
Gravitational time dilation in extended quantum systems: the case of light clocks in
Schwarzschild spacetime

Tupac Bravo,1, ∗ Dennis Rätzel,2, 3, † and Ivette Fuentes4, ‡

1University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
2Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany

3ZARM, Unversität Bremen, Am Fallturm 2, 28359 Bremen, Germany
4School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom

(Dated: May 13, 2022)

The precision of optical atomic clocks is approaching a regime where they resolve gravitational
time dilation on smaller scales than their own extensions. Hence, an accurate description of quantum
clocks has to take their spatial extension into account. In this article, as a first step towards a fully
relativistic description of extended quantum clocks, we investigate a quantized version of Einstein’s
light clock fixed at a constant distance from a large massive object like the Earth. The model
consists of a quantum light field in a one-dimensional cavity in Schwarzschild spacetime, where the
distance between the mirrors is fixed by a rigid rod. By comparing a vertical and a horizontal clock,
we propose an operational way to define the clock time when the clock resolves gravitational time
dilation on scales smaller than its extension. In particular, we show that the time measured by the
vertical light clock is equivalent to the proper time defined at its center. We also derive fundamental
bounds on the precision of these clocks for measurements of proper time and the Schwarzschild
radius.

I. INTRODUCTION

Atomic clocks are the most precise systems available to
measure time. In recent years, they have become precise
enough to resolve gravitational time dilation on the scale
of millimeters [1, 2]. At these scales, it becomes important
to take into account that atomic clocks are not point-like
but spatially extended and that also their spatial degrees
of freedom have quantum properties. For example, the
atoms that are part of the clock experiment reported on
in [1] are extended in a region that is larger than the
length scale on which time dilation is observed. In [1],
this resolution of gravitational time dilation across the
atomic sample was the effect that was to be measured.
In other situations, it may be a systematic effect that
has to be compensated for. In general, the concept of
proper time is not anymore applicable as a property of
the complete system and can only be used for distinct
parts that are smaller than the scale of resolution. The
situation is even more complicated if the atoms within
the sample at different heights are entangled. Entangle-
ment can improve precision by reaching the Heisenberg
limit. However, if time runs at different rates for atoms
entangled at different heights, the usual notion of clock
time looses meaning and it becomes necessary to redefine
it. Since gravitational time dilation is a relativistic ef-
fect, a consistent description of the clock at the interface
of general relativity and quantum mechanics has to be
applied.
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In this paper, we work towards a covariant description
of quantum clocks by studying gravitational time dilation
in a quantized light clock using quantum field theory in
curved spacetime. The techniques developed here could be
applied in future works to the atomic case which is of more
practical interest. The classical light clock model has been
introduced in general relativity by Einstein; light pulses
bounce back and forth between two mirrors. Equivalently,
one can consider the time evolution of light modes in
the optical resonator defined by the end mirrors. These
modes can then also be quantized. In [3, 4] such a model
of a quantized version of a light clock was introduced
to study the difference between quantum and classical
light clocks moving in flat spacetime under non-uniform
acceleration. The quantized clock model is underpinned
by relativistic quantum field theory and therefore, the
equations of motion are Lorentz-invariant and quantum
probabilities, given by the Klein-Gordon inner product,
are conserved. This model of a quantized light clock can
be used to learn how quantum effects might affect time
dilation in the presence of a black hole horizon, and how
the curvature of Earth affects the precision of the clock.

In this paper, we use the model of [3, 5] to study the
precision of a quantum light clock undergoing uniform
acceleration in a Schwarzschild metric. This situation
corresponds to a clock held at a fixed distance from the
center of a spherically symmetric compact object, such as
the Earth, or from the horizon of an eternal black hole.
The time evolution of light clock modes in Schwarzschild
metric was studied in [5]. For a thorough approach to the
description of the fundamental frequency of a trapped
field in a cavity in terms of the curvature of the underlying
spacetime, see [6]. Here we show how the acceleration
affects the ticking of the clock and its precision. In par-
ticular, we deviate from the strategy used in previous
analyses [3, 5] by following a local operational approach
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FIG. 1. Coordinate system used to quantize the field in
horizontal (red) and vertical (green) cavities.

to clock comparison: Instead of comparing a local clock
with a clock at space-like infinity, we consider two local
clocks that are differently oriented with respect to the
direction of acceleration. Then, a comparison of time
measurements by the two clocks reveals the combined ef-
fect of the finite extension of the clocks and gravitational
time dilation. The imprint of the Schwarzschild radius
can then, in principle, be used for its measurement.

This paper is organised as follows: We use the
Schwarzschild metric to model the spacetime of the Earth
and of an eternal black hole. In Sec. II, we introduce
an approximate version of the Schwarzschild metric ap-
propriate for our purposes. In Sec. III, we introduce
the clock model by describing the quantum field of a
1-dimensional perfectly (Born) rigid cavity at a fixed dis-
tance from the central massive body, for example, the
Earth. We consider two different cavity orientations, one
vertical (aligned with the radial coordinate) and the other
horizontal (perpendicular to the radial coordinate). In
section IV, we show how the acceleration necessary to can-
cel the gravitational effect of the central massive object
affects the frequency spectrum of the cavities. Applying
quantum metrology methods, we provide bounds on the
precision for the estimation of proper time measured by
the cavity mode for coherent and squeezed clock states.
Furthermore, we discuss how the time difference shown
by the differently oriented clocks may be used for the
estimation of the acceleration parameter, and thus, of the

spacetime’s Schwarzschild radius. We provide expressions
for the fundamental precision limit of such a measure-
ment. In Sec. V, we discuss the effect of finite rigidity of
the cavity and use state-of-the-art parameters to give a
realistic estimate of the precision at which the quantized
light clocks can measure proper time, in principle. This
is followed by our conclusions in Sec. VI.

