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Protein-Ligand Binding Free Energies From Ab-Initio Quantum Mechanical
Calculations

by Lennart Gundelach

The accurate prediction of protein-ligand binding free energies with tractable
computational methods has the potential to revolutionize drug discovery. Modeling
the protein-ligand interaction at a quantum mechanical level, instead of relying on
empirical classical mechanical methods, is an essential step toward this goal. In this
body of research, we explore the QM-PBSA method to calculate quantum mechanical
free energies of binding based on full-protein linear-scaling density functional theory
calculations. We apply the QM-PBSA method to the T4-lysozyme L99A /M102Q
protein and investigate the convergence, precision, and reproducibility of the
QM-PBSA method. Additionally, we compare three different exchange-correlation
functionals and different empirical dispersion corrections. Building on our findings in
the well-characterized T4-lysozyme we calculate quantum mechanical protein-ligand
free energies of binding for a set of ligands binding to the pharmaceutically highly
relevant bromodomain containing protein 4 (BRD4) after an extensive investigation of
the protein system at the classical mechanical level. BRD4 plays a key role in many
cancers. The inhibition of BRD4 can suppress the cancer growth of acute myeloid
leukemia, diffuse large B cell lymphoma, prostate cancer, and breast cancer. We
demonstrate the predictive power of QM-PBSA in BRD4 as compared to its classical
mechanical analog MM-PBSA and show, beyond doubt, that full-protein quantum
mechanical calculations are both viable and tractable on modern supercomputers and

in an academic context.
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Chapter 1

Introduction

Proteins are the fundamental building blocks of life and are involved in almost every
physiological process in the human body. Consequently, proteins play a crucial role in
virtually all diseases. By changing the function of specific proteins, the processes
involved in disease pathways can be altered or disrupted, leading to a reduction in
symptoms or complete recovery. This is achieved by administering pharmaceutical
drugs which circulate through the body and bind to the target protein, changing or
disrupting its function. The discovery of new molecules which can bind to target
proteins is one of the fundamental challenges of medicinal chemistry. Traditionally,
the strength and selectivity of the binding of a small drug molecule to a target protein
were determined experimentally through a variety of experimental protocols of
varying accuracy. However, this approach requires the synthesis of the candidate

molecule and expensive and time-consuming experimental procedures.

For more than 60 years, chemists have been pursuing computational methods for
predicting the binding of drug molecules, also referred to as ligands, to proteins as an
alternative approach. While today computational methods play a key role in
pharmaceutical drug discovery and design, our ability to predict the binding of
diverse small molecules accurately and reliably to the thousands of proteins in the
human genome is still limited [3-6]. One contributing factor is that most
computational methods developed to predict protein-ligand binding solve only the
equations of classical mechanics, ignoring, for the most part, the more complex and
subtle role that quantum mechanical interactions play in protein-ligand binding.
Ignoring quantum mechanical effects greatly simplifies the mathematics and
computational cost of simulations but omits fundamental physical interactions like
polarization, charge transfer, and many-body quantum effects [7-9]. While there are
classical mechanical simulations techniques that aim to include some of the quantum
effects via severe approximations or empirical corrections, they fundamentally fail to
capture the full range of chemistry and physics that occurs at the interface of a protein

and a drug molecule[7, 8].
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In recent years, the pursuit of quantum mechanical protein-ligand binding
simulations has become tractable due to methodological advancements and the
availability of ever-increasing computational resources. This body of research explores
the application and development of one such quantum mechanical protein-ligand
binding free energy method, QM-PBSA.

In the following two chapters, the theoretical background and mathematical
underpinning of protein-ligand binding are introduced, as well as the computational
techniques utilized. The QM-PBSA quantum mechanical binding energy method is
motivated and described in detail. In Chapter 4, the QM-PBSA study of 7 ligands
binding to the protein T4-lysozyme is presented in which the optimal method
parameters, like the choice of exchange-correlation functional and convergence of the
quantum mechanical binding energies, are explored. Chapter 5 introduces the protein
system BRD4 and our thorough classical mechanical investigation, which lays the
foundation for the QM-PBSA quantum mechanical study of BRD4. The conclusion in
Chapter 6 summarizes the overall findings and outlines potential future extensions to

the research presented in this thesis.



Chapter 2

Background

FIGURE 2.1: Stick and ribbon representation of the BRD4(1) protein structure. A small
ligand, represented as a space-filling model,is also shown in the binding site.

2.1 Protein-ligand binding

Protein-ligand binding refers to the reversible non-covalent interaction in which a
protein and second molecule form a complex. This process is shown diagrammatically
in Figure 2.2. The term ligand refers to a molecule that binds to the protein with high
affinity and specificity and could be a small drug-like molecule, second protein, or
diverse range of bio-molecules. In the context of this thesis, protein-ligand binding
refers to a small drug-like molecule binding to a target protein. The interaction is often

described as molecular recognition, where an active site on the protein “recognizes”
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FIGURE 2.2: Simple schematic of the binding of a drug molecule (ligand) to the bind-
ing site of a target protein to form a protein-ligand complex.

specific ligands. The simplified metaphor of a lock, the protein binding site, and key;
the ligand, conveys the basic idea of protein-ligand binding and is schematically
visualized in Figure 2.2.

A more nuanced view of protein-ligand binding acknowledges the vital role of
conformational changes in the protein-ligand binding site. The induced fit theory [10]
describes the possibility of ligand-induced conformational changes in the binding site
in which protein residues are re-arranged into the necessary alignment for binding.
The theory of conformational selection [11] posits that the unbound protein can adopt
different conformations and that the ligand may preferentially bind to some of these
conformations. In reality, both the conformational motion of the protein and ligand
flexibility play a crucial role in protein-ligand binding. Complexation is a
fundamentally dynamic process. The binding is mediated through the complex
interplay of non-covalent interactions like van der Waals, hydrogen bonding,
hydrophobic forces, halogen bonding, and 7= — 7r interactions. Additionally,
interactions with the surrounding solvent and local conformational changes in the
binding site play an important role. The interplay of these varied factors makes
protein-ligand binding incredibly complex and difficult to predict accurately. As a
result, no single physical or chemical theory can explain which ligands will bind how

strongly to a given protein binding site and why.

Experimentally, protein-ligand binding is described by the binding constant and the
binding affinity (Gibbs free energy of binding). Consider the binding of protein A
with ligand B as a chemical reaction A + B — AB and the unbinding as AB — A + B.
At equilibrium, the binding transition and unbinding transitions occur at the same

rate, which is expressed in terms of on-rate, k,,, and off-rate constants, k¢, as follows,
kon [A] [B] = koff[AB]r (2.1)

where [A], [B], and [AB] are the concentrations of the unbound protein, unbound

ligand, and bound complex, respectively. The binding constant, K4, which is simply
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the equilibrium constant of the above reactions, is then defined as,

_ kon  [AB]
KAB == koff = m (22)

The experimentally observable binding constant can be related to the theoretical Gibbs
free energy change upon binding (Equation 2.6) to compare experimental results with
theoretical or computational predictions. The Gibbs free energy of binding, or binding
affinity, describes the strength of binding, or in other words, the energetic benefit of
complexation. If the total energy of the complex is lower than that of the individual
constituents, binding is energetically favorable. The greater this energetic difference,
i.e., the more negative the binding free energy, the more favorable the binding of the
ligand to the protein.

The following section outlines the mathematical description of protein-ligand binding
and the formulation of protein-ligand binding energies, the prediction of which lies at
the heart of this research.

2.2 The statistical mechanical basis of protein-ligand binding

free energies

The binding free energy is a measure of the affinity of the process by which two
molecules form a complex by non-covalent association. What follows is a derivation
of the key equations that facilitate a mathematical description of protein-ligand
binding and form the foundation for understanding the computational approaches
used to predict protein-ligand binding energies. First, the chemical potential of a
solute molecule in a solvent is derived (2.2.1.1), followed by the chemical potential of a
complex of solutes in solvent (2.2.1.2). From this, an expression for the relative
binding free energy is obtained (2.2.2). This expression is simplified by the
introduction of an implicit solvent model (2.2.3). Finally, the entropic contributions to
binding are considered (2.2.4).

2.21 Protein ligand binding in equilibrium at standard state

The derivations presented here closely follow those in [12]. The reaction of interest
may be defined as,
A+ B — AB(Complex), (2.3)

Where A is a protein, B a ligand and AB represents the complex formed upon binding.

The equilibrium state of this reaction in terms of the chemical potential, y is given by,

Msol,A + Msol,B = Hsol, AB- (2.4)
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To compare properties calculated for different systems and to simplify the
mathematical form, a hypothetical standard state is defined [12]. Each species
(A,B,AB) is at the standard concentration of C% = 1 M in the solvent but does not
interact with other molecules of A, B or AB. In this limit of low concentration, the
chemical potential i, ; of each species is equivalent to the standard state chemical
potential ;1201, ;- The standard free energy of binding is then given by,

0
AGyp = .ugol,AB - :ugol,A - Vgoz,B/ (2.5)

where u° are standard state chemical potentials. This can be linked to experiment via
the binding constant K 45, using the expression,

AGY 5 = —RTInKp. (2.6)

The binding constant K 45 is dimensionless because concentrations are given in M and
the standard concentration is defined as C = 1 M in the hypothetical standard state
defined above.

2.2.1.1 Solute molecule in solvent

At standard state, the expression for the chemical potential of molecule A in solution,
in terms of the canonical partition functions of molecule A in solvent, Qn 4(Vn,4), and
the solvent without solute, Qno(Vny) , is given by,

1 Ona(Vna)

+ POV, 2.7
VN,aC% Qno(Vnp) A @7

0
Vsol,A = —RTIn

where V4 = Vy 4 — Vi is the change in volume due to the addition of one solute
molecule to the N molecule solvent. % 1 4 1s the standard chemical potential of the
solute in the gas phase plus the work (isobaric) needed to transfer the solute into the
solvent. The work term is usually negligible.

Consider the general classical Hamiltonian,

Ma+Msg pZ
H(pa, ps,PaTs) = ) ﬁ + U(y7s), (2.8)
i 1
where M4, Mg are the number of atoms in solute A and the solvent, respectively, 7/,
are the lab frame coordinates of the solute atoms and 7, those of the solvent atoms. p4
and s are the momenta of the solute and solvent atoms, respectively. U(7,,7p) is the

otential energy of the system at solute configuration #, and solvent configuration 7s.
p 34 y & A &
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The ratio of canonical partition functions in equation 2.7 is then given by,

2
Ona S APadps [ dradrsexp{—p [ Lot u(e), 7o) |
N 2
Qno oA fdﬁs fdi_’s exp{—‘B [Zf\iﬂﬁ_ﬁ 2711'11' + u(fs)] }

(2.9)

The momentum integrals are over all momentum space, i.e. from —oo to co. The
positional integrals are overall atomic configurations in which the molecule A is intact
and contained inside the container/simulation cell. 04 is symmetry factor and equal
to 1 for non-symmetric molecules. A constant prefactor, which will cancel in binding
energy calculations has been omitted. The prefactor consists of a term 13, where & is
the Planck constant, which makes the partition function dimensionless, and a factorial
term for counting the indistinguishable solvent particles. In the summation in the
denominator, the sum begins at i = M4 + 1 to sum only over solvent molecule

momenta.

To simplify this integral, the lab frame coordinates of the solute 7/, can be split into
internal and external coordinates by defining a molecular reference frame for the
internal motion of the molecule. The choice of molecular reference frame is arbitrary
and does not effect the final free energies. Three atoms are used to define the
molecular frame. Atom one (al) defines the origin and is at position (0,0, 0) in the
molecular reference frame. The straight line connecting al and atom 2 (a2) defines the
direction of the x-axis. Thus, in the molecular reference frame, a2 is always on the
x-axis, i.e. (x,0,0). The direction of the y-axis is define as that of the vector connecting
a2 and atom three (a3) minus the x-component. The z-axis is defined as the vector
cross product of the x- and y-axis. Thus a3 always lies in the plane z = 0, i.e. (x,y,0).
The position and orientation of all other atoms of the molecule are define with respect
to this internal molecular reference frame. The 6 degrees of freedom describing the
positions and orientations of al, a2 ,and a3 with respect to the lab frame are termed
the external coordinates of the molecules and denoted by

z A = (Ra1, Ra2, Ra3, Ca1, Ca2, Ca3). The remaining 3M 4 — 6 degrees of freedom (DOF) are
termed the internal coordinates of the molecular frame and denoted 7 4.

Note now, that the potential energy U only depends on the relative position and
orientation of solute and solvent molecules and not on the position of the solute with
respect to the lab frame, i.e. U is not a function of 5 A. Hence the integrals in 2.9 over
the external coordinates can be evaluated directly beginning with the three positional
external DOF,

AR, = Vya, (2.10)

VNa
where V4 is the system volume at equilibrium at standard pressure of 1 atmosphere.
Similarly, using spherical polar coordinates, the three orientational DOF can be
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integrated out,

T 21 27
/ singdd [ dy [ dp = 4n[— cos 6] = 872 (2.11)
=0 =0 $=0

Thus, splitting the positional coordinates into internal and external coordinates, the
external coordinates can be integrated out of the partition functions leaving a factor of
87'[2 VN, A-

Under approximation of classical mechanics, the momentum terms can likewise be

integrated out yielding a factor of (27rmz-RT)% for each atom, as shown below.

=1

- /_o:odﬁAexp{—[S [zpni]}exp{—ﬁ {2’;%2]} (2.13)

Ma+Ms

s 2
- 1 /_mdﬁAeXP{—ﬁ LZ;J}, (2.14)

applying the standard integral,

/oo dxexp{—ax*} = \/f, (2.15)

Ms+Mg 5
I= [[ (7mRT)} (2.16)
i=1

o0 MatMs 2
I:/mdﬁAexp{—ﬁ[ Z 21?’;11]} (2.12)

In the ratio of canonical partition functions, the momentum contributions from
solvent atoms cancel, as they are present in both Qn 4 and Qx . The final expression
for the standard chemical potential of molecule A in solvent, in terms of the internal
Cartesian coordinates of the solute and the solvent coordinates, 74, 7s, is,

;ugol,A = —RTIn

8 z ]
S T[rmRT)IENA| 4 POy, 2.17)
(o ZN

where 04 is the symmetry number of A, and Z are the configurational integrals,
Zna = /exp{—ﬁu(m 7s) ydr adrs, (2.18)

Znn = [ exp{~pU(rs)}ars. (2.19)
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2.2.1.2 Complex of solutes in solvent

The expression in 2.17 for the standard chemical potential of molecule A in solvent
cannot be immediately extended to the standard chemical potential of the complex.
First, the internal and external coordinates of the complex must be defined. By
convention, define the external coordinates of molecule A, the host, as the external
coordinates of the complex. Thus, 5 A describes the position and orientation of the
complex with respect to the lab frame. Upon binding, the external coordinates of
molecule B, {3, become internal coordinates of the complex. They describe the
relative position and orientation of molecule B, usually a ligand, with respect to the
host molecule A. Additionally, define a step function I(},) such that I({z) = 1 for
complexed configurations and I (5 B) = 0 for non-complexed configurations. The

standard chemical potential of the complex is then,

0 87T2 Ma+Mp 5 ZN,AB 0o
Moo = —RTIn o ]‘[ (27tm;RT)? Zes + P'Vyp, (2.20)
1 7
where,
ZN,AB = /I(CB)ng exp{—BU(7a, 7B, Ts, () }d7 adFsdFpdp, (2.21)

and J({p) is the Jacobian determinant of the Eulerian rotation of molecule B relative to
A. o4p is the symmetry number of the complex solute. It can be shown that as long as
I satisfies two conditions, the chemical potential is independent of the choice of I. The
first condition is that the region in which I({p) = 1 should include all configurations
that significantly contribute to the chemical potential of the complex. The second
condition states that the region should not include so large a volume of uncomplexed

configurations that these contribute to the chemical potential.

By substitution of equations 2.21 and 2.18 into equation 2.5, the free energy of binding

at standard state of a host-ligand system is given by,

C® 0408 ZN ABZN )
872 0ap ZN,AZN,B

AGY5 = —RTIn + POAV 43, (2.22)

where AVyp = Vap — V4 — V. All mass dependent terms have cancelled in this

expression. The final pressure term can be ignored at low pressures.

2.2.2 Relative binding free energies

It is often sufficient to calculate relative free energy differences. It follows from

equation 2.22 that the difference in binding free energies at standard state between
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two different ligands B and C in complex with protein A is given by,

B Z _ _
AGYc — AGYy = — RT1n (‘““C) + PY(Vac — Vag) (2.23)
0AC ZN,AB
0B Zn,c 0/ -
— |=RTIn ( Z2ZNE) 4 POV — V) |, (2.24)
0A LN,B

where the first term gives the work of alchemical transformation of ligand B to ligand
C inside protein receptor A. The second term gives the work of the same
transformation in solution. This expression forms the basis for the rigorous but

expensive Thermodynamic Integration (TI) and Free Energy Perturbation (FEP).

2.2.3 Implicit treatment of solvent

The configurational integrals introduced above each involve both the solute and the
solvent coordinates. Consider the interaction of the solute and solvent for a given
configuration of the system,

AU(7a,7s) = U(Ta, Ts) — U(Fa) — U(Fs). (2.25)

Following the same derivation as previously, the standard state chemical potential of
solute A in solution can be re-written in terms of a modified configurational integral,

Z 4, that explicitly separates the contributions from the solute and solvent as follows,

V4
Za= 34 = [expl-plU(ra) + W(ra) }dra, (2.26)
where W(7,) is the work of transferring the solute A in configuration 74 from the gas
phase to the solvent. This term implicitly depends on temperature and pressure and
encapsulates the most important effects of the solvent on the chemical potential of the
solute in solution. The function W is given by,

oy — g (L PI=BAU(A,Ts)} exp{—pU(Fs)}drs
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To show this, start from equations 2.18 and 2.19,

- ZN,A o feXp{—,BU(?A,fs)}dT_’Adi_’S

24 = Zno [ exp{—pU(Ts)}drs o
_ Jexp{—BU(Fa)} exp{—B[U(Fa,Ts) — U(Fa) + U(Fs) — U(Fs)] }dP adFs (2.29)

[ exp{—pBU(Fs) }dFs
_ Jexp{—BU(Fa)} [ exp{—BAU(74,7s)} exp{—BU(Fs) }dFadFs (2.30)

J exp{—BU(7s)}drs

[ exol—BU( ) exo) _RT1n [J&PI=PAUTA Ts)} exp{—pU(Ts) }dFs _ﬁ?
= Jewi-puta) | -rrin| [ expl—pU(rs) }rs [} o

(2.31)
— [ exp{—BU(a)} exp{~BW(74)}drs (232)
= [ exp{=pU(Fa) + W)}, 2:33)

and thus arrived at equation 2.26, the configurational integral of the solute A in
solvent with the solvent contribution W separated from the gas phase potential U.
Similar expressions to the above can be derived for Zp and the complex, Z 4p.

W(74) is usually approximated by an implicit solvent model. These models do not
treat the solvent coordinates 75 explicitly but instead assume the solvent to be
continuous and often homogeneous. As a result, all integrals over the solvent
coordinates vanish from the binding free energy (equation 2.22), leaving only integrals
over the coordinates of the protein, ligand and complex. The above treatment can be
extended to include solvent pH in the solvation model.

2.2.4 Entropy changes in binding

Recall the expression for the standard state binding free energy of a host guest system,

0
C" 0408 ZN,ABZN
872 gap ZN,AZN,B

AGY%5 = —RTIn { ] + POAVy5. (2.34)

This expression contains both the enthalpic and entropic contributions to the binding

free energy. The change in entropy upon binding can be investigated using the

oAGO
0_ _
ASY = < -7 )P, (2.35)

standard relation,

which is the partial derivative of the change in free energy with respect to temperature
at constant pressure. Recall, that the external DOF of the ligand B become internal
degrees of the complex upon binding. Complexation leads to the restriction of these
DOF and hence to a change in entropy. This change in entropy due to only the

external coordinates of ligand B is investigated first and termed the external entropy.
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Recall also, that due to the cancellation of all momentum terms in the binding free
energy, binding does not restrain the momentum space but only the spatial degrees of
freedom.

To determine the external entropy change upon binding, the binding free energy
AGY ; must be re-written in terms of only the exernal DOF of the ligand B. Again, this
is achieved via the definition of a potential of mean force by first defining,

AU(74,78,CB) = U(74,78,{B) — U(7a) — U(7B), (2.36)
AW(7a,78,(B) = W(7a,78,(B) — W(Fa) — W(7B), (2.37)

and then the potential of mean force,

w({p) = —RT x In (2.38)

J exp{—B[AU(74,Tp,{p) + AW (74,75, ()]} exp{—B [U(7a) + U(7p) + W(Ta) + W(7p)] }d7 ad7p
exp{—B[U(7a) + U(7p) + W(7a) + W(7p)]| }dF adFp

(2.39)
= —RTln(exp{—ﬂ [AU(}_’A, 7B, CB) + AW(I_’A, 7B, CB)]}>7A/73’ (2.40)

where ()7, 7, is an ensemble average over the configurations 74 and 7 when the two
solutes are far apart, i.e. un-complexed. Note that both AU (74,75, () and
AW(7,78,(p) — 0 when solutes are widely separated since the inter-molecular
energies will be zero and U(7 4,7, (5) = U(Fa) + U(7g) for { — oo. Hence, w({g) — 0
as { — oo.

The potential of mean force is used to re-write the binding free energy as an integral
over only the external DOF of ligand B,

0
;712(2;}3/I(GB)I(CB)eXP{—/%w(CB)}dég +PAV,  (241)

= —RTIn X + P°AVy3, (2.42)

AG%; = —RTIn [

where exp{—pw({p)} has replaced ZiAfB and the other symbols are as defined
previously.

