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Abstract: It was previously shown within chiral perturbation theory that the ground
state of QCD in a sufficiently large magnetic field and at nonvanishing, but not too large,
baryon chemical potential is a so-called chiral soliton lattice. The crucial ingredient of
this observation was the chiral anomaly in the form of a Wess-Zumino-Witten term, which
couples the baryon chemical potential to the magnetic field and the gradient of the neutral
pion field. It was also shown that the chiral soliton lattice becomes unstable towards
charged pion condensation at larger magnetic fields. We point out that this instability bears
a striking resemblance to the second critical magnetic field of a type-II superconductor,
however with the superconducting phase appearing upon increasing the magnetic field.
The resulting phase has a periodically varying charged pion condensate that coexists with
a neutral pion supercurrent. We construct this phase analytically in the chiral limit and
show that it is energetically preferred. Just like an ordinary type-II superconductor, it
exhibits a hexagonal array of magnetic flux tubes, and, due to the chiral anomaly, a spatially
oscillating baryon number of the same crystalline structure.
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1 Introduction

Constructing the phase diagram of Quantum Chromodynamics (QCD) at nonvanishing
baryon chemical potential µ is a very difficult problem. At sufficiently low temperatures,
nuclear matter appears when the chemical potential becomes of the order of the nucleon
mass, µ ∼ 1 GeV, and a transition to deconfined quark matter is expected at a larger –
unknown – value of µ. Both in nuclear and in quark matter additional phase transitions
are expected due to various superfluid and superconducting phases [1]. In the presence of
a magnetic field B, baryon number can appear for values of µ smaller than the nucleon
mass – albeit not in the form of ordinary nucleons. This is due to the chiral anomaly,
the non-conservation of the axial current solely from quantum effects. The chiral anomaly
gives rise to a coupling of the chemical potential to the magnetic field and the gradient of
the neutral pion field, which changes the thermodynamics of the system qualitatively and
induces a nonzero baryon number if all three quantities are nonzero [2, 3]. Such a phase with
topological baryon number is indeed stable above a critical magnetic field B = const/µ.
It can be thought of as a stack of domain walls perpendicular to the magnetic field, such

– 1 –



eB
c2 (m

π=0)eB
c2

vacuum

CSL
π± lattice◆◆

◆◆

0 200 400 600 800 1000 1200
0.00

0.05

0.10

0.15

0.20

0.25

μ [MeV]

e〈
B
〉
[G
eV

2
]

Figure 1. Phase diagram in the e〈B〉-µ plane for a physical pion mass (red and blue curves) and
in the chiral limit (black curve; in this case the vacuum only exists on the two axes). The solid
blue curve marks the transition between the vacuum and the CSL phase. Just above the curve
it is favourable to place a single domain wall into the system. The solid red curve indicates the
instability of the CSL phase towards charged pion condensation at the critical field Bc2. In this
paper, we construct the resulting charged pion lattice in the chiral limit, in which case the critical
field is given by the black curve. The two diamonds indicate the points at which we shall later plot
the lattice structures. The dashed curves (instability of a single domain wall, red, and continuation
of the vacuum/CSL transition curve, blue) are transitions between metastable phases. A first-order
transition between the vacuum and the π± lattice is expected somewhere between the dashed lines.
Actual baryons in the form of nuclear matter are expected to compete with and possibly replace
the phases at sufficiently large µ, but are omitted here and in the rest of the paper for simplicity.
To put the scale of the magnetic field into context, note that within natural Heaviside-Lorentz units
e〈B〉 = 0.1 GeV2 ' 5.18m2

π corresponds to e〈B〉 ' 5.12× 1018 G.

that baryon number oscillates in the direction of the magnetic field. This phase was termed
Chiral Soliton Lattice (CSL) [4]. In the chiral limit, i.e. neglecting the pion mass mπ, this
phase exists for arbitrarily small nonzero B and µ and has a uniform baryon density. In this
limit, it was also discussed in the framework of holography [5, 6]. Within this framework,
its interplay with nuclear matter was explored [7], which was also investigated within a
Skyrme model [8, 9]. In analogy to an ordinary superfluid, where the gradient of a scalar
field is related to the superfluid velocity, the pion gradient has also been referred to as a
supercurrent [6], similar to the kaon supercurrent phase in dense quark matter [10, 11]. We
show the phase structure including the CSL phase in Fig. 1.

The CSL phase (as well as a single pion domain wall) becomes unstable towards charged
pion condensation at a certain critical field, which was demonstrated with the help of pionic
fluctuations [3, 4]. So far, the phase beyond the instability, labelled "π± lattice" in Fig.
1, has not been constructed explicitly. It is the main goal of this paper to construct this
phase and show that it is energetically favoured over the CSL phase above the critical field
predicted in Ref. [4]. In the chiral limit, this critical field behaves like B = const/µ2,
see black curve in Fig. 1. Since the charged pion condensate will turn out to be spatially
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inhomogeneous, the relevant thermodynamical variable used in Fig. 1 and later in our
calculation is the spatially averaged magnetic field 〈B〉 (multiplied by the elementary charge
e). In the explicit calculation of this crystalline phase we shall restrict ourselves to the
chiral limit, where the nontrivial lattice structure is two-dimensional, while in the presence
of a nonzero pion mass a three-dimensional lattice is expected. In particular, the periodic
structure of the magnetic field will, via the chiral anomaly, give rise to a crystalline structure
for baryon number, such that the phase we construct is a superconducting baryon crystal.

One of our key observations is the similarity of the CSL instability with the instability of
an ordinary electronic type-II superconductor at the second critical magnetic field [12–15],
usually referred to asBc2, a notation we have adopted in Fig. 1. In the conventional scenario,
the normal-conducting phase is preferred for B > Bc2, and Cooper pair condensation sets
in just below Bc2. Type-II superconductivity allows for a partial expulsion of the magnetic
field, in contrast to type-I superconductors, where the magnetic field is completely expelled
due to the Meissner effect. This partial expulsion manifests itself in the formation of a lattice
of magnetic flux tubes, together with a spatially varying Cooper pair condensate. Pioneered
by Abrikosov [12], linearised Ginzburg-Landau theory can be employed to compute this
lattice analytically just below Bc2 and to determine the preferred lattice structure. Our
calculation is an application of these methods to chiral perturbation theory at the critical
field of the CSL instability. The main differences to the textbook scenario are the presence of
the neutral pions, whose interaction with the charged field is dictated by chiral perturbation
theory, and the anomalous contribution. It turns out that superconductivity is induced by
increasing the magnetic field, i.e. the normal-conducting CSL phase below Bc2 is superseded
by the superconducting pion lattice above Bc2, inverting the order of phases in the non-
anomalous, single-component superconductor.

As in the related works [3, 4] we shall work within two-flavor chiral perturbation theory,
where the chiral anomaly is implemented through a Wess-Zumino-Witten (WZW) term
[16, 17], and only consider mesonic degrees of freedom. This should be kept in mind for the
interpretation of our results because, firstly, chiral perturbation theory is an effective theory
of QCD at low energies, and we should stop trusting it literally for energies of the order
of or larger than the typical scale for chiral symmetry breaking of about 4πfπ ∼ 1 GeV,
where fπ is the pion decay constant. As Fig. 1 shows, our pion lattice exists in a regime
close to or even above this scale. Secondly, actual baryons will play a role for large chemical
potentials. At zero magnetic field, their onset is at µ ' 923 MeV, and it is unknown from
first principles how this onset changes with the magnetic field (for model calculations see for
instance Refs. [7, 18]). For both reasons we have to treat our results with some care. They
can be viewed as a prediction for a qualitatively novel phase, whose existence in QCD needs
to be checked in the future with more elaborate methods. We should also emphasise that,
while we present most of our derivations for a general pion mass, our main results are given
for mπ = 0 for simplicity. This is a good approximation for extremely large magnetic field,
as the convergence of the red (physical) and black (chiral limit) curves in Fig. 1 suggests.
However, ultimately we are interested in the scenario with a physical pion mass and our
study can be considered a first step towards this goal.

Our main motivation is of theoretical nature, having in mind a better understanding
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of the QCD phase diagram. One may ask if there is also a phenomenological motivation
for our work. The magnitude of the magnetic fields discussed here is very large, perhaps
too large to be relevant for any observational consequences. However, large magnetic fields
are present in heavy-ion collisions and in the interior of neutron stars, possibly up to
B ∼ (1018 − 1020) G [19–24]. In the context of heavy-ion collisions our results are not
directly applicable since we work at zero temperature, and finite-temperature extensions
such as for the CSL phase in Ref. [25] would be necessary. In the context of neutron stars,
crystalline structures are of great interest, especially for potential observations of continuous
gravitational waves due to "mountains" which can be sustained by a rigid structure in the
interior of the star [26, 27]. Therefore, our results might be of potential relevance for
astrophysical observations. Of course, any conventional picture of a neutron star contains
nuclear matter, and our results would have to be supplemented by the inclusion of baryonic
degrees of freedom. Alternatively, one might speculate whether exotic stars with relatively
small baryon chemical potential but large magnetic field may exist, where baryon number
is purely generated by the chiral anomaly. As we shall see, the baryon numbers reached
in the inhomogeneous phase constructed here are comparable to the ones expected inside
neutron stars, i.e. of the order of and larger than nuclear saturation density.