We use the metric signature (−,+,+,+) in 3 + 1-
dimensions and (−,+) in 1+1 dimensions. The symbol
Tp is used for transposition and we use bold font for
matrices.

II. APPROXIMATION OF THE
SCHWARZSCHILD SPACETIME FOR SMALL

CURVATURE

The clock model that will be analyzed consists of a
quantized electromagnetic field confined in a rectangular
cavity located at a fixed distance from a spherical body
with mass M . In this section we will derive the effective
spacetime metric assuming that the curvature is small
within the cavity. The spacetime surrounding a spheri-
cally symmetric compact object is well described by the
Schwarzschild metric

g = diag

(
−f(r),

1

f(r)
, r2, r2 sin2 ϑ

)
, (1)

where we have used spherical Schwarzschild coordinates
xµ = (x0, r, ϑ, φ), with x0 = ct, r > 0 and f(r) = 1−rS/r.
The Schwarzschild radius is given by rS := 2GM/c2,
where G is Newton’s gravitational constant and c the
speed of light in the vacuum. The metric defines infinites-
imal proper distances between points in spacetime through
the line-element ds2 given by ds2 := gµνdx

µ dxν .1

Since the cavities are held at a fixed distance from
the surface of the central object, it is more convenient
to write the Schwarzschild metric in isotropic Cartesian
coordinates xµ′ = (x0, x, y, z), which are related to the
spherical coordinates through r = (1 + rS/4r̄)

2r̄, and r̄ =
(x2 +y2 +z2)1/2. This transformation is time independent,
therefore, it does not introduce any additional acceleration
when fixing the coordinate position in the new coordinate
system. The metric (1) in isotropic Cartesian coordinates
reads

g =
(

1 +
rS

4r̄

)4

diag

(
−

(1− rS
4r̄ )2

(1 + rS
4r̄ )6

, 1, 1, 1

)
. (2)

The spacetime curvature within the cavity is small when
the distance from the cavity to the mass center is much
larger than the Schwarzschild radius, i.e., rS/r̄ � 1. In
this case we can expand the metric using a Taylor series

1 We assume Einstein’s summation convention on repeated indices.
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FIG. 2. Vertical light clock in the gravitational field of the
Earth. The mirrors are held together by a Lv = 20cm rigid
rod.

around this parameter and neglect all contributions of
higher than second order. The expansion of the metric is

g = η +
rS

r̄
1+

r2
S

2r̄2
diag

(
−1,

3

4
,

3

4
,

3

4

)
, (3)

where η = diag(−1, 1, 1, 1) is flat Minkowski metric and
1 = diag(1, 1, 1, 1) is the identity matrix. The relativistic
corrections to Newtonian gravity are explicit in this ex-
pansion. The first two terms correspond to the Newtonian
limit. They can be derived directly from the linearized
Einstein equations and the energy momentum tensor for
a non-relativistic point particle in the Lorenz gauge. How-
ever, the terms of order (rS/r̄)

2 are purely relativistic.
Considering a cavity held in a laboratory on the surface
of the Earth, rS/r̄ � 1 is a good approximation since
the Schwarzschild radius is rS ∼ 8.7 mm and the distance
to the centre of the Earth is 6.37× 106 m. The Earth’s
rotation and any deviations from spherical symmetry can
be safely ignored for small cavities.

III. FIELD QUANTIZATION OF CAVITIES IN
THE SCHWARZSCHILD SPACETIME

Cavities that are held at a constant radius from the
center of the spherically symmetric massive object do
not follow geodesics. The cavities experience a proper
acceleration pointing outwards in the radial direction.
Two cavity dimensions are assumed to be much smaller
than the third one so that the system can be effectively
treated in one spatial dimension. The cavity mirrors are
perfectly reflective and held together by a rigid rod. We
assume the rigidity to be infinite. In section V, we will
consider rods with a finite rigidity. We will show that the
acceleration affects differently the time evolution of the
light field in the case that the cavity is aligned (vertical)
or perpendicular (horizontal) to the radial coordinate.

In both cases there is a redshift that depends on the
radial location of the cavity. For small horizontal cavities,
the spacetime is flat along their length. Therefore, the
horizontal cavity will be used as a reference clock in the
laboratory frame. The vertical case (see figure 2) has an
additional redshift term depending on its location with
respect to the horizontal cavity.