To find the external entropy change apply equation 2.35 to equation 2.42,

0
ASO = — <8AG(€B>> _ _Rinx—grroinX (2.43)
P

oT oT p’
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where,
RTZEE = RT [ @I @) exp] - (@) [t .44
:RT/I(CB)](CB)GXP{ L }5{;53) rte) (2.45)
! { / MBZSEBU;@;? s [ cBeXpa{w( )T} dé'B] (2.46)
= _%<w(€3)>AB + <aa;(§B)>AB- 247)

Hence,

1 - 1 ow
AShp = —7(AGhp — P'AVag) + = (w(Zp))as — ( a(ﬁB) Jap+ASpyy,  (248)
where S, ~ 0 unless the reaction occurs at constant volume. The external entropy is
the change in entropy under the potential of mean force w({p) if only the external
DOF of ligand B, i.e. (g, were considered. If there are no other DOF, aw(gB) =0and
S?)dv = 0 hence,

1 _ 1
ASY = ——(AGY; — PPAV,p) + f<w(§B)>AB. (2.49)

a
If we assume that at standard pressure P'AV5 is negligible, then the binding free
energy can be written as,

AGY 5 = (w(ZB)) ap — TASY, (2.50)

where (w({g)) ap is the expectation value over all complexed configurations AB of the
potential of mean force, i.e. the ensemble average of the gas phase and solvation
interaction energies where the ensemble average is taken over un-complexed

configurations of A and B.

Returning to equation 2.48 for the total change in entropy upon binding, the change in
internal entropy is defined next. The internal entropy corresponds to the change in
conformational freedom of the solutes upon binding. According to Gilson [12], it is the
entropy over and above the external entropy that is found by treating the internal
degrees of freedom explicitly. It is however still assumed, that the solvation term W
has no entropic component. Because the internal entropy is the entropy over and
5

above the external entropy, it must be equal to ( AB, the only term not included

in the external entropy.
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First recall,

w({p) = —RTIn(exp{—p [AU(Fa,8,{8) + AW (Fa,78,{B)] } )rurpapart (2.51)

—rT1n | S OP{=BIAUCE) + AW(GR)]} exp{—p [U(Ta) + W(Ta) + U(Tp) + W(Fp]}dradry
Jexp{—=B[U(Fa) + W(7a) + U(F5) + W (7] }dF adFs

(2.52)
A
= —RTInX = —RTIn B (2.53)
then,
ow X' R X'
37 = —RInX — RTY = ——w(lp) — RTy, (2.54)
where,
0 (A A" AB
! o o _ - _
X' = 3T <B> B B (2.55)

Consider now each term in the above equation separately. Both terms are divided by
X in 2.54. The first term is,

A/
_ 2.
1 (2.56)

ua\h>‘oa\>i

_ if [U(7a,78,C8) + W(Fa,78,(8)] exp{—B [U(Fa,78,(8) + W(Fa,T8,{8)] }dFadFp
I Jexp{—B [U(7a, 75, C) + W(Fa, 75, Cp)] dFadrs

(2.57)
+1 J [U'(7a, 75, 08) + W' (7a,75,(5)] exp{—B [U(Pa, 75, {5) + W(Fa, 75, {5)] }dTadT5
r Jexp{—B [U(7a,T5,{) + W(Fa, 75, ()] A7 adTp

(2.58)
1

_ _ 1 _ _
T2 (U(Fa,78,CB) +W(Ta,7B,CB))Fa,rg,comp — ?<u/(7AIT_’B/§B) + W'(Fa, 78, {B) )7 75,comps

(2.59)

where the expectation value is over the ensemble of the complex AB. The average is

over the complex coordinates only as U(74,75,(p) + W(F4,75,{g) = 0 when the
solutes are far apart.
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The second term is,

f%; = ]]33/ (2.60)
_ 1 J[U(Fa) + W(Fa) + U(7s) + W(7p))] exp{B [U(Fa) + W(Fa) + U(7p) + W(Fp)| }d7 adTs
T2 Jexp{B[U(Ta) +W(Fa) + U(7g) + W(7p)] }d7 adTp
2.61)
1 J[U(Fa) + W (Fa) +U'(75) + W' (75)] exp{B [U(7a) + W(Fa) + U(75) + W(75)] }dTadTp
T Jexp{B[U(Fa) + W(7a) + U(7g) + W(7p)]}d7 adTp
(2.62)
= % [(U(Fa) + W(Fa))ry + (U(FB) + W(TB))ry — T(U'(Fa) + W'(7a))r, + (U (7B) + W' (7B) )7y ] -
(2.63)

Next, the temperature derivatives of W are assumed to be zero. This corresponds to
neglecting the change in entropy of the solvent. Recall also, that the internal entropy is
given by ( ( ) ) aB. The two terms calculated above are expectation values, i.e. just
numbers, and are not effected by () 45. Only the term —8w({p) is effected. Thus, the
internal entropy of binding is given by,

ASiTh = — 2 (w(Z8) as (2.64)
+ % [(U(7a,78,08) + W(7a,78,(8)) aB — (U(Fa) + W(Fa))r, — (U(TB) + W(7B))#y] -
(2.65)

By combining the internal and external entropy, the binding free energy from equation
2.50 can be re-written as,

AGYs = (w(Zs)) ap — TASS'B (2.66)
= (U(7a,78,(B) + W(7a,78,{B)) aB — (U(Fa) + W(Ta))r, (2.67)
— (U(7) + W(7p))r, — TASE — TASSE — [P°AVap + TASD,, + TASY ] -

The first term is the gas phase plus solvation energy of the complex averaged over the
complex ensemble. Terms two and three are the gas phase plus solvation energies of
the protein A and ligand B over their respective ensembles. Term 4 is the change in
internal entropy, i.e. the change in conformation entropy of the protein and ligand
upon binding. Term 5 is the external entropy which gives the change in entropy due to
the confinement of the ligand external coordinates inside the binding site. The final
three terms in the square brackets are usually assumed to be zero. To some extent, the
change in entropy of the solvent, the final term, is included via the parameterization of
the implicit solvent model. Written like this, the U and W terms capture all the
enthalpic contribution to binding.
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The above expression for the binding free energy of a protein and ligand forming a
non-covalent complex is the basis for many approximate approaches to calculating
binding free energies. The strong similarity of the terms above to those in the popular
MM-PBSA method will be highlighted in later sections and the various approximation
made outlined in detail.
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Chapter 3

Methods

3.1 Classical mechanical protein-ligand free energies of

binding

Because the binding of small molecules to proteins and other large biomolecules is of
central importance in biology and medicine, much effort has been dedicated to
computationally estimating the binding affinities associated with these processes. A
zoo of methods has been proposed since the 60s. First, a brief overview of the different
classical mechanical approaches is given, followed by sections introducing the

methods used in this body of research in greater detail.

3.1.1 An overview of methods

Arguably the most utilized and essential computational method in the context of
protein-ligand binding is molecular dynamics (MD) [13], an atomistic simulation of
the dynamics of interacting atoms. In molecular dynamics, each atom is described by
a set of properties like its mass and charge and a set of parameters that determine its
interatomic interaction with other atoms. So-called molecular mechanics force fields
are used to compute all pairwise interactions between the atoms in the simulated
system, which generally consists of solute molecules in a solvent. From the interaction
energies, forces are derived, and the dynamical motion of the system is simulated at
an atomistic level of detail. MD forms the foundation for most binding free energy
protocols as they rely on the ability to sample multiple different physical
configurations of the protein-ligand complex, its unbound constituents, or the binding
pathway of the ligand.

Generally speaking, the different approaches to estimating protein-ligand binding
may be divided into two categories. The first group is more theoretically rigorous and
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usually derived directly from the underlying statistical mechanical theory but is
expensive and often challenging to implement. The two most notable methods in this
category are free energy perturbation (FEP) and thermodynamic integration (TI). Both
methods rely on chemically transforming molecules through fictitious, yet
theoretically rigorous thermodynamic processes [14].

The second group contains more approximate, often empirically motivated methods
that follow a ”"quick and dirty” philosophy, aiming to provide acceptable accuracy at
relatively low cost/complexity. A hallmark of these methods is severe assumptions
that allow the splitting of the energy function into separable, individually tractable
energy components. This group’s most widely used method is the molecular

mechanics Poisson-Boltzmann surface area method (MM-PBSA) [15].

3.1.2 Molecular dynamics

The basic idea of molecular dynamics is that given the knowledge of the type and
position of a group of atoms, the forces exerted on each atom by all other atoms can be
calculated. Using Newton's classical mechanical equations of motion, the position of
each atom can then be propagated forward in time. This step is repeated iteratively for
tiny time steps, generating a “movie” of the movement of each atom in the system

over time.

The core applications of MD were classified into three groups by Karplus et al. [16].
The first is to sample configuration space, for example, when refining experimental
crystallographic structures. The second aims to calculate the thermodynamic
properties of the system at equilibrium, like atomic mean-square fluctuation
amplitudes. Examining the dynamics of a process over time is the final application of
MBD. All of the above are utilized in the context of binding free energy estimation.

The most basic discretized numerical algorithm for the forward propagation of the
particle positions is the Verlet algorithm. Consider an ensemble of N particles with
mass m; and position vectors ¥;(t) at time t. From Newton’s equations of motion, the
acceleration of the particle m;X = f;(x(t)) = —V,,;V(x(t)) where f;(x(t)) is the force
and and V(x(t)) a scalar potential function called force field in the context of
molecular dynamics. Using the central difference approximation for second order

derivatives, we write,

T e o)
ae "~ ot '
X — 2% X, .
_ Xn+1 (;;;1 + X1 _ f(t), (32)

where the time step §t > 0 and t,, = ndt. Re-arranging the above equation in terms of

%41 and substituting for X(¢) from Newton’s equations of motions yields the
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expression,

f(t
xwlzzzf—@H1+f;)&? (3.3)
Re-writing this in terms of 6t and for each particle i results in the Verlet expression for
the next position,

@G+50=2@U)—@0—50+%§%ﬂ. (3.4)

This discretization error of this integration scheme has order 6+ because the first and
third order terms cancel due to the central difference approach. The initial conditions
at top = 0 are known (¥p and 7y = Xp) but for the calculation of X, the position at ¥;
must already be known. Using a Taylor expansion of Newton’s equations of motion ¥

can be calculated from the known initial position and velocity using,
o 1. .5
X1 &~ Xo + 090t + Evoét . (3.5)

In the context of molecular dynamics simulations, knowledge of the velocity of each
particle in the system is important to compute thermodynamic properties like kinetic
energy and for the temperature control of the simulation. In the basic Verlet scheme,
the velocity is not explicitly given. There are two approaches to resolving this
limitation. First, the velocity can be estimated at time ¢ from the position terms using

the mean value theorem,

50)%:ﬂt+5wi;ﬂt_5ﬂ,

(3.6)

with order 6t error. The velocity step is always one step behind the position. The
larger error in the approximation of the velocity, 6 2, as compared to the position, & t4,
is avoided by the second approach to explicitly incorporating the velocity. The
Velocity-Verlet algorithm is a modification of the simple Verlet algorithm in which the
current position and current velocity are used to compute the next step rather than the
current and previous position in traditional Verlet. Thus the position and velocity are
known simultaneously at no increased memory cost. The equations for the
Velocity-Verlet, which has the same order accuracy as the simple Verlet, are,

x(t) +o(t)ot + ~%(t)ot (3.7)

B(t) + &(t + ot)
2

x(t+ 0t)

a(t+6t) = x(t) +

St. (3.8)

A basic algorithmic implementation of the Velocity-Verlet, written in pseudo-code, for

a single particle would go as follows:

pos = (0.0,0.0,0.0)
vel = (1.0,2.0,3.0)
acc = (0.0,0.0,0.0)
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mass = 1.0
dt = 0.001

for i in range(start,end):

new_pos = pos + vel * dt + accxdtxdtx0.5

new_acc = apply_force_field(new_pos,mass)

new_vel = vel + (acc+new_acc)*dt*0.5

pos = new_pos

vel new_vel

acc new_acc

where apply_force_field() is a function call of the molecular dynamics force field,
which calculates the force, or acceleration, on each particle based on its current

position. The following section introduces the concept of force fields in more detail.

3.1.2.1 Molecular mechanics force fields

The interaction energies and, subsequently, forces between the atoms are calculated
using molecular mechanics force fields. These consist of energy terms summed,
pairwise, over each atom in the system. A basic force field commonly used in the
context of biomolecular systems will include terms for both bonded (covalent)
interactions and non-bonded (non-covalent) interactions [17] as shown in Equations
3.9,3.10 and 3.11.

Etotul :Ebonded + Enonbonded (39)
Etotal :Ebonds + Eangles + Edihedmls + Eelectrostatic + EVdW (310)

N
Eotar = Y Ko(b—bo)*+ Y Ko(0—60)>+ Y. Y Kpu(1l+cos(ng—du)) (3.11)
bonds angles dihedrals n=1

12 6
qiq; <Umz’n,ij> <(Tmm,ij>
+ +Y e vy
247'[601"1‘]' ZZ]: K [ rij ij

ij

The bonded interaction is split into bond stretching, angle bending, and dihedral
torsion as shown in Equation 3.11. The stretching and bending terms are formulated
as harmonic oscillators and have two parameters each, a force constant (K, Kg) and
the equilibrium value (by, ). The torsion term is more complicated and has more

parameters, and the implementations vary significantly between force fields [18].

The non-bonded term in Equation 3.11 usually comprises an electrostatic and van der

Waals term. The electrostatic term is computed additively with Coulomb’s law from



3.1. Classical mechanical protein-ligand free energies of binding 21

the fixed atom-centered charges g; and g, the distance between the atom pair, and the
electric constant €p. The van der Waals term uses Lennard-Jones-type potentials
characterized by a well-depth €;; and 03y, 4, the distance at which the potential energy
is zero. The typical choice of exponents 6 and 12 is borne of computational
convenience, as the 12th power can be obtained cheaply by squaring the sixth power.
However, close to the atom centers, the short-range repulsion rises exponentially, and

these terms do not describe this behavior well.

Empirical parameters introduced above are fit against high-accuracy quantum
mechanical simulations or experimental data. This process is referred to as
parameterization. Different force fields may include additional cross terms, like
approximate polarization, or are parameterized for a specific class of systems like
proteins, small molecules, or solvents. Modern force fields with well-defined domains
of applicability go far beyond the simple formulation described here [18-21]. The
limitations of classical mechanical force fields are discussed in detail in Section 3.2.1.

What follows is a brief introduction to the molecular mechanics force field utilized in

this body of research.

ff14SB and ff19SB  This family of Amber force fields for proteins has been
developed since the early 90s. The popular ff94 force field was constructed from the
terms in Equations 3.9, 3.10 and 3.11 and described by its authors as “minimalist” in
its functional form [22]. Amber ff99SB improved secondary protein structure balance
and dynamics. ff14SB re-fit all amino-acid side-chain dihedral parameters from an
improved training set [23]. Additionally, parameters for protonation states of
ionizable side chains were implemented. ff19SB [18] is the most recent force field of
the SB family of protein force fields and improves amino-acid-depending properties
and backbone dihedral parameters for every amino acid. A backbone side-chain
coupling correction is also implemented for the first time. In the development of
ff19SB, emphasis was placed on the interchangeability of water models, but usage is

recommended with modern OPC and OPC3 water force field models.

ff15ipq ff15ipq [24] is a continuation of the ff14ipq force field and is built on a
self-consistent physical model. Its flagship feature is that it can derive implicitly
polarized atomic charges in the presence of an explicit solvent. Unlike other force field
fitting procedures, the parameterization of ff15ipq explicitly considers the influence of
the water model on the solute’s charge distribution. Additionally, two sets of force

tield parameters are fit, one in the presence of solvent and the other in the gas phase.

GAFF1 and GAFF2 The general Amber force field, or GAFF, is a force field for small
organic molecules developed by Wang et al. [25]. It is compatible with all Amber force
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tields for proteins and features parameters for most pharmaceutical molecules. Its
functional form is equivalent to Equations 3.9, 3.10 and 3.11. GAFF can uses
molecule-specific partial charges generated by semi-empirical quantum mechanical
calculations. GAFF2 is the second iteration of the GAFF force field.

Water force fields  Various water-specific models representing the bulk solvent
water molecules in molecular dynamics simulations exist. The simplest water models
are rigid and describe only non-bonded interactions. Their potentials contain an
electrostatic (Coulombic) and dispersion-repulsion term (Lennard-Jones potential). In
3-point water models, each site corresponds to an atom and has a point charge, but
only the oxygen atoms are assigned Lennard-Jones parameters. In rigid water models,
the geometry of the atoms is held fixed. This dramatically reduces the computational
cost and allows the explicit inclusion of millions of solvent molecules in large-scale
molecular dynamics simulations. TIP3P is a popular example of a 3-point rigid water
model [26]. SPCE is a rigid 3-point water model that additionally includes an average
polarization correction term [27]. Fully polarizable water models exist but are not

commonly used and not explored further in this thesis.

OPC is newer, rigid, and also non-polarizable. However, it employs a 4-point
approach with a single van der Waals center on the oxygen nucleus [28]. The fourth
point in OPC is a dummy point located near the oxygen and between the two
hydrogens. The dummy point is given a negative charge which can improve the
electrostatic distribution of the explicit water molecule. Furthermore, OPC differs
from other water models because it places fewer constraints on the relative positions
and charges during parameter fitting. Improved accuracy in the thermodynamics of
ligand binding over older water models like TIP3P has been demonstrated with OPC
[28]. OPC3 is a 3-point version of the OPC water model, which maintains significant
improvements in accuracy over TIP3P and SPCE [29].

3.1.2.2 Molecular dynamics ensembles

In setting up a molecular dynamics simulation, we constrain a collection of atoms in a
simulation cell and aim to study the dynamics of this system in isolation. In reality,
however, such a system exists in the context of a wider environment with which it
interacts. We must define to what extent the simulated system may interact with its
surroundings. The different types of thermodynamic ensembles describe the degree of
separation from the surroundings. In the context of molecular dynamics simulations,
the microcanonical, canonical, and isothermal-isobaric ensembles are the most

relevant.
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In the microcanonical ensemble, the simulation cell is fully isolated from the
surroundings. This ensemble is abbreviated as NVE because the number of particles
(N), the volume of the simulation cell (V), and total energy in the system (E) are
constant throughout the simulation. Thus throughout the MD simulations, potential

and kinetic energy are exchanged while the total energy is conserved.

For the simulation of proteins, the canonical and isothermal-isobaric ensembles are
more commonly used. In the canonical ensemble, the system is immersed in a heat
bath of constant temperature T. A heat bath is considered to be sufficiently large such
that heat moving from the system to the bath cannot change the temperature of the
bath. The system’s temperature is held constant through heat transfer with the bath.
In addition to the constant temperature, the number of molecules (N) and volume of
the simulation cell (V) are held constant, leading to the nomenclature NVT. In this
ensemble, the total energy of the system changes. Computationally, a thermostat
algorithm is required to add and remove energy from the boundary of the simulation
cell. The Berendsen [30] and Anderson [31] thermostats are popular choices.

Finally, in the isothermal-isobaric ensemble, the system’s volume can change, but the
system’s pressure must match the pressure exerted on the system by the
surroundings. Additionally, the system is submerged in a heat bath of temperature T,
as in the canonical ensemble. The number of particles also remains fixed, leading to
the nomenclature NPT. In addition to the thermostat regulating heat transfer, a

barostat is needed to control the pressure.

3.1.2.3 Periodic boundary conditions and particle mesh Ewald summation

To perform molecular dynamics on a computational unit cell of finite size, the
boundary conditions along the edges of the simulation cell must be defined. Consider
the molecular dynamics simulation of a protein in an explicit solvent. If rigid walls
bound the simulation cell, the interaction of the solute and solvent molecules with the
boundary would impact the bulk properties of the system. To circumvent this
interaction with the boundary, periodic boundary conditions are employed. An
infinite number of exact replicas or images of the simulation cell are constructed
around it. Only the atoms in the original simulation cell are explicitly considered. If a
particle leaves the simulation cell on one side, its replica from the adjacent cell enters
on the opposite side of the simulation cell. When studying non-periodic systems like a
protein in solvent, the size of the simulation cell must be sufficient to prevent the
solute from interacting strongly with its images in the adjacent cells. In practice, this is
achieved by adding a sufficiently deep layer of solvent molecules around the solute,

unusually about 10 A, to screen any self-interaction of the solute.
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To avoid calculating the interaction of the simulated system with infinite replicas of
itself at increased distances, and to reduce the computational cost, the non-bonded
interactions, as described by the molecular mechanics force field, are truncated.
Because of the rapid decay of the Lennard-Jones interactions with distance, they are
usually truncated beyond 8 A. A tail correction is computed for the contribution from
beyond the cutoff distance by assuming the atoms are isotropically distributed beyond
the cutoff. A further correction is required to ensure proper energy conservation
despite the discontinuity in the potential introduced by the truncation of the

Lennard-Jones interaction.

The electrostatic interactions are much more long-ranged and require more
sophisticated treatment. Ewald summation [32] provides a computationally efficient
solution. The electrostatic interaction is divided into one short-range and one
long-range term. While the short-range term is calculated normally in real-space, the
long-range term is calculated in reciprocal-space using a Fourier transform. Because
the short-range interactions converge quickly in real-space and the long-range
interactions converge quickly in Fourier-space, they can be truncated with little loss in
accuracy. The computational implementation of this approach is called
particle-mesh-Ewald (PME) and uses the highly computationally efficient fast Fourier
transform [33]. The PME requires periodic boundary conditions and a charge-neutral

simulation cell.

3.1.2.4 Molecular dynamics in Amber20: a simulation from start to finish

A brief overview is given of the steps involved in setting up and running an MD
simulation of a protein-ligand complex in Amber [34]. The general procedure

translates to any other MD simulation program.

First, knowledge of the atomic positions of each atom in the protein-ligand complex is
required. Crystallographic structures are generally taken as a starting point and
distributed in the PDB file format. Any unwanted molecules, ions, or solvent
molecules are stripped from the PDB file. Hydrogen atoms, which are not always
resolved in crystallographic structures, are added to the structure using Amber’s LEaP
utility. For amino acids with non-standard protonation states, the residues names in
the PDB are changed accordingly to ensure correct placements of hydrogens. The
utility pdb2amber can be used to ensure atom names and atom types correspond to

the conventions used within Amber.

