different
technologies/platforms [90], there remains a need to ensure that RET/disuse study designs
are sufficiently homogenous in order to maximise analytical performance [91].

In regard to data outcomes, we highlight that certain transcriptional themes (e.g., en-
ergy metabolism, extracellular matrix, muscle development) significantly appear in the
majority, if not all, muscle transcriptomic datasets pertaining to ageing, exercise and/or
disuse interventions, which is supported from the results of studies included in this review.
It is important to note that while these themes reoccur, they are not always underpinned



Physiologia 2022, 2 173

by the same genes. This raises the question of whether these themes/signatures truly
represent major, dominating responses/adaptations and therefore should be the mainstay
of future targeted mechanistic and interventional work, or whether these responses are
simply so large that they overwhelm smaller, more subtle molecular networks represent-
ing important gene changes (e.g., ion channels, calcium regulation/signalling) that may
(also) be functionally important. Whether this represents an artefact of the informatics
pipelines/bias in gene annotations applied or simply a lack of deep diving into individual
transcriptional datasets requires more attention.

Finally, it is not the intent of this review to act as an RNA-seq best practice guideline
or to provide an RNA-seq pipeline and for this we refer the readers to other more compre-
hensive resources (e.g., [62]). Nonetheless, we provide a non-exhaustive summary of some
common tools utilized in RNA-seq analysis pipelines, particularly of muscle disuse/RET
datasets (Table 2).

Table 2. A summary of some common tools utilized in RNA-seq analysis pipelines.

Tool Highlighted Use Reference

FastQC Quality check of raw sequence reads [92]

Cutadapt

Trimming and/or filtering of raw sequence reads

[93]

SOAPnuke [94]

Trimmomatic [95]

Histat2

Splice-aware genome alignment

[96]

STAR [97]

TopHat2 [98]

featureCounts
Genomic feature counting of aligned reads

[99]

htseq-count [100]

Kallisto

Pseudoalignment and quantification of transcript abundance

[101]

Sailfish [102]

Salmon [103]

tximport Infer gene counts from transcript-level estimates [104]

DESeq2

Differential gene expression analysis

[105]

EdgeR [106]

Limma [107]

IPA

Facilitates (among other things) knowledge-based network inference

[71]

NetworkAnalyst [73]

STRING [72]

WGCNA Facilitates data-driven network analysis [108]

clusterProfiler

Overrepresentation analysis and/or gene set enrichment analysis

[81]

DAVID [82]

Enrichr [85]

g:Profiler [86]

Broad Institute
GSEA software [84]

WebGestalt [83]

5. Conclusions

Studies using RNA-seq to investigate RET- and/or disuse-induced transcriptional
changes in skeletal muscle are starting to emerge (Figure 1). While the weight of these
studies is still very small compared to microarray studies, current evidence demonstrates
that the transcriptomic signatures obtained with RNA-seq are generally consistent with
those obtained with microarrays and could provide further complementary molecular
insight via the detection of (e.g.,) novel transcripts and/or low abundance transcripts.
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It is imperative that, when performing whole-transcriptome analyses in these contexts,
researchers consider the most appropriate: study design parameters (e.g., read length, depth
and coverage), bioinformatic analysis (differential expression, correlation network analysis)
and appropriate statistical analysis (e.g., choice of background gene list) (Figure 1). By doing
so, RNA-seq coupled with powerful bioinformatic analysis stands to significantly further
our understanding into the precise regulators of skeletal muscle plasticity in response to
increased (e.g., RET) or decreased (e.g., unloading/disuse) use.
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