The proper length of the rod holding the mirrors placed
at positions xµP and xµQ is given by

L =

∫ xµQ

xµP

dσ
√
gµνsµ(σ)sν(σ) , (4)

where sµ(σ) is the tangent vector to a space-like curve that
connects the segments of the rod from the mirror at xµP to
the mirror at xµQ chosen such that it lies inside the spatial

slice defined by the rod’s rest frame [6]. To quantize
the light field in the vertical and horizontal cavities, we
describe the electromagnetic field using a massless scalar
field ψ obeying the Klein-Gordon equation

�ψ =
1√
−g

∂µ
(√
−g gµν∂νψ

)
, (5)

where g := det(g) is the metric [7]. This is a good ap-
proximation when considering a single polarization mode
of the electromagnetic field [8]. The general case must
be treated with a spin-1 quantum field. The field can
be written as a sum of the mode solutions φk of the
Klein-Gordon equation,

ψ =
∑
k

[αk φk + α∗k φ
∗
k] . (6)

The mode numbers k are discrete because the solutions
must vanish at the mirrors. αk are the time-independent
Fourier coefficients, which are promoted to operators upon
quantization [7]. In the following we will quantize the field
in the horizontal and vertical cavities using the metric
approximation derived in the previous section.

A. Horizontal cavities

A horizontal cavity is placed at x = r̄0 with the length of
the cavity oriented in the z-direction as shown in Figure 1.
The cavity mirrors are located at z = zl = −l/2 and
z = zr = l/2, with l := zr − zl > 0 (see also Figure 3).
The setup has rotational symmetry in the y-z-plane. A
convenient choice of coordinates is (x0, z), where r̄(z) :=
(r̄2

0 + z2)1/2. The metric components (3) can be specified
for the horizontal cavity and expanded up to second order
in z/r̄0 and rS/r̄0 and to first order in their product

gh = fRS(r̄0)diag (−1,Σ(r̄0)) , (7)

where

fRS(r̄) :=

(
1− rS

r̄
+

r2
S

2r̄2

)
,
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is the redshift function and

Σ(r̄) :=

(
1 +

2rS

r̄
+

15r2
S

8r̄2

)
,

the spatial scale function. The proper length of the hori-
zontal rod is given by

Lh ≈
∫ l/2

−l/2
dz f

1/2
RS (r̄0)Σ1/2(r̄0) = f

1/2
RS (r̄0)Σ1/2(r̄0) l

(8)

where we used the four-vector sµ(σ) = (0, 0, 0, 1). The
position of the left and right mirrors are given as a function
of the proper length through

zl ≈ −f−1/2
RS (r̄0)Σ−1/2(r̄0)

Lh

2

zr ≈ f−1/2
RS (r̄0)Σ−1/2(r̄0)

Lh

2
. (9)

The solutions to the Klein-Gordon equation are
conformally-invariant in 1 + 1 dimensions [7]. There-
fore, it is convenient to make a conformal transformation
to coordinates (x0, z̃) where z̃ = Σ1/2(r̄0)z. This can be
done easily since the metric gh does not depend on the
variable z. In conformal coordinates, the metric

g̃h = fRS(r̄0)diag (−1, 1) , (10)

and the proper length Lh ≈ f
1/2
RS (r̄0) (z̃r − z̃l) take a

simple form, where we have defined z̃l := Σ1/2(r̄0)zl and
z̃r := Σ1/2(r̄0)zr.

The solutions to the Klein-Gordon equation (5) with
this background metric must vanish at the mirrors. There-
fore, we solve the equation and impose Dirichlet boundary
conditions ψh(x0, z̃l) = ψh(x0, z̃r) = 0. The mode solu-
tions φh,k are

φh,k(x0, z̃) :=
e−iΩh,kt

√
πk

sin

(
Ωh,k

c
(z̃ − z̃l)

)
, (11)

where k is a positive integer. The frequencies Ωh,k are
given by

Ωh,k =
cπk

z̃r − z̃l
=
cπk

Lh
f

1/2
RS (r̄0). (12)

The mode solutions are normalized with respect to the
(horizontal) Klein-Gordon inner product

(φh,k, φh,k′) = δkk′

= i

∫ z̃r

z̃l

dz̃f−1/2(r̄0)(φ∗h,k∂0φh,k′ − φh,k∂0φ
∗
h,k′) .

(13)

The field ψh is quantized in the φh,k basis by associating

annihilation and creation operators âh,k and â†h,k to the

positive and negative solutions φh,k and φ∗h,k respectively.
The quantized field in the horizontal cavity is

ψ̂h(x0, z̃) =
∑
k

{
âh,k φh,k(x0, z̃) + â†h,k φ

∗
h,k(x0, z̃)

}
.

(14)
The creation and annihilation operators satisfy the canon-

ical commutation relations [âh,k, â
†
h,k′ ] = δk,k′ , while all

other commutators vanish.

B. Vertical cavities

A vertical cavity with two mirrors at its ends is placed
along the x-axis and intersects the horizontal cavity at
x = r̄0. We assume that the top mirror is located x =
xt = r̄0 + l(1 − χ)/2, while the bottom mirror is at
x = xb = r̄0 − l(1 + χ)/2, with −1 ≤ χ ≤ 1. For
example, χ = −1 corresponds to the cavities intersecting
at the bottom point of the vertical cavity, while for χ = 1
the intersection is at the top. The “cross configuartion”
corresponds to χ = 0. The point of intersection between
the cavities will be used as a reference to define the
frequencies measured in the laboratory frame in section 3.
Now it is convenient to choose coordinates (x0, x′), where

FIG. 3. The horizontal and vertical cavities intersect at x = r̄0.
This figure shows where the mirrors are located.

the origin is at the intersection with the horizontal cavity
x′ = x − r̄0 and xb − r̄0 ≤ x′ ≤ xt − r̄0. If the cavity’s
proper length is such that Lv/r̄0 ∼ rS/r̄0, then in the new
coordinates, x′/r̄0 � 1 and x′/r̄0 ∼ rS/r̄0. The effective
1 + 1-dimensional metric inside the vertical cavity given
up to second order in rS/r̄0 and x′/r̄0 and up to first
order in their product is

gv = fRS(r̄0)

(
1 +

rSx
′

r̄2
0

)
diag

(
−1,Σ(r̄0)

(
1− 2rSx

′

r̄2
0

))
.