Suppose a ligand is present in the structure. In that case, the partial atomic charges for
each atom in the ligand can be calculated using Antechamber with the semi-empirical
quantum mechanical AM1-BCC method [35]. Next, LEaP is used to load the desired
force field parameters for the protein and ligand, along with the ligand partial
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charges. A water force field is also loaded if the system is to be solvated. Ions to
neutralize the total charge of the system are added where necessary. Next, the solutes
are solvated in pre-equilibrated boxes of explicit waters corresponding to the choice of
water force field. Finally, the necessary input files for MD in Amber are generated.

Before a production simulation can be started, however, the system must be
thoroughly equilibrated. Equilibration occurs in several steps that involve
minimization, heating the system to the temperature of the heat bath using the NVT
ensemble, and adjusting the system volume and pressure in an NPT ensemble. Many

philosophies for “good” equilibration exist.

The production simulation can be set up when the system is deemed sufficiently
equilibrated. Key considerations are the choice of ensemble, usually NVT or NPT, the
choice of a thermostat and (if necessary) barostat, and the length of the simulation.
The SHAKE algorithm [36] is commonly used to constrain the bonds involving
hydrogen. This is done because due to the small mass of hydrogens, their bond
vibrations have a very high frequency and thus limit the smallest possible time-step.
By freezing these hydrogen involving bonds, longer time steps (usually 0.002 ps) can
be used. This allows for more sampling at a lower computational cost. As introduced
in the previous section, a cutoff distance beyond which non-bonded interactions are
no longer calculated is also set, usually to 8.0 A. The length of the simulation will
depend on the system size, availability of computational resources, and specific goals

of the simulation.

After completion of the simulation, the generated trajectories can be visualized in
molecular viewing tools like VMD [37]. Amber’s Cpptraj [34] can be used to analyze
many aspects of the trajectory, like the positional fluctuation of individual protein
residues or the formation of hydrogen bonds between the protein and ligand. An
ensemble of structures taken from the MD trajectory can serve as input for various
binding free energy methods, like MM-PBSA and MM-GBSA, which are introduced in
the next section.

3.1.3 The MM-PBSA/GBSA method

The MM-PBSA method, introduced by Kollman et al. in 2000 [15], is a popular
end-point method for estimating relative free energies of binding. The method
reduces the computational cost by making two key simplifications: 1) sampling only
at the end-points of the binding process and 2) treating the solvent implicitly.

By sampling only from the binding end-points, the number of configurations required
to converge the free energies is reduced dramatically. The binding pathway or
intermediate states are not sampled like in other, more thermodynamically rigorous

methods. Molecular dynamics simulations are used to generate a representative
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ensemble of configuration that serves as input to MM-PBSA, which is essentially a
post-processing step performed on the output of dynamics simulations. While explicit
waters are used in the dynamics simulation, the water molecules are stripped from the
ensemble structures and replaced by an implicit solvent model in the MM-PBSA
binding energy calculation. What constitutes “adequate sampling” and a
“representative ensemble” is a topic of ongoing research and debate.

In MM-PBSA, the free energy of binding of a ligand, B, to a protein, A, is defined as
the difference of the average free energy, (G), of the complex and its constituents,

AGping = (G*P) = (G*) — (GP). (3.12)

The free energies of the complex, ligand, and protein are deconstructed into the

following terms,
<G> = <EMM> + <Gsolvation> - T<S>/ (3.13)

where (Eppy) is the gas phase molecular mechanics energy, (Gsoroation) is the free
energy of solvation, and —T(S), is an entropy correction term. The gas phase energy is
calculated using a molecular mechanics force field and the solvation energy using the
PBSA implicit solvation model. Hence the name MM-PBSA.

To express the calculated binding free energy in terms of the individual energy and
entropy terms, substitute equation 3.13 into equation 3.12 to yield,

AGbind = <AEMM> + <AGsolvation> - T<AS> = <AHbind> - T<AS>/ (3-14)

where AH = HA8 — HA — H? is the net change in enthalpy upon binding, and AEy,
AGgorpation and AS are defined analogously.

3.1.3.1 The one-trajectory and three-trajectory approaches

There are two approaches to generating an ensemble of configurations for MM-PBSA.
The first approach, which follows naturally from Equation 3.12 above, is to sample the
dynamics of the protein-ligand complex, the unbound protein, and the unbound
ligand separately using three MD simulations. From these, the free energies

(GAB), (G*) and(GP) are obtained. The phase-space of the unbound protein and
unbound ligand are explicitly sampled. Thus, small changes in the conformational
freedom of the ligand and protein upon binding can, in principle, be assessed. This
has implications for the entropic contributions to binding discussed further in Section
3.1.3.5.

More commonly, however, only a single MD simulation of the protein-ligand complex

is run. Ensembles of configurations for the unbound ligand and unbound protein are
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generated by deleting, in turn, one of the molecules from the trajectory of the complex.
The free energies for the unbound ligand, (G?), and protein, (G4), are then computed
from these ensembles. Thus, only a single dynamics simulation of the protein-ligand
complex is needed. Furthermore, all intramolecular energy contributions cancel in
Equation 3.12 for the binding free energy. This reduces noise in the calculation and
improves the convergence of the energy change upon binding.

Some studies report that the single-trajectory approach is more accurate [38, 39].
However, by simulating only the complex, conformational changes of the protein and
ligand upon binding are ignored. Consequently, the snapshots generated cannot be
used to estimate the entropic contribution from the free protein and ligand. It follows
that the single-trajectory approach is only appropriate when no significant structural
changes to the protein or ligand are expected upon binding or if their energetic effects
cancel in the calculation of relative binding free energies. A two-trajectory approach
has also been proposed, in which the free ligand is simulated in addition to the
complex. This would allow the inclusion of the ligand reorganization energy [40].

3.1.3.2 The gas phase term

As described in Section 3.1.2, the gas phase energy, (Epm), computed from classical
mechanical force fields will include terms corresponding to bonds, angles, torsions,

van der Waals, and electrostatic interactions.

Molecular mechanical force fields do not allow for the breaking or forming of covalent
bonds. When the single-trajectory approach is used, the bonded terms therefore
cancel. In the three-trajectory approach, different conformations of the unbound
protein and ligand could lead to minor bonded contributions to the net gas phase

energy, (AEpym).

3.1.3.3 The solvation term: PBSA and GBSA

While molecular dynamics simulations are usually performed with explicit water
molecules, the MM-PBSA binding energy method uses an implicit solvent model that
replaces the water molecules with a continuum solvent. This is one of the two key
simplifying assumptions of the MM-PBSA approach and significantly reduces the
computational cost. In Section 2.2.3 an expression for the work function of transferring
a solute molecule from the gas phase to the solvent was derived. By treating the
solvent implicitly, the integrals over the solvent coordinates vanish from the
expression. This section describes the details of the PBSA and GBSA solvation models.

In Equation 3.13 (Gspjoation) is the mean free energy of solvation of the system. This

term further split into a polar and non-polar term, Gsorvation = Gpor + Gron—pol-
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The polar solvation term  The polar solvation term gives the change in free energy
upon the transfer of a charged molecule from the gas phase to the solvent. It is
calculated by replacing the explicit solvent of the snapshots generated by MD
simulations with an implicit continuum solvent and numerically evaluating the

Poisson-Boltzmann (PB) equation,
Ve(r)Ve(r) = =47 (p(7) + pm (7)), (3.15)

where €(7) is the position-dependent dielectric constant, ¢ is the electrostatic
potential, and p and p,; are the charge densities of the solute and mobile charge
carriers, respectively. The electrostatic potential is given by the Coulombic term in the
molecular mechanics force field. Usually, the implicit solvent is treated as a
homogeneous medium with a constant dielectric, i.e. €(7) = e. Similarly, mobile
charge carriers are not generally considered in PBSA solvation and p,;, = 0. After a
cavity is formed and the solute is placed inside the solvent, the solute volume is
assigned a dielectric constant of 1. Some studies propose using higher solvent
dielectric constants of 2 or 4. In 2011 Hou et al. [41] showed that the choice of the
dielectric constant should depend on the nature of the protein-ligand interface, with
higher charged interfaces benefiting from a higher interior dielectric constant.
However, a follow-up study in 2014 found that an interior dielectric of 4 yielded the
best overall results [42]. For water, the continuum dielectric constant is about 80. The
simplified Poisson equation is then given by,

V() = - Tp(r) (3.16)

where € has two values, one inside the solute and one in the solvent. More advanced
solvent models treat the dielectric constant as in-homogeneous and implement
smooth transition between the solvent (¢ = 80 for water) and solute (¢ = 1,2,4)
regions [43]. The Poisson equation is a three-dimensional partial differential equation
and is solved numerically using a finite-difference method on a discretized grid.

An alternative approach for the polar solvation term is the Generalized Born (GB)
method. It is based on the analytic expression known as the Born expression,

2
AGgorp = — (1 - ! ) 4 (3.17)

for the free energy required to transfer a spherical ion of radius A with a charge g at its

center from the gas phase to a solvent, characterized by a continuum dielectric of €,;.
In this expression, both the solvent-solvent and ion-solvent interactions are
encapsulated and depend on the ion radius A, ion charge ¢, and the solvent
continuum dielectric €,,:. Equation 3.17 is an exact solution to the Poisson equation
for a spherical solute with a single charge at its center. It can be shown that in the limit
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where €,,; — 0,

1/1 1 qiq;
AGgpp = —= | — — e 3.18
solv 2 <€in €out> g /”1'2]' + RZR] ( )

for an arbitrary distribution of charges i inside a spherical solute with internal
dielectric €;,,. R; are called effective radii and depend on the radius of the solute
sphere A and the position 7; of the charges i inside the spherical solute,

2

Ri=A-" (3.19)

Real molecules are, however, not spherical. Suppose we approximate the molecule as a
collection of charges i embedded in spheres of radii a; and assume that the separation
of the spheres r;; is much larger than their radii 4;. In that case, the solvation energy
may be written as a summation over individual Born terms (Equation 3.17).

al 1\ 18&aqg /1
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Generalized Born solvation models seek to find simple analytic formulas similar to

Equation 3.20. A very successful Generalized Born model [44] is given by,

1 1Y qgiq;
AGSDIU ~ <1 - ) E Z ﬁ’ (3.21)
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where fl-]G-B is the GB-kernel [45] and given by,

2
GB _ , (3.22)

)
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where R; are the effective Born radii of atoms in the solute. These Born radii depend
on the true radius of the atoms but also on the radii and positions of all other atoms in
the solute. There are a variety of approaches to estimating the Born radii, but for the
purpose of this thesis, they are treated as empirical inputs to the Generalized Born
solvation model. While the PB solvation term requires the numerical solution of a
partial differential equation, the GB model is a simple summation over atoms in the

solute and thus significantly computationally cheaper.

Studies comparing the MM-PBSA and MM-GBSA methods showed that the accuracy
of the methods is comparable, but system-dependent [39, 41, 42].

The non-polar solvation term  The non-polar term gives the energy required to
form a cavity for the solute in the solvent. Physically it is composed of the cost of

creating the cavity (cavitation) and the dispersion (attractive) and repulsion
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(repulsive) due to van der Waals interactions between the solvent and solute. This
second contribution is referred to as the dispersive term.

In its most basic form, the non-polar term is modeled via the Solvent Accessible
Surface Area (SASA) using the linear relationship,

Gron_pot = YSASA + b, (3.23)

where 7 is related to the surface tension and b is a correction parameter. The most
empirical approach is to fit y, and b to a training set of experimental results [46]. These
terms lose their physical significance in such approaches and are only fitted
parameters. Various algorithms exist to define the SASA, but a common
implementation rolls a fictitious sphere of some pre-defined radius, usually 1.7 A,
across the solute.

Extensions to this approach attempt to explicitly include a van der Waals dispersion
term derived from the solvent accessible volume/area or otherwise [39, 47]. Often, the
dispersive effects are included in an approximate manner by either re-scaling the
surface-tension or parameterizing 7 to account for dispersive effects (GBSA). The MD
code Amber20 computes a separate dispersion term via a surface-integration
approach [48]. More complicated approaches like the polarized continuum model
(PCM), in which the charge distribution across a closed surface around the solute is

calculated, can also be used to estimate solvation energies[49][50].

In theory, the cavitation energy should also contain an entropic contribution from the
re-organization of the solvent around the solute. However, this is usually ignored and
is partially captured by the parameterization of the solvent. Continuum solvent
models ignore specific water interactions. The inclusion of some explicit waters to

circumvent this issue has been proposed [15, 51].

One problem with the non-polar term is that it incorrectly handles the SASA of buried
cavities [46]. A post-hoc correction term can be applied for the cavity filled with a
non-interacting dummy ligand prior to binding. This issue does not arise for binding

sites directly exposed to the solvent.

3.1.3.4 MM-PBSA/GBSA with explicit waters

In traditional MM-PBSA and -GBSA all explicit water molecules are stripped from the
MD trajectory before calculating binding energies. However, it has been found that in
some systems, that including some explicit water molecules as part of the protein can
improve the resulting energies. In 2003 Spackova et al. [52] included the 20 closest
water molecules to the ligand in a DNA duplex system but noticed no drastic impact

on binding energies obtained. In 2009, Wong et al. [53] found that including all
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interfacial water in a protein-protein system degraded results and increased statistical
errors while including only two specific bridging waters produced the correct energy
trends. In a more systematic approach, Maffucci et al. [54] tested the Nwat-GBSA
method in which the N closest waters to the ligand are kept in MM-GBSA
protein-ligand binding free energy calculations. Significant improvements in
correlation to experiment were observed in two of four protein systems and minor
improvements, probably within uncertainties, in the other two systems. The same
group tested the Nwat-GBSA method in protein-protein systems in 2016, finding
improvement in the correlation of up to 30% across 20 protein-protein systems [55]. In
2014, Mikulskis et al. [51] used MM-GBSA to predict the binding energies of 9 ligands
in ferritin and tested the straightforward Nwat method as well as a more involved
approach, aiming to include a contribution from the displacements of water from the
binding site due to ligand binding. Both methods lead to moderate improvements in
the estimated energies, but normal mode entropies were found not to work when
explicit waters are included. Also, in 2014, Zhu et al. [56] included waters within a
cutoff distance of the protein and ligand heavy atoms in four protein-ligand systems
finding significant improvements in correlation in three of four systems.
Improvements were especially significant where water molecules mediated
protein-ligand hydrogen bonds. In 2017, Aldeghi et al. [57] used the Nwat method on
a set of 11 ligands in BRD4 and found a moderate improvement in the correlation of
predicted against experimental binding energies. Furthermore, Guest et al. [58]
showed in 2021 that 5-6 structural waters in the BRD4 binding site are highly
conserved for the vast majority of available crystal structures of BRD4-ligand
complexes and that docked binding poses were improved by the explicit inclusion of
the structural waters as part of the receptor.

3.1.3.5 Entropy in MM-PBSA/GBSA

The change in entropy upon binding is the most challenging term in MM-PBSA to
estimate and usually has the largest statistical uncertainty [39]. Intuitively, AS
describes the change in conformational freedom of the protein and ligand upon
binding. The binding process will change both the positional and orientational
degrees of freedom. Gohlke et al. [59] express the change in entropy as the difference
in the conformational entropy due to motions of the ligand and protein of the bound

complex and the conformational entropy of the free ligand and protein.

In most applications of MM-PBSA, as well as its original formulation by Kollman et al.
[15], the change in entropy upon binding is estimated as the difference in
conformational entropy of the complex and its constituents, as calculated by normal
mode analysis (NMA) [15]. NMA is based on the idea that a system at equilibrium
that is displaced from equilibrium by a small perturbation will experience a restoring
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force that returns it to its equilibrium conformation [60]. At equilibrium, the potential
energy of the systems is considered to be at a global minimum. The global minimum
assumption in normal mode entropy calculations is the assumption that the
protein-ligand complex exists in a unique, low-energy conformation that represents
the global minimum of the potential energy surface. This assumption is used to
simplify the calculation of the normal mode entropy by assuming that the vibrational
modes of the complex are harmonic and that the potential energy surface around the
minimum is parabolic. However, the global minimum assumption may not always
hold true, especially for flexible systems or for systems with multiple low-energy

conformations.

Consider the power series expansion of the potential energy V' as a function of the

coordinates q describing a protein conformation around the equilibrium conformation
9, .
v\’ 1/ %V
V(g) = V(q° — ) it (== nm, 3.24
@~vie)+ (5 ) 1+ (5 ) (.29

where 77; = q; — 49 and g; are the instantaneous configurations of the protein
components. At the equilibrium conformation ¢, the first term in Equation 3.24
becomes a constant, i.e. the energy minimum, and can be set to zero. The second term
is also zero because the derivative at a local minimum is always zero. This leaves the
second order partial differential equation,
1 < 02V

0
1
V(g) = 5 aqlaq,> i = EﬂiHijﬂj, (3.25)

where H;; is the Hessian matrix of second-order partial derivatives of the potential
with respect to the protein components. The molecular mechanics force field gives the
potential energy V. Combining Equation 3.25 with the kinetic energy term,

1 dzﬂi

T(q) = EMW’ (3.26)

where M is the diagonal mass matrix, yields the differential equation,

1 dziji

27 di?

1
+ EWIHZ]ﬂ] =0. (3-27)
One solution to this differential equation is of the form,
i = a cos(wit + &), (3.28)

which describes an oscillation of amplitude a;; and frequency wy around the
equilibrium conformation. Substituting this solution into the equation of motion
yields the eigenvalue problem HA = A A where H is the Hessian matrix, and A
contains the normal mode vectors (eigenvectors). The eigenvalues in A are the squares
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of the frequencies of the normal modes. Using an analytic expression, the normal
mode frequencies are used to calculate the vibrational entropy of the protein system.
Larger vibrational amplitudes correspond to larger entropic contributions of the
normal modes [60]. Because the normal modes are orthogonal, i.e. independent, the
total entropy is a summation over all normal modes. In practice, the protein system is
stripped of explicit solvent molecules and minimized before the normal mode
frequencies are calculated by. To approximate the impact of the solvent, the

calculation is generally performed in an implicit solvent.

The harmonic oscillator approximation assumes that the potential energy surface
around the minimum of the potential is parabolic and that the motion of the system is
described by the harmonic oscillator equation. In diffusive systems, the potential
energy surface is not necessarily parabolic, and the motion of the system is not well
described by the harmonic oscillator equation. The diffusion process involves a
random walk of the particles, and the energy landscape can be complex and
multi-modal. The use of the harmonic oscillator approximation in this context can
result in inaccurate estimates of the vibrational frequencies and associated entropy
contributions. One consequence of the harmonic oscillator approximation for
diffusive systems is that it may underestimate the contribution of low-frequency
modes to the entropy. Diffusive systems typically exhibit slow, collective motions that
can contribute significantly to the entropy, but may not be well-described by the
harmonic oscillator approximation. This can lead to an underestimation of the entropy
contribution, and potentially inaccurate predictions of thermodynamic properties.
Another consequence of the harmonic oscillator approximation for diffusive systems
is that it may not capture the anharmonicity of the potential energy surface, which can
be important for systems with strong intermolecular interactions. The anharmonicity
of the potential can lead to the coupling of vibrational modes and the appearance of
overtones, which can have a significant impact on the thermodynamics of the system.

Quasi-harmonic analysis can take into account anharmonic effects in the potential
energy surface [61]. It is an extension of the harmonic oscillator approximation. In
quasi-harmonic analysis, the potential energy surface is approximated as a sum of
harmonic and anharmonic terms. The harmonic part is calculated is in normal mode
analysis from the Hessian matrix, which describes the second derivatives of the
potential energy with respect to the atomic coordinates. The anharmonic part is
obtained from higher-order derivatives of the potential energy. The anharmonic terms
account for deviations from the harmonic approximation and can be important for

systems with strong intermolecular interactions, such as proteins.

As described in the previous section, often, only a single MD trajectory of the entire
complex is used in the MM-PBSA method, and the structures of the unbound ligand
and protein are extracted by simple deletion of the other solute as well as the solvent
molecules from the simulation of the complex. If these structures are used for the
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entropy calculation, the free protein and ligand contributions are ignored because the
unbound protein and ligand were not sampled. One standard approximation to
address this problem is calculating the relative binding free energies of similar ligands
in the same protein binding site. Given that the ligands are sufficiently similar, the
entropy contributions from the free protein and ligand are assumed to cancel. Often,
this is taken one step further, and it is assumed that all entropy terms cancel. This
implies that the total change in entropy upon binding is the same for two different
ligands. The change in entropy of the solvent is usually completely ignored in
MM-PBSA calculations. To some extent, it is implicitly included via the

parameterization of the implicit solvent model.

Recently, the interaction entropy (IE) method by Duan et al. [62] has gained popularity
because it is a post-processing method that does not require additional simulations
beyond the original MD. The Interaction Entropy method (IE) is based on exponential
averaging of the fluctuation of the protein-ligand interaction energy for electrostatic
and van der Waals energy contributions. The protein-ligand interaction energy, E;’}t, is
defined as the difference in the gas phase energy of the protein-ligand complex and its
constituents, i.e., the separate host and ligand. The fluctuation of the interaction
energy of each snapshot around the ensemble-averaged interaction energy, (E;’}t>, is
calculated, AE;’? = E;’}t — (E;’ﬁ. The interaction entropy is an exponential average of

the fluctuation in interaction energy around the ensemble average,

—TAS = KTIn (¢P2FH1), (3.29)
where,
/SAE“” 1 N 'BAEint(t,)
() = 5 e, (3.30)
i=1

where N is the number of snapshots and is AE;’f (t;) calculated for each snapshot i.

Link to statistical mechanics In section 2.2.4, a derivation of the entropy change
upon binding was presented in some detail. This section shows which of the
theoretically present entropy contributions are included in the MM-PBSA + NMA
framework and highlights some potential issues.

Formally, the change in entropy upon complexation, at standard state, relative to the
change in free energy is defined as,

dAGO
0—_
ASY = ( 7 )P. (3.31)

Recall the separation of the ligand and protein DOF in section 2.2 into internal and
external DOF. Upon binding, the ligand’s external DOF are converted to the complex’s
internal DOF. Intuitively, the external DOF of the ligand are restricted to the binding
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site by the complexation with the protein. This loss of freedom in the external DOF of
the ligand is the fist component of the “external entropy” change due to the external
coordinates of the ligand. The second component is due to the 6 new internal degrees
of freedom from converting the ligand’s external DOF to internal DOF of the complex.

