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Abstract: We use localization techniques to study several duality proposals for super-

symmetric gauge theories in three dimensions reminiscent of Seiberg duality. We compare

the partition functions of dual theories deformed by real mass terms and FI parameters.

We find that Seiberg-like duality for N = 3 Chern-Simons gauge theories proposed by

Giveon and Kutasov holds on the level of partition functions and is closely related to level-

rank duality in pure Chern-Simons theory. We also clarify the relationship between the

Giveon-Kutasov duality and a duality in theories of fractional M2 branes and propose a

generalization of the latter. Our analysis also confirms previously known results concerning

decoupled free sectors in N = 4 gauge theories realized by monopole operators.

Keywords: Supersymmetric gauge theory, Chern-Simons Theories, Extended

Supersymmetry, Matrix Models.ar
X

iv
:1

01
2.

40
21

v1
  [

he
p-

th
] 

 1
7 

D
ec

 2
01

0

mailto:kapustin@theory.caltech.edu
mailto:bwillett@caltech.edu
mailto:itamar.yaakov@caltech.edu
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


Contents

1. Introduction 1

2. Setup 3

2.1 Type IIB brane construction of supersymmetric gauge theories 4

2.2 Supersymmetric localization 5

3. Seiberg-like Dualities 8

3.1 A naive N = 4 duality 9

3.2 Partition function with FI parameters 10

4. Duality in Chern-Simons Matter Theories 11

4.1 Level-rank duality: Nf = 0 12

4.2 Adding matter: Nf = 1 14

4.3 More flavors 15

4.4 Duality in theories of fractional M2 branes 16

5. Discussion 18

A. Evaluation of the Partition Functions without Chern-Simons Terms 19

B. Level-Rank Duality on a 3-sphere 21

B.1 The partition function 22

B.2 The unknot 23

C. Partition Function for Nf = 1 Chern-Simons-Matter Theory 27

C.1 Periodicity of Wilson loops 27

C.2 Evaluation of the partition function 29

C.3 General Nf 31

1. Introduction

Some of the most interesting examples of duality are provided by gauge theories. It is in

the context of duality that the redundancy of description built into the definition of a gauge

theory becomes fully visible. Equivalent theories may have different gauge groups, different

matter field representations and, overall, a very different number of degrees of freedom. It

is the strongly coupled nature of at least one of the theories involved that allows us to

imagine that two such radically different constructions could lead to the same quantum

system. A beautiful example of this phenomenon is Seiberg duality of N = 1 gauge theories
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in four dimensions [1]. Several proposals have been made for dualities of three dimensional

supersymmetric gauge theories reminiscent of Seiberg duality [2][3][4]. We will try to

provide evidence for these conjectures, and, in the process, give a new check of some

previously derived results for supersymmetric quiver gauge theories involving monopole

operators [5]. The duality proposals in three dimensions are based on brane constructions

in type IIB string theory of the type introduced by Hanany and Witten in [6]. The brane

constructions provide motivation for the proposals and for the mapping of operators, but

do not constitute a proof.

The duality proposals we analyze involve superconformal Chern-Simons theories in

three dimensions, one of which is always strongly coupled. We will also analyze theories

with a Yang-Mills term and no Chern-Simons coupling. Duality in these theories applies

strictly only to the IR limit of the gauge theory, a limit in which the gauge coupling runs to

infinity. A perturbative comparison of quantities on the two sides of the dualities is therefore

not possible. One may still hope to compare quantities and features which do not depend

on the gauge coupling. The moduli space of the theory is one such feature. Another is the

expectation value of supersymmetric observables, such as the partition function, regarded

as a function of the FI and mass parameters, and supersymmetric Wilson loops. The

phenomenon of localization of the path integral makes the computation of such quantities

feasible.

We will carry out the comparison of partition functions and expectation values by

utilizing an appropriate matrix model. The derivation of the model and details of the

localization procedure can be found in [7]. A similar comparison for a different set of

duality conjectures, mirror symmetry of three dimensional N = 4 quiver theories, was

carried out in [8]. Our main result concerns an N = 3 version of the duality proposed by

Giveon and Kutasov [3] which relates superconformal Chern-Simons gauge theories with

gauge groups U(Nc)k and U(|k|+Nf −Nc)−k, both with Nf fundamental hypermultiplets.

The subscript on the gauge group is the Chern-Simons level. The Nf = 0 case of this

duality is essentially the level-rank duality of pure Chern-Simons theory. We prove that

for Nf = 1 partition functions of theories related by Giveon-Kutasov duality agree up to a

relatively trivial phase factor. The proof involves level-rank duality and relies on a rather

remarkable fact that the partition function of the superconformal Chern-Simons theory with

Nf hypermultiplets can be expressed as a finite linear combination of expectation values of

circular Wilson loops in Chern-Simons theories with Nf − 1 hypermultiplets. For Nf > 1

we give numerical evidence that Giveon-Kutasov duality holds for partition functions. We

also show that the duality of N = 6 Chern-Simons theories describing fractional M2 branes

proposed by Aharony, Bergman and Jafferis [4] follows from the Giveon-Kutasov duality.

This observation allows us to generalize the ABJ duality to a larger class of Chern-Simons-

matter theories most of which do not seem to have a realization in terms of branes.

The outline of the paper is as follows. In section 2, we briefly review the brane con-

struction for three-dimensional quiver gauge theories in [6] and the construction of the

matrix model for superconformal gauge theories in three dimensions. In sections 3 and 4,

we analyze, in turn, the Seiberg-like duality implied by the type IIB brane construction in

[6], the duality proposal of Giveon and Kutasov [3] and the dualities related to fractional
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M2 branes proposed by ABJ [4]. Appendix A contains the evaluation of a generic ma-

trix integral associated to the theories with no Chern-Simons term. Appendix B contains

elements of a proof of level-rank duality in pure Chern-Simons theory on S3. Finally, in

Appendix C we study the partition function of superconformal Chern-Simons theory with

Nf fundamental hypermultiplets and find an explicit expression for it in the case Nf = 1.

Acknowledgments

We would like to thank Eric Rains for very helpful input on evaluating some of the matrix

integrals, as well as Alexei Borodin. This work was supported in part by the DOE grant

DE-FG02-92ER40701.

2. Setup

In this section we describe the types of dualities we intend to study. We review the relevant

parts of the construction of gauge theories in three dimensions using branes in type IIB

string theory. We summarize the results of localization of the partition function on S3 and

the ingredients of the resulting matrix model.

In [1], Seiberg proposed that the IR fixed point at the origin of moduli space of SQCD

in four dimensions with gauge group SU(Nc) and Nf massless flavors has dual descriptions

in terms of “electric” and “magnetic” variables. For Nf > 3Nc the theory is not asymp-

totically free and the IR fixed point is Gaussian. For Nf < 3/2Nc the theory is infinitely

strongly coupled in the IR, but there exists a dual IR free description in terms of “mag-

netic” variables, which are supersymmetric solitons in the original theory. In the window

3/2Nc < Nf < 3Nc the theory has a non-trivial RG fixed point and flows to an interacting

supersymmetric CFT. This CFT has a dual description in terms of SU(Nf − Nc) SQCD

with Nf massless flavors, additional uncharged meson fields transforming in the (Nf , N̄f )

of the flavor symmetry and a superpotential coupling the quarks to the meson fields.

We will study several duality proposals for three dimensional theories which resemble

Seiberg duality. The similarities lie in the connection between the “electric” and “magnetic”

gauge groups, such that the number of fundamental flavors appears in the rank of the

“magnetic” gauge group, and in the fact that the flavor symmetries in the “electric” and

“magnetic” theories are identified. This may be contrasted with mirror symmetry in three

dimensions where the rank of the gauge group is unchanged by the duality transformation,

while flavor symmetries are realized as topological symmetries in the dual theory. For the

Seiberg-like dualities, there are constraints relating the number of fundamental flavors and

the rank of the gauge group. These constraints now also include the Chern-Simons level.

Although N = 1 in four dimensions corresponds to N = 2 in three dimensions, we will only

analyze theories with at least N = 3 supersymmetry in the three dimensional sense. This

is a necessary condition, but not a sufficient one, for identifying the conformal dimensions

of the fields of a generic theory at the IR fixed point. The theories of interest can all be

constructed as the low energy effective action on a stack of D3 branes ending on various 5

branes in type IIB string theory. We now review the elements of this construction.
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2.1 Type IIB brane construction of supersymmetric gauge theories

The low energy action on an infinite flat type IIB d-brane is a maximally supersymmetric

gauge theory in d+1 dimensions. In some cases, some supersymmetry may be broken by

suspending a d-brane segment between two other branes. The resulting d dimensional

(dimensionally reduced) theory will still preserve a fraction of the original supersymmetry,

providing one chooses correctly the orientation of the branes. We briefly summarize the

rules of the game for constructing such a theory in three dimensions. The original derivation

can be found in [6], and some additional details in [9].

Three types of branes enter into the construction

• D3 branes whose world volume spans the (0, 1, 2, 6) directions. The low energy world

volume action on these is N = 4 SYM in 4 dimensions. Having the branes terminate

on various 5-branes will reduce this to N = 2, 3, 4, 6, 8 in three dimensions.

• NS5 branes spanning the (0, 1, 2, 3, 4, 5) directions.

• NS5′ branes spanning the (0, 1, 2, 3, 8, 9) directions.

• D5 branes spanning the (0, 1, 2, 7, 8, 9).

• A bound state of 1 NS5 brane and k D5 branes, called a (1, k) brane, spanning the

(0, 1, 2, 3/7, 4/8, 5/9) directions, with the last three numbers indicating that the brane

may be tilted in the corresponding plane.

A generic configuration of D3 brane segments stretching between 5-branes preserves

4 supercharges on the D3 brane world volume, and so N = 2 supersymmetry from the

three dimensional viewpoint, and has a supersymmetric vacuum provided the following

restrictions are satisfied

• The D3 segments may form a line (linear quiver) or a circle (elliptic quiver). We

consider only connected configurations. Disconnected configurations correspond to

decoupled theories.

