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This work investigates the acoustic radiation from a submerged semi-infinite pipe, such as for 
marine ducted propellers, which are generally close to the duct open end compared to the acoustic 
wavelength. Radiation from the duct therefore comprises both propagating and cut-off acoustic 
modes. Whilst the radiation from propagating modes is well understood and can be predicted from 
classical theory, relatively little work has been undertaken aimed at understating radiation due to 
cut-off modes. This paper is a fundamental study into the characteristics of modal radiation from 
rigid flanged circular ducts, with particular emphasis on the radiation from cut-off modes.

This paper presents a Fourier analysis of the radiation from the duct to allow separation of the 
component of velocity that radiates to the far-field and that which decays and is responsible for 
the duct near-field. We show that cut-off modes can potentially radiate effectively to the far-field 
and are shown to be particularly important for the radiation towards the sideline directions. Cut-
off modes must therefore be included in any prediction of duct propeller noise when the source 
plane is relatively close to the duct open end, such as in many marine applications.
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1. INTRODUCTION

Ducts have a wide range of applications such as increasing the efficiency of engines, piping transport
systems and exhaust stacks, all of which situate a noise source inside a finite length duct that radiate
sound into an open space. Often one requires an indication of the sound field produced from such
situations to quantify performance. Calculations are made simpler by making approximations, typi-
cally assuming the source is buried deep inside the duct. This allows the effect of cut-off modes to be
neglected. This assumption may not be valid for several applications, especially ducted fans.

The distance between a noise source and a duct open end has been investigated by Howe,1 who inves-
tigated the rotor blade tip vortex interaction noise for varying distances inside a duct. The approach
Howe used is very different to that used here, as Howe did not break the source into its acoustic
modes. The power radiated by cut-off modes was briefly investigated by Sandowaska2 who investi-
gated the power gain function of a duct mode slightly below cut-off, implying cut-off modes radiate to
the far-field. In this paper we extend this work to form a model valid for all modes and using a Fourier
approach we indicate the radiation efficiency of modes above and below cut-off.

2. A FOURIER APPROACH TO DUCT RADIATION

In this section we re-derive the classical radiation from a flanged duct formulation from Tyler and
Sofrin,3 using a Fourier approach. This allows us to separate radiating and non-radiating components
of the velocity, and determine the components that radiate sound power. Consider an acoustic velocity
distribution at the end of a rigid walled duct inside an infinite flange with radius a and surface area S.
A source region on the flange with polar coordinates (r, θ, z) radiates with axial symmetry to a field
point with spherical coordinates (R,φ, θ) as described by Figure 1.

Figure 1: Semi-inifinite, hard walled flanged circular duct with associated coordinate system
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Consider an axial velocity distribution umn(r, θ) over the duct opening at a single frequency, corre-
sponding to a single mode of azimuthal order m and radial order n, with complex amplitude Vmn

umn(r, θ) = Vmnψmn(r)ejmθ (1)

where ψmn(r) is the normalized mode shape function, that ensures
∫
S |ψmn(r)|2dS = S. The mode

shape function for a hard-walled cylindrical duct is of the form

ψmn(r) =
Jm(κmnr)

Nmn
r ≤ a (2)

where Jm is the Bessel function of the first kind, κmn is the transverse wave number chosen to satisfy
the hard walled boundary condition and Nmn is the normalization factor

Nmn =

√(
1− m2

κ2mna
2

)
Jm(κmna). (3)

In order to decompose the modal velocity distribution into radiating and non-radiating components
the radial velocity distribution umn(r) is now decomposed into wavenumber spectra ûmn(κ) by use
of the Hankel transform

ûmn(κ) =

∫ ∞
0

umn(r)Jm(κr)rdr (4)

The radial velocity distribution can be reconstructed from its spectral components by inverse Hankel
transform

umn(r) =

∫ ∞
0

umn(κ)Jm(κr)κdκ. (5)

Substituting Eq. 2 for the radial velocity into Eq. 4 and evaluating the integral gives

ûmn(κ) =
κa

κ2mn − κ2
J ′m(κa)√(
1− m2

κ2mna
2

) . (6)

where the prime denotes differentiation with respect to its argument. The velocity distribution urmn(r, θ)
that radiates perfectly to the far-field - corresponding to κ < k components where k is the excitation
wavenumber for a given frequency ω and speed of sound c0, defined as ω

c0
- is

urmn(r) =

∫ k

0
ûmn(κ)Jm(κr)κdκ, (7)