(15)
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The proper length of the vertical rod is given by

Lv =

∫ l(1−χ)/2

−l(1+χ)/2

dx′ (gv,11(x))1/2

= f
1/2
RS (r̄0)Σ1/2(r̄0) l

(
1 +

rS l

4r̄2
0

χ

)
(16)

where we used that sµ(σ) = (0, 1, 0, 0), x1
Q = xb and

x1
P = xt. The positions of the bottom and top mirrors

with respect of the intersection point are given in terms
of the proper length by the following expressions

x′b =− f−1/2
RS (r̄0)Σ−1/2(r̄0)

1 + χ

2

(
1− rSLv

4r̄2
0

χ

)
Lv

x′t =f
−1/2
RS (r̄0)Σ−1/2(r̄0)

1− χ
2

(
1− rSLv

4r̄2
0

χ

)
Lv. (17)

A conformal transformation to coordinates (x0, x̃) is made
in order to solve the Klein-Gordon equation

x̃ = Σ1/2(r̄0)

∫ x′

0

dx′′
(

1− 2rSx
′′

r̄2
0

)1/2

≈ Σ1/2(r̄0)x′
(

1− rSx
′

2r̄2
0

)
, (18)

which leads to x′ = Σ(r̄0)−1/2x̃(1+rSx̃/2r̄
2
0). In conformal

coordinates, the vertical metric to second order in rS/r̄0

and x̃/r̄0, and to first order in their product, is given by

g̃v = fRS(r̄0)

(
1 +

rSx̃

r̄2
0

)
diag (−1, 1) . (19)

The Dirichlet boundary conditions are ψv(x0, x̃b) =
ψv(x0, x̃t) = 0, where

x̃b =− f−1/2
RS (r̄0)

1 + χ

2

(
1 +

rSLv

4r̄2
0

)
Lv

x̃t =f
−1/2
RS (r̄0)

1− χ
2

(
1− rSLv

4r̄2
0

)
Lv. (20)

are the positions of the mirrors in the conformal coor-
dinates obtained through equations (17) and (18). The
mode solutions yield

φv,k(x0, x̃) :=
e−iΩv,kt

√
πk

sin

(
Ωv,k

c
x̃

)
, (21)

where the frequencies Ωv,k := cπk
x̃t−x̃b

are given in terms of
the proper length Lv, and read

Ωv,k ≈
cπk

Lv
f

1/2
RS (r̄0)

(
1− rSLv

4r̄2
0

χ

)
. (22)

To quantize the field, we introduce creation and anni-

hilation operators â†v,k, âv,k that satisfy the canonical

commutation relations [âv,k, â
†
v,k′ ] = δk,k′ , while all other

commutators vanish. The quantized field ψ̂v in the verti-
cal cavity is given by

ψ̂v(x0, x̃) =
∑
k

{
âv,k φv,k(x0, x̃) + â†v,k φ

∗
v,k(x0, x̃)

}
.

(23)

IV. QUANTUM CLOCKS IN SCHWARZSCHILD
SPACETIME

A single mode of the quantized cavity field of the pre-
vious sections can be used to measure time since it os-
cillates at a fixed frequency. In this section, we investi-
gate the properties of these quantized light clocks in a
Schwarzschild spacetime. In particular, quantum and clas-
sical states will be used to study the effects of spacetime
on the precision of the horizontal and vertical light clocks.
While coherent states approximate well classical states of
light when the number of photons is high, squeezed states
are commonly used in quantum sensing since they are
known to lead to high precision [9]. Recently, squeezed
states have been used in the Laser Interferometric Gravi-
tational Observatory (LIGO) and the Virgo Collaboration
to improve the detection of gravitational waves [10–12].
The quantized light model includes both quantum and rel-
ativistic effects, enabling the study of time at the interplay
of these theories.

A. Local frequencies

To define the frequencies that are measured in the exper-
iment, it is necessary to introduce a laboratory reference
frame. The mode solutions (11) and (21) are given in
terms of the coordinate time t, which is the time measured
by an ideal point-like clock at infinity. The frequencies
Ωh,k and Ωv,k, obtained in (12) and (22), are defined with
respect to this time. The horizontal cavity can be used as
a laboratory reference clock by defining the frequencies
with respect to the point r̄0 where the horizontal cavity
intersects with the vertical one.