• At most one D3 brane may stretch from a specific solitonic 5-brane to a specific D5

brane. Only n ≤ k D3 branes may stretch from a specific NS5 brane to a (1, k)

brane. D3 brane segments ending on opposite sides of a 5 brane and coincident in

the (3, 4, 5, 7, 8, 9) directions may be thought of as piercing the brane and are not

counted for the purposes of this restriction. This is known as the “s rule” [6]. If a

stack of branes can be arranged so as to satisfy the rule, by thinking of the various

D3 branes as either piercing or beginning and ending on a 5 brane, then the theory

has a supersymmetric vacuum. Such a vacuum may correspond to part of a Coulomb

branch, a Higgs branch or a mixture of the two.

The field content of the low energy N = 2 theory is read off a brane configuration using

the following rules
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• Every set of n coincident D3 brane segments stretching between two subsequent

branes of type {NS5, NS5′, (1, k)}, whether piercing additional D5 branes or not,

contributes a U(n) N = 2 vector multiplet and an adjoint N = 2 chiral multiplet.

The mass of the extra chiral multiplet, and its superpotential coupling depends on

the orientation of the branes.

• A D5 brane pierced this type of segment contributes a fundamental hypermultiplet.

This is the result of the 5− 3 string which has massless modes when the position of

the D5 is adjusted so that it touches the D3s.

• 3 − 3 strings stretching across solitonic 5 branes separating a segment of the type

described above contribute bifundamental hypermultiplets.

The action for the theory is that of minimally coupled N = 2 gauge theory with

fundamental and anti-fundamental flavors. If the right superpotential is produced, this

may be enhanced to N = 4. The gauge coupling is proportional to the distance in the x6

direction between a pair of solitonic 5 branes. When one of the branes is of (1, k) type, the

segments to the left and right get, in addition, a Chern-Simons term at levels k and −k
respectively. The superpotential and masses for the hypermultiplets depend on the exact

relative orientation of the 5 branes. We refer the reader to [6] and [9] for more details.

The effect of moving D5 branes past solitonic 5 branes was studied in [6]. Such moves

may result in the creation or destruction of D3 brane segments. The low energy theory,

however, remains unaffected - one mechanism for producing massless hypermultiplets hav-

ing been traded for another. One may also try and move solitonic branes past each other.

Such moves underlie the duality proposals we intend to examine. In the absence of Chern-

Simons interactions, such a maneuver necessarily involves a singularity where the gauge

coupling becomes infinite. When one of the solitonic branes is of type (1, k) or NS5’, it

seems that the situation is more mild. We will examine both scenarios.

2.2 Supersymmetric localization

The partition function of an N = 2 superconformal field theory on S3 (with or without

Chern-Simons terms) may be computed by supersymmetric localization provided the con-

formal dimensions of all fields are known [7, 8]. One can deform the theory by turning

on scalar components of background vector multiplets which couple either to flavor or

topological currents; we refer to such deformations as real mass parameters and FI terms,

respectively. Supersymmetric localization applies to deformed theories as well. Finally, one

can use the same method to compute the expectation values of some special observables:

supersymmetric Wilson loops [7]. Localization reduces the path-integral to an ordinary in-

tegral over the Lie algebra of the gauge group; since the integrand is invariant with respect

to the action of the gauge group, the integral can be further reduced to an integral over

the Cartan subalgebra. We will refer to such an integral as the matrix integral.

Generically, one can determine the conformal dimensions of all fields for superconformal

Chern-Simons theories with at least N = 3 supersymmetry, and for the IR conformal fixed

point of N = 4 gauge theories with a Yang-Mills term and no Chern-Simons term as long
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as the theory contains a sufficient number of hypermultiplets (see below). In both cases,

the conformal dimensions are fixed by the R-symmetry charges of the fields. In all that

follows, we refer to the computation of this localized version of the path integral on S3.

Details of the deformation, and the derivation of the matrix integral, appear in [7].

As a result of the deformation, the path integral calculation reduces to a matrix model

integral. We will deal exclusively with U(N) gauge groups and with matter which fills out

a complete N = 4 hypermultiplet. The field content of the theory and its action determine

the variables and measure for the matrix integral in the following way

• Every gauge group G contributes rank(G) variables to the integral. For G = U(N)

these are written as a diagonal Hermitian matrix σ or as the corresponding eigenvalues

{λi}Ni=1. The range of integration is over the entire Cartan subalgebra, i.e. the entire

real line for every λi.

• Every vector multiplet, which includes the connection for the group G, contributes a

factor

Zvector1−loop =
∏
α

2 sinh(πα(σ)) (2.1)

where the product is over the roots of the Lie algebra of G. For G = U(N) α(σ) =

λi − λj for every pair i 6= j.

• A level k Chern-Simons term contributes1

eπikTrf (σ2) (2.2)

• Yang-Mills terms for a gauge group do not contribute to the matrix model.

• Coupling a U(1) topological current εµνρTrFνρ arising from a U(N) gauge field to a

background vector multiplet gives an FI term with coefficient η which contributes a

factor of

e2πiηTrf (σ) (2.3)

• Every N = 4 hypermultiplet (matter) in a representation R of the gauge group

contributes

Zhyper1−loop =
∏
ρ

1

2 cosh(πρ(σ))
(2.4)

where the product is over the weights of the representation R. For the fundamental

representation of G = U(N), ρ(σ) = λi for 1 ≤ i ≤ N . When a background vector

multiplet generating a (real) mass parameter is included, the effect is just a shift

Zhyper+background1−loop =
∏
ρ

1

2 cosh(πρ(σ) + πm)
(2.5)

1Here Trf denotes the trace in the fundamental representation of U(N).
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• Finally, we divide by the order of the Weyl group to account for the residual gauge

symmetry remaining after gauge-fixing the integral over the Lie algebra to the integral

over the Cartan subalgebra. For G = U(N) this factor is 1/N !.

In general, the resulting integral over the Cartan subalgebra is not absolutely con-

vergent. If Chern-Simons couplings for all simple gauge group factors are nonzero, then

the integrand contains an oscillating Gaussian factor (2.2), while the rest of the integrand

grows at most exponentially. In this situation the integral may be defined by giving all

Chern-Simons couplings a small positive imaginary part and taking it to zero in the end.

If the Chern-Simons couplings for some or all simple gauge group factors are absent and

the integrand does not decay in all directions in the eigenvalue space, the integral cannot

be defined in this way and one has to interpret the divergence. The partition function of

a supersymmetric theory on a flat space-time may be divergent if there is a noncompact

flat direction in the scalar potential. However, on a space of positive scalar curvature like

S3 all scalars have a mass term proportional to the curvature, and one expects that the

partition function is finite. Hence a divergence signals that some of the assumptions which

went into the computation are wrong. The main assumption that we made is that the

dimensions of the fields are determined by their transformation properties under SU(2)

R-symmetry apparent in the action. This assumption may break down if there are acci-

dental R-symmetries which emerge at strong coupling and are not realized as symmetries

of the action. We propose that the divergence of the matrix integral signals that the naive

SU(2) R-symmetry is not part of the superconformal multiplet of the stress-energy tensor

at strong coupling.

This proposal is supported by the following observation. Gaiotto and Witten [5] for-

mulated a seemingly different necessary condition for the naive R-symmetry to be part of

the stress-energy tensor multiplet. They required that the dimensions of all BPS monopole

operators computed assuming the naive R-symmetry be greater or equal to 1/2 (this is

required by the unitarity of the theory). This gives the following condition for every simple

factor G of the gauge group:

−1

2

∑
α

|α(τ)|+ 1

2

∑
ρ

|ρ(τ)| ≥ 1

2
, (2.6)

where α runs over all roots of G, ρ runs over all weights of the hypermultiplet representation

(with multiplicities), and τ is an arbitrary nontrivial element of the cocharacter lattice2

of G (τ determines the magnetic charge of the monopole). Theories which do not satisfy

this condition are called “bad” in [5]. Among theories which are not “bad”, Gaitto and

Witten further distinguish theories which have BPS monopole operators with dimension

1/2 and those for which the dimensions of all BPS monopole operators are strictly greater

than 1/2. The former theories are called “ugly” and the latter ones are called “good”. The

reason for this terminology is that scalar fields of dimension 1/2 in any unitary 3d CFT

must be free, so “ugly” theories contain decoupled free sectors.

2Recall that the cocharacter lattice of G is a lattice in the Cartan subalgebra defined as Hom(U(1), T ))

where T is the maximal torus of G.
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The condition (2.6) is in fact equivalent to the condition that the matrix integral

computing the partition function is absolutely convergent. Note first that since weights of

G take integral values on the cocharacter lattice, the above condition is equivalent to

−
∑
α

|α(τ)|+
∑
ρ

|ρ(τ)| > 0

for all nonzero τ in the cocharacter lattice. On the other hand, consider a ray in the

Cartan subalgebra determined by a vector τ . It is easy to see that far out along this ray

the absolute value of the integrand asymptotes to exp(−ta), where t ∈ R+ parameterizes

the ray and

a = −
∑
α

|α(τ)|+
∑
ρ

|ρ(τ)|

Thus the Gaiotto-Witten condition is equivalent to the requirement that the integrand

decays exponentially along all rays with rational homogeneous coordinates. Since such

rays are dense in the set of all rays, and a, if positive, is bounded from below by 1, this

implies the equivalence of the Gaiotto-Witten condition and the absolute convergence of

the integral computing the partition function. That is, the partition function diverges if

and only if it is “bad”.

In particular, for G = U(Nc) and Nf hypermultiplets in the fundamental representa-

tion, the partition function converges for Nf > 2Nc − 2. For Nf = 2Nc − 1 the partition

function converges, and there are BPS monopole operators with dimension 1/2, i.e. the

theory is “ugly”. We will return to this example in the next section when we discuss quiver

gauge theories without Chern-Simons terms.