Finally, let us put our study in the context of other inhomogeneous superconductors
proposed as candidate phases for the QCD phase diagram. Perhaps most closely related to
our work is the charged pion condensate at nonzero isospin chemical potential, which has
been studied within lattice QCD in its homogeneous version without a magnetic field [28]. If
a magnetic field is switched on, a flux tube array is expected since the pion condensate turns
out to be a type-II superconductor [29]. This inhomogeneous phase has been constructed
within the same framework as used here [30, 31], however its appearance does not rely on the
chiral anomaly, neither does it show the inverted behaviour at Bc2. An analogue of the CSL
phase at nonzero isospin chemical potential due to the axial anomaly does exist as well and
its competition with the charged pion condensation has been studied recently [32], see also
Ref. [33]. An inhomogeneous pion condensate with electromagnetic supercurrents has been
constructed in Ref. [34–36], however without external magnetic field and without identifying
its possible relevance for the QCD phase diagram. The scenario where a superconducting
phase occurs above rather than below a critical field was proposed for charged rho meson
condensation, where an Abrikosov lattice was also predicted [37, 38]. Magnetic flux tube
lattices similar to the one considered here are also expected in the QCD phase diagram
at larger baryon chemical potentials, in nuclear matter due to Cooper pairing of protons
[39–41] and in colour-superconducting quark matter, where the multi-component structure
of the system gives rise to unconventional flux tubes [42–44].

Our paper is structured as follows. We start by establishing our formalism within chiral
perturbation theory in Sec. 2. After the formulation of the Lagrangian in Sec. 2.1, this
includes the derivation of the general form of the equations of motion and the free energy
in Sec. 2.2, and a brief recapitulation of the instability of the CSL phase in Sec. 2.3. Our
main results are derived in Sec. 3, where, firstly, we present the expansion at the critical field
for the general case in Sec. 3.1, and then derive and discuss the flux tube lattice in the chiral
limit in Sec. 3.2. For both main sections, in particular Sec. 3, it is useful to be familiar with
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the standard treatment of a type-II superconductor within a Ginzburg-Landau approach,
which we recapitulate in Appendix A and which the reader may consult as a warm-up for
the main part. We give a summary and an outlook in Sec. 4. Throughout the paper, our
convention for the Minkowski metric is gµν = diag (1,−1,−1,−1) and we work in natural
units where ~ = c = kB = 1. For the electromagnetic part we use Heaviside-Lorentz units,
such that the elementary charge is e =

√
4πα ' 0.3028 with the fine structure constant α.

2 Setup and CSL instability

2.1 Lagrangian

Our starting point is the Lagrangian containing an electromagnetic part, a chiral part, and
a WZW part,

L = Lem + LΣ + LWZW . (2.1)

The electromagnetic part is

Lem = −1

4
FµνF

µν , (2.2)

where Fµν = ∂µAν−∂νAµ is the electromagnetic field strength tensor with the electromag-
netic gauge field Aµ. The chiral part is the usual leading-order chiral Lagrangian [45, 46]

LΣ =
f2
π

4
Tr
[
∇µΣ†∇µΣ

]
+
m2
πf

2
π

4
Tr
[
Σ + Σ†

]
, (2.3)

where
Σ = eiφaτa =

σ + iπaτa
fπ

(2.4)

is the chiral SU(2) field, with the Pauli matrices τa, a = 1, 2, 3, and

σ

fπ
= cosφ ,

πa
fπ

=
φa
φ

sinφ , (2.5)

where φ2 ≡ φ2
1 + φ2

2 + φ2
3, such that f2

π = σ2 + πaπa. The covariant derivative is

∇µΣ = ∂µΣ− i [Aµ,Σ] , (2.6)

with Aµ = AµB+eQAµ, where the auxiliary gauge field AµB = (µ, 0, 0, 0) contains the baryon
chemical potential, and Q = diag (2/3,−1/3) is the generator of the electromagnetic gauge
group. In the covariant derivative, the gauge field contribution proportional to the unit
matrix obviously drops out due to the commutator, such that LΣ does not depend on µ.
Evaluating the traces and using the parametrisation (2.4) the chiral Lagrangian can be
written as

LΣ =
1

2
∂µπ0∂

µπ0 +Dµϕ(Dµϕ)∗ +
1

2
∂µσ∂

µσ +m2
πfπσ , (2.7)

where the neutral pion field has been denoted by π0 ≡ π3, where the charged pions have
been combined in the complex scalar field

ϕ =
1√
2

(π1 + iπ2) , (2.8)
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and where we have defined the covariant derivative Dµϕ = ∂µϕ+ ieAµϕ.
For our purpose it will be convenient to reparametrise the chiral field, following Ap-

pendix A of Ref. [4]. To this end, we separate the third component as follows,

Σ = eiατ3U . (2.9)

Parametrising U by the new fields σ0, π′1, π′2,

U =
σ0 + i(π′1τ1 + π′2τ2)

fπ
, (2.10)

and comparing both sides of Eq. (2.9) component by component yields the explicit form of
the transformation

σ = σ0 cosα

π0 = σ0 sinα
,

π1 = π′1 cosα+ π′2 sinα

π2 = −π′1 sinα+ π′2 cosα
, (2.11)

i.e. it amounts to going from cartesian to polar coordinates in the (σ, π0) sector and applying
a rotation by α in the (π1, π2) sector. As a consequence, we can define a new complex field

ϕ′ =
1√
2

(π′1 + iπ′2) , (2.12)

which obeys the transformation ϕ = e−iαϕ′. In the new coordinates we have the constraint
f2
π = σ2

0 + π′21 + π′22 = σ2
0 + 2|ϕ′|2, which ensures the unitarity of U . We can now write the

Lagrangian (2.7) as

LΣ =
σ2

0

2
∂µα∂

µα+Dµϕ
′(Dµϕ′)∗ +

1

2
∂µσ0∂

µσ0 +m2
πfπσ0 cosα , (2.13)

with the covariant derivative redefined as Dµϕ′ = ∂µϕ′+ i(eAµ−∂µα)ϕ′. We can eliminate
the spurious field σ0, such that our pionic degrees of freedom are the scalar field α (related
to the neutral pion field in the absence of charged pions by π0 = fπ sinα) and the complex
field ϕ′ (related to the original charged pion fields by a rotation by the angle α). The main
benefit of the reparametrisation is that ∇α will turn out to be constant in our crystalline
phase in the chiral limit, which facilitates the calculation. From now on we shall drop the
prime (we shall never come back to the original parametrisation), to arrive at the final form

LΣ = Dµϕ(Dµϕ)∗ +
∂µ|ϕ|2∂µ|ϕ|2

2(f2
π − 2|ϕ|2)

+
f2
π − 2|ϕ|2

2
∂µα∂

µα

+m2
πfπ
√
f2
π − 2|ϕ|2 cosα . (2.14)

One can check that this result is also obtained by inserting the chiral field (2.9) directly
into the Lagrangian (2.3).

The final term of the Lagrangian (2.1) accounts for the chiral anomaly through a WZW
term [16, 17], which we can write as

LWZW =
(
ABµ −

e

2
Aµ

)
jµB , (2.15)
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with the Goldstone-Wilczek baryon current [3, 4, 47]

jµB = −ε
µνρλ

24π2
Tr
[
(Σ∇νΣ†)(Σ∇ρΣ†)(Σ∇λΣ†) +

3ie

4
Fνρτ3

(
Σ∇λΣ† +∇λΣ†Σ

)]

= −ε
µνρλ

4π2
∂να

(
e

2
Fρλ +

∂ρjλ
ef2
π

)
, (2.16)

where
jµ = ie (ϕ∗∂µϕ− ϕ∂µϕ∗)− 2e (eAµ − ∂µα) |ϕ|2 (2.17)

is the non-anomalous contribution to the charged current. Details on the evaluation of the
traces leading to the second line of Eq. (2.16) can be found in Appendix B. Interestingly,
we see that besides the electromagnetic term, there is a vorticity contribution. These two
terms are reminiscent of the chiral magnetic and chiral vortical effects, which are generated
by the chiral anomaly and which have been studied extensively mostly in the context of
heavy-ion collisions, see for instance Ref. [48] for an introductory review. A similar vorticity
term gives rise to the CSL phase in a rotating system even without magnetic field [49], in
which case also inhomogeneous pion-condensed phases have been predicted [50]. Here we
do not impose any rotation on the system, but we shall see that the dynamically created
charged current does render the vorticity term nonzero, which has a direct impact on the
baryon number.