To introduce the laboratory reference frame, it is nec-
essary to provide a prescription for the positions of the
mirrors. Initially, two identical cavities with the same
length L are placed horizontally at r̄0. This will be the
reference length. One of the cavities is subsequently ro-
tated and placed vertically along the x axis as shown in
the Figure (3). Assuming that the bars that hold the
mirrors are infinitely rigid, yields the condition

L ≡ Lh = Lv . (24)

In special relativity time depends on the state of mo-
tion of the observer. A meaningful notion of time is
constructed by postulating that the proper time τ :=∫ Q

P

√
−ds2/c measures the time of a point-like observer

that moves along the world-line between points P and Q ,
where ds2 is the line element. The proper time of an ob-
server static at a fixed radial position r in Schwarzschild
spacetime is given by τ(r) = f(r)1/2t with respect to the

coordinate time t. The time dilation f
1/2
RS (r̄0) := τ0/t is

the redshift between the time measured by a point-like
clock at r̄0 and one at infinity. We also make reference

to the proper time τ0 = f
1/2
RS (r̄0) t measured by an ideal

point-like clock at r̄0 solely for conceptual matters. The
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time τ0 is a common book-keeping reference useful in
defining the frequencies. This is not trivial since in the
vertical cavity, the proper time flows differently at each
point. The frequencies in the horizontal and vertical cav-
ities measured in the laboratory frame are defined with
respect to this unique common point through the relations
ωh,kτ0 = Ωh,k t and ωv,k τ0 = Ωv,k t. This yields,

ωh,k(r̄0) =
cπk

L

ωv,k(r̄0) = ωh,k

(
1− rSL

4r̄2
0

χ

)
. (25)

In the case that r̄0 → ∞, the frequency ω∞,k := cπk
L

corresponds to the frequency measured in flat spacetime
with respect to the coordinate time t. In this limit, the
horizontal and vertical frequencies coincide ωh,k(∞) =
ωv,k(∞) = ω∞,k in agreement with the literature [13].

From equation (25), we also find that the frequency of
the horizontal clock is equal to the frequency of a clock
of length L at infinity. In contrast, the frequency of the
vertical clock is modified depending on the parameter
χ that parameterizes the radial position of the vertical
cavity with respect to the horizontal cavity. The relative
frequency difference is

δωk
ωh,k

:=
ωv,k − ωh,k

ωh,k
= −rSL

4r̄2
0

χ = −GML

2c2r̄2
0

χ (26)

This correction is proportional to 1/c2, therefore, rela-
tivistic. χ = −1 corresponds to the case when the clocks
intersect at the lower vertical mirror, χ = 1 when they
intersect at the top mirror and, χ = 0 when they intersect
at the center of the vertical clock. When the clocks inter-
sect at the center, there is no correction. The correction
changes sign depending on the intersection being towards
the top or bottom mirror. In general, we can interpret
the dependence on χ as the result of gravitational red
shift/time dilation: we have found that the light clock
ticks with the proper time defined by its center. If one
compares the ticking of the light clock with the proper
time at any other position, one obtains a gravitational
time dilation.

B. Gaussian states and Quantum Metrology
techniques

The precision of quantum light clocks can be estimated
using quantum metrology techniques which we will in-
troduce in the following. Quantum metrology provides
strategies to estimate physical parameters such as time,
mass and field strengths. These strategies enable pre-
cisions that are higher in comparison to those reached
by classical methods [9]. Quantum metrology strategies
include finding optimal quantum input states and mea-
surements. The input state is given by the density matrix
ρ̂(0). We assume that a unitary channel Û(λ) acts on

the state such that the final state ρ̂(λ) := Û(λ)ρ̂(0)Û†(λ)
encodes the parameter λ that will be estimated. In this
work, the unitary channel is the time evolution of the
modes. The precision on the measurement of λ is bounded
from below by the quantum Cramér-Rao bound [14–16] ,

∆λ ≥ 1√
MH(λ)

(27)

where [17]

H(λ) := lim
dλ→0

8
1−

√
F(ρ̂(λ), ρ̂(λ+ dλ))

dλ2
, (28)

is the Quantum Fisher Information (QFI) and M
the number measurements. The function F(ρ̂, ρ̂′) :=

[Tr(
√√

ρ̂ ρ̂′
√
ρ̂)]2 is the fidelity between states ρ̂ and ρ̂′.

Given an input state, the Cramér-Rao bound optimizes
over all possible quantum measurements.

The optimal measurement is usually hard to find math-
ematically. If found, then it might be hard to implement
in the experiment. Therefore, it is convenient to study the
precision obtained using measurements that are commonly
preformed in the laboratory and compare it to the optimal
precision bound. In the case of light modes, homodyne
and heterodyne measurements are easy to implement in
the laboratory using photo-counters and linear-optical
elements such as mirrors and beam-splitters. The anal-
ysis of clock precision using quantum light modes will
be restricted to Gaussian states because in this case ho-
modyne and heterodyne measurements yield precisions
that approximate closely the optimized precision bound.
Gaussian states not only have practical advantages in the
laboratory, but also mathematical ones. Gaussian states
are uniquely characterized by their first and second mo-
ments. Higher moments vanish in this case. The state of
the field can be described using the field moments instead
of the density matrix simplifying most calculations.

To define the field moments, the canonical operators
ân, â

†
n of N modes are collected in the vector X̂ :=

(â1, ..., âN , â
†
1, ..., â

†
N )Tp. The first moments are given

by the vector with components dn := 〈X̂n〉 and the
2N × 2N covariance matrix, defined through its elements
Γnm := 〈{X̂n, X̂

†
m}〉 − 2〈X̂n〉〈X̂†m〉, contains all second

moments of the field. The expectation values are taken
with respect to the initial state, since we work in the
Heisenberg picture. The function {·, ·} is the anticommu-
tator.