Some of the integrals resulting from the localization procedure can be challenging to

evaluate. In some cases, specifically in the presence of Chern-Simons terms and Nf > 1, we

have used numerical integration to compare the partition functions of dual theories. Where

numerical results are provided, the integrals were performed using the CUHRE numerical

integration routine available in the CUBA library [10] and using the Mathematica interface.

The calculation for large rank gauge groups becomes increasingly numerically demanding

and only low rank results are provided.

3. Seiberg-like Dualities

In the next two sections, we examine, in turn, three duality proposals for gauge theories

in three dimensions. The relevant theories differ in the amount of supersymmetry and the

presence or absence of Chern-Simons terms for the gauge fields.

In a 3d gauge theory in the absence of a Chern-Simons interaction, the IR fixed point

is infinitely strongly coupled. The conformal dimensions of the fields may not coincide with

those expected from their R-symmetry charges seen in the UV. The Chern-Simons inter-

action is exactly marginal, though the level can receive a finite renormalization. Theories

with a Chern-Simons term and no Yang-Mills term can still have wave function renormal-

ization. This would result in a non-vanishing anomalous dimension for the matter fields.

Both of these effects are absent for theories with N ≥ 3. Specifically, ABJ type theories
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NS5
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Figure 1: Brane manipulations in type IIB string theory which yield a naive dual. Solid vertical

lines are NS5 branes. Horizontal lines are coincident D3 branes. Dashed lines are D5 branes. The

legend indicates the compactification direction (t or x6) and the directions of possible triplet mass

(m) terms (3,4,5), and possible triplet FI (w) terms (7 8 9). Directions (0 1 2) are common to the

world volume of all branes and are suppressed. We first move Nf D5 branes through the right NS5

brane, creating Nf D3 branes in the process. We then exchange the two NS5 branes, changing the

number of suspended D3 branes in the interval.

[4], with N = 6, and the N = 3 version of the theories described in [3], are expected to be

exactly superconformal.

We will accompany every duality proposal with a realization in terms of branes in type

IIB string theory. Brane manipulations do not constitute a proof of the duality, but do

provide motivation and insight into the mapping of operators and deformations. All of

the manipulations are along the lines of [6]. However, some involve moving a pair of NS5

branes past each other, a scenario in which the gauge coupling for the vector multiplets

living on the D3 branes suspended between the pair goes to infinity. We will see that

this, nevertheless, yields dual theories with matching partition functions, whenever the

calculation can be done.

3.1 A naive N = 4 duality

Following the results of [6], one can try to manipulate a type IIB brane configuration like

the ones described in the setup to obtain, from a given three dimensional theory, a gauge

theory with a gauge group of different rank. The basic manipulation, which was introduced

in [6], is shown in figure 1 above. The constraints taken into account in this manipulation

are preservation of the various “linking numbers” and the “s-rule” [6]. The critical step,

moving two NS5 branes past each other, turns out to destroy the naive IR duality one would

expect by reading off the gauge theories given by the initial and final brane configurations.

In this section, we explore what the calculation of the deformed partition function implies

for these theories. We write down a prescription for possible dual theories. We relate our

findings to previous observations regarding such theories [5][11] and find that they concur.

The initial and final brane configurations depicted in figure 1 naively suggest an IR

duality between a pair of N = 4 quiver gauge theories in three dimensions. The putative

dual pair is

1. N = 4, U(Nc) gauge theory with Nf hypermultiplets in the fundamental representa-

tion.
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Theory Z(ζ)

U(1), Nf = 1 1
2Sech[πζ]

U(1), Nf = 3 1
16(1 + 4ζ2)Sech[πζ]

U(2), Nf = 3 1
32(1 + 4ζ2)Sech[πζ]2

U(2), Nf = 5 (1+4ζ2)
2
(9+4ζ2)Sech[πζ]2

36864

U(3), Nf = 5 (1+4ζ2)
2
(9+4ζ2)Sech[πζ]3

73728

Table 1: Exact result of the matrix integral for a partition function deformed by an FI term ζ.

2. N = 4, U(Nf −Nc) gauge theory with Nf hypermultiplets in the fundamental repre-

sentation.

We note that this pair resembles the N = 2 dual pair suggested in [2]. The difference is in

the amount of supersymmetry, which, as noted, is critical for applying the results of the

localization procedure.

3.2 Partition function with FI parameters

The integrals involved in the calculation of the partition functions, deformed by FI pa-

rameters and real mass terms, can be done exactly in this case, see appendix A. Some

examples are given in table 1. All these examples are “good” or “ugly”, since otherwise

the partition function does not converge. It is clear that the results contradict the naive

duality presented above. We can try and correct the statement of the duality “by hand”.

The two sets of results suggest the following possible identification

• U(1), Nf = 3⊕ U(1), Nf = 1⇔ U(2), Nf = 3

• U(2), Nf = 5⊕ U(1), Nf = 1⇔ U(3), Nf = 5

where ⊕ indicates the product of two decoupled theories.

More generally, the partition function can be calculated with arbitrary FI (η) and mass

terms (mj). The result, derived in appendix A, is the following:

Z
(Nc)
Nf

(η;mj) =

(
Nf

Nc

)(
iNf−1eπη

1 + (−1)Nf−1e2πη

)Nc( Nc∏
j=1

e2πiηmj

)( Nc∏
j=1

Nf∏
k=Nc+1

2 sinhπ(mj−mk)

)−1∣∣∣∣
{mj}

where the bar at the end denotes symmetrization over the mj . As shown in the

appendix, the equivalence noted above continues to hold in general. Namely:

Z
(N)
2N−1(η;mj) = Z

(1)
1 (−η;m1 + ...+m2N−1)Z

(N−1)
2N−1 (−η;mj)

Note that a U(1) theory with a single charge 1 hypermultiplet is equivalent to a free

theory of a single twisted hypermultiplet [12]. The appearance of decoupled sectors might

seem like a surprising result, especially in light of the fact that the other proposed dualities,

discussed later in this paper, have no such subtleties associated with them. However, we
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Figure 2: Brane manipulations in type IIB string theory which yield a duality between Chern Si-

mons theories. Panels (b) through (d) relate a pair of theories without CS terms. The deformations

of the theory needed to go from (b) to (a) and from (d) to (e) are identified.

stress that brane manipulations do not provide a proof of the types of IR dualities we have

been analyzing. Furthermore, the appearance of decoupled sectors in the IR theory has

previously been predicted using the analysis of monopole operators [5, 11]. Namely, the

U(Nc) theory withNf = 2Nc−1 fundamental multiplets is “ugly”, and contains a decoupled

free sector generated by BPS monopole operators of dimension 1/2. It was argued in [5]

that the “remainder” is dual to the IR-limit of a “good” theory, namely U(Nc − 1) gauge

theory with Nf = 2Nc − 1. The above computation of the partition functions provides a

check of this duality.

The analysis of monopole operators provides some understanding of why the naive

N = 4 duality cannot be true in general. The naive dual of a “good” theory (Nf ≥ 2Nc)

is either “bad”, when Nf > 2Nc + 1, “ugly”, when Nf = 2Nc + 1 (giving the examples

above), or self-dual, when Nf = 2Nc. We can never get a duality between a distinct pair

of “good” theories. If the naive dual is “ugly”, we can try to correct the naive duality by

adding some free fields to the original “good” theory; we have seen that this works. If the

naive dual of a “good” theory is “bad”, there is no way to correct the naive duality.

4. Duality in Chern-Simons Matter Theories

A duality very similar to the one considered in the previous section was suggested in [3].

The dual pair proposed there is

1. N = 2 U(Nc)k gauge theory with Nf hypermultiplets in the fundamental represen-

tation (that is Nf fundamental chiral multiplets Qi and Nf anti-fundamental chiral

multiplets Q̃j) and no Yang-Mills term.

2. N = 2 U(|k|+Nf −Nc)−k gauge theory with Nf hypermultiplets in the fundamental

representation (qi and q̃j), no Yang-Mills term and an Nf ×Nf matrix of uncharged

chiral fields, M i
j , coupled via a superpotential of the form M i

jqiq̃
j .
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where the subscript k denotes the level of the Chern-Simons term associated to the gauge

group. It has been argued that N = 2 Chern-Simons theories with Nf + |k| < Nc do not

have a supersymmetric ground state. The dual theory would, in that case, have a negative

rank gauge group. We will not consider such theories.

In order to compare the partition functions, we use a version of the duality that

preserves N = 3 supersymmetry by adding the corresponding superpotential to the electric

theory (1). This has the effect of giving mass to the matrix M i
j and producing the correct

superpotential on the magnetic side. Figure 2 shows the brane manipulations that lead to

the dual configurations. The naive version of the duality described in the previous section

is the “k = 0” version of this proposal (assuming we start with an N = 3 gauge theory with

both a Yang-Mills and a Chern-Simons term). However, we will find that the calculation

of the partition function supports the dualities suggested in [3] without alteration.

Specifically, we will show that:

Z
(Nc)
k,Nf

(η) = e
sgn(k)πi(c|k|,Nf−η

2)
Z

(|k|+Nf−Nc)
−k,Nf (−η) (4.1)

where the LHS represents the partition function of a theory with Nc colors, Nf fundamental

hypermultiplets, Chern-Simons level k, and an FI term η. Here ck,Nf is a constant, whose

form will be given in some special cases below. We will prove this in the cases Nf = 0, 1,

and give numerical evidence for some other small Nf .

4.1 Level-rank duality: Nf = 0

In the special case where Nf = 0, the duality is between ordinary Chern-Simons theories

without matter.3 In fact, as noted in [3] and discussed in detail below, it reduces to the

well-known level-rank duality.