From the explicit result for the baryon current (2.16) we immediately conclude its
conservation,

∂µj
µ
B = 0 , (2.18)

as it should be. In summary, our total Lagrangian is given by Eqs. (2.2), (2.14), and (2.15)
with the baryon current (2.16).

2.2 Equations of motion and free energy

The equations of motion for ϕ∗, α, Aµ become, respectively,

0 =

[
DµD

µ + ∂µα∂
µα+

∂µ∂
µ|ϕ|2

f2
π − 2|ϕ|2

+
∂µ|ϕ|2∂µ|ϕ|2

(f2
π − 2|ϕ|2)2 +

m2
πfπ cosα√
f2
π − 2|ϕ|2

+
ieεµνρλ

8π2f2
π

∂ναFρλDµ

]
ϕ , (2.19a)

0 = ∂µ
[
(f2
π − 2|ϕ|2)∂µα

]
+m2

πfπ
√
f2
π − 2|ϕ|2 sinα− eεµνρλ

16π2
Fµν

(
e

2
Fρλ +

∂ρjλ
ef2
π

)
,(2.19b)

0 = −∂νF νµ + jµ +
e

2
jµB −

e2εµνρλ

16π2
∂ναFρλ

(
1− 2|ϕ|2

f2
π

)
. (2.19c)

The last equation is an extended Maxwell equation, including anomalous contributions to
the charged current. Making use of the baryon number conservation (2.18) we find that the

– 7 –



total electric charge conservation reads

0 = ∂µj
µ +

e2εµνρλ

8π2f2
π

∂µ|ϕ|2∂ναFρλ . (2.20)

This relation has been used in the derivation of the equation of motion for α (2.19b).
We will only be interested in the static limit, and we assume the system to be lo-

cally charge neutral, which can be achieved for instance by adding a gas of electrons or
positrons. This is very similar to the standard Ginzburg-Landau treatment of an electronic
superconductor, where the negative charge of the electron Cooper pairs is cancelled by the
surrounding lattice of ions. As a consequence, the electric field vanishes and we may ignore
Gauss’ law, i.e. the temporal component of Eq. (2.19c). For the remaining equations we can
therefore ignore all time derivatives and set A0 = 0. (Note that even for ∂t = A0 = 0 there
is an anomalous electric charge contribution in Gauss’ law which can only be ignored under
the assumption of a neutralising lepton gas.) As a result, all anomalous contributions to
the equations of motion vanish and we arrive at

0 =

[
D +

∆|ϕ|2

f2
π − 2|ϕ|2

+

(
∇|ϕ|2

)2
(f2
π − 2|ϕ|2)2 +m2

π cosα

(
1− fπ√

f2
π − 2|ϕ|2

)]
ϕ ,(2.21a)

0 = ∇ ·
[
(f2
π − 2|ϕ|2)∇α

]
−m2

πfπ
√
f2
π − 2|ϕ|2 sinα , (2.21b)

∇×B = −ie (ϕ∗∇ϕ− ϕ∇ϕ∗)− 2e (eA +∇α) |ϕ|2 , (2.21c)

where B = ∇×A is the magnetic field and where we have defined the operator

D ≡ ∆− 2i(eA +∇α) · ∇ − i∇ · (eA +∇α)− (eA +∇α)2 + (∇α)2 −m2
π cosα . (2.22)

Since we are ignoring the contributions of fluctuations to the thermodynamics, the grand
canonical potential density is simply given by Ω = −L. Implementing our assumptions of
a static system and vanishing electric field we obtain

Ω(x) =
B2

2
+ | [∇− i (eA +∇α)]ϕ|2 +

(
∇|ϕ|2

)2
2 (f2

π − 2|ϕ|2)
+
f2
π − 2|ϕ|2

2
(∇α)2

−m2
πfπ
√
f2
π − 2|ϕ|2 cosα− µnB(x) , (2.23)

where

nB(x) = j0
B =

∇α
4π2
·
(
eB +

∇× j

ef2
π

)
(2.24)

is the (local) baryon density. This result follows from the baryon current (2.16) with the
convention ε0123 = +1, and the charged three-current is defined through jµ = (j0, j). With
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the help of the equation of motion (2.21a) we can write the free energy as

F =

∫
d3xΩ(x) ,

=

∫
d3x

[
B2

2
+
f2
π

2
(∇α)2 − m2

πfπ cosα√
f2
π − 2|ϕ|2

(
f2
π − |ϕ|2

)
− f2

π

2

(∇|ϕ|2)2

(f2
π − 2|ϕ|2)2 −

eµ

4π2
∇α ·B

]

+

∫
dS ·

{
ϕ∗
[
∇− i (eA +∇α) +

∇|ϕ|2

f2
π − 2|ϕ|2

]
ϕ+

µ(∇α× j)

4π2ef2
π

}
, (2.25)

where we have separated the surface terms that we can drop in our evaluation later. We
shall denote the resulting free energy density by

F =
F

V
, (2.26)

where V is the volume of the system.

2.3 Instability at the critical magnetic field

Let us briefly recapitulate the solution of the equations of motion in the absence of charged
pions and the instability of the resulting phase at a certain critical magnetic field. It will
be instructive to compare this instability with the analogous calculation for an ordinary
superconductor, which is laid out in Appendix A. In the absence of charged pions, ϕ = 0,
the potential (2.23) reduces to

Ωϕ=0 =
B2

2
+
f2
π

2
(∇α)2 −m2

πf
2
π cosα− eµ

4π2
∇α ·B , (2.27)

while the equation of motion for α (2.21b) is

∆α = m2
π sinα . (2.28)

In the chiral limit, the solution that minimises the potential is

∇α =
eµB

4π2f2
π

, (2.29)

with corresponding free energy density

FCSL =
〈B〉2

2
− 1

2

(
eµ〈B〉
4π2fπ

)2

. (2.30)

In this phase, the magnetic field is uniform (and trivially fulfils the equation of motion
(2.21c)). Nevertheless, we have replaced it by its spatial average, defined for any function
f(x) by

〈f〉 ≡ 1

V

∫
d3x f(x) . (2.31)
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Here we simply have 〈B〉 = B, but in the form (2.30) the free energy density can be
compared more easily with our main results, where B is no longer uniform. The baryon
density in the chiral limit is also uniform and is given by

nCSL
B = −∂Ωϕ=0

∂µ
=
e2µ〈B〉2

16π4f2
π

. (2.32)

If a nonzero pion mass is taken into account, this result gets more complicated. In particular,
∇α and the resulting baryon number vary periodically in the direction parallel to the
magnetic field. This is the phase that was termed CSL [4]. Since our main results will only
concern the chiral limit, the results (2.29) and (2.30) are sufficient for our purposes. We
have used the label CSL for notational convenience, although this is a slight abuse of the
term since there is no lattice structure in the chiral limit in the direction of the magnetic
field.

The stability of the CSL phase can be probed by considering the fluctuations in the
field ϕ. To this end, we go back to the equation of motion (2.19a). Setting A0 = ∂tα = 0

but keeping the time dependence of ϕ and linearising this equation yields

0 '
(
∂2
t −D −

ie∇α ·B
4π2f2

π

∂t

)
ϕ . (2.33)

To proceed we align the z-axis with the magnetic field, B = Bêz, such that we can choose
eA +∇α = eBxêy. Moreover, we employ the ansatz ϕ(t,x) = e−iωteikyyf(x, z) to obtain

0 =

[
−ω2 − ∂2

x − ∂2
z + e2B2

(
x− ky

eB

)2

− (∇α)2 +m2
π cosα− e∇α ·B

4π2f2
π

ω

]
f(x, z) .(2.34)

Returning to the chiral limit, we abbreviate ∇α = c êz with

c ≡ eµB

4π2f2
π

, (2.35)

and further simplify the ansatz by writing f(x, z) = eikzzψ(x). This yields

[
(ω + µ∗)

2 − k2
z −m2

∗
]
ψ(x) =

[
−∂2

x + e2B2

(
x− ky

eB

)2
]
ψ(x) . (2.36)

Written in this form, this equation is identical to the standard Ginzburg-Landau scenario
from ϕ4 theory, see Eq. (A.8), having identified an effective chemical potential and an
effective mass by

µ∗ =
c2

2µ
, m2

∗ = µ2
∗ − c2 . (2.37)

Therefore, following exactly the same arguments as in Appendix A, the dispersion relation
of the ϕ field in the (massless) CSL phase is

ω =
√

(2`+ 1)eB +m2
∗ + k2

z − µ∗ , (2.38)
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and we encounter an instability of the ` = kz = 0 mode for eB < µ2
∗ −m2

∗ = c2. However,
crucially, µ∗ and m∗ depend on the magnetic field themselves. As a consequence, this
condition translates into an instability for magnetic fields larger than the critical field

Bc2 =
16π4f4

π

eµ2
. (2.39)

This is in contrast to the scenario of an ordinary type-II superconductor where the instability
towards a superconducting flux tube lattice occurs upon decreasing the magnetic field.