To illustrate this, consider a single-trajectory simulation of the ligand phenol binding
to the protein T4-lysozyme LA99/M102Q), which is the next chapter’s subject. NMA
of the ligand will yield 39 vibrational modes, 6 of which are zero and correspond to
the 6 external rotational and translational DOF. Similarly, the host protein has 7806
vibrational modes with 6 zero-energy modes. The complex has 7845 modes, also with
6 zero-energy modes. Thus, the complex has 6 more non-zero vibrational modes, or
internal DOF, than the host + ligand. This results in the vibrational entropy of the
complex being higher than that of the host and ligand combined, in this case

ASY — Sff};%p — Szggt — S;’ig’ = 2cal ¥ mol'K~!. However, the change in translational
and rotational entropy is negative because the complex only has 6 external DOF while
the host and ligand each have 6. Under the gas phase assumption of NMA, the
translational and rotational entropy are calculated from analytic formulas [63]. The
translational entropy is logarithmically proportional to the total mass. The rotational
entropy is logarithmically proportional to the principle moments of inertia. The
change in translational entropy is constant over the MD trajectory as there are no
changes in the mass of the constituents, taking a value of —39 cal * mol 'K~! in the
example system. The total translational entropy of the ligand is 39 cal * mol ~'K~!
indicating that the entirety of the ligand’s translational entropy is lost upon binding.
This is true by construction in the single-trajectory approach. The change in rotational
entropy varies slightly over the MD simulation due to the spatial re-organization of
the atoms. Its value fluctuates around —28 cal * mol 'K~!, which is very close in
magnitude to the total rotational entropy of the ligand. The total change in external
entropy upon binding is thus negative.

It is important to emphasize that the translational, vibrational, and rotational entropy
terms in the single-trajectory approach are equivalent to the “external entropy”, as
derived in section 2.2.4, because they arise due to the external coordinates of the
ligand becoming internal coordinates of the complex. The “internal entropy” due to
only the internal coordinates of the complex cannot be estimated in the
single-trajectory approach because there is no conformational change upon binding.
In the three-trajectory approach, the change in vibrational entropy would include a
new contribution from the internal conformational changes of the protein and ligand
upon binding. This “internal entropy” change could not be separated from the
external entropy change due to the 6 new vibrational modes in the complex. The
change in translational entropy would remain the same. However, more significant
variations in the rotational entropy could be expected due to the full sampling of the
free protein and ligand.
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The entropy term corresponding to the solvent coordinates gives the change in
entropy of the solvent upon binding of the solutes. This term is neglected in the gas
phase approximation of NMA. This is equivalent to the assumption that the solvation
energies are independent of temperature at the standard pressure [12].

3.1.3.6 Connecting statistical mechanics to the MM-PBSA method

In 2004, Swanson et al. [40] made an attempt to link the approximate
MM-PBSA /GBSA method to statistical mechanics of binding. Building on the
configurational integrals derived by Gilson [12], Swanson applied a series of
approximations, which are outlined and applied below.

Analogous to equation 2.26, the configurational integral for the complex AB in an
implicit solvent, using the same symbols as above, is given by,

Zap = Inas _ /eXP{—ﬁ[U(fAJB,CB) + W(Fa, 75, (5)] }dT adPpd(, (3.32)
ZNp

where  are the external coordinates of the ligand that have become internal
coordinates of the complex AB. The first assumption made by Swanson is that
fluctuations in § are small for a bound ligand and hence the higher order coupling of {
to the internal degrees of freedom of the protein and ligand are small. Thus both the

potential and solvation term are separable as follows,
U(7a,7p,C8) + W(Fa, 75, () = Ur(CB) + Wi(lp) + Ua(Fa, 5) + Wa(Fa,75).  (3.33)

This assumption is supported by the observation, that displacement of { during an
MD simulation of the complex is small. Now define the potential of mean force,

w({p) = —RTIn [/ exp{—B[U(Fa,Tp,{B) + W(fA,fB,CB)]}dede]r (3.34)

and apply the approximation in 3.33,

w({p) = —RT1In [/ exp{—pB [U1({) + W1({p) + Ua(Ta, 75) + Wz(fA,?B)]}dede]
(3.35)

= U1(€B) + Wl(gg) — RTIn |:/ exp{—[% [UZ(T_’A,T’B) + WQ(T’A,?_’B)]}dT’AdT_’B] .
(3.36)

The next approximation made is that the translational and rotational DOF of the
ligand external coordinates (g can be decoupled such that,

U(Zp) = U(x1,x2,x3) + U(L1, 02, 33), (3.37)
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and likewise for W({g). Inserting the potential of mean force w({p) into the complex

configurational integral (3.32),

Zan = [ exp{—BIU(n) +W(Zs)]}dln | exp{—B[Un(Fa,Ts) +WalFa, 7o) }dFadry
(3.38)
and decoupling rotation and translation in (p,

Zapg = z%“”szmt/exp{ B [Ux(a, 78) + Wa(Ta,75)] dFadTp = zt”’”S thAB, (3.39)

where,
truns _ /exp{ [g[ (xlle, x3> -+ W(xl,XZ, X3)]}dX1dx2dx3/ (3.40)
gt = /exp{—ﬁ (U (81,82, 83) + W(C1, 82, 03)] }dC1d0d TS, (3.41)
and
Zhg = /exp{—/s [Ux(7a,7B) + Wa(7a,7B)]| }dF adTp. (3.42)

The standard state binding free energy of the complex is then given by,

c ¢ Zup
AG%; = —RTIn [87‘( zg""zy WAk (3.43)
where the symmetry numbers ¢4, 04 and o have been set to 1 (non-symmetric

system).

To practically evaluate the configurational integrals, it is assumed that the energy
landscape can be explored by a sufficiently long MD simulation. Swanson calls this

the 1st order approximation,
Za= [exp{=plUGA) + W) Hra ~ 2 exp{—B(Ea)},  (344)

where (Ex) = (U(74) + W(74)) and '} is the internal configurational integral over
all internal degrees of freedom. Similar expressions can be written for Zg and Z45.
The final assumption made to arrive at the MMPBSA /GBSA method is that the
volume of configurational space occupied by the ligand and protein change negligibly
upon binding. In other words, the internal energies, i.e. those due to intramolecular
interactions, of the protein and ligand remain unchanged upon binding.
Mathematically, z/i'zi* ~ 2zt and hence the internal configurational integrals cancel

in the expression for the binding free energy resulting in,

_ CO rans 1o exp{_ﬁ<EAB>}
AGhy = —RTIn | gty o et | 4

CO
= (Eap) — (Ea) — (Eg) — RTIn [Snzg“’“zgﬂt] . (3.46)
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This is equivalent to the single-trajectory approach, in which the internal energies and
entropies of the protein and ligand cancel those of the complex exactly. If the solvation
energy W is represented by an implicit solvent model, then the above expression for
the binding free energy may be written as,

AG?‘\B = <AEgﬂS> - <AGsolv> - TAS/ (3.47)

where (AEg;) is the ensemble average change in gas phase energy upon binding,
(AGsop) 1s the ensemble average change in solvation energy upon binding, and —TAS
is the change in entropy due to the restricted translation and rotation of the ligand in
the protein binding site. This is precisely the formulation of the MMPBSA /GBSA
approach. Furthermore, the assumption that z" cancel is equivalent to the
single-trajectory MMPBSA in which only the complex ensemble is sampled. The
entropy term,

0
—T6S = —RTIn [E;C#zg””sz%ﬂ , (3.48)

is however not necessarily equivalent to the traditional —TAS term included in
MM-PBSA via Normal Mode Analysis. It is not clear from this formulation if the gain
of 6 new internal DOF in the complex are captured by the configurational integrals

trans rot

rans and zf*. Because z*"™ and z{ contain integrals over the entire phase space of

z
B

the external coordinates of the ligand, this formulation of the entropy seems to be

equivalent to a complete loss of the rotational and translational entropy of the ligand

upon binding, as seen in single-trajectory MM-PBSA.

3.1.3.7 Comparison with alchemical free energy methods

Alchemical free energy methods involve gradually transforming the ligand from the
initial to the final state, while continuously monitoring the changes in free energy
along the transformation path. The transformation can be done using a variety of
protocols, including linear or exponential scaling of the coupling parameter. However,
alchemical free energy methods can require significant simulation time to achieve
convergence, especially for larger systems [64]. The convergence rate depends on the
choice of protocol, which can affect both the accuracy and computational cost of the
method. Alchemical free energy methods can provide valuable insights into the
energetics of protein-ligand binding, including the contributions of specific residues

and water molecules to the binding affinity.

End-point methods, as discussed in this chapter, involve directly computing the free
energy difference between the bound and unbound states of the protein-ligand
complex. This approach is faster and more straightforward compared to alchemical
free energy methods, but it can suffer from insufficient sampling of the configurational

space, particularly for larger systems.



3.2.  Quantum mechanical protein-ligand free energies of binding 39

In MM-PBSA and MM-GBSA, as well as other end-point binding free energy methods,
the ensemble averages, as written in equation 3.47, are taken over the entire system, i.e
the whole protein-ligand complex. In contrast, in alchemical free energy methods, the
ensemble averages are taken only over the changed regions of the complex, which is
generally small compared to the whole system. This leads to more attractive
convergence properties of methods like free energy perturbation and thermodynamic
integration. Furthermore, in MM-PBSA and MM-GBSA, the total energies of the host
and complex are compared with the total energy of the ligand, which is much smaller.
Thus, the precision in the total energies has a significant effect on the accuracy of the
calculated binding energy. The one-trajectory approach addresses this to some extent,
as discussed in section 3.1.3.1.

3.1.3.8 Summary

While MM-PBSA is based on severe approximations and the single-trajectory
approach suffers from several conceptual problems, the low computational cost and
relative simplicity have popularised the method. The MM-PBSA method is used
actively in prospective drug design and lead identification. Recent examples include
efforts to identify potential treatments of Covid-19 [65, 66] and Alzheimer’s [67, 68]
and to better understand Down Syndrome [69]. However, as reviews of this method
emphasize, the accuracy of MM-PBSA /GBSA is highly dependent on the system
under investigation and depends strongly on the choice of force-field, implicit solvent
parameters, and, to a lesser extent, simulation length [39, 42, 47, 70, 71]. While some
observers have stated that the severity of its assumptions makes MM-PBSA /GBSA
difficult to systematically improve, other see promise in improving the individual
terms of the method with new approaches to implicit solvation [48, 50], entropy
estimates [62, 72], and higher-accuracy energy methods [1, 38, 73].

3.2 Quantum mechanical protein-ligand free energies of

binding

A fundamental limitation common to MM-PBSA /GBSA and all other classical
mechanical computational methods of estimating binding free energies is the
assumption of the validity of classical mechanics. The atoms and electrons that
constitute biological molecules are however governed by the laws of quantum
mechanics. Thus, a true description of protein-ligand binding requires a quantum
mechanical (QM) treatment. In theory, a full, ab-initio QM approach would be
system-independent, parameter-free, and could describe the full spectrum of physical

phenomena involved in protein-ligand binding.
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Unfortunately, high-level QM methods like coupled-cluster (CC-SD) are prohibitively
expensive due to unfavorable scaling of their computational cost with increasing
system sizes. Even small-molecule drugs are often too large for routine calculations
with these methods. Instead, more approximate or empirical methods can be
employed to find a balance between computational cost and theoretical rigor.

In this section, we first outline the motivation for exploring protein-ligand binding
with quantum mechanical simulations. We then introduce density functional theory,
the electronic structure method at the core of this research. Finally, we provide an
overview of literature surrounding quantum mechanical protein-ligand binding

energies and highlight recent advances in the field.

3.2.1 What classical mechanics misses

The limitations of classical mechanics force fields can broadly be split into two

categories: theoretical and practical.

Beginning with the theoretical, a classical mechanical description of inter- and intra-
molecular interactions cannot explicitly describe the behavior of electrons, as these are
governed by the laws of quantum mechanics. Instead, a coarse-grained approach that
treats atoms as holding charge is required. Any explicit description of
electron-mediated interactions is lost. Examples include charge transfer, polarization,
halogen bonding, and quantum mechanical many-body effects [3, 8]. In the context of
protein-ligand binding prediction, metalloproteins containing a metal ion and highly
charged ligands are two examples in which classical mechanical force fields break
down because of electron-dominated interactions. Furthermore, traditional molecular
mechanics force fields cannot represent chemical reactions and the breaking of

covalent bonds.

On the other hand, molecular mechanics force fields also suffer from many practical
problems. Because of the central role of some QM interactions in many biological
processes, these interactions must be accounted for somehow. This is achieved by
using fitted empirical parameters to reproduce experimental or calculated QM results.
The performance of traditional force fields becomes heavily dependent on the
parameterization quality with a trade-off between accuracy and domain of
applicability. Using different force fields for the protein and the ligand in MD
simulations of a protein-ligand complex is common. Fundamentally, the application of
a force field is limited to those functional groups included in its parametrization. This
also extends to the conditions under which the system was parameterized like the
presence of solvent, the temperature, or pressure. In the context of protein-ligand
binding energy prediction, an example of this are new molecules whose functional

groups are not well represented in the training set of the force field.
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Few or no fitted parameters are necessary if the electron-mediated quantum
mechanical interactions between the protein and ligand can be fully described using
quantum mechanical simulations. This not only improves the ease of use but also

extends the domain of applicability and transferability of the binding energy protocol.

In addition to the transferability, the quantum mechanical simulations should be able
to determine more realistic energies for the protein-ligand system as additional
physical phenomena are explicitly accounted for. This has the potential to improve the

predictive power of the binding energy protocol.

In this body of research, two classes of QM-based methods are utilized, the fully
ab-initio density functional theory (DFT) and a semi-empirical general-purpose
tight-binding method. These methods are introduced in the following section.

3.2.2 Density functional theory

Density functional theory is an ab-initio electronic structure method primarily used
for calculating ground state energies of a diverse range of physical, chemical, and
biological systems. Since the 1970s, it has remained one of the most popular electronic
structure methods due to its small number of well-defined approximations, tractable

computational cost, and extensive domain of applicability.

In traditional quantum theory, the state of a system is described by the spatial electron
wavefunction ¥(7,) and its evolution in time, as described by the Schrodinger
equation where 7, are the position vectors of n electrons. QM observables, like the
total energy, are given by expectation values of operators acting on the wavefunction
Y. Consider the total energy Hamiltonian operator for our system of interacting
electrons and nuclei, I = T + V, where T is the kinetic energy operator and V the
potential energy operator. When applied to the wavefunction, it returns a set of
energy eigenvalues, the lowest of which gives the total ground state energy of the
system. This eigenvalue problem is generally expressed as,

H[¥ (7)) = E[¥(T4)), (349)
where the energy expectation value E is given by,
E= (Y(rn)| H|¥(7n)). (3.50)

The Hamiltonian can be further split into terms for the nuclear kinetic energy, Tn(Rk)
where R is the position vector of nucleus K, the electron kinetic energy, T,(7;) where
7; is the position vector of electron 7, the nuclear-nuclear repulsion, VNN (Rk), the
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nuclear-electron attraction, Vi, (R, 7;), and the electron-electron repulsion, V. (7;),

H= TN(RK) + Te(i_’i) + VNN(RK) + VN@(RK/ 71') + Vee(T_’z‘) (3.51)
L1 d VR Zx 71
H= - K_— V -+ 5 3.52
2l M 2 E 21 LZ# R (3:52)
1 N n ZK 1 n n 1
—722— —I—*ZZT, (3.53)
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for a system of N nuclei with mass Mg and atomic charge Z, n electrons and using

atomic units 1 = m, = 47reg = 1 where Rg = |Rx — Ry |, ij = ‘rl — 7,

Rgi = |Rk — 7] This expression is incredibly complex, with three positional degrees
of freedom for each nucleus and electron as well as cross-interaction terms between

each electron-electron, nucleus-nucleus, and electron-nucleus pair.

To approach an analytic or numerical solution to this complex equation, the
Born-Oppenheimer approximation is made [74]. It observes that because the mass of
the nuclei, My, is much larger than that of the electrons, m,, the electrons can be
considered to instantaneously re-arrange upon nuclear motion. In other words, the
time scale of electronic motion is so much faster than that of nuclear motion that the
electrons may be treated as reacting to the potential of a set of nuclei of fixed position.
Under this approximation, the nuclear kinetic energy term in 3.51 becomes zero, as the
positions of the nuclei are considered fixed. The nuclear-nuclear repulsion term
becomes a constant whose action inside the operator does not affect the wavefunction.

What remains is the electron Hamiltonian with terms,

A

Helec = Te(7i> + VNe(RK/ 7_’1‘) + Vee(f_’i>- (3-54)

The electron Hamiltonian acts on the electron wavefunction, and the resulting
eigenvalues are the total electron energies. The system’s total energy is then simply
the product of the electron energy and the constant nuclear-nuclear repulsion at fixed
nuclear coordinates. Thus the total energy depends only on 7; and parametrically on
the fixed nuclear positions. By varying the nuclear positions and calculating the
resultant total energy, an energy landscape or potential energy surface for the system
can be constructed. The nuclear-electron interaction term in the electron Hamiltonian,

Vne(Rk, 7;), is re-written in terms of an external potential Ve (7;),

N

N n n
1Y R va (3.55)

K=1i=1

VNE RK/

N\»—\
=

Because the electron Hamiltonian is hermitian, it can be shown that any approximate
wavefunction, i, obeying the same boundary conditions as the exact wavefunction, ¢,

will result in eigenvalues, €, that are larger or equal to the ground state energy, €, of
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the exact wavefunction ¢. This is known as the variational principle of quantum

mechanics.

While the representation of quantum mechanics in terms of wavefunctions lends itself
to pen-and-paper theory work, an alternative formulation in terms of electron density
forms the basis of density functional theory. The electron density is given by:

p(7) =n /‘F(?l, W1, P, W, .o, T, Wy )Y ¥ (P1, w1, Fo, W2, - . ., T, Wy )dF1dwrdPpdw; . . . dFydwy,

(3.56)
where 7 are the electron position vectors and w the electron spins of 1 electrons.
Reformulating the electronic structure problem in terms of the electron density is
attractive for the development of computational approaches as the density is a
function of only three variables, i.e. the three positional coordinates of 7. Furthermore,
the electron density can be observed experimentally, unlike the electron wavefunction.
Additionally, the total number of electrons is contained in the density and obtained by
simple integration of the density over all space. The nuclear charges, or atomic
numbers Z, can also be obtained from the slope of the local maxima in the density,
which involves taking the partial derivative of the density.

Two theorems by Hohenberg and Kohn [75] lay the foundation for the formulation of
density functional theory. In their first theorem, they proved that there is a one-to-one
correspondence between the densities and the external potential V(7). In other
words, different external potentials will always produce different electron densities.
This implies that the electron density completely describes the ground state electronic
properties. It follows that the electron kinetic energy, T,, and the electron-electron
repulsion, V.., can be written as functionals of the electron density, p(7). Together
these terms are combined into the Hohenberg-Kohn (HK) functional

Fuxlp(7)] = (9| Te + Vee |¢). A functional is a map of a function to a scalar field. The
only remaining term is the nuclear-electron interaction, described by the external
potential V,y(7). The total energy can be written entirely in terms of the electron
density,

E = Fuwlo(P)] + / Veut (F)p(7)d7 = E[p(7)]. (3.57)

Inside the HK-functional, which includes the electron kinetic energy and
electron-electron interaction terms, the electron-electron term is further split into a
classical Coulombic electron-electron repulsion term, an exchange term arising from
particle spin, and an electron correlation term. The expression for the Coulombic term
is known, while the electron correlation, exchange, and electron kinetic energy terms
do not have known functional forms. Approximate functionals must be constructed to
describe these terms.

Hohenberg and Kohn's second theorem [75] uses the variational theorem of quantum

mechanics for the wavefunction to derive a variational principle in terms of the
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electronic density. It states that the energy functional E[p(7)] has as its minimum value
the exact ground state energy corresponding to the external potential V,,; under the
condition that the number of particles remains constant. So given an approximate
functional for Fyx[p(7)], the variational principle for densities can be used to search

for a density p(7) that minimizes the energy E[p(7)].

While Hohenberg and Kohn successfully reformulated the electronic structure
problem in terms of the electronic density. However, their approach does not yet offer
an advantage over traditional wavefunction approaches. The breakthrough that made
density functional theory the most widely applied electronic structure method was
made by Kohn and Sham [76], who realized that solving the electronic Hamiltonian
for a non-interacting system of electrons is a much easier computational task. The
Hamiltonian for a system of non-interacting electrons can be expressed as a sum of
single electron operators whose eigenfunctions are Slater determinants of individual

electron configurations, and the eigenvalues are the sum of one-electron eigenvalues.