The Chern-Simons partition function for G = U(N) and k > 0 is given by:

1

(k +N)N/2

N−1∏
m=1

(
2 sin

πm

k +N

)N−m
(4.2)

Level-rank duality implies that this expression is invariant under exchange of k and N (i.e.

the level and the rank). We provide a proof of this in appendix B .

Now, when we actually evaluate the Chern-Simons partition function using the matrix

model, we get a slightly different result:4

Z
(N)
k,0 (η) =

1

N !

∫ ∏
j

dλje
ikπλj

2

e2πiηλj
∏
i 6=j

2 sinhπ(λi − λj)

= (−1)N(N−1)/2
∑
σ

(−1)σ
∫ ∏

j

dλje
ikπλj

2

e2πiηλje2π(j+σ(j)−(N+1))λj

3More precisely, one gets an an N = 3 supersymmetric version of the Chern-Simons theory, but it is well

known (see e.g. [7]) that the extra fields are auxiliary and when integrated out give back ordinary, bosonic

Chern-Simons theory.
4To get from the first to the second line, we use the Weyl denominator formula. See appendix B for

more details.
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= (−1)N(N−1)/2(−ik)−N/2
∑
σ

(−1)σ
∏
j

e
πi
k

(iη+j+σ(j)−(N+1))2

=
(−1)N(N−1)/2e

πiN2

4 e−
Nπiη2

k e
πi
6k
N(N2−1)

kN/2

N−1∏
m=1

(
2 sin

πm

k

)N−m
This differs from (4.2) in two ways. First, there is an additional phase, which may

be attributed to using a framing which is different from the standard one [7]. The trivial

framing partition function (without the FI term) would be given by:

Ẑ
(N)
k,0 :=

1

kN/2

N−1∏
m=1

(
2 sin

πm

k

)N−m
This is still not quite the same as (4.2), but differs by a shift k → k + N . This

appearance of k + N in the standard result is due to the renormalization of the Chern-

Simons level, which does not occur in N = 3 Chern-Simons theories because of the enhanced

supersymmetry.

In any case, the the invariance of (4.2) under N ↔ k implies the invariance under

N ↔ k − N of Ẑ
(N)
k,0 . After accounting for the additional phase, one finds the following

result, for k > 0:

Z
(N)
k,0 (η) = eπi(ck,0−η

2)Z
(k−N)
−k,0 (−η)

where ck,0 is given by:

ck,0 = − 1

12
(k2 − 6k + 2) (4.3)

One can extend this to negative k by inverting the above equation, and we find, in

general:

Z
(N)
k,0 (η) = esgn(k)πi(c|k|,0−η2)Z

(|k|−N)
−k,0 (−η)

This completes the proof of (4.1) in the case Nf = 0.

Before moving on, it will be useful to remind the reader how Wilson loops map under

level-rank duality. Recall that a Wilson loop is labeled by a representation R of U(N),

which in turn can be represented by a Young diagram α. Such a Wilson loop is mapped in

the dual theory to a Wilson loop in the representation labeled by α′, the transposed Young

diagram. Specifically, as shown in appendix B , we find:

Z
(N)
k,0 (η;α) = (−1)|α|esgn(k)πi(c|k|,0−η2)Z

(|k|−N)
−k,0 (−η;α′) (4.4)

where the LHS is the (unnormalized) expectation value of the Wilson loop corresponding

to α, and |α| is the total number of boxes in the diagram.
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4.2 Adding matter: Nf = 1

Next we add matter. We will consider the simplest case, a single massless hypermultiplet

in the fundamental representation. Then the partition function deformed by the FI term

is given by:

Z
(N)
k,1 (η) =

1

N !

∫ ∏
j

dλj
eikπλj

2
e2πiηλj

2 cosh(πλj)

∏
i 6=j

2 sinhπ(λi − λj)

This is no longer a Gaussian integral. However, it turns out it is still possible to

evaluate it exactly,5 as shown in appendix C. Specifically, for k ≥ N , we find that we can

express the partition function of Nf = 1 theory in terms of a sum expectation values of

unknotted Wilson loops in pure Chern-Simons theory:

Z
(N)
k,1 (η) =

1

2 cosh(πη)

(
e−ikπ/4

N−1∑
`=0

Z
(N−1)
k,0 (η +

i

2
; ρ`) + eπη

k−N∑
`=0

(−1)`Z
(N)
k,0 (η − i

2
; `ρ1)

)
(4.5)

One can obtain a similar result for k < 0 using Z
(N)
−k,0(η) = (Z

(N)
k,0 (−η∗))∗.

Since expectation values of Wilson loops in pure Chern-Simons theory are known (see

Appendix B), one can write down explicit expressions for the Nf = 1 partition function in

terms of elementary functions. These explicit expressions are rather complicated and are

not well-suited for checking the duality. We use instead the known mapping of the Wilson

loop expectation values under level-rank duality. If we apply (4.4) to all of terms on the

LHS, we obtain:

Z
(N)
k,1 (η) =

1

2 cosh(πη)

(
e−ikπ/4

N−1∑
`=0

(−1)`eπi(ck,0−(η+ i
2

)2)Z
(k+1−N)
−k,0 (−η − i

2
; `ρ1)+

+eπη
k−N∑
`=0

eπi(ck,0−(η− i
2

)2)Z
(k−N)
−k,0 (−η +

i

2
; ρ`)

)

= eπi(ck,0−η
2) 1

2 cosh(πη)

(
e−i(k−1)π/4eπη

N−1∑
`=0

(−1)`Z
(k+1−N)
−k,0 (−η− i

2
; `ρ1)+eπi/4

k−N∑
`=0

Z
(k−N)
−k,0 (−η+

i

2
; ρ`)

)
Comparing this to

Z
(k+1−N)
−k,1 (−η) =

1

2 cosh(πη)

(
eikπ/4

k−N∑
`=0

Z
(k−N)
−k,0 (−η+

i

2
; ρ`)+e

πη
N−1∑
`=0

(−1)`Z
(k+1−N)
−k,0 (−η− i

2
; `ρ1)

)
we deduce the duality statement for partition functions deformed by FI terms:

5We thank E. Rains for very helpful input on this point.
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Original Dual |Z1/Z2| arg(Z1/Z2)/π

U(1)2, Nf = 1 U(2)−2, Nf = 1 0.999992 0.750008

U(1)1, Nf = 2 U(2)−1, Nf = 2 1.00001 0.249998

U(1)2, Nf = 2 U(3)−2, Nf = 2 1.00005 −0.250026

U(1)1, Nf = 3 U(3)−1, Nf = 3 1.00019 −0.999961

U(1)3, Nf = 1 U(3)−3, Nf = 1 1.0003 0.333432

U(2)2, Nf = 3 U(3)−2, Nf = 3 1.00781 0.999736

U(2)3, Nf = 2 U(3)−3, Nf = 2 1.00165 −0.168363

Table 2: Results of numerical integration of the matrix model expression for the partition functions

of several different Chern-Simons matter theories.

Z
(N)
k,1 (η) = eπi(ck,1−η

2)Z
(k+1−N)
−k,1 (−η). (4.6)

Here we have defined ck,1 = ck,0− 1
4(k− 1) = − 1

12(k2− 3k− 1). As in the previous section,

this generalizes to arbitrary k by:

Z
(N)
k,1 (η) = esgn(k)πi(c|k|,1−η2)Z

(|k|+1−N)
−k,1 (−η). (4.7)

For Nf = 1 introducing the mass term for the hypermultiplet does not give anything

essentially new. Indeed, consider U(Nc) gauge theory with Nf hypermultiplets with masses

m1, . . . ,mNf and an FI coefficient η. It is easy to see that performing the transformation

mi 7→ mi + µ, η 7→ η + kµ

multiplies the partition function by a phase

exp(−πiNckµ
2 − 2πiNcηµ).

For Nf = 1 one can use this transformation to set the mass of the hypermultiplet to zero.

4.3 More flavors

As discussed in Appendix C.3, for general Nf one can perform manipulations similar to

the ones used to derive (4.5) and express the partition function in terms of Wilson loop

expectation values in a theory with one less flavor, N ′f = Nf − 1. However, in order

to determine how the partition functions map, one would need to understand how these

Wilson loops transform under duality for Nf > 0. We leave this problem for future work.

As shown in table 2, we were able to evaluate the partition functions numerically for

some small Nf . The absolute value of the dual partition functions agrees to good precision.

Additional comparisons for the magnitude of dual pairs are given in figure 4 and results

for the phase difference in figure 5 at the end.

Evaluating the formulas in appendix C.3 numerically for several examples, we were

able to guess the mapping of partition functions for general Nf and hypermultiplet masses.

We will not describe these computations in detail here, as we hope to prove this formula

analytically for Nf > 1 in a future paper. For now, we simply state the conjecture:
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(a) (b)

(1,k) NS5

N+l

N

(1,k) NS5

N

N+k-l

Figure 3: Brane manipulations in type IIB string theory which yield a duality between Chern

Simons theories of an elliptical quiver. An NS5 brane moves past a (1, k) brane creating k and

destroying l D3 branes in the process. Reproduced from [4].

Z
(Nc)
k,Nf

(η;ma) = e
sgn(k)πi(c|k|,Nf−η

2)
e
∑
a(kπima2+2πiηma)Z

(|k|+Nf−Nc)
−k,Nf (−η;ma) (4.8)

where:

ck,Nf = − 1

12
(k2 + 3(Nf − 2)k + aNf )

with:

aNf =


−1 Nf = 1(mod 4)

2 Nf = 2, 4(mod 4)

−13 Nf = 3(mod 4)

One final thing we can say about general Nf theories is that, for Nc > |k| + Nf , the

partition function vanishes (see appendix C.3). This is presumably related to the fact that

these theories are not believed to have supersymmetric vacua.