The critical magnetic field (2.39) reproduces the result of Ref. [4] (where e was set to
1 and the field was termed BBEC, indicating Bose-Einstein condensation of charged pions).
In this reference, the critical field was also computed for the case of a nonzero pion mass
(we have used this result in the phase diagram of Fig. 1). Our derivation deviates in one
detail from that of Ref. [4]: The anomalous contribution in Eq. (2.19a) generates the term
linear in ω in Eq. (2.34), which we then have absorbed in the effective chemical potential
µ∗. It is possible to discard this term on the ground of a consistent power counting scheme.
As argued in Ref. [25], in addition to the usual power counting in chiral perturbation
theory in terms of the momentum scale p� 4πfπ, namely ∂µ,mπ, Aµ ∼ O(p), the baryon
chemical potential should be counted as ABµ ∼ O(p−1). This ensures that the contribution
ABµ j

µ
B ∼ O(p2) in the WZW Lagrangian (2.15) is consistent with our chiral Lagrangian

LΣ ∼ O(p2). In contrast, the second WZW contribution eAµj
µ
B ∼ O(p4) is of higher

order. This is the term that gives rise to the effective chemical potential µ∗. If µ∗ is
set to zero we reproduce the dispersion relation of Ref. [4] exactly. However, since we
also include the electromagnetic contribution Lem ∼ O(p4), which is crucial for our main
results, our expansion is not consistent with respect to this scheme even in the absence
of the WZW term. Therefore, we have included all terms from LWZW (2.15), resulting
in a formally higher-order term in the equation of motion (2.19a). An alternative power
counting with respect to the electromagnetic field, namely Aµ ∼ O(p0), e ∼ O(p) [32],
ensures consistency of the electromagnetic and chiral parts of the Lagrangian. Then, all
our terms are consistently of order p2 if we omit eAµj

µ
B ∼ O(p4) in the WZW Lagrangian,

which is of higher order also within this alternative scheme.
For the location of the instability the term linear in ω has no consequence because the

critical magnetic field is given by µ2
∗−m2

∗, which is identical to c2 irrespective of whether µ∗
is set to zero or not. Interestingly, however, the nature of the instability is affected: from
Eq. (2.38) we see that ω turns negative at the critical magnetic field, whereas, if we set
µ∗ = 0 in that equation, ω turns imaginary at the critical magnetic field. These two cases
are sometimes referred to as "energetic" and "dynamical" instabilities. Only a dynamical
instability indicates a time scale on which the unstable modes grow, whereas an energetic
instability can be turned dynamical if the system is allowed to exchange momentum with
an external system, see for instance Refs. [51, 52]. We thus see that only in the presence
of µ∗, the nature of the instability is the same as in the Ginzburg-Landau treatment of a
standard superconductor. In that case, as one can check with the help of Eq. (2.38), ω can
only become complex in a regime which is already energetically unstable. For the following,
this aspect of the instability as well as the difference in the dispersion of the charged pions
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in the CSL phase is irrelevant. In other words, if we count powers of the momentum scale
according to ABµ ∼ O(p−1), Aµ ∼ O(p0), e ∼ O(p) all our main results in the subsequent
sections follow consistently from an order p2 Lagrangian.

3 Flux tube lattice

3.1 Expansion at the critical magnetic field

The instability discussed in the previous section indicates that there is a phase that includes
charged pion condensation and has lower free energy than the CSL phase for magnetic
fields above the critical field Bc2. In this section, we construct such a phase by applying
an expansion in the parameter ε ∼

√
B −Bc2, exploiting the analogy with the standard

type-II superconductor of Appendix A. We shall present the expansion for the general case,
including the pion mass, but restrict ourselves to the chiral limit in the solution of the
resulting equations in Sec. 3.2. In contrast to ordinary gauged ϕ4 theory, we have the
additional scalar field α, which we also have to expand,

ϕ = ϕ0 + δϕ+ . . . , α = α0 + δα+ . . . , A = A0 + δA + . . . . (3.1)

Here, ϕ0 and δϕ are of order ε and ε3, respectively. To order ε0, the gauge field and the
scalar field take the values of the CSL phase, here denoted by A0 and α0. The higher-order
terms δA and δα are of order ε2. We insert these expansions into the equations of motion
(2.21) to obtain the following order-by-order equations. From the equation of motion for
ϕ∗ (2.21a) we obtain the ε1 and ε3 contributions

D0ϕ0 = 0 , (3.2a)

D0δϕ =

[
2i(eδA +∇δα) · ∇+ i∇ · (eδA +∇δα) + 2(eA0 +∇α0) · (eδA +∇δα)

−(∆α0 + 2∇α0 · ∇)δα− (∆−m2
π cosα0)|ϕ0|2

f2
π

]
ϕ0 , (3.2b)

where D0 is the lowest-order contribution to the operator D, i.e. Eq. (2.22) with A and α
replaced by A0 and α0. The equation of motion for α (2.21b) yields the following ε0 and
ε2 equations,

∆α0 = m2
π sinα0 , (3.3a)

f2
π(∆−m2

π cosα0)δα = (∆α0 + 2∇α0 · ∇)|ϕ0|2 , (3.3b)

where the first equation has already been used to simplify the second. Finally, from the
equation of motion for A, we derive the ε0 and ε2 contributions

∇×B0 = 0 , (3.4a)

∇× δB = −ie (ϕ∗0∇ϕ0 − ϕ0∇ϕ∗0)− 2e (eA0 +∇α0) |ϕ0|2 , (3.4b)
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where we have defined B0 = ∇×A0, δB = ∇× δA, such that we can denote the magnetic
field up to O(ε2) by B ' B0 + δB. The lowest-order magnetic field corresponds to the
critical magnetic field, B0 = Bc2 and we satisfy Eq. (3.4a) trivially by a constant B0.

The free energy density can be brought into a convenient form by dropping the surface
terms and applying our expansion in Eq. (2.25),

F ' 1

V

∫
d3x

{
B2

2
+
f2
π

2
[(∇α)2 − 2m2

π cosα]− λ∗|ϕ0|4 −
eµ

4π2
∇α ·B

}
, (3.5)

where we have defined

λ∗ ≡
〈(∇|ϕ0|2)2〉+m2

π〈|ϕ0|4 cosα〉
2f2
π〈|ϕ0|4〉

. (3.6)

Written in this way, the free energy density resembles the one of ϕ4 theory, see Eq. (A.6),
which will be helpful for the upcoming evaluation. In particular, λ∗ plays the role of an
effective self-coupling of the complex field.

As in the ϕ4 calculation of Appendix A we use the higher-order equations (3.2b) and
(3.4b) to derive an identity that will later be needed to evaluate the free energy. We multiply
Eq. (3.2b) by ϕ∗ and Eq. (3.4b) by δA +∇δα/e, and combine the resulting equations to
obtain

ϕ∗0D0δϕ = i∇ ·
[
(eδA +∇δα)|ϕ0|2

]
− (δA +∇δα/e) · (∇× δB)

−|ϕ0|2(∆−m2
π cosα0)|ϕ0|2

f2
π

− |ϕ0|2(∆α0 + 2∇α0 · ∇)δα . (3.7)

Integrating over the volume on both sides and dropping the surface terms gives

0 =

∫
d3x

[
2λ∗|ϕ0|4 − (δA +∇δα/e) · (∇× δB)− |ϕ0|2(∆α0 + 2∇α0 · ∇)δα

]
. (3.8)

This is the analogue to Eq. (A.17). The extra term due to the scalar field α will play an
important role below.

3.2 Solution in the chiral limit

We now solve the equations of motion and compute the free energy density in the chiral
limit, mπ = 0. According to our expansion, the lowest-order terms of α and A correspond
to their CSL values at the critical field Bc2. Aligning the magnetic field with the z-direction,
we can thus write

α0 =
z

ξ
, eA0 +∇α0 = eBc2xêy , (3.9)

where ξ−1 is the constant c from Eq. (2.35) evaluated at B = Bc2,

ξ =
1√
eBc2

=
µ

4π2f2
π

, (3.10)

where we have used the explicit form of Bc2 (2.39). Our gauge choice for A0 implies
B0 = Bc2êz. Moreover, by assigning a z-component to A0 that absorbs ∇α0 we ensure
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that there is no charged current in the z-direction, jz = 0, which is a convenient choice for
the calculation.