Gaussian states remain Gaussian under unitary trans-
formations Û(λ) that are quadratic in the field operators.

The transformation is linear since Û†(λ) X̂ Û(λ) = S(λ) X̂.
The matrix S(λ) is a 2N × 2Nsymplectic matrix that is

an equivalent representation of the operator Û(λ). If
the unitary transformation is induced by a time inde-
pendent quadratic Hamiltonian Û(λ) = exp[−iĤ λ/~],
then S(λ) = exp[ΩH λ]. The Hamiltonian matrix

H is defined by the relation Ĥ := ~X̂†H X̂/2, and
Ω := −idiag(1, ..., 1,−1, ...,−1) is known as the sym-
plectic form [18].
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When the transformation ρ̂(λ) := Û(λ)ρ̂(0)Û†(λ) cor-
responds to a linear transformation on a Gaussian state,
it can be mapped to Γ(λ) = S(λ)Γ(0)S†(λ)and d(λ) =
S(λ)d(0). In this case, the quantum Fisher information
takes a simple form [19]

H(λ) =
1

4
Tr

[(
Γ(λ)−1Γ̇(λ)

)2
]

+ 2ḋ†(λ)Γ−1(λ)ḋ(λ).

(29)

Here the dot represents the derivative with respect to
λ. To estimate the precision with which quantized light
clocks measure proper time using the quantum Fisher
information, the covariance matrix Γ(λ = τ0) and the
displacement vector d(λ = τ0) for an input clock state
Γ(0), d(0) will be computed in the next section.

C. Input clock states

To prepare the input clock state, the mode k is squeezed

and displaced using the operators Ŝk(r) = exp[ r
2 (â2

k−â
†2
k )]

and D̂k(α) = exp[αâ†k−α∗âk], respectively. The resulting
state is called a single mode squeezed coherent (SMSC)

state |α, r〉 := D̂k(α)Ŝk(r)|0k〉. The state |0k〉 is the
vacuum state, defined by the relation âk|0k〉 = 0. The
real parameter r ∈ R is called squeezing parameter, while
the complex α = |α| exp[iφ] ∈ C is called displacement.
The physical interpretation of these operations can be
obtained using a phase-space representation through the
Wigner function [20]. The squeezing operator reduces the
variance along one axis, at the expense of the variance
of the orthogonal axis (for example of the position at
the expense of the momentum), while the displacement
shifts rigidly the distribution. The number of photons
in a squeezed coherent state is given through α and r as
Np = sinh2(r) + |α|2e2r.

The 2× 2 covariance matrix of the state |α, r〉 is

ΓSMSC
k (0) =

(
cosh (2r) − sinh (2r)
− sinh (2r) cosh (2r)

)
. (30)

and the displacement vector is d = (α, α∗)Tp. The clock
is stationary, therefore, the state of the field mode only
undergoes the free evolution

ΓSMSC
k (t) = S0(t)ΓSMSC

k (0)S†0(t), (31)

where the free evolution symplectic matrix is given by

S0(t) =

(
e−iψk(t) 0

0 eiψk(t)

)
, (32)

The phase is given by ψk(t) = Ωh,kt or ψk(t) = Ωv,kt
depending on the clock being either horizontal or verti-
cal. The state evolution ((32)) is a unitary channel that
encodes the time on the input state ΓSMSC

k (0). As a con-
sequence of this process, the time parameter t becomes
encoded in the state ΓSMSC

k (t).

D. Precision for proper time measurements

Once the input state |α, r〉 has been specified and the
final state obtained after considering free evolution (32),
the quantum Fisher information can be computed to find
the bound on the precision of the light clocks,

HSMSC(τ0) = 2
[
sinh2(2r) + 2|α|2(cosh(2r) ,

− cos(2φ) sinh(2r))] ψ̇2
k(τ0) (33)

where the dot denotes derivative with respect to the proper
time τ0 at the point where the horizontal and vertical
clocks intersect. Optimization of the expression above
with respect to the phase φ of the displacement can be
done once the sign of r has been fixed. Choosing, without
loss of generality, that r ≥ 0, we therefore have that the
largest QFI is obtained for φ = (n+ 1/2)π, and it reads

HSMSC(τ0) = 2
[
sinh2(2r) + 2|α|2e2 r

]
ψ̇2
k(τ0) . (34)

The phase ψk(τ0) for horizontal and vertical clocks is given
by ψh,k(τ0) := ωh,k τ0 and ψv,k(τ0) := ωv,k τ0. Therefore,
the bound on the absolute error in estimating the proper
time τ0 is given in the two cases by

∆h,k(τ0) =
1√
2M

1√
sinh2(2r) + 2|α|2e2r

L

π c k

∆v,k(τ0) = ∆h,k(τ0)

(
1 +

rSL

4r̄2
0

χ

)
(35)

to first order in rSL/r̄
2
0. The lower bound approaches

infinity as the cavity length approaches zero. However, in
this limit the frequencies diverge. It is also interesting to
note that the precisions (35) are independent of time.