The remaining velocity unrmn(r, θ) components k > κ therefore contribute only to the near-field

B. Baddour et al. Characteristics of modal radiation from ducts

Proceedings of Meetings on Acoustics, Vol. 40, 070001 (2020) Page 3

D
ow

nloaded from
 http://pubs.aip.org/asa/pom

a/article-pdf/doi/10.1121/2.0001293/16064095/070001_1_online.pdf



unrmn(r) =

∫ ∞
k

ûmn(κ)Jm(κr)κdκ. (8)

It is also worthy of note that on the plane z = 0

urmn(r) + unrmn(r) = umn(r) r ≤ a (9)

urmn(r) + unrmn(r) = 0 r > a (10)

Where for r > a the radiating and non-radiating components are equal and opposite.

A. FAR-FIELD RADIATION

We now consider the Rayleigh integral to determine the radiated acoustic pressure field pmn(R,φ) of
the form

pmn(R,φ) =
jρ0c0k

2π

∫
S
umn(r, θ)

e−jkh

h
dS(r, θ) (11)

where ρ0 is the density, h is the distance between the source element and the field point

h =
√
R2 + r2 − 2Rr sinφ cos θ. (12)

For large R, h ≈ R in the pressure amplitude and hence can be taken outside of the integral. The h
inside the exponent can be written as h ≈ R − r sin θ cosφ. Substituting these expressions for h, the
Rayleigh integral becomes

pmn(R,φ) ≈ jVmnρ0c0ke
−jkR

2πR

∫
S
umn(r)ejkr sinφ cos θ−jmθdS(r, θ). (13)

Equations. 1, 2 and 3 and the Hankel transform of urmn(r) from Eq. 7 can be combined and substituted
into the Rayleigh integral,noting dS = rdrdθ, to give

pmn(R,φ) ≈ jVmnρ0c0ke
−jkR

2πR

∫ 2π

0

∫ ∞
0

∫ k

0

κ2a

κ2mn − κ2
J ′m(κa)√(
1− m2

κ2mna
2

)Jm(κr)κejkr sinφ cos θ−jmθrdκdrdθ.

(14)

The subsequent integral is evaluated using
∫ 2π
0 ejkr sinφ cos θ−jmθ = 2πjmJm(kr sinφ), from Rienstra

and Hirschberg,4 to give
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pmn(R,φ) ≈ jm+1Vmnρ0c0ke
−jkR

R

∫ ∞
0

∫ k

0

κ2a

κ2mn − κ2
J ′m(κa)√(
1− m2

κ2mna
2

)Jm(κr)Jm(kr sinφ)rdκdrdθ.

(15)

The radial integral is evaluated using the identity
∫∞
0 Jm(κr)Jm(kr sinφ)rdr = δ(κ−k sinφ)

κ , from
Rienstra and Hirschberg,5 to give

pmn(R,φ, κ) ≈ jm+1Vmnρ0c0ke
−jkR

R

∫ k

0

κa

κ2mn − κ2
J ′m(κa)√(
1− m2

κ2mna
2

)δ(κ− k sinφ)dκ, (16)

Noting the sifting property of the delta function suggests that each velocity component κ only radiates
to a single far field radiation angle φ, given by

φ = sin−1
κ

k
. (17)

The far field pressure is identical to the classical result derived by Tyler and Sofrin3 which is

pmn(R,φ) ≈ jm+1Vmnρ0c0e
−jkR

R
a

Dmn(φ). (18)

Where the directivity factor Dmn is

Dmn(φ) =
sinφJ ′m(ka sinφ)

(κ
2
mn
k2
− sin2 φ)

√(
1− m2

κ2mna
2

) . (19)

3. MODAL RADIATION ABOUT CUT-OFF

In order to determine the relative contribution of the axial velocity distribution umn(r)e−jmθ to the far-
field and near-field region a plot of the wavenumber velocity spectrum for a typical mode m = 9, n =
6 excited below cut-off plotted against κ

κmn
, and m = 12, n = 10 excited above cut-off is shown in

Figure 2. Also shown in the Figure is a vertical line that indicates the excitation wavenumber, which
determines the transition between the radiating (k < κ) and non-radiating (κ > k) components.