With Eq. (3.9) we can solve the equation of motion for ϕ0 (3.2a) in exactly the same
way as for the standard superconductor, see Sec. A.3. The only difference is that µ2 −m2

from the ϕ4 model is replaced by 1/ξ2. Consequently, following Appendix A, we have

ϕ0(x, y) =

∞∑
n=−∞

Cne
inqyψn(x) , ψn(x) = e

− (x−xn)2

2ξ2 , (3.11)

with complex coefficients Cn, the wave numbers ky = nq, and xn ≡ nqξ2. In particular, ϕ0

does not depend on z (which would be different in the presence of a pion mass because in
that case ∇α0 depends on z). The coherence length ξ, which characterises the variation of
the condensate in the x-y plane, is the same length scale as in α0 (3.9).

Next, we determine δA from Eq. (3.4b). Again, we can follow exactly the same argu-
ments as in Sec. A.3. We can choose a gauge in which δA = δAyêy such that δB = δBêz
with δB = ∂xδAy, and find

δAy =
(
〈B〉 −Bc2 + e〈|ϕ0|2〉

)
x− e

∫
dx |ϕ0|2 . (3.12)

As a consequence, the magnetic field varies in the x-y plane and its z-component is

B = Bc2 + δB = 〈B〉+ e(〈|ϕ0|2〉 − |ϕ0|2) , (3.13)

where 〈B〉 will act as our external thermodynamic variable.
In the chiral limit, the O(ε2) equation of motion (3.3b) becomes ∆δα = 0. We may

assume δα to be independent of x and y, and fix the integration constants such that the
scalar field α up to O(ε2) is identical to its CSL value (2.29) at the magnetic field 〈B〉,

α0 + δα =
eµ〈B〉
4π2f2

π

z . (3.14)

This condition is satisfied by
δα = e(〈B〉 −Bc2)ξz . (3.15)

The higher-order correction δϕ can now in principle be calculated from Eq. (3.2b). However,
we shall not need the explicit result. We already extracted information from that equation
in the derivation of the relation (3.8). To make use of this relation we first compute

(δA +∇δα/e) · (∇× δB) = −e
(
〈B〉 −Bc2 + e〈|ϕ0|2〉

)
|ϕ0|2 + e2|ϕ0|4 + total derivatives ,

(3.16)
and

|ϕ0|2(∆α0 + 2∇α0 · ∇)δα = 2e|ϕ0|2(〈B〉 −Bc2) . (3.17)

Interestingly, the expression (3.17), when added to Eq. (3.16), effectively flips the sign of
〈B〉 −Bc2, and Eq. (3.8) can be brought into the form

e〈|ϕ0|2〉 =
〈B〉 −Bc2

(2κ2 − 1)β + 1
, (3.18)
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with the effective Ginzburg-Landau parameter

κ ≡
√
λ∗
e

=
1√

2 efπξ
, (3.19)

where we have used the definition of λ∗ (3.6) and the identity

〈(∇|ϕ0|2)2〉 =
〈|ϕ0|4〉
ξ2

, (3.20)

which we prove in Appendix C. Moreover, β is the same parameter as introduced by
Abrikosov in the standard Ginzburg-Landau scenario, see Eq. (A.25). The left-hand side of
Eq. (3.18) is obviously positive, and thus the right-hand side must be positive too. For the
denominator, we find with Eqs. (3.10), (3.19), and using fπ = 92.4 MeV, that 2κ2 − 1 > 0

for all µ . 12 GeV and thus for all relevant µ. Therefore, our result is only valid for
〈B〉 − Bc2 ≥ 0. This reflects the fact that our charged pion superconductor occurs for
magnetic fields larger than the critical field. Hence the sign flip in front of 〈B〉 − Bc2 due
to Eqs. (3.16) and (3.17) was crucial. In the absence of the scalar field α, the contribution
(3.17) is absent and the numerator on the right-hand side of Eq. (3.18) becomes Bc2−〈B〉,
which is positive in the standard scenario, see Eq. (A.24).

We may also use Eq. (3.18) to determine the coefficients Cn in the charged pion con-
densate (3.11). As explained in Sec. A.4, we consider periodic solutions where Cn = C for
even n and Cn = iC for odd n. Then, comparing Eq. (A.34) with Eq. (3.18) we read off

|C|2 =

√
a

e

〈B〉 −Bc2
(2κ2 − 1)β + 1

, (3.21)

where a = q2ξ2/π determines the lattice structure of the solution. As a consistency check,
this result shows that |ϕ0|2 is of order ε2 ∼ 〈B〉 − Bc2, in accordance with our expansion
(3.1).

Our results can now be inserted into the free energy density (3.5). The magnetic energy
and the |ϕ0|4 contribution have exactly the same form as in the ϕ4 model, and we can use
the result (A.27) for these terms. The remaining terms simply reproduce the free energy
density of the CSL phase (2.30), such that we obtain

F = FCSL −
1

2

(〈B〉 −Bc2)2

(2κ2 − 1)β + 1
. (3.22)

This is one of the main results of our paper since it shows that the free energy of the
inhomogeneous charged pion superconductor is indeed lower than that of the (massless)
CSL state for 〈B〉 > Bc2. Let us now discuss this result and the properties of our flux tube
lattice in more detail.

The inhomogeneous state we have constructed is preferred over the CSL state above the
black curve in Fig. 1. This results in a continuous transition in the sense that the charged
pion condensate goes to zero as the curve is approached from above. The charged pion
condensate gives rise to a crystalline structure in the plane perpendicular to the magnetic
field, while there is no variation of any physical observable in the direction parallel to it.
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The magnetic field itself varies in the x-y plane as well, just like in an ordinary type-II
superconductor. It is identical to the external field 〈B〉 at the points where the condensate
vanishes and is expelled in the regions with nonvanishing condensate. The result is a flux
tube lattice, whose structure is determined by the parameter β. Since the free energy is
minimised by the minimal β the preferred lattice structure is given by the minimum of the
function (A.42). There is no difference in this function to the case of an ordinary type-II
superconductor, and thus we find the same result, i.e. the free energy is minimised by a
hexagonal flux tube lattice, a =

√
3. Using the expression (3.11) and the coefficients (3.21)

we plot the condensate for two different points in the µ-〈B〉 plane in the upper panels of
Fig. 2. The amplitude of the oscillation becomes larger as one moves away from the critical
field and our expansion in ε becomes less applicable. We have thus chosen two points very
close to the critical field, where we can trust our expansion, (µ, 〈B〉) = (µ, 1.01Bc2(µ)), for
two different values of µ. These points are marked by diamonds in the phase diagram of
Fig. 1.

We see that the lattice spacing increases with µ. This is obvious since the character-
istic length scale is the coherence length ξ ∝ µ. The lattice spacing also becomes larger
as one moves away from the critical field Bc2. This is identical to an ordinary type-II su-
perconductor, where for 〈B〉 → 0 (or H → Hc1) the spacing becomes infinite, indicating a
transition to a Meissner state where the magnetic field is completely expelled. Here, such
a state is not possible. A homogeneous charged pion condensate would expel the magnetic
field completely. However, without magnetic field there would be no anomalous coupling
to the neutral pions and in turn there is no effective potential that makes the charged pi-
ons condense. Therefore, we do not expect our lattice to be continuously connected to a
Meissner state, at least not in the absence of an isospin chemical potential. It is therefore
not obvious – even if we keep using chiral perturbation theory for such large magnetic fields
and chemical potentials – how the flux tube lattice evolves far beyond the critical field Bc2.

Our crystalline state is not only a lattice for the charged pion condensate and thus
the magnetic field, but also for baryon number due to the WZW term. The local baryon
number (2.24) receives contributions both from ∇α ·B and ∇α · (∇ × j). With the help
of Eqs. (A.20) and the definition of the (non-anomalous) charge current (2.17) we have
j ' −e(êx∂y − êy∂x)|ϕ0|2, which implies

∇× j ' e∆|ϕ0|2êz . (3.23)

Consequently, the baryon density (2.24) becomes

nB(x, y) ' nCSL
B +

e3µ〈B〉
16π4f2

π

[
〈|ϕ0|2〉 − |ϕ0|2 +

∆|ϕ0|2

e2f2
π

]
, (3.24)

with the uniform CSL density nCSL
B (2.32), around which the baryon density oscillates,

〈nB〉 = nCSL
B . We plot the result in the lower panels of Fig. 2 for the same points in the µ-

〈B〉 plane as used in the upper two panels. We see that going above the critical field by 1%
leads to a periodic oscillation in the baryon number by about 8%. The largest effect comes
from the last term in Eq. (3.24), which originates from the vorticity contribution ∇ × j.
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Figure 2. Upper panels: Modulus of the charged pion condensate (squared) normalised to its
spatial average in the plane perpendicular to the magnetic field. The plots show the energetically
preferred hexagonal lattice structure just above the critical magnetic field, in both panels 〈B〉 =

1.01Bc2, where eBc2 ' 0.2319 GeV2 for a baryon chemical potential µ = 700 MeV (left panel) and
eBc2 ' 0.1403 GeV2 for µ = 900 MeV (right panel). The distance between the minima turns out to
be about 1.10 fm (left) and 1.42 fm (right). Lower panels: Baryon number density in units of the
nuclear saturation density n0 for the same µ and 〈B〉 as the corresponding upper panels. We have
used the numerical values fπ = 92.4 MeV and n0 = 0.15 fm−3.