The bound to the relative error δ(τ0) := |∆τ0|/|τ0|, is
given by

δh,k(τ0) =
∆h,k(τ0)

τ0
,

δv,k(τ0) = δh,k(τ0)

(
1 +

rSL

4r̄2
0

χ

)
. (36)

The total number of field mode oscillations ckπ
L is the

number of clock ticks. The number of clicks and the
precision of a horizontal clock at r̄0 is the same as of
clocks at infinity. However, the number of clicks for the
precision of the vertical clock is slightly larger due to
gravitational time dilation. Increasing the time increases
the relative precision.

E. Comparison between classical and quantum
light clocks

In the case that |α| is large, coherent states behave as
classical states. Therefore, a classical light clock corre-
sponds to an input state where |α| � 1 and r = 0. On
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the other hand, a squeezed vacuum state where |α| = 0 is
a state with strong non-classical properties. To compare
the performance of classical and quantum clocks, it is
convenient to fix the average number of excitations Np
in the clock state. For classical clocks Np := |α|2 and for

the squeezed vacuum quantum clock Np := sinh2 r. The
precision bounds (35) for horizontal and vertical classical
clocks are

∆h,k(τ0) =
1

2
√
M

1√
Np

L

π c k

∆v,k(τ0) = ∆h,k(τ0)

(
1 +

rSL

4r̄2
0

χ

)
. (37)

And for quantum clocks with squeezed vacuum input
states

∆h,k(τ0) =
1

2
√
M

1√
Np(Np + 1)

L

π c k

∆v,k(τ0) = ∆h,k(τ0)

(
1 +

rSL

4r̄2
0

χ

)
. (38)

For the same number of resources (excitations in the input
state), quantum light clocks estimate proper time with
higher precision. The quantum clock has a Heisenberg
scaling ≈ 1/Np, while the scaling for the classical clock is

1/
√
Np.

F. Estimating the Schwarzschild radius

Depending on the parameter χ, the two differently
oriented quantized light clocks tick with different rates.
Therefore, a local clock comparison can be used to esti-
mate the acceleration, and thus, the Schwarzschild radius
of the spacetime. As the two clocks overlap, the clock
comparison may be realized, for example, by bringing
light from the two clock modes into interference at a
beam splitter.

Formally, we obtain the strength of the clock rate devi-
ation induced by rS through the derivative of the phase
ψv,k = ωv,kt with respect to rS. The corresponding QFI
becomes

HSMSC(rS) = 2
[
sinh2(2r) + 2|α|2e2 r

](dψv,k

drS

)2

, (39)

and accordingly

∆k(rS) =
1√
2M

1∣∣∣∣√sinh2(2r) + 2|α|2e2r dψv,k/drS

∣∣∣∣ ,
=

2
√

2√
M

1√
sinh2(2r) + 2|α|2e2r

r̄2
0

ckπτ0

1

|χ|
(40)

The error is independent of the cavity length, and it grows
quadratically with r̄0. The error is smaller for larger times

τ0. Therefore, integrating over long times yields higher
precisions. As with proper time, classical states reach the
normal scaling while the squeezed vacuum improves the
precision by reaching the Heisenberg scaling. The error
is minimized for |χ| = 1.

V. DISCUSSION

A. Deformation of realistic rods

The previous analysis assumes that the rod that sup-
ports the clock mirrors is infinitely rigid. However, in
practice, rods have finite rigidity. In this section we study
the change in length in vertical clocks due to the proper
acceleration that is necessary for the cavity to remain at
a constant radial coordinate r̄0. A full analysis including
inertial and tidal forces for a general spacetime based
on Fermi normal coordinates has been given in [6]. For
the present case, we assume that the rod is supported
at x′ = 0, where the vertical cavity intersects with the
horizontal cavity. Each segment of the vertical rod in
positive x-direction will then be compressed by the com-
bined stress due to all segments above this segment. In
the negative x-direction, the stress is negative and each
segment will be stretched due to the added stress imposed
on it by all segments below it. Therefore, the resulting
length of the rod and the position of the end mirrors will
depend on the position of the support. Eventually, one
finds for the frequency of the vertical cavity [6],

ωv,k =ωh,k

(
1−

(
c2

c2rod

+ 1

)
axL

2c2
χ

)
=ωh,k (1− Λχ) , (41)

where crod is the speed of sound in the rod, we have
conveniently introduced

Λ :=

(
c2

c2rod

+ 1

)
rSL

4r̄2
0

, (42)

and we used that the proper acceleration is

ax =
c2rS

2r̄2
0

, (43)

to first order in rS/r̄0. If we consider an aluminium rod,
for example, then we have c2/c2rod ≈ 109, while if we
consider carbyne (linear acetylenic carbon), the material
with the highest known specific modulus, then we can
achieve c2/c2rod ≈ 108 [21]. This means that, in all realistic
situations, the first term in Λ will dominate.