To quantify how cut-off a mode is, we define the cut-off ratio ζ as

ζ =
k

κmn
(20)

where 1 < ζ <∞ indicates a cut-on mode and 0 < ζ < 1 indicates a cut-off mode.
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Figure 2: Velocity spectrum for mode m = 9, n = 6, ζ = 0.8 (left) and m = 12, n = 10, ζ = 1.2 (right)

The analysis above has demonstrated a direct relationship between the far-field directivity Dmn(φ)
and the modal velocity wavenumber spectrum ûmn(κ) where κ = k sinφ. The velocity spectrum at
κ = k therefore gives the radiation at 90◦ to the duct axis and κ = 0 gives the radaition at 0◦. The
velocity spectrum between 0◦ and 90◦ will then directly map to the directivity, matching turning points
to lobes. We now excite the mode m = 9, n = 6 just below cut-off at ζ = 0.95 and just above cut-off
at ζ = 1.05 and compute the radiating and non-radiating ψ(r)e−jmθ, shown in Figure 3.

(a) mode (9,6) ζ = 0.95, radiating (left) and non-radiating velocity components (right)

(b) mode (9,6) ζ = 1.05, radiating (left) and non-radiating velocity components (right)

Figure 3: Radiating and non-radiating velocity distributions above and below cut-off
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Figure 3 shows that for ζ = 0.95, most of the velocity at the end of the duct does not propagate
and will contribute towards the near-field, however, the figure shows that a small amount of velocity
propagates to the far-field for excitation below cut-off. The figure also shows that for ζ = 1.05, most
of the velocity propagates to the far-field but there is a small amount that does not radiate. In the high
frequency limit all velocity radiates to the far-field and in the low frequency limit no velocity radiates.

4. DIRECTIVITY ABOVE AND BELOW CUT OFF

We have demonstrated that below cut-off some components of the modal velocity distribution radiate
to the far field. Using Eq. 19 we plot far field directivity functions for excitation just above and just
below cut-off - which has an identical pattern to û(κ). The plots shown are scaled so that the pressure
at the major lobe is 100 dB for the plot that is excited at the highest frequency. Figure 4 shows the
directivity of the mode m = 9, n = 6 for ζ = 0.3, 0.9, 1.1 and 1.2.

Increasing frequency

(a) ζ = 0.3 (cut-off) (b) ζ = 0.9 (near cut-on) (c) ζ = 1.1 (cut-on) (d) ζ = 1.2 (cut-on)

Figure 4: Directivity above and below cut-off of the mode m = 9, n = 6

An important observation from Figure 4 is the location of the major lobe which can be identified into
3 regions; in the cut-on region the major lobe approaches the sideline directions, in the near cut-on
region, the major lobe will vary between 90◦ and near 90◦ somewhere in the sideline directions. This
behavior is determined by the spectrum in Figure 2 as the major lobe will be located at the highest
peak of ûmn(κ) below k which is not necessarily at 90◦. This variation of the major lobe position
occurs until the last turning point of ûmn(κ) is reached with respect to decreasing wavenumber, and
then the directivity will have identical shape for all frequencies with the major lobe located at 90◦. The
wavenumber kcut that transitions from the near cut-on to the cut-off region occurs at the 1st turning
point of û(κ)

dûmn(κ)

dκ

∣∣∣∣
min

= 0.

Exciting the mode at or below κ = kcut there is no dominating lobe in the directivity. It can be seen
from Eq. 4 that the turning points are supplied by J ′m(κa), where the turning points of J ′m(κa) match

B. Baddour et al. Characteristics of modal radiation from ducts

Proceedings of Meetings on Acoustics, Vol. 40, 070001 (2020) Page 7

D
ow

nloaded from
 http://pubs.aip.org/asa/pom

a/article-pdf/doi/10.1121/2.0001293/16064095/070001_1_online.pdf



well with umn(κ), therefore the transition between the near cut-on and cut-off region can be deter-
mined approximately by the minimum wavenumber that satisfies J ′′m(kcuta) = 0. Which is always
below the modal transverse wavenumber of the first radial mode, hence

Ωcut ≤ c0κm,1.