This can be seen numerically or by estimating the ratio [∆|ϕ0|2/(e2f2
π)]/|ϕ0|2 ∼ 2κ2 � 1,

where we have simply replaced the derivative by the inverse coherence length. We have
checked numerically that this ratio is a good estimate for the relative importance of the
two terms.

By comparing the upper with the lower panels, Fig. 2 also demonstrates that the baryon
density is enhanced where the charged pion condensate is depleted. As a consequence, we
obtain a "baryon crystal" where baryon number is maximised at the triangular points of
the lattice, just like the magnetic field. This two-dimensional lattice translates to "baryon
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tubes" in three dimensions since our system is translationally invariant in the direction of
the magnetic field. This is due to our approximation of a vanishing pion mass. In the
physical case, we can expect a three-dimensional crystal with baryon number oscillating
in all three dimensions. As the phase diagram in Fig. 1 suggests, the chiral limit becomes
a good approximation for very large magnetic fields, e〈B〉 � m2

π. Therefore, one might
expect a change in the structure of the phase from tube-like at ultra-large magnetic fields to
bubble-like at more moderate fields. Of course, this is under the assumption of the validity
of our chiral approach, which we expect to break down at sufficiently large magnetic fields
and/or baryon chemical potentials.

4 Summary and outlook

We have applied chiral perturbation theory with a Wess-Zumino-Witten term to construct
an inhomogeneous phase of superconducting charged pions coexisting with a neutral pion
supercurrent. This phase is preferred over the chiral soliton lattice, where charged pi-
ons are absent, at sufficiently large magnetic fields and baryon chemical potentials. We
have employed an expansion close to the critical magnetic field, making use of the meth-
ods developed for an ordinary type-II superconductor within a Ginzburg-Landau approach.
Restricting ourselves to the chiral limit for our main results, we have derived an analytical
expression for the crystalline phase and its free energy density. As in the case of an ordinary
superconductor, it turns out that the preferred structure is a hexagonal flux tube lattice,
where the magnetic field penetrates the superconductor in the regions of small condensate.
Due to the chiral anomaly, this lattice is at the same time also a baryon crystal, with baryon
number being enhanced within the flux tubes. We have pointed out that the main contri-
bution to the oscillations in baryon number come from the vorticity of the charged pions
which couples to the baryon chemical potential anomalously. Within our approximation of
a vanishing pion mass, the baryon crystal is two-dimensional, only varying in the directions
perpendicular to the magnetic field.

Including a nonvanishing pion mass is the most obvious extension of our work in the
future. We have included the pion mass in the necessary equations, including the expansion
at the critical magnetic field. Their solution – for which one may have to resort to numerical
methods – can be expected to provide a three-dimensional baryon crystal. As a first step,
it might be useful to construct the crystal starting from a single domain wall rather than
from the full chiral soliton lattice. Our results may also be used as the foundation to
compute the baryon crystal purely numerically, without restriction to the region close to
the critical magnetic field. In the presence of a finite pion mass, this would be particularly
interesting in order to compute a potential first-order transition from the vacuum to the
baryon crystal (without the intermediate state of the chiral soliton lattice), as suggested
by the currently known structure of the phase diagram in the plane of magnetic field and
baryon chemical potential. One should also keep in mind that our calculation resides near
the limits of validity of chiral perturbation theory, and thus any extensions beyond that
approach would be highly desired to check and possibly refine our results. While a full first-
principle calculation within QCD seems very difficult, one feasible extension would be the
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inclusion of actual baryonic matter. This would be relevant for the region of large chemical
potential and relatively small magnetic fields, and one might expect a competition or a
possible coexistence of ordinary nuclear matter with our baryon crystal. The corresponding
region of the phase diagram is also of potential interest for the interior of neutron stars,
and one might ask if the crystalline structure discussed here might survive in some form
in dense nuclear matter with moderately large magnetic fields, perhaps of the strengths
found in magnetars. Moreover, one could include temperature effects along the lines of Ref.
[25]. Inhomogeneous pion condensates in a magnetic field can also be induced by an isospin
chemical potential without anomalous effects [30, 32]. Therefore, it would be interesting to
generalise our results by including an isospin chemical potential and see whether and how
our crystalline structure connects to these known inhomogeneous phases.
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A Abrikosov flux tube lattice in ϕ4 theory

In this appendix we discuss the second critical magnetic field and the resulting hexagonal
flux tube lattice in a gauged ϕ4 model. Despite the relativistic starting point, this essentially
recapitulates the calculation of the original works [12, 13], in a notation adopted for our
purposes. This calculation is useful as a warm-up for the more complicated version in the
main part, and also serves to point out the crucial differences of our main results to the
standard scenario. It also keeps the calculation in the main part to a more readable extent
since we can resort to some of the results of this appendix.

A.1 Equations of motion and free energy

We consider the following Lagrangian for a complex scalar field ϕ with mass m, electric
charge e, and coupling constant λ,

L = Dµϕ (Dµϕ)∗ −m2|ϕ|2 − λ|ϕ|4 − 1

4
FµνF

µν , (A.1)

where the covariant derivative is Dµ = ∂µ + ieAµ. The equations of motion for ϕ∗ and Aµ

are (
DµD

µ +m2 + 2λ|ϕ|2
)
ϕ = 0 , (A.2a)

∂µF
µν = jν , (A.2b)

where
jν = ie (ϕ∗∂νϕ− ϕ∂νϕ∗)− 2e2Aν |ϕ|2 (A.3)

is the electromagnetic four-current. Condensation of the complex field is induced by a
chemical potential µ, which we introduce via the temporal component of the gauge field,

– 19 –



Aν = (µ/e,A). Although we use the same symbol as for the baryon chemical potential in
the main part, it is important to keep in mind the difference: in the case of the charged
pions there is no chemical potential associated with the charge they carry. This would be an
isospin chemical potential, which we do not consider in this paper. Their condensation only
occurs through the coupling to the neutral pions, which in turn are coupled anomalously
to the baryon chemical potential. Here, in this appendix, the condensation mechanism is
more direct - µ is the chemical potential associated to the global U(1) symmetry of the
model under which the complex field is charged.

In the static limit the equations of motion become

0 =
(
D − 2λ|ϕ|2

)
ϕ , (A.4a)

∇ ·E = −2e2µ|ϕ|2 , (A.4b)

∇×B = −ie (ϕ∗∇ϕ− ϕ∇ϕ∗)− 2e2A|ϕ|2 , (A.4c)

where

D ≡ ∆− 2ieA · ∇ − ie∇ ·A− e2A2 + µ2 −m2 . (A.5)

Assuming that there is a background charge that cancels the charge of the complex scalar
field, we will assume that there is no electric field, such that we can ignore Eq. (A.4b)
and do not have to take into account any electric contribution to the free energy. The free
energy can then be written as

F = −
∫
d3xL =

∫
d3x

(
B2

2
− λ|ϕ|4

)
, (A.6)

where we have used the equation of motion (A.4a) and dropped surface terms.

A.2 Expansion at the critical magnetic field

At the critical field Bc2 we expect a continuous transition from the non-condensed phase
ϕ = 0 to a superconducting phase. To determine this transition, we linearise around ϕ = 0

and temporarily restore the time dependence of ϕ. With the ansatz ϕ(t,x) = eiωtf(x) this
allows us to compute the dispersion relation of the fluctuations in the non-superconducting
state in the presence of the magnetic field. The equation of motion (A.2a) becomes

(ω + µ)2 f(x) = −
(
∆− 2ieA · ∇ − ie∇ ·A− e2A2 −m2

)
f(x) . (A.7)

Aligning the z-axis with the magnetic field, B = Bêz, we may choose the gauge A = Bxêy
and make the ansatz f(x) = eikyyeikzzψ(x) to obtain[

(ω + µ)2 − k2
z −m2

]
ψ(x) =

[
−∂2

x + e2B2

(
x− ky

eB

)2
]
ψ(x) . (A.8)

This equation has the form of the Schrödinger equation for the one-dimensional harmonic
oscillator and its solution gives the usual Landau levels labelled by the non-negative integer
`,

ω =
√

(2`+ 1) eB +m2 + k2
z − µ . (A.9)
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This energy is positive for all ` and kz if B is sufficiently large. A negative energy, and thus
the indication of an instability, occurs for ` = kz = 0 at the critical field

Bc2 ≡
µ2 −m2

e
. (A.10)

For B < Bc2 we thus expect a superconducting phase with a charged condensate to take
over. To construct this phase just below Bc2 we employ an expansion in ε ∼