A fictitious system of non-interacting electrons is constructed whose ground-state
electron density is the same as that of some real system of interacting electrons.
Because of the one-to-one correspondence of densities and external potentials (HK
theorem 1), the position and the atomic number of the nuclei are identical in the
fictitious and real system. For the non-interacting system, the electron kinetic energy,
Te non—int, is just the sum of the individual kinetic energies of each electron. To account
for the difference between the non-interacting and real system, a correction to the
kinetic energy due to the interacting nature of the electrons, AT,, and a non-classical
electron-electron correlation term, AV, for the electron-electron repulsion are

introduced to the energy functional,

Elp(7)] = Tepnon—int[P(F)] + Vie[o(F)] + Vee o ()] + ATe[0(7)] + AVee [o(F)], (3.58)

where V. [o(7)] is the nuclear-electron interaction, as described by the external
potential, and V,.[o(7)] is the classical coulombic electron-electron repulsion. Because
the fictitious system is made up of non-interacting electrons, the above energy
functional can be expressed in terms of single electron orbitals |x;) using the Slater
determinant wavefunctions and p = Y"1 (xi|xi),

Elo(r) = ). <<xi\ 2V~ (i }: o ) (3:59)
L) _
+ 1 0alg [ g ) + Exclo ), (3.60)

i

where the first term is the sum of individual kinetic energy expectation values for
individual non-interacting electrons, the second term is the expectation value of the

nuclear-electron interaction, the third term is the classical electron-electron repulsion,
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and the final term contains the corrections to the kinetic energy due to interacting
electrons as well as a correction to the classical self-interaction. The term is called the
exchange-correlation functional and represents the only unknown term in Equation
3.59. The goal now is to find orbitals |x;) that minimize E[p(7)] according to the
eigenvalue problem,

WS xi) = eilxi) (3.61)

where ftZKS is the Kohn-Sham one electron operator,

. 1 N Zx 11 p(7)

= —ovi- Y o Vie, 3.62

i 5V KZ::1|7_’1'—Rk|+2 7 T Ve (3.62)
where V. = aEg”p[(’;()m is the functional derivative with respect to the density. It

functions as a one-electron operator for which the expectation value of the Slater
determinant is E,.. Because the electrons in the fictitious system do not interact, the
system can be described by a summation over the Kohn-Sham operators,

n n
Z%fzfs |X1,X2...Xn>:;eip(l,)(z...)(n}. (3.63)
i= iz
The core benefit of this approach over the initial formulation by Hohenberg and Kohn
is that the energy contribution of the non-interacting electron density, which is known,
is much larger than the correction terms in the exchange-correlation functional Ey.. In
Hohenberg and Kohn, the electron kinetic energy was unknown and required an
approximate functional form leading to much larger errors in predicted energies. In
implementing Kohn-Sham (KS) DFT, the KS orbitals are usually expanded in some
functional basis set {¢}. The total energy in KS-DFT is a sum of functionals over KS
orbitals expressed in a particular basis set for the kinetic energy of the fictitious
non-interacting system and functionals of the electron density for the coulomb term,
external potential, and the approximate exchange-correlation correction term. By
minimizing the total energy with respect to the KS orbitals, under the constraint of
maintaining the orthonormality of the orbitals, the calculated energy approaches the

ground state energy of the true system of interacting electrons.

3.2.2.1 Exchange-correlation functionals

While some parts of the total energy functional used in Kohn-Sham DFT are known
analytically, the so-called exchange-correlation functional must be approximated. The
exact form of the exchange-correlation is not known. It must be constructed from
physical considerations, limiting cases that can be solved exactly and by
benchmarking against higher accuracy quantum methods or experimental results.
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As described in the previous section, the exchange-correlation functional captures the
correction to the kinetic energy of the non-interacting system due to electron
interaction and corrections arising from the interaction of electron spins. In practice,
however, the exchange-correlation functional is usually split into two terms, one for
electron exchange and one for electron correlation.

The simplest functionals are derived from the exact results of a uniform electron gas
(jellium) with a constant electron density. This approximation is known as the local
density approximation (LDA), and the exchange functional is given by,

ELDA — —Z (i) ’ / 03 (7)dr. (3.64)

Various correlation functionals have been proposed to combine with the LDA
exchange functional. However, the approximation of a uniform electron density is not
very good in the context of biomolecules.

LDA functionals can be improved by incorporating the gradient of the density, Vp, to
better approximate non-uniform electron densities (as observed in real molecules).
Functionals of this form are known as generalized gradient approximation (GGA)
functionals, and PBE [77] was one of the first successful examples and is still
extensively used. The PBE exchange functional is given by,

ELS = [ 03 (1) (Vp(r))ar, (3.6
where f is given by,
2
f—Ca+5<1+7x2>, (3.66)
and x(7) = 2’%((7)) is a dimensionless entity. PBE is the progenitor of functional design
p3 (7

based on exact constraints with limited empiricism. Another widely used GGA
functional is the more empirically motivated BLYP, which combines the exchange
functional B88 with the correlation functional LYP [78]. BLYP relies heavily on the
titting of a range of adjustable parameters.

Beyond GGA functionals, meta-GGA (mGGA) functionals incorporate the electron
kinetic energy density and the density gradient. This allows for more flexibility in the
functional form, and in general, mMGGAs outperform GGAs, but are more
computationally intensive. The inclusion of the mGGA exchange roughly doubles the
computational cost compared to the GGA functional PBE. In a benchmarking study of
Head-Gordon [78], the best performing mGGA tested was a relatively new
empirically based functional, B97M-rV [79], which incorporates a non-local dispersion
term. This functional performs comparably to hybrid-mGGA functionals [78], which
incorporate a portion of exact exchange from Hartree—Fock theory and represent the
most complex and computationally demanding category of functionals.
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3.2.2.2 Pseudopotentials

The computational cost of traditional density functional theory scales cubically with
the total number of electrons in the system. In large systems with heavy atoms, the
majority of all electrons making up the system are core electrons. However, binding
and other chemical interactions are mediated mainly through the valence electrons.
Thus, the explicit consideration of all core electrons significantly increases
computational cost while having little impact on calculated energies. Furthermore,
close to the atomic core, the potential has a steep gradient and would require a finer
grid when discretized, further increasing the computational load. Pseudopotentials
solve these problems by approximating the core states with a smooth analytic
potential. This analytic function represents the nuclear and electronic core to the
valence electrons, decreasing the total number of electrons explicitly considered and
circumventing the need for finer grid spacing near the atomic core. The
pseudopotentials are constructed according to several conditions for each element in

the system.

3.2.2.3 Empirical dispersion corrections in density functional theory

Traditional density functionals like PBE and BLYP do not describe long-range
dispersion interactions well [80]. Recall the expression for the dispersion term in
classical mechanical force fields from Equation 3.9. At short inter-atomic distances, the
R~° dependence of dispersion interactions can be described relatively well due to
overlapping electron densities. At longer ranges, however, standard XC functionals
fail to describe dispersive effects [80]. To overcome this, a variety of methods have
been proposed. The most popular method, DFT+D, applies a post-hoc correction term
to the total DFT energy and is calculated in a pairwise additive manner from an
empirical potential, similar to a molecular mechanics force field. To avoid double
counting of dispersive interactions at short and medium ranges, damping functions
are used to damp the dispersion correction at short inter-atomic separations. A variety
of empirical parameterizations and damping functions have been developed. The D2,
D3, and the newest D4 dispersion corrections by Grimme et al. [81, 82] are among the
most widely used. In a benchmarking study on large host-guest systems in 2013 [83],
D2 /D3 performed on-par with functionals containing explicit dispersion terms and

outperformed alternative approaches like one-electron correlation methods.

In addition to the pairwise dispersion corrections, a three-body dispersion correction
may be applied. While negligible in small systems, Risthaus et al. [83] found that in
systems of hundreds of atoms, the three body term can become significant (1-5%
contribution). D3 and D4 feature an approximate three-body dispersion term, E .,

which can be added on top of any pairwise dispersion correction.
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While Grimme’s DFT+D uses a highly-parameterized empirical force-field-like
correction term, non-local correlation functionals can, in principle, describe non-local
correlation effects without needing additional correction terms. This approach
requires fewer parameters, is more physically motivated, and may produce more
accurate results at the price of additional computational cost. One of the first
successful attempts at non-local correlation functionals was VAW-DEF2 in 2010 [84].
When combined with existing exchange-correlation functionals, significant
improvements over traditional dispersion corrected calculations were seen. The
inclusion of the non-local correlation term increases the computational cost only
slightly. Also, in 2010, the non-local dispersion correlation functional VV10 was
developed by Vydrov and Van Voorhis [85]. They proposed a GGA functional
combining rPW86 exchange, PBE correlation, and VV10 dispersion correlation.
Excellent results for non-covalently bonded systems were obtained. The numerically
more efficient rVV10 has two optimization parameters that can be used to incorporate

it into existing exchange-correlation functionals [86].

3.2.3 Linear-scaling DFT in ONETEP

While standard density functional theory scales cubically with the number of
electrons in the system, linearly-scaling versions of DFT have been developed. The
ONETEP code [87] is one such linear-scaling DFT implementation. The one-particle
electron density matrix, which decays exponentially with distance, is truncated to
achieve linear-scaling. Effectively, the electronic density is localized in space. In
ONETERP this is achieved by representing localized orbitals by non-orthogonal
generalized Wannier functions (NGWFs). Strict localization is enforced for the
NGWFs. As part of the self-consistent minimization, both the orbitals and the electron
density are optimized, reducing the number of required NGWFs. The parallelization
strategy of ONETEP exploits this locality and can spread individual atoms over many
simultaneous processes. A hybrid MPI-OMP parallelization allows for efficient and
scaleable distribution of workload. MPI processes split the system into individual
atoms or groups of atoms, and each spawns multiple OMP threads. The unique
characteristic of ONETEP is that even though it is linear-scaling, it can retain large

basis set accuracy as in conventional cubic-scaling DFT calculations [87].

To demonstrate the linear-scaling capabilities of ONETEDP, single-point energy
calculations at moderate settings were run for lipid bi-layers of different sizes. The
lipid layers were constructed from PE DLPE lipids only. The structures were
generated using the CHARM-GUI tool [88]. Each structure was equilibrated in
Amber16 in explicit solvent. The single-point energy calculations in ONETEP were
run with an energy cutoff of 600eV, using the PBE functional. Each calculation
converged after 11 outer loop iterations. The calculations used 320 MPI processes,
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with 4 OMP threads each, for a total of 1280 cores on the Intel Skylake processors of
the Iridis5 supercomputer. Figure 3.1 shows the total wall-time against the number of
atoms in the system and a visualization of the 1000 and 50000 atom lipid bi-layers. A
clear linear relationship is evident. A linear regression yields a slope of 0.62 and an
intercept of 1026 seconds with a p-value of 0.0002.
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FIGURE 3.1: Linear-scaling of total computing time with the number of atoms in a
lipid bi-layer system at an energy cutoff of 600eV using the PBE functional and 1280
cores ( 320 MPI, 4 OMP). Figure provided by C.K. Skylaris.

3.2.3.1 The solvent model in ONETEP

The ONETEP implicit solvation model is a minimal-parameter Poisson-Boltzmann
(PB) based model (Section 3.1.3) which is implemented self-consistently as part of the
DEFT calculation [43]. The solute cavity is constructed from iso-surfaces of the
electronic density, which offers a superior definition of the cavity compared to the
rolling sphere approach in traditional PBSA. Using the electronic density to construct
the cavity additionally reduces the number of empirical parameters. Because the PB
equation is solved self-consistently as part of the DFT calculation, the implicit solvent
can alter the electron density. The shape of the cavity can remain fixed to reduce the
computational cost or can be updated with each iteration of the self-consistent
calculation to increase accuracy. Ionic point charges, which cause singularities in
finite-elements Poisson-Boltzmann solvers, are replaced by Gaussian smeared charges
that improve the efficiency of the numerical solvers. A single parameter controls this
so-called smeared-ion formalism.

The non-polar term of the solvation energy is calculated from the surface area of the

iso-surfaces used to construct the cavity. The so-defined solvent accessible surface area
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(SASA) is multiplied by the physical surface tension of the solvent, v, and scaled by an
empirical factor of 0.28 to approximately include the dispersion-repulsion between the
solvent and solute. Thus the non-polar term is analogous in form to that of traditional
PBSA solvation but benefits from the cavity definition based on the electron density of
the solute.

3.24 Semi-empirical QM methods

While, in principle, free of empirical parameters, ab-initio DFT is computationally
expensive. Semi-empirical QM (SEQM) methods have been developed to provide QM
accuracy at a significantly lower computational cost. Usually, cost reduction is
achieved by incorporating empirical approximations and fitting parameters to avoid
expensive computations. Three popular SEQM methods are AM1, GFN2-XTB, and
PM6. One common application of these methods is calculating ligand partial charges
for use in classical mechanical MD simulations. The GFN2-XTB SEQM method used

in this research is briefly introduced in the following section.

3.24.1 GEFN2-XTB

GFN2-XTB is a semi-empirical tight-binding method developed by Grimme et al. [89].
Fundamentally, it is a more empirical and approximate version of DFT. The ground
state energy is Taylor expanded around the self-consistent change in electron density
and truncated after the third term. Three-electron and four-electron integrals are set to
zero. The remaining three terms are further decomposed into separable energies,
some of which are physically based, while others are empirical. Element-specific
parameter sets were developed by optimizing the method against large benchmarking
data sets. GFN2-XTB is unique because it is general purpose and does not require
user-generated parameters.

3.2.5 Choice of QM method in protein-ligand binding energy prediction

There is a zoo of QM methods, varying in the degree of accuracy, theoretical rigor, and
computational cost. In the context of protein-ligand binding, only relatively low-cost
methods can be used as the systems under investigation have thousands of atoms.
Hence, most attempts thus far have focused either on semi-empirical QM or hybrid
QM/MM methods. Hybrid QM /MM is a multi-level method in which a small QM
region is embedded in a classical MD simulation. In the studies outlined below, the
sampling of dynamics, if performed at all, is often done at MM level due to the
prohibitive cost of ab-initio QM dynamics sampling for systems of biological interest.
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The most commonly applied method is the semi-empirical AM1. Fischer [90], Jamet
[91] and Ibrahim [92] all applied AM1 to the ligand only. Ojha [93] used several SEQM
methods, including the self-consistent-charge density-functional tight-binding
method SCC-DFTB, on the ligand only and found that the different methods
performed indistinguishably within the statistical error. Wang and Chen [94] also used
SCC-DFTB but included the ligand and 8 active protein residues. Barboult [95] and
Sippl [96] used AM1 and included the ligand and a 6 and 5 A region around the
ligand, respectively. Diaz [97] used AM1 and PM3 in a QM/MM-PBSA approach on
the TEM-1 enzyme with benzylpenicillin (BP) and cephalothin (CEF). Soederhjelm
[98], Zhan [99, 100], Wang [101] and Leonidas [102, 103] used DFT calculations, mostly
on the ligands and surrounding sites. These studies featured either no sampling or
minimal sampling from MD. Merz et al. [104] used linear-scaling SEQM methods on
the whole protein and Ryde [105] used the SEQM methods AM1, RM1, and PM6 to
calculate binding energies in three protein-ligand systems using a SEQM-GBSA
approach. Anisimov [106] used a hybrid QM /MM method based on the COSMO
solvent model. Fragmentation based approaches like PMISP [7, 107] or the fragment
molecular orbital (FMO) [108] method using QM calculations have been applied to
various protein-ligand systems [109-112]. In 2010, Cole [113] used linear-scaling DFT
with MM sampling on an entire protein-protein complex. Fox and Skylaris applied the
same method to a protein-ligand complex in 2012 and 2014 [38, 114].

In 2017, Nacimento et al. [115] used FEP together with QM /MM MD at AM1 level to
study classical inhibitors (DMT, DNP, GNT, HUP, THA) with acetylcholinesterase
(AChE). The study focused on understanding the binding mechanism and
contributions to the binding energies. Also, in 2017, Olsson and Ryde [116] compared
different approaches at a QM /MM level. They compared the effectiveness of a
reference potential FEP approach with a full QM /MM FEP simulation in which the
ligand was treated at the SEQM level. Grimme and Ehrlich (2017) [117] proposed a
full QM approach based on the interaction energy from DFT, a solvation term from
COSMO RS, and an entropy term from semi-empirical DFTB3-D3 hessian. Frush
(2017) [118] used a linear interaction energy (LIE) approach with QM /MM energy
evaluations on an MD trajectory. The QM region was treated with AM1. In 2016, Ryde
et al. [8] tested 4 SEQM methods as part of the D3R challenge. In 2019, Giese and York
[119] published a study of small molecule solvation free energies and T4-lysozyme
binding free energies using QM /MM MD and force-matched reference potentials.
Their approach was to correct the end state of an MM alchemical free energy
calculation using a correction term obtained from QM /MM dynamics. To smooth the
transition from MM to QM /MM, a MM’ reference potential was created and used as
an intermediate step in an extended thermodynamic cycle. The resulting free energies
were well converged and exhibited low statistical errors (mean unsigned error of

0.04 + 0.14kcal/mol).
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In a review of these recent developments, Cavasotto et al. [3] conclude that QM
approaches are still system dependent, too slow for industry, and ignore
conformational sampling of protein flexibility. In charged systems, the solvation
contributions are not sufficiently accurate and the entropy problems of MM-PBSA
have not been addressed. It was found repeatedly that dispersion-correction is
mandatory for any method [39]. Despite inconsistent improvements over MM results,
a variety of QM and QM /MM studies have shown that QM terms not present in MM
force fields do contribute significantly to the gas phase energies [39]. Some methods
employ a QM /MM minimization step before evaluating snapshot energies, but no

clear improvement could be determined.

3.3 The QM-PBSA method

Methodologically, QM-PBSA [1, 38, 113] is a straightforward modification of
MM-PBSA. The gas phase energy (Ep) and solvation energy (Ggorpation ), calculated
using the molecular mechanics force field and PBSA implicit solvation scheme, are
replaced by quantum mechanical gas phase and solvation energies from full-protein
linear-scaling ab-initio density functional theory calculations in ONETEP [87]. The
solvation energy is also estimated from an implicit solvent model, which is
implemented self-consistently with minimal parameters in the DFT single-point
energy evaluation and contains dispersion-repulsion effects in addition to the

cavitation energy [43].

The implicit solvation term uses the QM electron density to define the solute cavity,
and the solvation, in turn, changes the electron density during the self-consistent
iterative DFT calculation. By extension, QM-GBSA using the simpler Generalized

Born model cannot be formulated in the same manner.

The optional entropy correction term in MM-PBSA can be added to the QM-PBSA
energy using either normal mode analysis or the Interaction Entropy method [62].

3.3.1 Motivating QM-PBSA

MM-PBSA, and by extension QM-PBSA, are not thermodynamically rigorous and
have significant shortcomings in their formulation [12]. The single-trajectory
approach, in which molecular dynamics simulations are only performed for the
protein-ligand complex, ignores all potential configurational changes in the protein
and ligand upon binding. By sampling only the endpoints of the binding process, the
binding path of the ligand and the movement of the protein binding site to

accommodate the ligand are ignored. The implicit solvent ignores the importance of
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structural waters and bridging waters between the protein and ligand and gives only
a rough estimation of the energetic cost of displacing water molecules from the
solvent-accessible binding site during ligand binding. In the context of classical
mechanical binding free energy estimation, more rigorous, reliable, and accurate
methods like thermodynamic integration (TI) or free energy perturbation (FEP) exist.
However, because QM-PBSA and MM-PBSA sample only from the binding endpoints,
significantly less sampling and expensive DFT calculations are required to obtain
binding energy estimates. In contrast, alchemical free energy methods require
sampling at many intermediary points, making them computationally intractable for a
DFT-based approach.

In previous works, our group has attempted to extend TI, a rigorous classical
mechanical method, to quantum mechanics. While the alchemical transformation was
performed classically, the two endpoints of the transformation were subjected to a
one-step transition from classical mechanics to quantum mechanics. Using a
Monte-Carlo-like acceptance criteria [120-123], the configurations generated by
classical mechanics are tested for acceptance into the true QM ensemble. Due to
significant differences in the MM and QM phase space, many of the classical
configurations are rejected from the QM ensemble. While this approach shows
promise for small molecules, the acceptance rate of larger biomolecules becomes
vanishingly small. As a result, this more rigorous approach was deemed non-feasible

for large-scale biomolecular interactions like protein-ligand binding.

In contrast, the extension from MM-PBSA to QM-PBSA is methodologically trivial.
The gas phase and solvation energy can be replaced one-to-one with single-point DFT
calculations in implicit solvent. The availability of a PBSA-type implicit solvent in the
linear-scaling DFT code ONETEP allows for a fair and direct comparison of the MM
and QM binding energies. The snapshots generated for MM-PBSA and QM-PBSA are
taken from unconstrained, plain MD simulations of the protein-ligand complex and
require no further preparation. Thus, no constraints or biasing force field potentials
need to be accounted for in the QM energy evaluations. MM-PBSA and QM-PBSA
calculations are also trivially parallel, meaning that every DFT energy evaluation can
be run concurrently, leading to attainable time-to-solutions of less than 5 hours on a
state-of-the-art HPC system.

A central concern with the QM-PBSA approach is that snapshots generated from
classical mechanical MD are evaluated using a quantum mechanical energy
Hamiltonian. While ideally, sampling would be performed at a QM level of theory,
this is currently not achievable due to the exorbitant computational cost of ab-initio
MD. It is not clear to what extent the potential energy surface sampled at the classical
mechanical level coincides with the true potential energy surface of the QM
Hamiltonian, and the degree of overlap is likely system-dependent. In our
formulation of QM-PBSA, we must assume that the location of the minima of the QM
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and MM potential energy landscape coincide. The hope is to more accurately
determine the magnitude (depth) of these energy minima by evaluating the QM
energies instead of the MM energies. We must also assume that the shape of the
potential minima at MM and QM levels is comparable. One may expect the MM
ensemble to be so different from the true QM ensemble that QM energy evaluations
on MM snapshots lead to non-relevant energies. The QM landscape would have to be
known to diagnose these differences explicitly. In the absence of perfect knowledge of
the true QM energy landscape, the rate of convergence of calculated QM energy terms
compared to their MM counterparts may serve as an interesting proxy. This question
of the convergence of QM binding energies compared to MM binding energies will be
addressed in our benchmarking studies of QM-PBSA in Chapters 4 and 5.

In summary, we see QM-PBSA as a stepping stone method that is simple, tractable,
and enables the exploration of binding energies based on fully quantum mechanical
energy evaluations today. In the following chapter, QM-PBSA is applied to the
T4-lysozyme protein-ligand benchmarking system, and key aspects of the QM-PBSA
method, like the convergence and choice of exchange-correlation functional, are
explored.
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Chapter 4

T4-Lysozyme: QM-PBSA
Reproducibility, Convergence, and
Exchange-Correlation Functional

4.1 Introduction

Having introduced and motivated the QM-PBSA quantum mechanical binding free
energy method, this chapter focuses on validating the method in a previously studied
benchmarking system and characterizing its convergence and dependence on the

choice of exchange-correlation functional.

In 2014, Skylaris et al. [38] first applied the QM-PBSA method to a set of ligands
binding to the T4-lysozyme protein. In this chapter, we continue the exploration of
T4-lysozyme using the QM-PBSA method and present our study [1] of the
reproducibility, convergence characteristics, and comparison of three
exchange-correlation functionals and dispersion corrections. We first introduce the
target protein system, a T4-lysozyme double mutant, in Section 4.2 followed by a
description of the 2014 study by Skylaris et al. [38] upon which this study builds.
Section 4.4 introduces our research aims. The design of this computational study and
computational details of the methods employed are presented in Section 4.5 followed

by the results and discussion in Sections 4.6 and 4.7, respectively.