5. RADIATION EFFICIENCY

Morfey6 calculated the modal radiation efficiency τmn, for modes above and below cut-off to show the
maximum radiation efficiency is around cut-off. To calculate the modal power we use Eq. 18 and Eq.
17 to infer the far-field pressure distribution in terms of the incident velocity wave number spectral
components κ, which is required for the proceeding numerical analysis.

pmn(κ) ≈ jm+1Vmnρ0c0ke
−jkR

R

J ′m(κa)κa

(κ2mn − κ2)
√(

1− m2

κ2mna
2

) . (21)

To calculate the power, we integrate the radial intensity across a hemisphere enclosing the duct opening
of radius R, Wmn = π

ρ0c0
R2
∫ π

2
0 |pmn(R,φ)|2 sinφdφ and use the substitution κ = k sinφ and

dκ =
√
k2 − κ2dφ to derive

Wmn =
π

ρ0c0
R2

∫ κ=k−ε

κ=0
|pmn(κ)|2

√
κ2

k4 − (kκ)2
dκ. (22)

where ε is a very small value to avoid evaluation at κ = k, where the integrand becomes singular, the
integration is not sensitive to the size of ε. The modal radiation efficiency τmn is calculated as

τmn =
Wmn

1
2 |Vmn|2πa2ρ0c0

. (23)

Substituting Eq. 21 and Eq. 22 into Eq. 23 gives

τmn =
2(

1− m2

κ2mna
2

) ∫ k−ε

0

(
J ′m(κa)

(1− κ2mn
κ2

)

)2 1

κ

√
1

1−
(
κ
k

)2dκ (24)

Figure 5 shows the radiation efficiency of modes m = 1, 2, 3, 4 for n = 1 and n = 2, note m =
0, n = 1 is always cut-on so was avoided.
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Figure 5: Radiation efficiency of the modes m = 1, 2, 3, 4 for n = 1 (left) and n = 2 (right), shown
with the associated mode shapes

Figure 5 shows that the radiation efficiency of all modes have a resonance peak around cut-off of
approximately 1. The figure shows that increasing azimuth increases the asymptotic low frequency
fall off of τmn. Morfey6 showed that τmn ∝ (ka)2m+2 in the low frequency limit, which agrees with
the Figure. It is also worthy of note that mode m = 1, n = 1 acts as a dipole which has τmn ∝ (ka)4,
a classical result. The Figure shows that modes of the same radial order n have the same low frequency
asymptotic fall off. To investigate this independence of n, Figure 6 shows the radiated components
of the mode m = 9, n = 6 and m = 12, n = 10 for ζ = 0.50 and a plot of the modulus of the
radial velocity against radial distance from the center of the duct of the mode m = 9, n = 6 for
ζ = 1.00, 0.10 and 0.01, calculated using Eq. 7.

Figure 6: Radiating velocity of the mode (9,6 left) and (12,10 right) for ζ = 0.50

Figure 6 shows the radiation is localized towards the edge of the duct, showing the low frequency
asymptotic behavior of modes is identical to classic edge effect radiation. This gives explanation to
why the efficiency of the modes is independent of n, as the number of nodal circles do not affect
the radiation at the circumference of the duct, which are the dominating radiated components of the
low frequency asymptotic behavior. From the radial velocity plot in the Figure it can be seen that
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the location of the maximum velocity moves further outside the duct with decreasing frequency. At
cut-off the maximum radiated velocity is located at the duct wall, and the maximum velocity within
the duct is always located at the wall showing the edge effects.

The relationship between τmn and ka is investigated mathematically by representing the Bessel func-
tion in terms of an infinite series defined as

Jm(κa)→
∞∑
v=0

−1v(κa)(m+2v)

2(m+2v)v!(m+ v)!
. (25)

Taking the differential, squaring and substituting into Eq. 24 gives

τmn =
2Bmn(

1− m2

κ2mna
2

) ∫ k−ε

0

∞∑
v=0

∞∑
v′=0

(κa)(2m+2v+2v′−2)
[

1

(1− κ2mn
κ2

)2

]
1

κ

√
1

1−
(
κ
k

)2dκ (26)

where for brevity the constant Bmn is defined

Bmn =

∞∑
v=0

∞∑
v′=0

−1(v+v
′)(m+ 2v)(m+ 2v′)