4.4 Duality in theories of fractional M2 branes

A similar duality in the context of N = 6 theories of fractional M2 branes was proposed in

[4]. The relevant brane moves are shown in figure 3. These dual pairs are

1. U(N + `)k × U(N)−k with two bifundamental flavors.

2. U(N)k × U(N + k − `)−k with two bifundamental flavors.

for any k ≥ l. This is nothing more than the duality studied in the last section, performed

on only one of the factors in the gauge group. The fundamental flavors in the first gauge

group retain their charge under the second gauge group after the duality transformation.

Said differently, ignoring the second gauge group, the flavor symmetry associated with

having N fundamental flavors maps to itself under the duality transformation, and the

theories where this symmetry is gauged by the second gauge group should also be equiva-

lent. (The fact that flavor symmetry is mapped to itself by duality can be deduced from

the matrix model by examining the mapping of real mass terms for the flavors. The results
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in C suggest that the flavor symmetry maps to itself. This can also be seen directly in the

brane construction used to motivate the duality.)

The relation between the partition functions of these two theories can be deduced from

the conjectural identity (4.8) expressing Giveon-Kutasov duality as follows. We will look

at a slight generalization of the ABJ duality above. Consider the partition function of the

U(N1)k1 × U(N2)k2 theory with Nb bifundamentals:

Z
(N1,N2)
k1,k2,Nb

(η1, η2) =
1

N1!N2!

∫ N2∏
j=1

dλje
k2πiλj

2

e2πiη2λj
∏
i 6=j

2 sinhπ(λi − λj)×

×
N1∏
ĵ=1

dλ̂ĵe
k1πiλ̂2

ĵ e2πiη1λ̂ĵ
∏
î 6=ĵ

2 sinhπ(λ̂î − λ̂ĵ)
∏
j,ĵ

1

(2 coshπ(λ̂ĵ − λj))Nb
.

One recognizes the second line as the integrand for a U(N1)k1 theory with NbN2 funda-

mentals, with Nb each of mass λj , that is:

Z
(N1,N2)
k1,k2,Nb

(η1, η2) =
1

N1!N2!

∫ N2∏
j=1

dλje
k2πiλj

2

e2πiη2λj
∏
i 6=j

2 sinhπ(λi−λj)Z(N1)
k1,NbN2

(η1;Nb×{λj}).

Applying the duality identity (4.8) to Z
(N1)
k1,NbN2

gives:

Z
(N1)
k1,NbN2

(η1;Nb×{λj}) = esgn(k1)πi(c|k1|,NbN2
−η12)eNb

∑
j(k1πiλj

2+2πiη1λj)Z
(|k1|+NbN2−N1)
−k1,NbN2

(−η1;Nb×{λj}).

Inserting this back into the expression for Z
(N1,N2)
k1,k2,Nb

above, we find (defining N ′1 = |k1| +
NbN2 −N1):

Z
(N1,N2)
k1,k2,Nb

(η1, η2) =
esgn(k1)πi(c|k1|,NbN2

−η12)

N ′1!N2!

∫ N2∏
j=1

dλje
(k2+Nbk1)πiλj

2

e2πi(η1+Nbη2)λj
∏
i 6=j

2 sinhπ(λi−λj)×

×
N ′2∏
ĵ=1

dλ̂ĵe
−k1πiλ̂2

ĵ e−2πiη1λ̂ĵ
∏
î 6=ĵ

2 sinhπ(λ̂î − λ̂ĵ)
∏
j,ĵ

1

(2 coshπ(λ̂ĵ − λj))Nb
.

This implies the following relation between the partition functions of the dual theories:

Z
(N1,N2)
k1,k2,Nb

(η1, η2) = esgn(k1)πi(c|k1|,NbN2
−η12)Z

(N ′1,N2)
−k1,k2+Nbk1,Nb

(−η1, η2 +Nbη1).

If we consider the special case N1 = N + `, N2 = N , k1 = −k2 = k, and Nb = 2, the above

equation becomes:

Z
(N+`,N)
k,−k,2 (η1, η2) = esgn(k)πi(c|k|,2N−η12)Z

(N+k−`,N)
−k,k,2 (−η1, η2 + 2η1),
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which is just the ABJ duality. We remind the reader that these relations depend on the

formula 4.8, which is currently only a conjecture for Nf > 1.

These considerations indicate that the ABJ duality is a special case of a large class of

dualities between N = 3 Chern-Simons theories with product gauge groups U(N1)× . . .×
U(NM ) and matter in the multi-fundamental representations (i.e. representations which

are tensor products of fundamentals). All these dualities follow from the Giveon-Kutasov

duality. In the example above, U(N1)k1 × U(N2)k2 theory with Nb bifundamental hyper-

multiplets, applying the Giveon-Kutasov duality to the first factor gives a gauge theory

with gauge group U(|k1|+NbN2−N1)−k1×U(N2)k2+Nbk1 and Nb bifundamental hypermul-

tiplets. Note that dualizing the first factor in the gauge group also shifts the Chern-Simons

coupling of the second factor. This shift originates form the m-dependent phase in (4.8).

Recall that masses can be regarded as expectation values of scalars belonging to back-

ground vector multiplets which couple to flavor symmetries. The m-dependent phase in

the partition function arises from the Chern-Simons action for these background vector

multiplets. In the ABJ theory these background vector multiplets are promoted to dynam-

ical fields with their own bare Chern-Simons action, and the Chern-Simons term arising

from the duality produces a finite renormalization of the bare Chern-Simons coupling.

5. Discussion

The naive duality based on moving NS5 branes past each other in space with which we

started, and which was considered in the original paper by Hanany and Witten [6], was

beyond the reach of our localization procedure for all but a few special cases. In these cases,

Nf = 2Nc − 1, the exact relation between the putative duals included a decoupled free

sector. This observation had already been made by examining the spectrum of monopole

operators [5]. There is still the possibility that some of the other cases could be examined

using localization techniques. Interestingly, it turns out that if one computes the partition

functions for these “bad” theories assuming their IR and UV conformal dimensions match,6

the duality appears to hold in general, up to a decoupled sector which has Nf = Nc. It

would be interesting to see whether this is just pure coincidence. We note that the dualities

involving Chern-Simons terms are also motivated by brane moves in which NS5 branes move

past each other. However, these branes are now oriented differently, one being an NS5’.

We have shown a considerable amount of evidence for Seiberg-like dualities involving

N = 3 Chern-Simons-matter terms. All these dualities seem to originate from the Giveon-

Kutasov duality. Perhaps the most interesting further direction would be an examination

of the mapping of supersymmetric Wilson loops, as these theories generalize the topological

bosonic Chern-Simons theory, and the Giveon-Kutasov duality can be thought of as a gen-

eralization of level-rank duality. Further dual pairs can also be constructed by considering

more complicated quivers as was done for mirror symmetry. The ABJ duality [4] is an

example of this with an elliptical quiver.

6As already mentioned, this does not appear to be justified, and moreover, the partition functions diverge

in these cases. Thus one must define it by a suitable analytic continuation. We will not delve further into

the details of this calculation, or its possible physical relevance, in this paper.
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A. Evaluation of the Partition Functions without Chern-Simons Terms

Consider the partition function for a U(Nc) gauge theory coupled to Nf fundamental hypers

with masses ma, a = 1, ..., Nf , and with an FI-term η. This is given by the following matrix

model:

Z
(Nc)
Nf

(η;mj) =
1

Nc!

∫ ∏
j

dλj
e2πiηλj∏Nf

a=1 2 coshπ(λj −ma)

∏
i 6=j

2 sinhπ(λi − λj)

We will borrow the periodicity formula of appendix C.3, which can be applied in the

case k = 0, to find:

Z
(Nc)
Nf

(η;mj)−(−1)Nf e2πηZ
(Nc)
Nf

(η;mj) =

Nf∑
b=1

iNf−1e2πiη(mb− i
2

)eπ(Nc−1)mb∏
a6=b 2 sinhπ(mb −ma)

Z
(Nc−1)
Nf−1 (η+

i

2
;ma\mb)

Or, solving for the partition function:

Z
(Nc)
Nf

(η;mj) =
1

1 + (−1)Nf−1e2πη

Nf∑
b=1

iNf−1e2πiη(mb− i
2

)eπ(Nc−1)mb∏
a6=b 2 sinhπ(mb −ma)

Z
(Nc−1)
Nf−1 (η +

i

2
;ma \mb)

Applying this formula again to the partition function on the RHS, we get:

Z
(Nc)
Nf

(η;mj) =

(
1

1 + (−1)Nf−1e2πη

)2∑
b1

iNf−1e2πiη(mb1−
i
2

)eπ(Nc−1)mb1∏
a1 6=b1 2 sinhπ(mb1 −ma1)

×

×
∑
b2 6=b1

iNf−1e2πiη(mb2−
i
2

)eπ(Nc−3)mb2∏
a2 6=b1,b2 2 sinhπ(mb2 −ma2)

Z
(Nc−2)
Nf−2 (η + i;ma \ {mb1 ,mb2})

If Nc ≤ Nf (as is necessary for the partition function to converge), this terminates

after Nc iterations, and we find:

Z
(Nc)
Nf

(η;mj) =

(
iNf−1eπη

1 + (−1)Nf−1e2πη

)Nc∑
b1

∑
b2 6=b1

...
∑

bNc 6=b1,...,bNc−1

Nc∏
j=1

e
2πiηmbj e

2π(Nc+1
2
−j)mbj×

×
( ∏
a1 6=b1

2 sinhπ(mb1−ma1)
∏

a2 6=b1,b2

2 sinhπ(mb2−ma2)...
∏

aNc 6=b1,...,bNc−1

2 sinhπ(mbNc
−maNc )

)−1

There are
Nf !

(Nf−Nc)! terms in this sum. Consider, for example, the term with bj = j.