4.2 The T4-lysozyme double mutant L99A/M102Q

The protein under investigation is the lysozyme of the bacteriophage T4.

Bacteriophages are viruses that infect and replicate within bacteria. Two heavily
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studied genetically engineered mutants are L99A and L99A /M102Q, which have a
non-polar and polar buried cavity, respectively [124]. The L99A /M102Q double
mutant [125] with a buried polar binding site is used in this study. A visualization of
the protein in complex with phenol is shown in Figure 4.1. Due to the moderate size of
the protein (2600 atoms) and the relative simplicity of the buried binding site,
T4-lysozyme has been used in multiple studies [46, 126] to develop and validate
docking methods [125, 127], alchemical free energy methods [128, 129], and other
statistical thermodynamic approaches [130]. In 2017, Villarreal et al. [131] tested their
hybrid steered molecular dynamics approach on benzylacetate, 2-nitrothiophene, and
benzene inside the T4-lysozyme L99A /M102Q double mutant. More recently, Cabeza
de Vaca et al. [132] used the L99A mutant and seven benzene derivatives to validate
an enhanced Monte-Carlo method for absolute binding free energies achieving a mean
unsigned error of 1.2 kcal/mol. Cole et al. [73] derived a quantum mechanical
bespoke force-field for the L99A mutant and used it to calculate binding free energies
for six benzene derivatives obtaining a mean unsigned error of 0.85 kcal/mol. Niitsu
et al. [133] used a replica-exchange method to distinguish binders and non-binders to
the L99A mutant. In 2020, Sakae et al. [134] used the T4L99A-phenol system to
validate an absolute free-energy method for systems with multiple binding poses.
Mobley et al. [135] also propose T4-lysozyme as a "simple’ benchmarking system for
protein-ligand binding free energy prediction because of the large volume of
experimental and computational research data available, the conformational stability
of the protein and binding sites as well as the small, neutral and rigid ligands.
However, they also highlight the limitation that the binding affinity range of known

ligands is extremely small.

FIGURE 4.1: Phenol bound in the buried binding site of the T4-lysozyme double mu-
tant (L99A /M102Q). Visualization made in VMD [37]. PDB Code: 1LI2
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4.3 The original T4-lysozyme QM-PBSA paper

In 2014, Skylaris et al. [38] tested the QM-PBSA method using ab-initio DFT
calculations on an entire protein-ligand complex. The relative binding free energies of
8 ligands to the T4-lysozyme double mutant L99A /M102Q were computed. Sampling
was performed at the MM-level, using the Amber10 package [136]. A single-trajectory
approach was employed, and the ff99SB [137] and GAFF force fields were used for the
protein and ligand, respectively. The AM1-BCC method in Amber was used to
calculate ligand charges, and the TIP3P water model [26] and neutralizing C/~ ions
were used for the explicit solvent. Only the bound catechol-protein complex was
equilibrated using an extensive equilibration protocol. The other ligands were
mutated from the catechol afterward. Production calculations of 20 ns were run at 300
Kin the NVT ensemble using a 2 fs timestep with a Langevin thermostat and the
SHAKE algorithm to constrain bonds to hydrogens. Due to its large size, the
1-phenylsemicarbazide complex structure was prepared and equilibrated separately.

MM-PBSA post-processing was employed on 1000 equally spaced snapshots, using an
infinite non-bonded cutoff with a dielectric constant of 80 for the implicit water
solvent and an internal dielectric of 1. Entropies were also estimated at MM level
using normal mode analysis on 50 snapshots using NAB in Amber10 in the presence
of an implicit solvent using the Generalized Born model.

The convergence of the MM-PBSA binding energies with the number of snapshots was
used to estimate the error in the QM-PBSA approach. At 50 snapshots, the maximum
fluctuations observed were below 0.5 kcal/mol. 50 snapshots were evaluated at a QM
level and compared with MM-PBSA on the same snapshots for each ligand.

All QM single-point energy calculations were performed in ONETEP [87] using its
minimal parameter implicit solvent model introduced in section 3.2.3.1. The DFT
calculations were run at a kinetic energy cutoff of 827 eV using the PBE functional
with a DFT+D style dispersion-correction. Implicit solvent parameters from a
previous validation study were used. A post-hoc correction term was applied to the
protein (host) to correct for the erroneous addition of the surface area of the buried
binding pocket to the host cavitation energy. A similar correction was applied in the
MM-PBSA approach.

Good agreement was observed between the binding free energies in vacuum at QM
and MM level, indicating that the force-fields employed are well parameterized for
the system. However, significant differences in the free energies of binding in solvent
were observed. The QM-PBSA appeared more accurate, with an overall root mean
square error (RMSE) of 2.7 kcal/mol as compared to 4.0 kcal/mol for MM-PBSA.
Furthermore, the QM approach correctly predicted one of the two non-binders,
whereas the MM approach did not.
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4.4 Research goals

Our motivation is to improve the accuracy, transferability, and reproducibility of
protein-ligand binding free energy calculations using high-accuracy ab-initio DFT. In
this study of 7 ligands binding to the T4-lysozyme double mutant (L99A /M102Q), we
push the boundary of DFT-based binding free energy calculations by drastically
increasing the number of full-protein DFT calculations to over 2900 with the intent of:

—_

. Demonstrating the reproducibility of DFI-based binding free energies,
2. Studying the convergence of the QM-PBSA method,
3. Determining statistical errors at different levels of sampling,

4. Comparing the performance of dispersion-including non-local and
meta-GGA-nonlocal exchange-correlation functionals VV10[85] and B97M-rV
[79, 138] with the popular GGA functional PBE [77],

5. Comparing different empirical dispersion-corrections to the PBE functional and

assessing the significance of the three-body dispersion term.

The choice of exchange-correlation functional may have a significant impact on
accuracy. A recent benchmarking study by Head-Gordon et al. [78] showed that for a
test set of binding energies of small ligands interacting with protein receptors (HSG
set) the RMSDs of different functionals varied from 2.68 to 0.11 kcal /mol.
Furthermore, the choice of empirical dispersion-correction, or functionals that

explicitly include dispersion, was significant.

Improved accuracy in the QM-PBSA vacuum and solvation energies could be
combined with advances in the entropy terms and sampling to achieve high-accuracy
relative binding free energies for novel drug candidates. Furthermore,
exchange-correlation (XC) functional benchmarking studies usually focus on small
systems. Thus, establishing the relative accuracy of different XC functionals and
dispersion-corrections in the prediction of binding energies in large-scale biological

systems is necessary to inform future research utilizing DFT in this context.

An improved understanding of the behavior of the energy/entropy distributions and
the rates of convergence of mean energy/entropy terms in both QM-PBSA and
MM-PBSA will inform appropriate sampling and allow estimates of statistical errors.
Furthermore, an in-depth comparison of the convergence of QM- v.s MM-PBSA
methods will elucidate the impact of sampling with classical mechanical while
evaluating energies at the quantum mechanical level of theory. To this end, the
semi-empirical quantum mechanical (SEQM) method GFN2-XTB [89] is also
investigated. Lastly, this study provides the opportunity to test the reproducibility of
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DFT calculations within ONETEP by comparing the new results obtained to those
reported by Skylaris et al. [38] in 2014.

Overall, our goal is to lay the foundation for large-scale applications of the QM-PBSA
method, to comment on best practices and demonstrate that with modern computing
capabilities, DFT binding free energy calculations are viable and are a promising
avenue of research and industry application.

4,5 Methods

4.5.1 Design of computational study
4.5.1.1 Sampling

In this study, we re-use the conformations generated from molecular dynamics
simulations in 2014 by Skylaris et al. [38]. MD sampling was performed using the
one-trajectory approach and the force-field ff99SB [137] for the protein and GAFF1 for
the ligand in Amber10 [34, 136, 139, 140]. 20 ns of MD were generated for each ligand
from which 1000 configurations were extracted. We re-use the identical 1000 MD
snapshots for 7 ligands (shown in Figure 4.2) in T4-lysozyme in this study. Skylaris et
al. applied the QM-PBSA method to a subset of 50 snapshots, equally spaced within
the 1000 extracted from the MD trajectories. Ligand 8, a non-binder, from the 2014
ligand set was excluded from this study. Due to its larger size, it is more prone to
inducing side-chain motions in the protein upon binding [135], which are likely not
captured in 20 ns of MD.

4.5.1.2 Relative binding free energies and treatment of the non-binder

MM-PBSA and related approximate methods are designed to calculate relative rather
than absolute binding free energies. Normalization to the experimental binding
energy of a reference ligand is needed to compare our calculated results to absolute
experimental binding energies. In 2014, only phenol was considered by Skylaris et al.
[38] as the reference ligand. Instead, we chose a different approach based on reviewer
feedback obtained during the publication of this research. The root mean squared
deviation after the removal of the systematic error (mean signed error, MSE), called
RMSDtr, is used to quantify the closeness of predicted to experimental binding
energies. The RMSDtr incorporates all choices of reference ligand and yields a single
RMSD value instead of a separate RMSD for each choice or reference ligand,
simplifying the comparison of methods.
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Hydroxyaniline is a non-binder and thus does not have a well-defined experimental
binding free energy. The experimental assay used by Boyce et al. [128] could identify
measurable binders up to a disassociation constant of 10 milli-mol. This corresponds
to a free energy of binding of -2.7 kcal/mol at 300 K, giving the lower limit of the
non-binder’s free energy of binding. The theoretical upper limit is 0 kcal/mol. All
metrics applied to relative binding energies are calculated for the lower limits, the

upper limits, and excluding the non-binder.

4.5.1.3 Exchange-correlation functionals

We selected the exchange-correlation functionals PBE, VV10, and B97M-1V for
comparison in this QM-PBSA study.

PBE is a generalized gradient approximation (GGA) functional based on exact
constraints and minimal empiricism. Because PBE cannot describe long-range
correlation effects, an empirical force-field-like dispersion-correction is added. In this
study, we test ONETEP’s default dispersion-correction [87] and variants of Grimme’s
D2 [141] and D3 [81, 142, 143] empirical dispersion-corrections. We chose PBE because
it is extremely popular and is based on physical considerations with only moderate

empiricism.

VV10 was selected because it is a non-local dispersion-including GGA functional. It
combines rPW86 exchange, PBE correlation, and VV10 dispersion-correlation [85]. In
2016, Womack et al. [138] implemented a more numerically efficient version, rVV10,
into ONETEP.

Beyond GGA functionals, meta-GGAs (mGGA) incorporate the electron kinetic
energy density and the density gradient. In a benchmarking study by Head-Gordon et
al. [78] the most accurate mGGA was the relatively new empirically-parameterized
functional B97M-rV [79], which incorporates rVV10 non-local dispersion.

4.5.1.4 Ligand set A, 50 snapshots: comparison of DFT functionals

To compare DFT functionals, a random subset of 5 ligands, named ligand set A (blue
in Figure 4.2), was chosen due to the increased computational cost of evaluating
multiple DFT exchange-correlation functionals and dispersion-corrections. The
binding energies of methylphenol, fluoroaniline, catechol, hydroxyaniline, and phenol
were calculated (set A). The energies of 50 equally spaced snapshots, the identical
structures as in 2014 [38], were evaluated at DFT level using functionals PBE [77],
VV10 [85] and B97M-rV [79].



4.5. Methods 61

H
o
g

Brea_kdﬂvn of Sam_pligand Ligand Sets: [1=SetA

GENZ-XTB .. ...
GFNZ:XTB: (1 s

GFNZXTB.
B97M-rV
S—

-
Q@
Q.
S
©
wv
g
< 50-
a -
© o
5 i <l |
: SIS 22| |2
2 @ ; o |lv] |a]

H H

~o F T o

f N
@ ©/ )
cl
Phenol Catechol Methylphenol Hydroxyaniline Fluoroaniline Toluene Chlorophenol

FIGURE 4.2: An overview of sampling and methods for each ligand. Ligand set A

consists of the first 5 ligands and 50 snapshots of sampling with DFT functionals PBE,

VV10 and B97M-rV. Ligand set B consists of all 7 ligands and 100 snapshots for PBE
and GFN2-XTB. Structures drawn using Marvin JS on chem-space.com.

4.5.1.5 Ligand set B, 100 snapshots: convergence, errors and comparison of MM-,
SEQM- and QM-PBSA

To investigate the convergence of the QM-PBSA method and to compare it to
MM-PBSA, the ligands toluene and chlorophenol were added to ligand set A to form
ligand set B (dotted area in Figure 4.2) with 7 ligands. Sampling was increased to 100
equally spaced snapshots. These 100 configurations are equally spaced within the
1000 snapshots generated by Skylaris et al. [38] and include the 50 snapshots of ligand
set A. Only the PBE functional, with dispersion-corrections, was evaluated over the
100 snapshots of ligand set B. The semi-empirical tight-binding method GFN2-XTB by
Grimme et al. [89] was also tested on the 100 snapshots and 7 ligands of set B.

4.5.2 Computational details
4521 MM-PBSA

MM-PBSA post-processing was performed in Amber10 using the force field ff99SB
[137] for the protein and GAFF1 for the ligand [136, 139, 140] with an infinite
non-bonded cutoff. Because the choice of implicit solvent model can significantly
impact the results [42], Poisson-Boltzmann solvation, available in both Amber and
ONETEP, was used for consistency. A dielectric constant of 80 was used to represent

the solvent water, and a dielectric constant of 1 inside the protein [42].
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4.5.2.2 DFT

The linear scaling DFT code ONETEP [87] was used for energy evaluation both in this
and the 2014 study by Skylaris et al. [38]. A kinetic energy cutoff of 800 eV was used
for all functionals. 4 non-orthogonal generalized Wannier functions (NGWF) were
used for carbon, nitrogen, and oxygen, and 1 NGWF was used for hydrogen. For
sulfur and fluorine, 9 NGWEFS were used. An NGWF radius of 8 atomic units was
used throughout. The pseudoatomic solver was used in ONETEP to generate the
initial NGWFs. ONETEP default parameters for water at room temperature were
used. The default solvent surface tension is 4.7624 x 10> Ha/Bohr? with an apolar
scaling factor of 0.281075 and a solvation f of 1.3. The bulk permittivity was 78.54 and

an interior dielectric of 1 was used.

To speed up the solution of the Poisson-Boltzmann equation, the charge at the
boundary of the simulation cell was coarse-grained. The default charge
coarse-graining factor at the boundary is 5. By increasing this to 10, the energy
evaluation of the complex is sped up by 20%. In a series of test calculations, increasing
the coarse-graining to 10 resulted in a change of only 0.005 kcal/mol in the total
energy in solvent and 0.01 kcal/mol in the binding energies. ONETEP version 5.3.2.6
compiled with the Intel 2019 compilers and Intel MPI 2019 was used. A link to the full
set of DFT input and output files is provided in Appendix C.

4.5.2.3 Cavity-correction

The T4-lysozyme (LA99/M102Q) binding site is a buried cavity [125]. The ONETEP
and Amber implicit-solvent models incorrectly describe the solvent-accessible surface
area (SASA) of buried cavities. Cavity-correction terms appropriate to QM and MM
are applied to alleviate this issue. All QM- and MM-PBSA results, therefore, are
cavity-corrected.

Both the minimal-parameter PBSA solvent model implemented in ONETEP and the
PBSA solvent used at MM-level incorrectly handle the buried cavity in T4-lysozyme
(L99A /M102Q)). This is a known issue for solvent models based on the solvent
accessible surface area described in detail in 2010 by Genheden et al. [46] and in 2014
by Skylaris et al. [38]. In the un-complexed protein calculation, i.e., the host, the
surface area of the interior of the buried binding site is counted towards the solvent
accessible surface area (SASA) used to calculate the non-polar solvation term. Thus,
the non-polar term of the protein is larger than that of the complex. This implies the
formation of a larger cavity in the solvent. Conceptually, the SASA model creates an
additional, fictitious cavity in the solvent with the SASA of the buried binding site.
Because the non-polar terms of both the protein and complex are known, a post-hoc

cavity-correction may be applied to remove the additional contribution of the buried
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cavity to the non-polar solvation energy. The spurious cavitation energy is removed
by subtracting the difference in the non-polar terms of the host and complex from the
host solvation energy. If the cavity should be filled with water, as is the case for this
T4-lysozyme mutant (L99A /M102Q) [144], this correction is applied a second time to
remove the cavity SASA from the host SASA. This is necessary because a water-filled

cavity reduces the volume of the cavity formed for the solute in the solvent.

This simple approach works immediately for the MM-PBSA calculations, which use a
simplistic SASA model with no estimate of the dispersion and repulsion between the
solvent and solute (npopt=1 in Amber10). In the QM calculations,
dispersion/repulsion is included in the non-polar term. Because the cavity SASA does
represent a physical boundary between solvent and solute inside the buried cavity, the
dispersion-repulsion due to the cavity SASA term is physically correct. Since the
non-polar dispersion in ONETEP is just a scaling factor applied to the non-polar term,
it can be separated out and only the excess cavitation energy removed from the host
non-polar solvation term. A full derivation is provided in [38].

4.5.2.4 Dispersion

The 2014 binding free energy calculations of Skylaris et al. [38] utilized PBE with a
DFT+D style dispersion-correction, based on a damping function by Elstner [145]
from 2001 and ONETEP’s own parameterization. In this study, Grimme’s D2 [141] and
variants of the newer D3 dispersion-correction, including a three-body dispersion
term (Eapc), are applied to the PBE functional [81, 142, 143]. The dispersion energies
for D2 and D3 variants are obtained from Grimme’s standalone dftd3 program and
manually applied to the DFT(PBE) energies. A link to the full set of dftd3 input and
output files is provided in Appendix C.

4.5.2.5 GFN2-XTB

The semi-empirical tight-binding method GFN2-XTB [89] features atom-specific
parameterization for most of the periodic table, a self-consistent implicit-solvent
model, and the D4 dispersion-correction [82]. It is implemented in the XTB package
developed by Grimme et al. [146, 147]. The default settings for GFN2-XTB
single-point implicit solvent (water) energy evaluations were used. GFN2-XTB uses a
GB solvent model [45] in which the cavitation and dispersion energy is treated with a
single parameter, multiplied by the SASA. Thus, the straightforward application of a
QM-style cavity-correction is not possible. Results with and without an MM-style
cavity-correction are considered. A link to the full set of GFN2-XTB input and output
files is provided in Appendix C.
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4.5.2.6 Entropy

The entropic contribution to binding was calculated using normal mode analysis
(NMA) [148] in the NAB program in Amber16 [136, 149]. The complex, host, and
ligand’s vibrational, translational, and rotational entropies were evaluated. Before
NMA, a two-part energy minimization comprised of a conjugate gradient method,
followed by the Newton-Raphson method, was performed on each snapshot with
tight convergence criteria using the ff99SB and GAFF1 force fields. A Hawkins,
Cramer, Truhlar (HCT) Generalized Born implicit solvent, with an internal dielectric of
1, was used for the frequency calculations and the energy minimizations with infinite

non-bonded cutoff. All 1000 available structures for each ligand were evaluated.

4.6 Results

4.6.1 Reproducibility

TABLE 4.1: Total change in enthalpy upon binding, (AHy;, ), in kcal/mol relative
to phenol now and in 2014 [38] over the same 50 snapshots. No entropy correction

included.

Ligands PBE PBE -2014 Delta
catechol -89 9.0 0.14
fluoroaniline -6.0 -59 -0.12
hydroxyaniline -6.2 -6.2 0.00
methylphenol -87 -85 -0.16
toluene -5.0 -4.8 -0.18
chlorophenol  -69 -6.9 0.01

Absolute Mean 0.10

This study provides a valuable opportunity to demonstrate the reproducibility of
DFT-based binding free energy calculations. The calculations by Skylaris et al.[38]
were performed with a 2012 version (3.1.15.2) of the ONETEP[87] code, while this
study uses version 5.3.2.6 from late 2019. As shown in Table 4.1, despite 7 years of
active code development, the average absolute difference between the new and old
results using the same structures and functional is 0.1 kcal/mol. This underlines the
robustness and precision of the DFT methodology and the ONETEP code in particular.

4.6.2 Convergence
4.6.2.1 Standard error of the mean

The standard error of the mean (SEM) measures how far a sample’s mean is likely to
deviate from the true population mean. The QM-PBSA method averages energy terms
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FIGURE 4.3: The standard error of the mean (SEM) calculated by bootstrapping (1000

re-samples) of the change upon binding in the gas-phase energy, (AE), solvation en-

ergy, (AGsorpation ), cavity-corrected solvation energy, (AGgojoation—cav—cor), and total en-

thalpy, (AHping) = (AE) + (AGsorvation), for catechol up to 100 snapshots for MM, the
DEFT functional PBE and the SEQM method GFN2-XTB .

over an ensemble of snapshots (population sample). Thus, the SEM estimates how the
calculated energies differ from the true, fully sampled energies (i.e. the population
mean). The SEM assumes normality of the energy distributions. Using the
Shapiro-Wilks test [150] we concluded that overall, the use of the SEM is appropriate.

Figure 4.3 shows the SEM convergence, calculated by bootstrapping, of each enthalpy
component and the total enthalpy for catechol in T4-lysozyme. The enthalpies shown
are net enthalpies. The SEM of the net gas-phase enthalpy, (AE), and the solvation
energy, (AGgolvation), in catechol is only slightly higher for PBE than for the other
methods. However, the SEM of PBE in the cavity-corrected solvation energy,
(AGsorvation—cav—cor), 18 significantly higher. At 100 snapshots, the SEM of the
cavity-corrected solvation energy is 0.39 kcal/mol, while the other methods have
SEMs below 0.18 kcal/mol. This leads to the overall higher SEM in the total enthalpy
change upon binding, (AHp;,4), for the PBE method. The higher SEM of PBE is also
reflected in the SEM of functionals VV10 and B97M-rV over ligand set A.

Unlike for PBE, the MM-style cavity-correction term applied to the MM-PBSA results
(labeled MM) only minimally increases the solvation energy SEM. GFN2-XTB is
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shown without cavity-correction and has a similar SEM to MM. The above
observations are consistent for all ligands (Figures A.1 to A.7 in Appendix A).