√
Bc2 −B,

ϕ = ϕ0 + δϕ+ . . . , A = A0 + δA + . . . , (A.11)

where, respectively, ϕ0 and δϕ are of order ε and ε3, while A0 and δA are of order 1 and
ε2. For ε→ 0 we approach the critical field and thus we need ∇×A0 = Bc2, which we can
satisfy with A0 = xBc2êy. We may therefore write the expansion of the magnetic field as

B = Bc2 + δB + . . . , (A.12)

with∇×δA = δB. The equation of motion for ϕ∗ (A.4a) yields the order ε and ε3 equations

D0ϕ0 = 0 , (A.13a)

D0δϕ =
(
2ieδA · ∇+ 2e2A0 · δA + ie∇ · δA + 2λ|ϕ0|2

)
ϕ0 , (A.13b)

where D0 is the operator D (A.5) with A replaced by its lowest order contribution A0. The
lowest-order contribution to the equation of motion for A (A.4) simply gives ∇×Bc2 = 0,
which is trivially solved since the magnetic field is constant at (and above) the critical value.
The order ε2 contribution gives

∇× δB = −ie (ϕ∗0∇ϕ0 − ϕ0∇ϕ∗0)− 2e2A0|ϕ0|2 . (A.14)

For later it is useful to combine Eq. (A.13b) with Eq. (A.14) as follows. We multiply Eq.
(A.13b) from the left with ϕ∗0 and multiply Eq. (A.14) with δA. In both resulting equations
we have created a term 2e2A0 · δA|ϕ0|2, and thus we can insert one equation into the other
to obtain

ϕ∗0D0δϕ = ie∇ · (δA |ϕ0|2)− δA · (∇× δB) + 2λ|ϕ0|4 . (A.15)

With partial integration, dropping the surface term, and using the equation of motion
D∗0ϕ∗0 = 0, the integral over the left-hand side vanishes,∫

d3xϕ∗0D0δϕ = 0 . (A.16)

Consequently, the integral over the right-hand side of Eq. (A.15) must vanish as well.
Dropping the boundary term, this yields the useful relation

0 =

∫
d3x

[
2λ|ϕ0|4 − δA · (∇× δB)

]
. (A.17)
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A.3 Solution to the equations of motion

To solve the equations of motion explicitly we first note that Eq. (A.13a) can be brought
into the form of Eq. (A.8) with ω = 0, B = Bc2, and, assuming no variation in the z-
direction, kz = 0. The solution for the lowest Landau level, ` = 0, is a Gaussian, and in
order to construct periodic solutions we set ky = nq, n ∈ Z, and consider the superposition
of Gaussians

ϕ0(x, y) =

∞∑
n=−∞

Cne
inqyψn(x) , ψn(x) = e

− (x−xn)2

2ξ2 , (A.18)

with complex coefficients Cn and the abbreviations

xn ≡ nqξ2 , ξ ≡ 1√
eBc2

. (A.19)

Here, ξ is the coherence length, which defines the length scale on which the condensate
varies. Next, we need to compute δA and thus δB from the equation of motion (A.14). We
will see that it is consistent to restrict the correction to the gauge field to the y direction,
δA = δAy(x, y)êy, and we can write δB = δB(x, y) êz. Now, one first derives the following
useful identities with the help of the explicit solution (A.18),

i(ϕ∗0∂xϕ0 − ϕ0∂xϕ
∗
0) = ∂y|ϕ0|2 , (A.20a)

i(ϕ∗0∂yϕ0 − ϕ0∂yϕ
∗
0) + 2exBc2|ϕ0|2 = −∂x|ϕ0|2 . (A.20b)

Consequently, the nontrivial components of Eq. (A.14) take the simple form

∂y∂xδAy = −e∂y|ϕ0|2 , (A.21a)

∂2
xδAy = −e∂x|ϕ0|2 . (A.21b)

The first equation gives ∂xδAy = −e|ϕ0|2 + const, and the second equation implies that
the integration constant is indeed a constant that does not depend on x. We express
the integration constant in terms of the spatial average of the magnetic field 〈B〉, which
we choose as our independent thermodynamic variable. Requiring 〈B〉 = Bc2 + 〈δB〉, we
obtain

δB = ∂xδAy = 〈B〉 −Bc2 + e
(
〈|ϕ0|2〉 − |ϕ0|2

)
. (A.22)

We can use this expression to compute

δA · (∇× δB) = −e
(
〈B〉 −Bc2 + e〈|ϕ0|2〉

)
|ϕ0|2 + e2|ϕ0|4 + total derivatives . (A.23)

Inserting this result into Eq. (A.17) and dropping the boundary terms gives

e〈|ϕ0|2〉 =
Bc2 − 〈B〉

(2κ2 − 1)β + 1
, (A.24)

where κ ≡
√
λ/e is the usual Ginzburg-Landau parameter that distinguishes type-I from

type-II superconductivity, and

β ≡ 〈|ϕ0|4〉
〈|ϕ0|2〉2

. (A.25)
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With these preparations we can now go back to the free energy (A.6). To express the result
in terms of our thermodynamic variable 〈B〉, we need to rewrite the magnetic energy with
the help of

〈B2〉 = 〈B〉2 + 〈δB2〉 − 〈δB〉2 = 〈B〉2 + e2
(
〈|ϕ0|4〉 − 〈|ϕ0|2〉2

)
, (A.26)

such that, using Eq. (A.24), we obtain the free energy density

F ≡ F

V
=
〈B〉2

2
− 1

2

(Bc2 − 〈B〉)2

(2κ2 − 1)β + 1
. (A.27)

This form is very useful since all the details of the lattice structure are captured by the
parameter β, which was first introduced by Abrikosov [12].

It is instructive to apply a Legendre transformation and instead of 〈B〉 use as a ther-
modynamic variable the external magnetic field

H =
∂F
∂〈B〉

. (A.28)

With Hc2 = Bc2 (since there is no magnetisation in the uncondensed state) this yields the
Gibbs free energy

G = F − 1

V

∫
d3xHB = −H

2

2
− 1

2

(Hc2 −H)2

(2κ2 − 1)β
. (A.29)

In this form we see that the free energy of the inhomogeneous condensed state is lower than
that of the uncondensed state with Gibbs free energy −H2/2 if and only if κ > 1/

√
2 (since

β > 0), which is exactly the condition for type-II superconductivity. For κ < 1/
√

2, in the
type-I regime, the uncondensed phase undergoes a first-order phase transition at a critical
field usually denoted by Hc to a homogeneous superconductor where the magnetic field is
expelled (i.e. B = 0 although H > 0). This discontinuous transition is not part of the
present calculation because of the linearisation, which requires the condensate to be small.

A.4 Lattice structures

To compute the parameter β for a given periodic structure in the x-y plane we first introduce
dimensionless variables with the help of the coherence length,

x→ ξx , y → ξy , q → q

ξ
. (A.30)

Since the z dependence of our system is trivial we can write the spatial average (2.31) as

〈f(x, y)〉 =
1

LxLy

∫ Lx

0
dx

∫ Ly

0
dy f(x, y) . (A.31)

We shall only be interested in configurations where Lx = 2q and Ly = 2π/q [13]. We need
to compute the spatial averages of |ϕ0|2 and |ϕ0|4 with ϕ0 from Eq. (A.18). In both cases,
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the y integral produces a Kronecker delta such that we can write

〈|ϕ0|2〉 =
1

2q

∑
n

|Cn|2
∫ 2q

0
dx e−(x−qn)2 , (A.32a)

〈|ϕ0|4〉 =
1

2q

∑
n,m,r

C∗nCmC
∗
m−n+rCr

∫ 2q

0
dx e−2(x−m+r

2
q)

2− q
2

2 [(m−n)2+(r−n)2]

=
∑

n,n1,n2

C∗nCn+n1C
∗
n+n1+n2

Cn+n2 g
n
n1,n2

, (A.32b)

where each sum is over all integers from −∞ to∞. Also, in Eq. (A.32b), we have introduced
the new summation indices n1 = m− n and n2 = r − n, and we have abbreviated

gnn1,n2
≡ e−

q2

2
(n2

1+n2
2)

2q

∫ 2q

0
dx e

−2
[
x−
(
n+

n1+n2
2

)
q
]2
. (A.33)

We shall now restrict ourselves to the periodic solutions Cn+2 = Cn, such that we can write
Cn = C0 if n is even and Cn = C1 if n is odd. One finds that all even terms in the infinite
sum (A.32a) as well as all odd terms combine to give a Gaussian integral over x ∈ [−∞,∞],
such that

〈|ϕ0|2〉 =

√
π(|C0|2 + |C1|2)

2q
. (A.34)

To evaluate Eq. (A.32b) we split the three summations into even and odd parts to write