Then we get:
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(
iNf−1eπη

1 + (−1)Nf−1e2πη

)Nc Nc∏
j=1

e2πiηmje2π(Nc+1
2
−j)mj×

×
( ∏
a1>1

2 sinhπ(m1 −ma1)
∏
a2>2

2 sinhπ(m2 −ma2)...
∏

aNc>Nc

2 sinhπ(mNc −maNc )

)−1

=

(
iNf−1eπη

1 + (−1)Nf−1e2πη

)Nc Nc∏
j=1

e2πiηmje2π(Nc+1
2
−j)mj×

×
( Nc∏
i<j

2 sinhπ(mi −mj)

)−1( Nc∏
j=1

Nf∏
k=Nc+1

2 sinhπ(mj −mk)

)−1

Next consider the portion of the sum where bj = σ(j), for some permutation σ. This

gives:

∑
σ

(
iNf−1eπη

1 + (−1)Nf−1e2πη

)Nc Nc∏
j=1

e2πiηmje2π(Nc+1
2
−j)mσ(j)×

×
( Nc∏
i<j

2 sinhπ(mσ(i) −mσ(j))

)−1( Nc∏
j=1

Nf∏
k=Nc+1

2 sinhπ(mj −mk)

)−1

=

(
iNf−1eπη

1 + (−1)Nf−1e2πη

)Nc( Nc∏
j=1

e2πiηmj

)(∑
σ

(−1)σe2π(Nc+1
2
−j)mσ(j)

)
×

×
( Nc∏
i<j

2 sinhπ(mi −mj)

)−1( Nc∏
j=1

Nf∏
k=Nc+1

2 sinhπ(mj −mk)

)−1

Using the Weyl denominator formula, we see there is cancellation between the sum

over permutations and the first factor on the second line, and we’re left with:

(
iNf−1eπη

1 + (−1)Nf−1e2πη

)Nc( Nc∏
j=1

e2πiηmj

)( Nc∏
j=1

Nf∏
k=Nc+1

2 sinhπ(mj −mk)

)−1

For other choices of the set {bj}, of which there are
(Nf
Nc

)
, one gets similar expressions.

One can account for these by symmetrizing over the mj , and we finally arrive at:

Z
(Nc)
Nf

(η;mj) =

(
Nf

Nc

)(
iNf−1eπη

1− (−1)Nf−1e2πη

)Nc( Nc∏
j=1

e2πiηmj

)( Nc∏
j=1

Nf∏
k=Nc+1

2 sinhπ(mj−mk)

)−1∣∣∣∣
{mj}

where the bar at the end denotes symmetrization over the mj , ie:
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f(mj)

∣∣∣∣
{mj}

=
1

Nf !

∑
σ∈SNf

f(mσ(j))

We can test the appearance of a decoupled free hypermultiplet in an ugly theory as

follows. For a U(N) theory with 2N − 1 flavors, we have

Z
(N)
2N−1(η;mj) =

(
2N − 1

N

)(
eπη

1 + e2πη

)N( N∏
j=1

e2πiηmj

)( N∏
j=1

2N−1∏
k=N+1

2 sinhπ(mj−mk)

)−1∣∣∣∣
{mj}

For a U(N − 1) theory with the same number of flavors, we get:

Z
(N−1)
2N−1 (η;mj) =

(
2N − 1

N − 1

)(
eπη

1 + e2πη

)N−1(N−1∏
j=1

e2πiηmj

)(N−1∏
j=1

2N−1∏
k=N

2 sinhπ(mj−mk)

)−1∣∣∣∣
{mj}

=

(
2N − 1

N

)(
eπη

1 + e2πη

)N−1( 2N−1∏
j=1

e2πiηmj

)( 2N−1∏
j=N

e−2πiηmj

)(N−1∏
j=1

2N−1∏
k=N

2 sinhπ(mj−mk)

)−1∣∣∣∣
{mj}

Now, because of the symmetrization, we are free to perform a permutation of the mi

which takes (m1, ...,mN−1,mN , ...m2N−1) to (mN+1, ...,m2N−1,m1, ...,mN ), and we get:

(
2N − 1

N

)( 2N−1∏
j=1

e2πiηmj

)(
eπη

1 + e2πη

)N−1( N∏
j=1

e−2πiηmj

)( N∏
j=1

2N−1∏
k=N+1

2 sinhπ(mk−mj)

)−1∣∣∣∣
{mj}

There are an even number of factors in the product (namely, N(N − 1) of them), so

we can exchange mj and mk without picking up a sign, and comparing to the expression

above, we find the result:

Z
(N)
2N−1(η;mj) =

1

2 cosh(πη)
e−2πiη(m1+...+m2N−1)Z

(N−1)
2N−1 (−η;mj)

One can recognize the extra factor on the RHS as Z
(1)
1 (−η;m1 + ... + m2N−1), the

partition function of a U(1) theory with one flavor of mass m1 + ... + m2N−1. But this

theory is known to be equivalent to a free hypermultiplet, which gives the expected result.

B. Level-Rank Duality on a 3-sphere

Level-rank duality relates pure Chern-Simons theory at level k with G = U(N) to the

same theory with N and k exchanged. The observables in the theories are the Wilson

loops. According to the duality, these are mapped by flipping the rows and columns of the

Young diagram which defines the representation in which the Wilson loop is taken. Since

a Young diagram for G = U(N) cannot have columns of height greater than N − 1, the

mapping requires that the expectation values of Wilson loops have periodicity with respect

to the length of rows. Below we demonstrate level-rank duality for partition function on

S3 and for the expectation value of the unknot on S3.
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B.1 The partition function

The Chern-Simons partition function on S3 in the standard framing for k > 07 is given by:

1

(k +N)N/2

N−1∏
m=1

(
2 sin

πm

k +N

)N−m
(B.1)

We would like to show that this is invariant under the exchange of N and k. Consider the

following expression:

2kN/2
(
k +N

2k+N−1

)(k+N)/2

Since it is manifestly symmetric in k,N , instead of proving that Z is invariant under the

exchange, we may prove that the product of Z and this expression is invariant. The product

is

Z ′ =

(
k +N

2k+N−1

)k/2 N−1∏
m=1

sinN−m
(

πm

k +N

)
The reason we choose to work with Z ′ is the following identity:

M−1∏
m=1

sin

(
πm

M

)
=

M

2M−1
(B.2)

This can be proved as follows. Consider the polynomial:

zM − 1

z − 1
=

M−1∏
m=1

(z − e2πim/M )

At z = 1, the LHS approaches M , while the RHS gives:

M−1∏
m=1

(1− e2πim/M ) = eiφ
M−1∏
m=1

(eπim/M − e−πim/M )

where φ is real. Equating the absolute value of LHS and RHS we find:

M = 2M−1
M−1∏
m=1

sin

(
πm

M

)
which gives the desired result.

Using (B.2), we can write:

Z ′ =

k+N−1∏
m=1

sink/2
(

πm

k +N

)N−1∏
m=1

sinN−m
(

πm

k +N

)
At this point we need to consider separately the cases where N is greater or less than k.

7In this appendix we will assume, unless otherwise stated, that k > 0. It is straightforward to extend

the results to negative k.
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• N < k: First note that

sin

(
πm

M

)
= sin

(
π(M −m)

M

)
Thus we can write:

Z ′ =
N−1∏
m=1

sink
(

πm

k +N

) k∏
m=N

sink/2
(

πm

k +N

)N−1∏
m=1

sinN−m
(

πm

k +N

)

=
N−1∏
m=1

sink+N−m
(

πm

k +N

) k∏
m=N

sink/2
(

πm

k +N

)
• N > k: We proceed similarly to the last case:

Z ′ =

k−1∏
m=1

sink
(

πm

k +N

) N∏
m=k

sink/2
(

πm

k +N

) k−1∏
m=1

sinN−m
(

πm

k +N

) N∏
m=k

sinN−m
(

πm

k +N

)

In the last factor, the invariance under m → N + k − m allows us to replace the

exponent N −m with N − (N + k −m) = m − k or, better yet, with the average

of these two, (N − k)/2. If we then combine the first and third, and the second and

fourth factors, we find:

Z ′ =
k−1∏
m=1

sink+N−m
(

πm

k +N

) N∏
m=k

sinN/2
(

πm

k +N

)
Now we can see that the two expressions for Z ′ are exchanged under N ↔ k, which

proves the invariance of Z ′, and so also of Z.

B.2 The unknot

Before demonstrating how level-rank duality acts on expectation values of Wilson loops,

it will be useful to explain some facts about Wilson loops in general Chern-Simons matter

theories. We will also make use of these facts in Appendix C.

Consider an N = 3 superconformal U(N) gauge theory with a level k Chern-Simons

term and deformed by an FI term with coefficient η. The partition function for such a

theory is given by:

Z(N)(η) =
1

N !

∫ ( N∏
j=1

dλje
ikπλj

2

e2πiηλj

)(∏
i 6=j

2 sinhπ(λi − λj)
)
Zm(λ1, ..., λN )

Here Zm is the contribution of the hypermultiplets, if there are any. All we need to know for

now is that Zm is symmetric with respect to permutations of the variables λj , j = 1, . . . , N .
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The (unnormalized) expectation value of a supersymmetric Wilson loop in such a

theory is given by a similar integral which differs only by a factor

TrRe
2πΛ

in the integrand. HereR is the representation of the Wilson loop and Λ = diag(λ1, ..., λN ).

We can use the Weyl character formula to compute the trace in an arbitrary repre-

sentation R. It is convenient to label a representation by its highest weight. An arbitrary

weight element α of the weight lattice has the form

α = a1ω1 + ...+ aNωN

where ωi is the element of the dual of the Cartan subalgebra which takes a diagonal

matrix ||dij || to the element dii, and the numbers ai are integers. The permutation group

SN (the Weyl group of U(N)) acts on the weight lattice by permuting the numbers ai.