4.6.2.2 Absolute deviations
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FIGURE 4.4: Left: Mean change in total enthalpy upon binding,(AHy;,;), of each lig-

and at different numbers of equally spaced snapshots. Right: Absolute deviation of

(AHp;ng) at different numbers of equally spaced snapshots from the ‘converged’ mean
over 100 snapshots. Methods: MM (a,b), DFT(PBE) (c,d), and GFN2-XTB(e,f).
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Figure 4.4 shows the convergence of the mean change in enthalpy upon binding and
absolute deviation from (AHj;,;) at 100 snapshots for MM, PBE and GFN2-XTB.
Considering first the mean binding energies, all methods appear surprisingly stable
between 25, 50, and 100 snapshots. Especially PBE and GFN2-XTB show only small
changes in (AHp;,4) from 50 to 100 snapshots. The absolute deviation plots show that
(AHp;ng) fluctuates considerably (= 1kcal/mol) for all methods below 25 snapshots.
This is most pronounced in PBE and is in line with the observation of a larger SEM in
PBE. MM and GFN2-XTB show comparable levels of fluctuation. Interestingly, for 25
snapshots and beyond, the absolute deviations from the ‘converged’ results at 100
snapshots vary very little and are indistinguishable for PBE, MM, and GFN2-XTB. No
deviations above 0.5 kcal/mol are observed beyond 25 snapshots. Additional analysis
using sets of randomly selected snapshots confirmed that beyond 25 snapshots the
convergence, with respect to (AHy,,,;) at 100 snapshots, of MM and PBE is
indistinguishable (Figures A.10 to A.16 in Appendix A).

4.6.3 Entropy correction
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FIGURE 4.5: (a) Convergence of mean entropy change upon binding, TA(S), over 100
equally spaced snapshots. (b) Absolute deviation of TA(S) from “converged” value at
100 snapshots at different numbers of equally spaced snapshots.

The entropy term in QM- and MM-PBSA is calculated by normal mode analysis, as
detailed in the methods section. The maximum SEM at low numbers of snapshots is
lower than for the enthalpic components, especially the DFT cavity-corrected
solvation energies. However, the rate of convergence is also slower. The entropy SEM
at 100 snapshots is larger than that of the total enthalpy change upon binding
calculated with MM and GFN2-XTB, and is comparable to that of PBE.

Figure 4.5 shows a similar analysis for entropy as done for the enthalpic terms. Panels
4.5a and 4.5b show the convergence of the mean net-entropy term and absolute
deviation from the mean net-entropy term at 100 snapshots. There are significant
fluctuations below 50 snapshots (> 1 kcal/mol). Fluctuations of about 0.5 kcal/mol
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remain even beyond 50 snapshots, and, compared to the enthalpic terms, the entropy

term appears qualitatively slower in convergence.

The degree of entropy sampling significantly changes the RMSDtr of calculated
against experimental relative binding free energies. Figure 4.6 shows the RMSDtr over
ligand set B at 100 enthalpy snapshots and increasing levels of entropy sampling.
Including a small number of entropy snapshots (5,10,25) increases the RMSDtr by up
to 1.3 kcal/mol for MM-PBSA and 0.4 kcal/mol for QM-PBSA. At 50 entropy
snapshots and beyond, the RMSDtr decreases compared to no entropy correction. The
lowest RMSDtr is reached at 100 snapshots of entropy, i.e., the same level of sampling
as for the enthalpy terms. Beyond this, the sampling of snapshots not included for
calculating the enthalpy terms does not further improve the accuracy against
experiment. All three treatments of the non-binder exhibit the increased RMSDtr at
low levels of entropy sampling (Figures A.17 to A.19 in Appendix A).
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FIGURE 4.6: Root mean square deviation from experiment after removal of mean

signed error (kcal/mol) of calculated binding free energies for ligand set B, at different

levels of entropy sampling. Enthalpy sampled over 100 snapshots. RMSDtr calculated

with upper limit for non-binder (lower limit and binders only in Figures A.17 to A.19
in Appendix A).

4.6.4 Statistical error due to incomplete sampling

The calculated absolute binding free energies are the sum of two separate means, the
mean enthalpy and mean entropy, sampled over a selection of protein-ligand
conformations, i.e., snapshots. By propagation of errors, the SEM of each ligand’s
entropy and enthalpy terms and the chosen reference ligand are combined to estimate
the total statistical error due to imperfect sampling in the relative binding free

energies.
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Table 4.2 shows the maximum statistical error due to incomplete sampling across all
choices of reference ligands for each method at different levels of sampling. Enthalpy
and entropy terms are evaluated over the same 10, 25, 50, and 100 equally spaced
snapshots. The maximum statistical errors for PBE are almost identical to those for
VV10 and B97M-1V; hence only PBE is shown. We use these values to estimate the
uncertainty in our calculated binding free energies going forward. This statistical error
or uncertainty, due to imperfect sampling, should not be confused with the RMSDtr of
the calculated against experimental binding free energies, used to quantify the

closeness of predicted to experimental results.

TABLE 4.2: Maximum statistical errors due to imperfect sampling (SEM) in entropy-

corrected relative binding free energies with different methods sampled over 10, 25,

50, and 100 equally spaced snapshots. Enthalpy and entropy terms sampled over same
snapshots. Cavity-correction applied for PBE and MM.

Max Statistical Errors (kcal/mol)
Snapshots/Methods 10 25 50 100

PBE 1.88 1.22 0.87 0.62
MM 1.63 1.05 076 0.54
GFN2-XTB 1.57 1.02 0.73 0.52

4.6.5 Ligand set A: comparing DFT functionals

TABLE 4.3: Root mean square deviation from experimental binding free energies af-

ter removal of the mean signed error (kcal/mol) for ligand set A with energies and

entropies sampled over the same 50 snapshots. RMSDtr values shown with the non-

binder’s energy set to 0 kcal/mol (upper limit,[]), -2.7 kcal/mol (lower limit,[{]) and

without the non-binder. The average standard error (SE) in RMSDtr calculated using
bootstrapping (10000 re-samples).

RMSD after removal of systematic error (MSE)

Method all ligands[x] all ligands[f] binders only
B97M-V 2.49 1.86 1.93
VV10 2.68 2.11 2.21
PBE+ONETEP Disp 2.26 1.76 1.93
PBE+D2 2.25 1.71 1.84
PBE+D3(BJ) 2.25 1.79 1.97
PBE+D3(BJ])+ABC 2.17 1.73 1.91
PBE+D3(BJM) 2.22 1.77 1.95
PBE+D3(BJM)+ABC 2.14 1.71 1.90
Average SE 0.26 0.27 0.30

Table 4.3 shows the root mean square deviation after removal of the mean signed error
of the calculated relative binding free energies with respect to experimental binding
free energies [125, 128] of ligand set A using 50 enthalpy and 50 entropy snapshots.
The RMSDtr is shown for all treatments of the non-binder, and the average standard

error (SE) is estimated by bootstrapping with 10000 re-samples.
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Overall, VV10 is the worst-performing exchange-correlation functional and has a
consistently higher RMSDtr, irrespective of the treatment of the non-binder. The
PBE+dispersion methods have slightly lower RMSDtr than B97M-rV when the
non-binder is included via the upper or lower bound. However, given the estimated
standard error, this difference is likely not significant. For the subset of binders only,
B97M-1V and PBE+dispersion methods achieve the same RMSDtr. All the empirical
dispersion corrections to PBE perform well but are indistinguishable given the
standard error. Including the three-body dispersion term (ABC) always slightly
reduces RMSDtr, but the change is much smaller than the standard error.

4.6.6 Ligand set B: PBE, GFN2-XTB and MM

TABLE 4.4: Root mean square deviation from experimental binding free energies af-

ter removal of the mean signed error (kcal/mol) for ligand set B with energies and

entropies sampled over the same 100 snapshots. RMSDtr values shown with the non-

binder’s energy set to 0 kcal/mol (upper limit,[x]), -2.7 kcal /mol (lower limit,[t]) and

without the non-binder. Average standard error (SE) in RMSDtr calculated using boot-
strapping (10000 resamples).

RMSD after removal of systematic error (MSE)

Method all ligands[x| all ligands[}] binders only
MM 2.21 1.61 1.55
PBE+ONETEP Disp 2.01 1.57 1.65
PBE+D2 2.09 1.63 1.69
PBE+D3(B]) 2.11 1.73 1.84
PBE+D3(BJ])+ABC 2.03 1.66 1.77
PBE+D3(BJM) 2.11 1.74 1.85
PBE+D3(BJM)+ABC 2.02 1.67 1.79
GFN2-XTB 3.65 3.16 3.12
Average SE 0.15 0.16 0.17

We now compare the accuracy vs. experiment of MM, PBE+dispersion, and
GFN2-XTB on ligand set B at 100 snapshots of enthalpy and entropy. Table 4.4 shows
the RMSDtr of the calculated relative binding free energies against experiment[125,
128]. The RMSDtr is shown for all treatments of the non-binder, and the average
standard error (SE) is estimated by bootstrapping with 10000 resamples.

Overall, the accuracy against experiment as described by the RMSDtr is comparable
for the MM- and QM-PBSA approach. Only the SEQM-PBSA approach using the
GFN2-XTB energy method performs significantly worse. The different empirical
dispersion corrections are indistinguishable given the standard error. As in ligand set
A, the three-body dispersion term slightly reduces the RMSDtr of both the PBE+D3(B])
and PBE+D3(BJM) methods, but this change is within the estimated standard errors.
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4.6.7 Comment on correlation

Correlation to experiment is not included as a quality metric for two main reasons.
First, the ligand set is very small. Second, the experimental binding free energies
range is only 1.4 kcal/mol, and multiple ligands have identical or near identical
experimental energies. The estimated statistical error in the computed relative binding
free energies due to incomplete sampling is 0.87 kcal/mol at 50 snapshots and 0.62
kcal/mol at 100 snapshots for PBE. Hence, the correlation values vary greatly
depending on the choice of reference ligand and the treatment of the non-binder.
Furthermore, the 90% confidence intervals calculated by bootstrapping for Pearson
r-values exhibit huge ranges of r-value, often above 0.5. Thus, no meaningful
comparison between methods is possible. We conclude that a larger number of
ligands and a greater range of experimental binding free energies are critical

requirements for future protein-ligand system selection.

4.7 Discussion

4.7.1 Computational cost

Gathering the results for this study posed a serious computational challenge.
Excluding initial testing and exploratory work, 3600 ab-initio DFT calculations were
completed, 2900 of which were on the entire 2600-atom T4-lysozyme. This was made
possible by 1) the linear-scaling of the ONETEP DFT code, 2) the efficient hybrid
MPI-OMP parallelization of the ONETEP code, and 3) access to three different HPC
centers. Running calculations concurrently on three HPC facilities for 6 months, the
DFT calculations alone required more than 1 million core-hours. Taking into account
the 21000 normal mode calculations, 15000 empirical dispersion calculations, and 2100
SEQM calculations we estimate a total wall-time of about 30000 hours or 1250 days.
With full access to the 5,632 compute nodes of the tier-0 EU HPC facility HAWK, the
calculations for this study could have been completed in less than 24 hours.

4.7.2 Convergence and errors

One criticism of QM-PBSA and related methods is that sampling and energy
evaluations are performed using different energy functions [8]. We expected this to
lead to poor convergence of the QM energy terms compared to the MM energies.
While the higher SEM for DFT methods, as compared to MM, initially indicated this to
be true, the source of the higher SEM is predominantly the QM cavity-correction.
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Further investigation showed that the QM non-polar solvation terms calculated in
ONETEP have a larger variance than the MM non-polar terms. This is exacerbated by
the functional form of the QM cavity-correction, which combines the host and
complex non-polar terms and then scales the result by a factor of 7.116 [38]. The larger
variance in the QM non-polar terms on the total binding free energies is thus
magnified, leading to a larger overall SEM. The cavity-corrected solvation energy
standard deviation for PBE ranges from 2.7 to 3.9 kcal /mol in ligand set B, while the
range for MM is 1.3 to 1.9 kcal/mol. One possible reason for the larger variance in the
DFT non-polar term is the more complex definition of the binding cavity via
electron-density iso-surfaces. GN2-XTB has similar or lower standard deviations than
MM.

Detailed analysis of the convergence of the total enthalpy change upon binding of
each ligand showed that beyond 25 snapshots, the QM results appear equally
converged as the MM results. Analysis of the absolute deviations from the
“converged” enthalpy change upon binding at 100 snapshots using different numbers
of equally spaced and randomly selected snapshots also confirmed this. At low
numbers of snapshots (< 25), the DFT energies fluctuated significantly more than
those from MM, as reflected by the QM methods” higher SEM. The SEQM GFN2-XTB
showed similar convergence to MM, even below 25 snapshots. This is likely because

the method does not suffer the increased SEM due to the QM cavity-correction.

In terms of precision, the maximum estimated statistical error for PBE in Table 4.2 is
only 0.08 kcal/mol higher than for MM at 100 snapshots and 0.11 kcal/mol higher at
50 snapshots. This further suggests that at and beyond 50 snapshots, the convergence
and precision of MM and DFT methods are comparable. The key finding is that in this
system, the QM-PBSA method (irrespective of the choice of functional) does not suffer
from poorer convergence compared to MM-PBSA.

In this study, snapshots generated from a single MD simulation were used. Sampling
snapshots from independent MD simulations may result in larger standard errors of
the mean and may impact the rate of convergence of both the MM and QM methods.

These results indicate that the MM force fields (GAFF and ff99SB) used for sampling
are well parameterized for this system and produce configurations that overlap well
with the true QM ensemble. As a result, the QM calculations converge quickly
because no high QM-energy configurations are present in the MM ensemble. In terms
of the potential energy landscape, this would mean that the position of energy minima
in the MM and QM representation are very similar. The difference in calculated
binding free energies results from the different depths and shapes of these energy

minima for the different energy functions.
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4.7.3 QM-PBSA: improvements and recommendations
4.7.3.1 Choice of DFT functional

Between the three DFT exchange-correlation functionals tested over 50 snapshots on
ligand set A, PBE+dispersion is the most promising choice, as it outperforms VV10 in
terms of RMSDtr and has very similar RMSDtr to B97M-rV, which is computationally
twice as expensive. All the empirical dispersion corrections to PBE perform well but,
given the estimated standard error, have indistinguishable RMSDtr. The similar
performance of the D2 and D3 empirical dispersion-corrections in this large
dispersion-dominated system supports the findings by Risthaus et al. [83] in their
2013 DFT + dispersion benchmarking study.

In the same study, Risthaus et al. [83] found the D3 three-body dispersion term to
contribute 2.3% to 14.6% in large, dispersion-dominated systems. We have confirmed
that the three-body dispersion term is significant (about 10% of total dispersion) in
protein-ligand systems of this size and tends to improve RMSDtr slightly, however,
well within the estimated standard error. Given the size of the three-body dispersion
term and its tendency to reduce the RMSDtr, we recommend using the D3 empirical

dispersion correction due to its ability to include the three-body dispersion term.

Why do the newer and more computationally expensive VV10 and B97M-rV, which
explicitly account for dispersion, not improve upon the PBE functional with empirical
dispersion in this QM-PBSA study of a large dispersion-dominated system?
Application of the non-parametric Kolmogorov-Smirnov test for equality of two
one-dimensional distributions showed that the distributions of non-cavity-corrected
absolute solvation energies of PBE, VV10, and B97M-1V are very similar. This echoes
our past experience using the ONETEP solvent model that showed the solvation
energies to be independent of the choice of DFT functional. Based on the
Kolmogorov-Smirnov test, the gas-phase energy distributions, which include the
dispersion energy, are dissimilar. Both VV10 and B97M-rV use the non-local rVV10
dispersion term. While the dispersion term rVV10 results in different gas-phase
energies than the empirical dispersion corrections to PBE, this does not translate to
improved accuracy against experiment compared to PBE+dispersion in this QM-PBSA
study.

Furthermore, the rVV10 non-local dispersion term cannot describe three-body effects,
which we found to be significant using the empirical D3-ABC method. Risthaus et al.
[83] suggested that the three-body dispersion term from D3 could be added to
dispersion including functionals in a post-hoc fashion; however, this was not tested

here.
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B97M-rV is a meta-GGA functional and thus almost twice as computationally
intensive as the GGA functionals PBE and VV10. The data-set used to design and test
B97M-1V consisted almost entirely of small molecules [79]. The only protein-ligand
system was a 1686 atom HIV-protease/indinavir complex split into 21 interaction
fragment pair structures. In the 2017 benchmarking study by Head-Gordon et al. [78],
B97M-rV was the most accurate meta-GGA. However, of the almost 5000 data points
tested, there were only 21 protein-ligand fragments (same as above) and 12
protein-DNA complexes with a maximum size of 58 atoms. While we can only
comment on the suitability of the functionals to the QM-PBSA method and not their
overall accuracy, it is interesting that BO7M-rV produced worse or comparable results
to PBE+dispersion. A potential explanation is that the accuracy of
exchange-correlation functionals on small molecule test sets is not indicative of their
applicability to larger systems. This study demonstrates that moving up “Jacob’s

ladder” of functional complexity does not guarantee improved results.

4.7.3.2 Inclusion of entropy term

Including an entropy correction term appears to decrease the quality of results when
insufficient entropy sampling is performed. For this system, sampling the normal
mode entropy term over less than 25 snapshots was inadequate, and no entropy
sampling should be preferred over poor entropy sampling. This is intuitive as
insufficient sampled entropy terms introduce a large statistical error (> 1 kcal/mol)
into the binding energies. On the other hand, when the entropy is sampled with more
than 25 snapshots, the inclusion of an entropy correction reduces RMSDtr. We found
that the best results were obtained when sampling entropy over the same 50 or 100
snapshots used for enthalpy sampling. Sampling beyond this slightly increased errors,
possibly due to the sampling of conformations not included in the enthalpy terms.
Based on these findings, we are concerned about the use of less than 50 NMA
calculations in some applications of MM-PBSA [62, 151, 152].

4.7.3.3 Sampling and statistical error

Based on this study, we recommend QM energy sampling at 50 snapshots. Sampling
at 100 snapshots of enthalpy and entropy reduces the maximum estimated statistical
error due to imperfect sampling from 0.87 kcal/mol to 0.62 kcal/mol. However, it
does not, in this system, significantly reduce RMSDtr. Very stable total enthalpies are
observed between 50 and 100 snapshots, and the absolute deviation of the change in
total enthalpy upon binding at 50 and 100 snapshots is lower than 0.5 kcal /mol for all
ligands.
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4.7.34 QM- vs MM-PBSA

The extent to which PBE+dispersion can consistently improve MM results can not be
clearly stated. However, the results indicate that in this system, the QM-PBSA
approach produces relative binding free energies with RMSDtr comparable to MM.
None of the methods tested were able to identify hydroxyaniline as a non-binder.

Given the small range of binding energies in the ligand set, the null hypothesis of
assigning each ligand the same binding energy yields relatively low errors against
experiment. The null hypothesis has an RMSDtr of 0.57 kcal/mol if the non-binder is
excluded and 1.00 kcal/mol and 1.87 kcal/mol when the non-binder is included via
the lower and upper bound, respectively. Fundamentally, more ligands with a broader
range of binding free energies are needed to compare MM- and QM-PBSA.

In this study on the T4-lysozyme double mutant (L99A /M102Q), our linear-scaling
DFT-based QM-PBSA method achieves an RMSDtr of about 1.7 kcal /mol across the 6
binders, and MM-PBSA achieves an RMSDtr of 1.6 kcal/mol. We briefly outline the
results of some other QM- and SEQM-PB(GB)SA studies to place our results into
context. For a more in-depth review of QM based binding free energy calculations, we
recommend the review by Ryde and Soderhjelm [8]. In 2011, Anisimov et al. [106, 153]
applied a SEQM-PBSA style method using the PM3 Hamiltonian and a COSMO
solvation model to 5 ligands binding to the LcK SH2 domain and 4 binders to BACET.
They achieved MAD of 0.7 kcal/mol and 1.7 kcal /mol, respectively. In both cases, the
SEQM approach was more accurate than MM-PBSA. In 2012, Mikulskis et al. [105]
tested a SEQM-GBSA approach with the AMI, RM1, and PM6 Hamiltonians on three
protein-ligand systems. The overall best-performing energy function, AM1, achieved
a MADtr of 1.8-12.0 kcal/mol in avidin, 1.1-1.3 kcal /mol in fXa, and 0.3-4.9 kcal/mol
in ferritin, depending on the details of the hydrogen bond correction and choice of
dispersion correction. Only in the ferritin system was the best SEQM-GBSA method
able to outperform MM-GBSA and MM-PBSA convincingly. In 2010, Séderhjelm et al.
[107] used the PMISP (polarizable multipole interactions with supermolecular pairs)
approach on 7 biotin analogs binding to avidin. They achieved a MADtr of 4.5
kcal/mol, and the QM approach performed worse than MM-PBSA (3.3 kcal/mol).

One of the key motivations to extend binding free energy calculations to the quantum
mechanical level is that the QM energy evaluations can, in principle, describe a
broader range of physics. In this ligand set and binding site, however, the MM
force-field is not challenged by high charges, large polarization, charge transfer, or
similar phenomena that are not well described in traditional empirical force fields.
This may, in part, explain the similar accuracy of MM- and QM-PBSA in this system.
Going forward, efforts should focus on protein-ligand systems that explicitly
challenge traditional force fields and where the more involved, quantum mechanical

description may be necessary.
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4.7.3.5 GFN2-XTB

Both in ligands set A and B, and irrespective of the treatment of the non-binder,
GFN2-XTB has the highest RMSDtr. This may not be surprising as GFN2-XTB is
relatively new, semi-empirical, general-purpose, and more than 100 times faster than
DFT. As for the B97M-rV functional, the GFN2-XTB method was developed based on
small molecule data sets and aimed at systems of roughly 1000 atoms [89]. Lastly, the
differences in PBSA solvation in the DFT and MM approaches and GBSA solvation in
GFN-XTB may have also contributed to the gap in performance [41].