〈|ϕ0|4〉 =
∑

n,n1,n2

[
|C0|4g2n

2n1,2n2
+ |C1|4g2n+1

2n1,2n2
+ C2

1 (C∗0 )2g2n
2n1+1,2n2+1 + C2

0 (C∗1 )2g2n+1
2n1+1,2n2+1

+|C0|2|C1|2
(
g2n

2n1,2n2+1 + g2n
2n1+1,2n2

+ g2n+1
2n1,2n2+1 + g2n+1

2n1+1,2n2

)]
. (A.35)

Now with s = 0, 1 and again piecing together the integration domains to obtain a Gaussian
integral, we compute

∑
n

g2n+s
n1,n2

=

√
πe−

q2

2
(n2

1+n2
2)

2
√

2 q
. (A.36)

Inserting this into Eq. (A.35) yields

〈|ϕ0|4〉 =

√
π

2
√

2 q

{
(|C0|4 + |C1|4)f2

0 + 4|C0|2|C1|2f0f1 + [C2
1 (C∗0 )2 + C2

0 (C∗1 )2]f2
1

}
, (A.37)

where
fs ≡

∑
n

e−
q2

2
(2n+s)2 . (A.38)

These functions can be expressed as

f0 = ϑ3(0, e−2q2) , f1 = e−q
2/2ϑ3(iq2, e−2q2) , (A.39)
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with the Jacobi theta function

ϑ3(z, x) =

∞∑
n=−∞

xn
2
e2niz . (A.40)

Translational invariance |ϕ0(x, y)|2 = |ϕ0(x + (2Nx + N)Lx/2, y + (2Ny + N)Ly/2)|2 for
any Nx, Ny, N ∈ Z is achieved by the choice

C1 = ±iC0 . (A.41)

For this case, we have with the definition (A.25) and the results (A.34) and (A.37)

β =
q√
2π

(f2
0 + 2f0f1 − f2

1 )

=

√
a

2

{ [
ϑ3(0, e−2πa)

]2
+ 2e−

πa
2 ϑ3(0, e−2πa)ϑ3(iπa, e−2πa)

−e−πa
[
ϑ3(iπa, e−2πa)

]2 }
, (A.42)

where we have introduced the variable

a ≡ tan θ =
Lx
Ly

=
q2

π
. (A.43)

(Recall that q is dimensionless here, in terms of dimensionful quantities a = q2ξ2/π.) This
variable parametrises a continuum of triangular lattices, where a = 1 and thus θ = π

4

corresponds to a quadratic lattice, while a =
√

3 and thus θ = π
3 gives a hexagonal lattice

(or a = 1/
√

3, which gives the same lattice with x and y directions swapped). As Eq.
(A.27) shows, the preferred configuration is the one with the minimal β, and one finds that
β is minimised by the hexagonal structure, for which β ' 1.1596, while β ' 1.1803 for the
quadratic lattice.

B Anomalous baryon current

In this appendix, we provide some details of the derivation leading to the result of the
Goldstone-Wilczek baryon current in Eq. (2.16). The starting point is the first line of Eq.
(2.16). Inserting the definition of the covariant derivative (2.6) into this expression gives

jµB = −ε
µνρλ

24π2
Tr
[
−Σ∂νΣ†∂ρΣ∂λΣ† +

3ie

2
Aντ3

(
∂ρΣ

†∂λΣ− ∂ρΣ∂λΣ†
)

+
3ie

4
Fνρτ3

(
Σ∂λΣ† + ∂λΣ†Σ

)]
. (B.1)

Next, we use the parametrisation given by Eqs. (2.9) and (2.10), Σ = Σ0U with Σ0 = eiατ3 .
One easily confirms ∂νΣ0 = i∂να τ3Σ0 and [Σ0, τ3] = [Σ†0, τ3] = 0. Moreover, one can check
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explicitly that τ3U = U †τ3, and, since U is unitary, we have ∂µU †U = −U †∂µU . With the
help of these relations the traces in Eq. (B.1) become

εµνρλ

24π2
Tr[Σ∂λΣ†∂νΣ∂ρΣ

†] =
εµνρλ

24π2
Tr[U∂λU

†∂νU∂ρU
†]

− iε
µνρλ

8π2
∂να Tr[τ3∂ρU∂λU

†] , (B.2a)

− ie ε
µνρλ

16π2
Aλ Tr[τ3(∂νΣ†∂ρΣ− ∂νΣ∂ρΣ

†)] = −e ε
µνρλ

8π2
Aλ∂να Tr[U∂ρU ] , (B.2b)

− ie ε
µνρλ

32π2
Fνρ Tr[τ3(Σ∂λΣ† + ∂λΣ†Σ)] = −e ε

µνρλ

32π2
Fρλ∂να Tr[1 + U2] . (B.2c)

These terms can be combined to the compact result

jµB =
εµνρλ

24π2
Tr[U∂λU

†∂νU∂ρU
†] + ∂νG

µν , (B.3)

where

Gµν = −α ε
µνρλ

32π2

(
4iTr[τ3∂ρU∂λU

†] + 4eAλ Tr[U∂ρU ] + eFρλ Tr[1 + U2]
)
. (B.4)

Finally, by evaluating the traces we arrive at

jµB = −ε
µνρλ

4π2
∂να

{
e

2
Fρλ +

1

f2
π

∂ρ
[
i (ϕ∗∂λϕ− ϕ∂λϕ∗)− 2eAλ|ϕ|2

]}
. (B.5)

(The complex scalar field ϕ is the rotated field of Eq. (2.12), but, as in the main part, we
have dropped the prime for notational convenience.) One can now replace eAλ → eAλ−∂λα
without changing the result and thus we arrive at the second line of Eq. (2.16).

C Computing 〈(∇|ϕ0|2)2〉

In this appendix we prove the identity (3.20), which is needed for the effective coupling λ∗
in the calculation of the pion superconductor. We work with the dimensionless quantities
(A.30), such that with the form of the condensate (3.11) we find

(∇|ϕ0|2)2 = (∂x|ϕ0|2)2 + (∂y|ϕ0|2)2

=
∑

n,m,s,r

C∗nCmC
∗
sCre

i(m−n+r−s)qyψn(x)ψm(x)ψs(x)ψr(x)

×
{

[2x− (m+ n)q][2x− (s+ r)q]− q2(m− n)(r − s)
}
. (C.1)
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As in Appendix A.4 we work with periodic solutions and consider a rectangle in x and y
with Lx = 2q and Ly = 2π/q. Then, the spatial average becomes

〈(∇|ϕ0|2)2〉 =
1

2q

∑
n,m,r

C∗nCmC
∗
m−n+rCr

∫ 2q

0
dx e−2(x−m+r

2
q)

2− q
2

2 [(m−n)2+(r−n)2]

×

{
4

(
x− m+ r

2
q

)2

+ q2[m2 − r2 − 2n(m− r)]

}

=
∑

n,n1,n2

C∗nCn+n1C
∗
n+n1+n2

Cn+n2h
n
n1,n2

, (C.2)

where we have employed the same renaming of summation variables as in Eq. (A.32b), and
where we have abbreviated

hnn1,n2
≡ e−

q2

2
(n2

1+n2
2)

2q

∫ 2q

0
dx e

−2
[
x−
(
n+

n1+n2
2

)
q
]2

×

{
4

[
x−

(
n+

n1 + n2

2

)
q

]2

+ q2(n2
1 − n2

2)

}
. (C.3)

Assuming the same structure of the coefficients as in Appendix A.4, i.e. Cn = C0/1 for n
even/odd, we obtain a sum analogous to Eq. (A.35),

〈(∇|ϕ0|2)2〉

=
∑

n,n1,n2

[
|C0|4h2n

2n1,2n2
+ |C1|4h2n+1

2n1,2n2
+ C2

1 (C∗0 )2h2n
2n1+1,2n2+1 + C2

0 (C∗1 )2h2n+1
2n1+1,2n2+1

+|C0|2|C1|2
(
h2n

2n1,2n2+1 + h2n
2n1+1,2n2

+ h2n+1
2n1,2n2+1 + h2n+1

2n1+1,2n2

)]
. (C.4)

By piecing together the infinite sum to Gaussian integrals we compute for s = 0, 1

∑
n

h2n+s
n1,n2

=

√
πe−

q2

2
(n2

1+n2
2)

2
√

2q

[
1 + q2(n2

1 − n2
2)
]
. (C.5)

Inserting this into Eq. (C.4) we find that all contributions from the second term proportional
to n2

1−n2
2 cancel each other. This can be seen by renaming the summation variables n1 ↔ n2

suitably. Therefore, we find exactly the same result as in Appendix A.4, see Eq. (A.37), i.e.

〈(∇|ϕ0|2)2〉 = 〈|ϕ0|4〉 . (C.6)

Since in the notation of this appendix the gradient denotes derivatives with respect to the
dimensionless coordinates, we obtain Eq. (3.20) after reinstating the coherence length ξ.
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