We will work in a single Weyl chamber, defined by the condition that the ai are weakly

decreasing, i.e. a1 ≥ a2 ≥ ... ≥ aN . If we define:

δ = Nω1 + (N − 1)ω2 + (N − 2)ω3 + . . .+ ωN ,

the Weyl character formula for a representation R with highest weight α says

TrRe
2πΛ =

Aα+δ(e
2πΛ)

Aδ(e2πΛ)

where

Aα(e2πΛ) =
∑
σ∈SN

(−1)σe2πσ·α(Λ)

Thus the (unnormalized) expectation value is given by

Z(N)(η;α) =
1

N !

∫ ( N∏
j=1

dλje
ikπλj

2

e2πiηλj

)(∏
i 6=j

2 sinhπ(λi−λj)
)
Zm(λ1, ..., λN )

Aα+δ(e
2πΛ)

Aδ(e2πΛ)

By the Weyl denominator formula, we can write:

Aδ(e
2πΛ) =

∑
σ

(−1)σe2π
∑
j(N+1−σ(j))λj = eπ(N+1)

∑
j λj
∏
i<j

2 sinhπ(λi − λj)

So the effect of including the Wilson loop in the matrix model is to replace the factor∏
i 6=j

2 sinhπ(λi − λj) = (−1)N(N−1)/2e−2π(N+1)
∑
j λj (Aδ(e

2πΛ))2

with
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(−1)N(N−1)/2e−2π(N+1)
∑
j λjAα+δ(e

2πΛ)Aδ(e
2πΛ) =

= (−1)N(N−1)/2e−2π(N+1)
∑
j λj

(∑
σ1

(−1)σ1e2π(aσ1(j)+N+1−σ1(j))λj

)(∑
σ2

(−1)σ2e2π(N+1−σ2(j))λj

)
When we insert this into the matrix model, we can use the fact that the λi appear sym-

metrically in the rest of the integrand to eliminate the sum over σ1, and we are left with:

Z(N)(η;α) = (−1)N(N−1)/2
∑
σ

(−1)σ
∫ ∏

j

dλje
ikπλj

2

e2πiηλje2π(N+1+aj−j−σ(j))λjZm(λ1, ..., λN )

Z(N)(η;α) =

∫ ∏
j

dλje
ikπλj

2

e2πiηλje2π(aj−j+N+1
2

)λj
∏
i<j

2 sinhπ(λj − λi)Zm(λ1, ..., λN )

(B.3)

In all these formulas α is assumed to lie in the fundamental Weyl chamber, or equiv-

alently, the aj should be weakly decreasing. We will call these proper weights. How-

ever, we will sometimes encounter similar integrals with improper weights, that is, weights

that correspond to sequences of aj which increase. If there exists any pair i, j such that

ai − i = aj − j, then the factor e2π(aj−j+N+1
2

)λj is the same for these two indices, and

since the variables appear antisymmetrically in the rest of the integrand, such an integral

vanishes. If all the aj − j are distinct, then there is some unique Weyl group element σ

which brings α+ δ into the fundamental Weyl chamber, and one can show that

Z(N)(η; aj) = (−1)σZ
(N)
k,1 (η;σ(α+ δ)− δ) (B.4)

Now let us return to pure Chern-Simons theory and set Zm = 1. In this section we will

work with the matrix model definition of the Chern-Simons partition function and Wilson

loops, which differs slightly from the usual one, discussed in Appendix A. The difference is

a finite renormalization k 7→ k−N and some phase factors which arise from a nonstandard

framing of S3 and Wilson loops. See section 4.1 for a discussion of the differences.

As discussed above, Wilson loops can be labeled by weakly decreasing sequences a1 ≥
a2 ≥ . . . ≥ aN , or equivalently, by partitions of length N . It is well known that if one is

interested in inequivalent Wilson loops, then it is sufficient to consider partitions such that

a1 ≤ k. In other words, the corresponding Young diagram fits into a box of size N × k.

Since level-rank duality exchanges N and k, one will not be surprised to learn that it acts

on Wilson loops by replacing a Young diagram by its transpose.

In the remainder of this appendix we will verify that the expectation value of the

unknot on S3 obeys level-rank duality, in the sense that exchanging N and k and replacing

a Young diagram with its transpose gives the same expectation value up to a phase (which

arises from a nonstandard choice of framing). Before demonstrating this, let us first review

a few facts about partitions. Let α be a partition, corresponding to some Young diagram.
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We will let i label the rows of the diagram, and j label the columns. Let |α| be the total

number of boxes in the diagram, i.e.

|α| =
∑
x∈α

1 =
∑
i

ai

where x runs over the boxes in the Young diagram.

If we take the transpose of the Young diagram, we get another partition, which we call

α′. Obviously |α′| = |α|. Now let us define

n(α) =
∑
x∈α

(i− 1) =
∑
i

(i− 1)ai

It can be shown that

n(α′) =
1

2

∑
i

ai(ai − 1)

Now let us return to the Wilson loop expectation values in pure Chern-Simons theory.

We have

Z
(N)
k,0 (η;α) = (−1)N(N−1)/2

∑
σ

(−1)σ
∫ ∏

j

dλje
ikπλj

2

e2πiηλje2π(aj−j−σ(j)+N+1))λj

= (−1)N(N−1)/2(−ik)−N/2
∑
σ

(−1)σ
∏
j

e
πi
k

(iη+aj−j−σ(j)+N+1))2

After some work, one finds that the normalized Wilson loop expectation value is

ZNk,0(η;α)

ZNk,0(η)
= e−

2πη
k
|α|qn(α)−n(α′)−(N− 1

2
)|α|Aα+δ(1, q, ..., q

N−1)

Aδ(1, q, ..., qN−1)

where q = e−2πi/k. The ratio of determinants of the RHS is known as the Schur polynomial

corresponding to the partition α. That is, the normalized expectation value of the unknot

is proportional to the value of the Schur polynomial at a particular point.

Upon exchanging N → k − N , k → −k, η → −η, and α → α′ this is manifestly

invariant except for the factor8

q|α|/2
Aα+δ(1, q, ..., q

N−1)

Aδ(1, q, ..., qN−1)

which becomes

q−|α|/2
Aα′+δ(1, q

−1, ..., q−(k−N−1))

Aδ(1, q−1, ..., q−(k−N−1))

Now we can use the following identity valid for an indeterminate t [13]:

8The factor q−N|α| goes to q(k−N)|α| = q−N|α|, since qk = 1, and so is invariant.
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Aα+δ(1, t, ..., t
N−1)

Aδ(1, t, ..., tN−1)
= tn(α)

∏
x∈α

1− tN+c(x)

1− th(x)

Here c(x) is the content of x, defined by i− j, and h(x) is the hook length of x, defined

by ai+a′j− i− j+1. Note that under the exchange of α and α′, the set {h(x)} is invariant,

while all elements of the set {c(x)} change sign. Thus we obtain:

q−|α|/2
Aα′+δ(1, q

−1, ..., q−(k−N−1))

Aδ(1, q−1, ..., q−(k−N−1))
= q−|α|/2q−n(α′)

∏
x∈α′

1− qN−c(x)

1− q−h(x)

= (−1)|α|q−|α|/2q−n(α′)q
∑
x∈α h(x)

∏
x∈α

1− qN+c(x)

1− qh(x)

One can show that ∑
x∈α

h(x) = n(α) + n(α′) + |α|

so the above expression becomes

(−1)|α|q|α|/2qn(α)
∏
x∈α

1− qN+c(x)

1− qh(x)

= (−1)|α|q|α|/2
Aα+δ(1, q, ..., q

N−1)

Aδ(1, q, ..., qN−1)

This shows the only change in the normalized Wilson loop expectation value under this

mapping is the sign (−1)|α|. Combining this with the result for the mapping of the partition

function, we arrive at a formula which expresses the behavior of unnormalized Wilson loops

under level-rank duality:

Z
(N)
k,0 (η;α) = (−1)|α|eπi(ck,0−η

2)Z
(|k|−N)
−k,0 (−η;α′)

Here ck,0 is given by (4.3).

C. Partition Function for Nf = 1 Chern-Simons-Matter Theory

C.1 Periodicity of Wilson loops

In order to perform the computation of the partition function, we will need several facts

about Wilson loops in Chern-Simons-matter theories. In addition to the facts collected

in the previous section, we will need to understand how Wilson loop expectation values

change upon shifting a column in the Young diagram by k, the Chern-Simons level. In

pure Chern-Simons theory, Wilson loops are known to be invariant (up to a sign) under

this shift. When matter is added, we will see the Wilson loops are no longer invariant,

although they do satisfy a certain simple relation.

To start, we consider pure Chern-Simons theory with G = U(N). This means we take

Zm = 1 in (B.3):
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Z
(N)
k,0 (η;α) =

∫ ∏
j

dλje
ikπλj

2

e2πiηλje2π(aj−j+N+1
2

)λj
∏
i<j

2 sinhπ(λj − λi)

Now consider shifting one of the variables λ` to λ` − i. Since the integrand has no

poles in the complex plane, this does not change the value of the integral. For example, if

we take N = 1, this gives: ∫
dλeikπ(λ−i)2e2πiη(λ−i)e2πa(λ−i)

= (−1)ke2πη

∫
dλeikπλ

2
e2πiηλe2π(a+k)λ

= (−1)ke2πηZk(η; a+ k)

More generally, we find that for any ` from 1 to N we have

Z
(N)
k,0 (η;α) = (−1)ke2πηZk(η;α+ kω`).