2(2m+2v+2v′)v!v′!(m+ v)!(m+ v′)!
(27)

The radiation efficiency has it’s most interesting properties for low frequencies at low κa, acknowl-
edging κa is bounded by 0 and ka. For small κa the approximation κa << κmna can be made, mul-
tiplying numerator and denominator by (κa)2 for the fraction in the square bracket allows (κmna)4 to
be taken out of the integrand, note that to absorb 1

κ into (κa)2m+1 requires multiplication by a, giving

τmn ≈
2aBmn

(κmna)4
(
1− m2

κ2mna
2

) ∫ k−ε

0

∞∑
v=0

∞∑
v′=0

(κa)(2m+2v+2v′+1)

√
1

1−
(
κ
k

)2dκ (28)

using the substitution b = m+ v + v′ and s = κ
k , where dκ = kds gives

τmn ≈
2Bmn

(κmna)4
(
1− m2

κ2mna
2

) ∞∑
v=0

∞∑
v′=0

(ka)(2b+2)

∫ 1

0
s(2b+1)

√
1

1− s2
ds (29)

From Gradshteyn and Ryzhik7
∫ 1
0 s

(2b+1) 1√
1−s2ds = (2b)!!

(2b+1)!! , where b!! = b × (b − 2) × (b − 4)...

and the last multiplier is 1 for odd or 2 for even b, solving the integral gives

τmn ≈
2Bmn

(κmna)4
(
1− m2

κ2mna
2

) ∞∑
v=0

∞∑
v′=0

(ka)(2(m+v+v′)+2) (2(m+ v + v′))!!

(2(m+ v + v′) + 1)!!
(30)

The number of terms used is investigated to form a more practical formulation. The special case of
only considering the first term (zeroth term) is of the form
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τmn ≈ (ka)2m+2 (2m)!!

κ4mna
4(1− m2

κ2mna
2 )22m−1(m− 1)!2(2m+ 1)!!

. (31)

It can be seen from Eq. 31 that the proportionality relationship τmn ∝ (ka)2m+2 derived by Morfey6

is highlighted . Increasing m sharply decreases the efficiency. Clearly therefore the cut-off modes are
only important for low order azimuthal modes. The weak dependence on n is shown in the equation
by κmn in the denominator which slowly increases with n, but n has considerably less influence than
m. Another case worthy of note is considering the sum to n terms (considering the zeroth to the n− 1
term). Figure 7 shows a comparison between the numerical expression for τmn from Eq. 24, the
approximate expression for τmn from Eq. 30, plotted against ζ for the modes m = 1 n = 1, 2 and 10
considering one and n terms.

Figure 7: Comparison between exact and approximate expression for τmn for the modes m = 1, n
= 1, 2 and 10 considering one (left) and n terms (right) in Eq. 30

Figure 7 shows that the exact and analytic equations converge for small ζ. The Figure shows that
the larger n result in more oscillations before the solution settles to the first term approximation,
the number of oscillation is proportional to n, the frequency of the turning points are located at the
cut-off frequencies for modes of lower radial order, hence why the n = 10 case has 10 turning
points corresponding to the cut-off ratios of n = 9, 8 etc. The very small dependence on n is also
demonstrated at very low frequency, although near cut-off the efficiency is dependent on m and n.
The first term is shown to be dominant at low frequency and for the n = 1 case.

6. CONCLUSION

In this paper we have shown that cut-off modes potentially radiate to the far-field efficiently, mostly
affecting the sideline directions. We have derived an expression that allows the behavior of a single
mode to be understood - using a Fourier approach to decompose the velocity into radiating and non-
radiating components. We have presented 3 regions of directivity that indicate the location of the
major lobe - which near cut-off is around 90 ◦.
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Decomposing the waves allows us to explain mathematically and physically a result published by
Morfey,6 that the low frequency asymptotic behavior of the efficiency behaves as τmn ∝ (ka)2m+2,
implying the most important cut-off modes are those of lowest azimuthal order. An approximate
expression for τmn has been derived which (for ζ < 1) matches very well for n = 1, we have shown
that the approximation can encompass n > 1 modes by considering a summation to n terms in the
expression. This work is most applicable when the source is located near the open end of the duct,
which is often the case for marine ducted fans.
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