B. Bounds based on state-of-the-art parameters

Let us see how well we can measure proper time using
the electromagnetic field in a cavity. We choose a cavity
length L = 20cm. Furthermore, we can assume a maximal
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squeezing of r = 1.7 which is about 15dB – the highest
squeezing achieved to date [22] leading to sinh2(2r) ≈ 224.
Using the reflectivity of current state-of-the-art mirrors
[23], the largest time scale for photons is of the order of
τl = 70ns, which corresponds to the time that it takes to
decrease the initial photon number ni to ni/e [24]. We
can assume a power of 1MW in the cavity (which leads to
a necessary size of the beam at the mirrors of the order
of 1 cm [25]) and a mode with a wavelength of L/(πk) =
500 nm, which leads to a maximal number of photons Np
of the order of 1014, implying Np ≈ |α|2e2r � sinh2(2r)
for a squeezed coherent state 2. In this case, squeezing is
not enhancing the sensitivity in comparison to a coherent
state with the same photon number and equation (37)
can be used to calculate the general error bound. With
the above numbers, we find a relative error bound δh,k(τ0)

of the order of 10−15/
√
M, where we set τ0 = τl. The

shortest time interval that can be resolved with the light
clocks in principle is given by the absolute error bound
∆h,k(τ0). We find a fundamental time resolution of the
order of 8 × 10−22 s for the numbers above, where we
considered M = 1. For longer time intervals τ0, we
consider M = τ0/τl. For τ0 = 1 s, we find for example
δh,k(τ0) = 3× 10−19.

Note that, if the time measurement is performed
through a phase measurement, these error bounds are
only valid if the frequency of the cavity is known with suf-
ficiently large relative precision. As the cavity is affected
by noise, for example thermal noise in the rod fixing the
mirrors, the practical uncertainty is much larger. For
example, highly stable optical resonators achieve a rela-
tive frequency stability of the order of δ(ωk) ∼ 10−17 for
integration times between 1−100 s [27]. The total relative
error given by the combination of the error in frequency
and the fundamental error can be estimated through prop-
agation of uncertainty as {[δ(ωk)]2 + [δh,k(τ0)]2}1/2, and
hence, for [δh,k(τ0)]2 � [δ(ωk)]2, leads to a relative error
of the same size as δ(ωk).

On the surface of the Earth, that is r̄0 ≈ 6.37× 106 m,
for an aluminium rod of 20 cm, Λ is of the order 10−8.
Therefore, it is a main systematic that has to be taken
into account in the description of extended deformable
light clocks. The relativistic contribution to Λ, gravita-
tional redshift inside the cavity, is of the order 10−17.
This is of the same order of magnitude as the realistic
bound due to frequency fluctuations of the cavity that
we discussed above and two orders of magnitude larger
than the fundamental bound that we identified for the
parameters above. Hence, state-of-the-art technology is
close to the regime in which, on the surface of the Earth,
a vertically oriented extended light clock of 20cm resolves

2 Although Heisenberg scaling is not reached for these values (the
best precision is achieved when all the resources are put in a
single-mode squeezed coherent state [26]), it is experimentally
easier in the case of light to boost the coherence strength instead
of increasing the squeezing parameter.

gravitational time dilation on or below its own length
scale. Then, proper time is not simply a property of the
whole clock in contrast to the case of point-like clocks. In-
stead, a reference point for time measurements within the
clock has to be specified as we have done in an operational
way above.

VI. CONCLUSIONS

Each mode of the quantum field in an optical cavity
can be used as a spatially extended clock. We analyzed
these clocks in two different orientations, vertical and hor-
izontal in Schwarzschild spacetime. This analysis applies
to light clocks in the spacetime of the Earth, therefore,
the predictions can be tested in an Earth or space labo-
ratory. The model is also useful to study clocks in the
spacetime of an eternal black hole. Our results show that
the vertical light clock is more precise than the horizontal
light clock when the center of the vertical light clock is
further away from the central object of the Schwarzschild
spacetime than the horizontal light clock. This difference
is proportional to the acceleration that is necessary to
compensate the gravitational attraction, and thus, decays
with the inverse square of the distance to the central ob-
ject. As the fundamental precision limit of clocks scales
with the inverse of their frequency, this result can be
completely explained by gravitational redshift. The dif-
ference in ticking rate between the different clocks can be
used to measure the acceleration of the clocks, and thus,
the Schwarzschild radius. We gave an expression for the
corresponding fundamental precision limit.

We found that the optical cavity clock of 20cm length
can measure time with a relative precision of up to
∼ 10−19 in principle and ∼ 10−17 as a realistic bound
for an existing experimental system after one second of
integration time. The maximal time resolution of a light
cavity clock for the parameters that we considered is
∼ 10−21 s. The relativistic effect of gravitational time
dilation in the gravitational field of the Earth is of the
order of 10−17 for a clock of 20cm. Once this precision is
exceeded, the measured time cannot be interpreted as a
universal proper time that corresponds to the whole clock.
Instead, a region smaller than the clock has to specified,
where proper time corresponds to the time shown by the
clock. In particular, an optical cavity clock at a fixed
radial distance from a massive object runs at the proper
time defined at its center to leading order, which includes
gravitational acceleration but neglects gravity gradients.

In the case of cavity light clocks, the end mirrors define
fixed boundary conditions and the middle of the cavity
can be specified with certainty. If we consider a quantum
system like an atomic clock, also its position will be a
quantized degree of freedom and no unique proper time
can be associated with the time shown by the clock. As
atomic clocks are now close to the regime in which they
are able to resolve the gravitational time dilation on
the length scale of their atoms’ wave packets [1, 2], the
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accuracy of time measurement approaches a fundamental
boundary that has to be taken seriously. We enter a
regime in which we have to describe clocks using a set of
equations compatible with both, general relativity and
the quantum properties of the clock.
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