Next consider adding matter. For a single massless fundamental hypermultiplet, Zm =(∏
i 2 cosh(πλi)

)−1

, and so:

Z
(N)
k,1 (η;α) =

∫ ∏
j

dλj
eikπλj

2
e2πiηλje2π(aj−j+N+1

2
)λj

2 cosh(πλj)

∏
i<j

2 sinhπ(λj − λi)

Now when we shift λj → λj− i in the integrand, we get a similar integral. For example

for N = 1 we get ∫
dλ
eikπ(λ−i)2e2πiη(λ−i)e2πa(λ−i)

2 coshπ(λ− i)

= (−1)k+1e2πη

∫
dλ
eikπλ

2
e2πiηλe2π(a+k)λ

2 cosh(πλ)

= (−1)k+1e2πηZk,1(η; a+ k)

However, when shifting the contour of integration from the real axis down to pass through

λ = −i, we now have to move through a pole at λ = − i
2 . Thus the difference between the

original integral and this shifted one should be given by the residue of this pole, that is:

Zk,1(η; a)− (−1)k+1e2πηZk,1(η; a+ k) = −2πiResλ→− i
2

eikπλ
2
e2πiηλ

2 cosh(πλ)

= e−ikπ/4eπη

For general N , if we perform this manipulation on some fixed variable λ`, we get
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Z
(N)
k,1 (η;α)− (−1)k+1e2πηZ

(N)
k,1 (η;α+ kω`) =

=

∫ ∏
j

dλj
eikπλj

2
e2πiηλje2π(aj−j+N+1

2
)λj

2 cosh(πλj)

∏
i<j

2 sinhπ(λj − λi)
(

2 cosh(πλ`)δ(λ` +
i

2
)

)

When we plug in i
2 for λ`, some of the hyperbolic sines turn into hyperbolic cosines and

cancel the denominator, and the expression on the RHS becomes

e−ikπ/4eπη(−1)a`
∫ ∏

j 6=`
dλje

ikπλj
2

e2πiηλje2π(aj−j+N+1
2

)λj
∏
i<j 6=`

2 sinhπ(λj − λi)

Redefining variables by λj → λj−1 for j > `, and defining α`, an element of the dual Cartan

of U(N − 1), by

α` = a1ω1 + ...+ a`−1ω`−1 + a`+1ω` + ...+ aNωN−1

the above expression can be written as

e−ikπ/4eπη(−1)a`
∫ N−1∏

j=1

dλje
ikπλj

2

e2πiηλje2π(a`j−j+N+1
2

)λj

N−1∏
j=`

e2πλj
∏
i<j

2 sinhπ(λj − λi)

= e−ikπ/4eπη(−1)a`Z
(N−1)
k,0 (η +

i

2
;α` + ρ`−1),

where we have defined:

ρ` = ω1 + ...+ ω`

Thus we obtain the formula describing how Wilson loops in this theory behave under

shifting a` by k:

Z
(N)
k,1 (η;α)−(−1)k+1e2πηZ

(N)
k,1 (η;α+kω`) = e−ikπ/4eπη(−1)a`Z

(N−1)
k,0 (η+

i

2
;α`+ρ`−1) (C.1)

We see that, in the presence of matter, Wilson loops in the U(N) theory are no longer

invariant under such a shift, although the change in the expectation value can be expressed

in terms of a certain Wilson loop in U(N − 1) Chern-Simons theory without matter.

C.2 Evaluation of the partition function

Now we can complete the evaluation of the partition function for the Nf = 1 theory.

Specifically, we will express the Nf = 1 partition function in terms of expectation values

of Wilson loops in the pure Chern-Simons theory (Nf = 0). One can use the explicit

expressions for the latter given in Appendix B to write explicit expressions for the Nf =
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1 partition function in terms of elementary functions, although we will not find these

expressions useful for demonstrating the duality.

In order to relate the Nf = 1 partition function to the Nf = 0 expectation values,

consider the following expression:∫ ∏
j

dλj
ekπiλj

2
e2πiηλje2π(−j+N+1

2
)

2 cosh(πλj)

∏
i<j

2 sinhπ(λj − λi)
∏
j

(1 + e2πλj )

The last factor partially cancels the denominator, so it is equal to

Z
(N)
k,0 (η − i

2
)

Alternatively, we can expand this factor. The result is a sum of Wilson loop expectation

values in the Nf = 1 theory, where the sum is over all partitions whose entries are either 0

or 1. Most of these correspond to improper weights and vanish, and the ones that remain

give

N∑
`=0

Z
(N)
k,1 (η; ρ`)

This is not very useful, since we would like to isolate Z
(N)
k,1 (η). Consider therefore the

following generalization. Let a1 be a nonnegative integer and consider∫ ∏
j

dλj
ekπiλj

2
e2πiηλje2π(−j+N+1

2
)

2 cosh(πλj)

∏
i<j

2 sinhπ(λj−λi)
(

(1+(−1)a1e2π(a1+1)λ1)
N∏
j=2

(1+e2πλj )

)
(C.2)

If we try to cancel the denominator again, we get an extra factor

1 + (−1)a1e2π(a1+1)λ1

1 + e2πλ1
=

a1∑
`=0

(−1)`e2π`λ1

Therefore (C.2) is equal to

a1∑
`=0

(−1)`Z
(N)
k,0 (η − i

2
; `ρ1)

On the other hand, when we expand the product we again get a sum of Wilson loop

expectation values, most of which vanish. The remaining terms give

Z
(N)
k,1 (η) + (−1)a1

N∑
`=1

Z
(N)
k,1 (η; ρ` + a1ω1)

We still haven’t isolated Z
(N)
k,1 (η). However, there is a trick. If we take a1 = k − N

(which, by assumption, is nonnegative), then the sum in the above expression becomes

(−1)k−N
N∑
`=1

Z
(N)
k,1 (η; ρ` + (k −N)ω1)
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If we now use (C.1) to shift the first element of the partition down by k, the sum becomes

(−1)N−1e−2πη
N∑
`=1

(
Z

(N)
k,1 (η; ρ` −Nω1)− e−ikπ/4eπη(−1)N−1Z

(N−1)
k,0 (η +

i

2
; ρ`−1)

)
But the first term in the sum corresponds to an improper weight and vanishes unless

` = N , in which case one can use (B.4) to show that just gives the partition function:

e−2πηZ
(N)
k,1 (η)− e−ikπ/4e−πη

N−1∑
`=0

Z
(N−1)
k,0 (η +

i

2
; ρ`)

Putting all this together, we get:

k−N∑
`=0

(−1)`Z
(N)
k,0 (η − i

2
; `ρ1) = Z

(N)
k,1 (η) + e−2πηZ

(N)
k,1 (η)− e−ikπ/4e−πη

N−1∑
`=0

Z
(N−1)
k,0 (η +

i

2
; ρ`)

Now we can solve for Z
(N)
k,1 (η) and find:

Z
(N)
k,1 (η) =

1

2 cosh(πη)

(
e−ikπ/4

N−1∑
`=0

Z
(N−1)
k,0 (η +

i

2
; ρ`) + eπη

k−N∑
`=0

(−1)`Z
(N)
k,0 (η − i

2
; `ρ1)

)
(C.3)

C.3 General Nf

Let us make a few comments about Chern-Simons-matter theories with Nf > 1. For

Nf > 1 one cannot redefine away all masses, so we allow for arbitrary masses m1, . . . .mNf .

First, we note that an analogous Wilson loop periodicity argument holds in the general

case. Namely, when we shift λ` → λ` − i, all the poles we pass through (at λ` = ma − i
2)

are simple, as before, and therefore we get

Z
(Nc)
k,Nf

(η;α;ma)− (−1)k+Nf e2πηZ
(Nc)
k,Nf

(η;α+ kω`;ma) =

=

∫ ∏
j

dλj
eikπλj

2
e2πiηλje2π(aj−j+Nc+1

2
)λj∏Nf

a=1 2 coshπ(λj −ma)

∏
i<j

2 sinhπ(λj−λi)
( Nf∑
b=1

2 coshπ(λ`−mb)δ(λ`−mb+
i

2
)

)
As before, the delta-functions turn some of the hyperbolic sines into hyperbolic cosines and

cancel part of the denominator, so we are left with the following identity:

Z
(Nc)
k,Nf

(η;α;ma)− (−1)k+Nf e2πηZ
(Nc)
k,Nf

(η;α+ kω`;ma) =

=

Nf∑
b=1

(−1)a`iNf−1ekπi(mb−
i
2

)2e2πiη(mb− i
2

)e2π(a`−`+Nc+1
2

)mb∏
a6=b 2 sinhπ(mb −ma)

Z
(Nc−1)
Nf−1 (η+

i

2
;ma\mb;α`+ρ`−1)

(C.4)
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where the notation “ma \ mb” means we are considering the theory with Nf − 1 flavors

with all the masses as before except for mb.

The argument of the previous section can be straightforwardly generalized to express

the partition function for Chern-Simons theory with Nf flavors in terms of expectation

values of Wilson loops in a similar theory with Nf − 1 flavors. However, since we do not

know how the duality acts on Wilson loops in a theory with a general Nf (the argument

above does not easily generalize to include Wilson loops), we cannot complete the proof of

duality for Nf > 1.

However, we can still make one observation about these theories. Suppose Nc > k > 0.

If we take ` = Nc in (C.4), we find that the second term on the LHS corresponds to an

improper weight and vanishes, so we are left with (schematically):

Z
(Nc)
k,Nf

(η) ∝ Z(Nc−1)
k,Nf−1(η)

That is, we can express this partition function in terms of partition functions with

Nf − 1 flavors and Nc − 1 colors. If Nc > k + 1, we can repeat this procedure and express

the RHS in terms of partition functions with Nf − 2 flavors, and so on. If Nc > k + Nf ,

this process can take us all the way down to Chern-Simons theory with Nf = 0, and here

the RHS of (C.4) is zero, so if the rank exceeds the level the partition function vanishes.

Thus we obtain:

Z
(Nc)
k,Nf

(η) = 0, Nc > k +Nf
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Figure 4: A comparison of the magnitude of the partition functions with FI deformation (η) for 8

dual pairs and values of η from .1 to .9 and a best fit line, which, to the accuracy of the numerical

evaluation, is of slope 1 and intercept 0.
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Figure 5: A plot of the phase difference of the partition functions with FI deformation (η) for 8

dual pairs and values of η from .1 to .9 and a best fit parabola.
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