4.8 Conclusions

In this study, we have shown that thousands of ab-initio DFT calculations of full
protein-ligand systems are computationally feasible in the context of protein-ligand
binding studies for drug design applications. In testing the exchange-correlation
functionals PBE, VV10, and B97M-rV we find that the computationally cheapest
functional, PBE, is the most promising candidate for the application of the QM-PBSA
method. Our findings highlight that benchmarking studies focused almost entirely on
small systems may not be representative of the performance of the functionals in a
QM-PBSA approach applied to much larger systems (2600 atoms in our case).
Different empirical dispersion-corrections to PBE all perform well, but their accuracy
against experiment are all within the estimated standard error. The D3 three-body

dispersion term is significant in size (= 10%) and tends to improve results slightly.

By expanding the QM calculations to 100 snapshots for the PBE functional, we can
show that sampling at 50 snapshots is likely sufficient for convergence. While going
beyond 50 snapshots reduces statistical error, no improvement in predicted against
experimental binding energies is observed. Furthermore, the QM-PBSA and
MM-PBSA methods exhibit near indistinguishable convergence beyond 25 snapshots
of sampling. This is shown by the similar statistical errors and the convergence of the
mean binding energies. In this system, including an entropy correction term is only
beneficial when sampled over at least 25 snapshots. Entropy terms with less sampling
increase RMSE and reduce correlation. Sampling entropy beyond 100 snapshots does

not improve results.

Our study demonstrates that QM-PBSA with full-protein calculations is viable in an
academic context and is a useful addition to the toolbox of free energy calculations,
especially in cases where force field parametrization may not be sufficiently able to
capture effects such as charge transfer and polarisation, which are included by default
in quantum descriptions. Looking to the future, we believe that extending more

rigorous classical mechanical binding free energy methods to full-QM, using
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linear-scaling density functional theory, has significant potential. QM-PBSA method is
an important stepping stone.
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Chapter 5

Protein-Ligand Binding Energies in
BRD4

FIGURE 5.1: Stick and ribbon representation of the BRD4(1) protein structure. Ligand
4, represented as a space-filling model, is also shown in the binding site.

5.1 Introduction

While the QM-PBSA study of T4-lysozyme presented in the previous chapter was
valuable in comparing method parameters and studying the convergence of
QM-PBSA binding energies, T4-lysozyme is a relatively simple and well-established
benchmarking system. The next challenge is to apply the QM-PBSA method, with the

lessons learned in T4-lysozyme, to a “real” protein-ligand system. By “real,” we mean
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a pharmaceutically relevant protein and ligand set with more challenging properties.
In addition to the choice of the protein target, a major shortcoming of the T4-lysozyme
study was the very short MD sampling with outdated force fields, the low number of
ligands, and their small binding affinity range.

This chapter presents our QM-PBSA study of the pharmaceutically highly relevant
bromodomain containing protein 4 (BRD4). We aim to address some of the
shortcomings of our previous T4-lysozyme study. BRD4 plays a key role in many
cancers and is under active investigation as a cancer drug target [154]. The inhibition
of BRD4 can suppress the cancer growth of acute myeloid leukemia, diffuse large B
cell lymphoma, prostate cancer, and breast cancer [155].

Before calculating expensive QM binding energies, an extensive MD study is
conducted in Section 5.3 in which the conformational motion of the protein and its
dependence on the choice of MM force field are explored. In Section 5.4 the MM-PBSA
and MM-GBSA binding energies are calculated based on trajectories from different
force field combinations. Additionally, MM-PBSA and MM-GBSA, with the inclusion
of explicit waters, are tested. Building on the solid foundational MM study of BRD4
presented in Sections 5.3 and 5.4, QM-PBSA binding energies are calculated and
compared to MM-PBSA /GBSA in Section 5.5.

5.2 The BRD4(1) system

Bromodomains are small protein domains of about 110 amino acids responsible for
recognizing acetyl-lysine residues on proteins. There are a wide variety of
bromodomain-containing proteins. BRD4 is a member of the well-studied BET family
of bromodomain-containing proteins [156]. In this study, we focus on the first
bromodomain of the BRD4 protein, commonly referred to as BRD4(1) and pictured in
Figure 5.1. For convenience, the ’(1)’ nomenclature is dropped in the remainder of the
text. This bromodomain contains 121 amino acids and 2035 atoms. Its binding site has
clear access to the solvent and is located between two hydrophobic loop structures
called the ZA- and BC-loops, which connect the four anti-parallel alpha helices that
make up the structure’s body. The ZA- and BC- loops are highlighted in blue and red
in Figure 5.2.

The 121 protein residues of the BRD4(1) structure under investigation are only a single
protein domain of a larger macromolecule. The residue numbering employed in this
chapter’s analysis is defined by the 121 residue protein domain rather than the entire
biological entity. To find the corresponding residue number in the whole genome, add

44 to the residue number reported here.
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The BRD4 bromodomain and a set of 10 ligands, labeled 1-10 in order of ascending
binding energy with a potency range of 5 kcal/mol, have been proposed by Mobley et
al. [135] as a potential binding free energy benchmarking system. The benchmarking
set was recently used in an absolute binding energy study by Huggins et al. [157].
High-quality co-crystal structures are available for most ligands, along with
experimental binding energies. The ligands are uncharged, chemically diverse, and
span a binding range of about 5 kcal/mol. The binding site is solvent accessible, and
many of the ligands form hydrogen bonds with the Asp137 residue inside the binding
site [58]. A full table including structures, SMILES, experimental energies, and PDB
codes is presented in [135] and an abbreviated version in Figure B.1 of Appendix B.

The experimental binding energies of 4/10 ligands were obtained using the
Alphascreen technology with reported average estimated experimental errors of 0.20
kcal/mol and a maximum estimated experimental error of 0.23 kcal/mol [158-160].
Among the Alphascreen ligands are a confirmed non-binder, ligand 1, which was
found to be inactive at a concentration of 250 M, and a weak binder, ligand 2, with
32% inhibition at 250 uM. The experimental binding energies of the other 6 ligands, all
binders, were measured using isothermal titration calorimetry. The reported mean
experimental errors were 0.05 kcal/mol and the maximum experimental error was
0.07 kcal/mol [161-164]. The reported experimental errors are likely significantly
underestimated.

Due to the pharmaceutical relevance of bromodomain-containing proteins, BRD4 has
been the subject of extensive computational research with a noticeable increase in
interest in the past 4 years. A variety of binding energy studies on BRD4 have been
performed using MD [165], QM/MM [166, 167], absolute binding free energy (ABFE)
methods [57, 157, 168], MM-PBSA [57, 169, 170] and MM-GBSA [66, 167, 171-173].

5.2.1 Previous computational studies

We introduce some studies to which we will refer in the discussion but cannot include
all computational research into BRD4. In 2013 Steiner et al. [174] studied the flexibility
and accessibility of the binding site in 20 bromodomains, including BRD4, reporting
alternate side chain arrangements observed in molecular dynamics (MD) simulations
using the CHARMM PARAM?22 + TIP3P force fields. Kuang et al. [166] used classical
MD with umbrella sampling and QM /MM MD to study two inhibitors to BRD4,
(4+/—)-JQ1. One of these inhibitors, (+)-JQ1, is ligand 9 in our ligand set. In 2017,
Aldeghi et al. [57] compared binding free energy predictions of 11 ligands in BRD4
from an absolute binding energy method with MM-PBSA energies. Also, in 2017,
Heinzelmann et al. [165] used the attach-pull-release absolute binding energy method
on a set of 7 ligands in BRD4. Cheng et al. [167] compared the binding affinity of
RVX208 and RVX297 to the first and second bromodomain of BRD4 using QM /MM
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.

FIGURE 5.2: ZA-loop and BC-loop of BRD4(1) highlighted in blue and red, respec-
tively. Ligand 9 bound in binding site.

MD as well as MM-GBSA. RVX208 is ligand 6 in our ligand set. In 2018 Su et al.
published two papers studying first 3, then 5 ligands binding to BRD4 using
MM-PBSA [169, 170]. In 2019, 2020, and 2021 Wang et al. [66, 171, 172] studied 9
inhibitors in BRD4 using MM-GBSA and principal component analysis. Rodriguez et
al. [173] examined binding energies and binding poses of olonine in BRD4 using
MM-GBSA with explicit waters in 2020. In 2022, Guest et al. [168] applied two
alchemical free energy methods to BRD4, and Huggins et al. [157] performed absolute
binding free energy calculations on the same ligand set used in this study. A 2019
review article by Myrianthopoulos et al. [175] summarizes the vast body of in-silico
studies in BRDs.
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5.3 Molecular mechanics force fields and BRD4

conformational motion

Due to the high computational cost of QM-PBSA binding energy calculations, only a
limited number of snapshots can be considered per ligand. As a result, the method
can be sensitive to the choice of snapshots sampled from an unstable trajectory with,
for example, multiple different binding modes or even ligand dissociation events.
Thus, before embarking on expensive QM-PBSA calculations in BRD4, we thoroughly
explore the dynamics of the protein-ligand complex with various force field
combinations. In this section, we perform 900 ns of MD for the set of 10 ligands
binding to BRD4 using 6 different force field combinations. We study the trajectory
stability and occurrence of ligand dissociation and conformational changes in the
protein. The stability and convergence of the MD trajectories are evaluated using the
root mean square deviation (RMSD) of the complex structure from the original
structure. Based on an initial residue-wise root mean square fluctuation (RMSF)
analysis, the RMSD of the protein backbone, the ZA- and BC-loop, the ZA-loop only,
and the ligand only are considered. Furthermore, instances of ligand dissociation are
compared across trajectories from different force field combinations. Finally, a
conformational change in the ZA-loop is identified, characterized, and its dependence

on the choice of force field is established.

5.3.1 Methods
5.3.1.1 Molecular dynamics and force fields

This study focuses on the various choices of molecular mechanics force fields for
proteins and how they may influence the protein-ligand dynamics of BRD4. In
modeling a protein-ligand system, three sets of force field parameters are utilized.
One for the ligand, one for the protein, and a third for the explicit solvent (usually
water). We introduce the force fields used in this study below.

For the ligand parameters, the generalized Amber force fields GAFF2 and its
predecessor GAFF1 for organic molecules are used [25]. GAFF1 and GAFF2 are
compatible with all protein force fields and explicit water representations in Amber

and contain parameters for most organic and pharmaceutical functional groups.

For the protein, the force fields ff14SB [23], {f19SB [18] and ff15ipq [24] are used. For
the representation of the explicit water molecules in the dynamics simulations the
water models TIP3P [26], OPC [28], OPC3 [29] and SPCE [27] were used. These force
field are introduced in Section 3.1.2.1.



84 Chapter 5. Protein-Ligand Binding Energies in BRD4

The water model used in the initial parameterization of the protein force field can lead
to beneficial error canceling between the chosen water model and force field. Because
of this, ff14SB usually is combined with the TIP3P water model [23] and ff15ipq with
SPCE [24]. In the development of {ff19SB, emphasis was placed on the
interchangeability of water models but usage is recommended with OPC or OPC3.
The combination of ff19SB with TIP3P, which is explicitly warned against in the
Amber20 manual, has also been tentatively tested. The protein force field ff14SB is
paired with the general force field GAFF for the ligand, while the newer ff19SB and
tf15ipq are paired with the updated GAFF2.

In an attempt to test a ligand force field other than GAFF1 and GAFF2, the force field
combination ff19SB with OpenFF(2.0) [176] for the ligand was created using the
ParmEd [177] utility. However, the combination of OpenFF with {f19SB has only
recently been introduced and has not been fully characterized.

5.3.1.2 Computational details

System preparation The initial structures for BRD4 in complex with the 10 ligands
were taken from the published benchmarking data set of Mobley et al. [135].
Co-crystal structures are available for 9/10 of the ligands. Hydrogen atoms were
added to the ligands using Open Babel [178], and the AM1-BCC charge model, as
implemented in Amber’s antechamber, was used by Mobley et al. to assign ligand
atom partial charges. Mol2 and sdf files are provided in the benchmarking dataset for
each ligand. The ligand for which no experimental structure is available, named
ligand 1 in the Mobley set, was docked, by Mobley et al., into BRD4 using AutoDock
Vina [179].

Parameter files were generated by the authors of this study for the protein using
tf19SB, {f14SB, and ff15ipq. For the ligands, the force fields GAFF1 and GAFF2 are
used. In the solvation step, 11000 water molecules and 32 Na+ and 35 Cl- ions (0.15 M
NaCl) are added. The excess of 3 Cl- ions was added to neutralize the protein’s net
charge. Joung and Cheatham’s ion parameters are used [180]. Our extensive

equilibration protocol has been applied and is described below.

Equilibration protocol

¢ Minimization 1: 1000 steps conjugate gradient and 1000 steps steepest descent,
nonbonded cut-off of 8 A, restraint of 1000 kcal - mol ™! - A2 on all heavy atoms.

* Minimization 2: 1000 steps conjugate gradient and 1000 steps steepest descent,
nonbonded cut-off of 8 A, restraint of 1000 kcal - mol ' - A~2 on complex heavy
atoms to relax the water residues.
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¢ Heating: 100 ps of heating of the solvent with NVT ensemble from 100 K to 300.
Heavy atoms of the complex restrained with 1000 kcal - mol ' - A=2,

* Density: Adjust the size of the box via 500 ps of NPT and heavy atoms of the
complex restrained with 1000 kcal - mol ' - A~2,

¢ Cooling: 100 ps of cooling of the solvent with NVT ensemble from 300 K to 100.
Heavy atoms of the complex restrained with 1000 kcal - mol ' - A=2,

* Minimization: 1000 steps conjugate gradient and 1000 steps steepest descent,
nonbonded cut off is 8 A, for each decreasing constraint of 1000, 500, 100, 50, 20,
10,5,2,0 kecal -mol ' - A2

* Heating: 100 ps of heating of the system with NVT ensemble from 100 K to 300

K with no constraints.

¢ Equilibration: 100 ps simulation at 300 K in NPT ensemble with no constraints.

Molecular dynamics All production calculations are performed with the same
settings in an NPT ensemble. The SHAKE algorithm is used to constrain hydrogen
bonds, and the time step is 0.002 ps. Temperature regulation is achieved using
Langevin dynamics with a collision frequency of 2.0 ps~! at 300 K. The Berendsen
barostat with isotropic position scaling at atmospheric pressure and a pressure
relaxation time of 2 ps regulates the pressure. A cutoff of 8.0 A is used for non-bonded
interactions. Production calculations are performed with the force field and water
model combinations shown in Table 5.1. For each force field combination, three

replicas of 300 ns each are run for a total of 900 ns per ligand.

TABLE 5.1: Summary of force field combinations employed. * Suk Joung and Thomas
E. Cheatham as implemented in Amber20.

Force Field Combination | Protein Ligand Water Ions *

ff14SB-TIP3P ff14SB [23] | GAFF1 TIP3P [26] | ]. & C. TIP3P [180, 181]
ff15ipq-SPCE ff15ipq [24] | GAFF2 SPCE [27] | ]J. & C.SPCE
ff19SB-TIP3P ff19SB [18] | GAFEF2 TIP3P J. & C. TIP3P
ff19SB-OPC ff19SB GAFF2 OPC [28] | ]. & C. TIPAPEW
ff195B-OPC3 ff19SB GAFF2 OPC3 [29] | ]. & C. TIP3P
ff19SB-OpenFF-OPC3 ff19SB OpenFF 2.0 [176] | OPC3 J. & C. TIP3P

5.3.2 Results

5.3.2.1 RMSF analysis

The protein’s residue-wise root mean squared fluctuation (RMSF) was calculated for

all MD trajectories to identify critical areas of protein motion throughout the

molecular dynamics (MD) simulations. Figure 5.3 shows the residue-wise RMSF
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FIGURE 5.3: Residue-wise root mean squared fluctuation (RMSF, A) of the protein
BRD4(1) bound with ligands 3 and 10 over a single 300 ns molecular dynamics simu-
lation using the ff14SB-TIP3P force field combination.

values for two 300 ns simulations of BRD4 bound to ligands 3 and 10 using the
ff14SB-TIP3P force field combination.

As illustrated in Figure 5.3, two areas of motion are the protein’s tail ends, which we
define as residues 1-16 and residues 115-121. This definition of the protein “ends” is
somewhat arbitrary and based on observations of RMSF and RMSD values and visual
inspection of the trajectories. It is not based on protein structure or function. The tail
ends are free to move in the solvent throughout the simulation and are located far
away from the binding site. Comparable movement of the ends is observed across all
10 protein-ligand complexes and different choices of force fields and explicit solvent
models. In the full biological entity of BRD4, the tail ends would be attached to the
second bromodomain of BRD4 and would exhibit significantly less motion.

The two other regions of protein motion are the ZA- and BC-loop structures which
encase the solvent exposed binding site. For the following analysis, we define the
ZA-loop as residues 45 to 54 and the BC-loop as residues 95 to 103. The RMSF plot for
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ligand 3 in Figure 5.3 has a clear peak in the ZA-loop region and a secondary, smaller
peak in the BC-loop region. In contrast, minimal fluctuation in the position of the
protein loops is seen for BRD4 bound with ligand 10. Figures 5.2 and 5.5 give a closer
view of the two loop structures.

Besides the tail ends and the two loop structures, BRD4 undergoes very little motion
during the MD trajectories for all ligands and force fields tested.

5.3.2.2 Trajectory stability

TABLE 5.2: Average and maximum of the root mean squared deviation (RMSD, A)
from the initial pose of molecular dynamics trajectories with different force fields and
water models across a set of 10 ligands binding to BRD4. The RMSD of the protein
backbone (excluding tail ends), protein backbone of only the ZA- and BC-loops, back-
bone of only the ZA-loop, and the RMSD of the ligand are shown. Each replica is
300 ns of MD and RMSD values are sampled at 1500 snapshots per replica using Am-

ber20’s PyTraj.
Replica0 | Replical | Replica2 | Total
RMSD Mask | Force Field / RMSD | avg max | avg max | avg max | avg max
tf15ipq-SPCE 12 27 |13 45 |14 57 |13 57
Backbone- tf14SB-TIP3P 1.1 23 |14 39 |12 23 |12 39
NoEnds ff19SB-TIP3P 1.0 17 |10 22 |09 16 |10 22
ff19SB-OPC 09 17 |10 21 |11 56 |10 56
ff19SB-OPC3 1.0 22 (10 21 |09 18 |10 22
ff15ipq-SPCE 16 54 |17 53 |19 69 |17 69
Backbone- ff14SB-TIP3P 1.5 44 |21 57 |16 46 |17 57
ZA- and ff19SB-TIP3P 12 35 |13 42 |12 26 |12 42
BC-loops ff19SB-OPC 1.1 29 |12 41 |14 70 |13 70
ff19SB-OPC3 13 40 (13 39 |12 32 |12 40
ff15ipq-SPCE 18 71 |18 69 |21 83 |19 83
Backbone- ff14SB-TIP3P 16 58 |25 76 |19 63 |20 76
ZA-loop ff19SB-TIP3P 13 38 |15 57 |13 35 |14 57
tf19SB-OPC 12 37 |14 54 |15 83 |14 83
ff19SB-OPC3 15 52 |14 51 |13 43 |14 52
tf15ipq-SPCE 26 131 |24 102 |35 561 |28 56.1
ff14SB-TIP3P 23 96 |45 667 |26 92 |31 667
Ligand ff19SB-TIP3P 21 68 |22 96 |21 128 |21 128
ff19SB-OPC 19 94 |21 78 |22 66 |21 94
ff19SB-OPC3 20 59 |19 59 |19 48 |20 59

The root mean squared deviation (RMSD) from the initial configuration was calculated
for all trajectories to assess the stability of the molecular dynamics trajectories for
BRD4 in complex with a set of 10 ligands with a variety of force fields and explicit
water models. For each of the three 300 ns replicas, the RMSD for 1500 snapshots was
evaluated. The RMSD gives insight into the degree of change of different regions of
the protein and ligand conformations throughout the simulation compared to the
initial structure. Based on the residue-wise RMSDF analysis in Section 5.3.2.1, the

RMSD was measured for the following regions of the protein-ligand complexes:
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Backbone NoEnds : protein backbone excluding tail ends (residues 17-114),

Backbone ZA- and BC-loop: backbone of ZA- and BC-loops (residues 45-54 and
95-103),

Backbone ZA-loop: backbone of ZA-loop only (residues 45-54),

Ligand: movement of the ligand only.

The protein tail ends were excluded as they move freely in the solvent, do not
contribute to ligand binding, and their movement obfuscates details of the RMSD

calculation.

Due to the large number of trajectories, only the average and maximum RMSD values
across the entire ligand set are shown in Table 5.2 for each force field combination.
Three replicas of 300 ns and results across all three replicas are shown.

Not shown in Table 5.2 is the experimental combination of Amber’s ff19SB for the
protein with the OpenFF ligand force field and the three-point OPC3 water model.
With maximum backbone RMSD values of 8.3 and 7.7 A in replicas 0 and 1,
respectively, there are snapshots where the protein has undergone considerable
conformational changes. All 10 ligands immediately dissociate from the protein for
the experimental ff19SB-OpenFF-OPC3 force field combination. Because of this, the
force field combination ff19SB-OpenFF-OPC3 is excluded from the study and not
discussed further.

The remaining force fields can be grouped into two categories: ff195B-based and
non-ff19SB-based. Consider first the backbone RSMD of the protein with the tail ends
removed, labeled backbone NoEnds in Table 5.2. The non-ff19SB-based ff14SB-TIP3P
and ff15ipq-SPCE have similar average RMSD values of 1.25 to 1.50 A across the three
replicas with total average RMSDs of 1.33 and 1.42 A, respectively. The three
tf19SB-based force field combinations all have total average RMSDs of about 1 A,
indicating that the protein undergoes less motion and remains closer to the original
pose throughout the trajectories than in the non-ff19SB simulations. Across the three
replicas, the ff19SB-based force field combinations are very similar in average RMSD.
For 8 out of 9 ff19SB-based replicas, the maximum protein backbone RMSD is about 2
A. Lastly, considering the standard deviation (std) of the backbone RMSD
distributions, the std of the ff19SB-based force field combinations is generally less than
half that of the non-ff19SB-based force field combination.

As identified in the RMSF analysis, the ZA- and BC-loop structures are the two main
regions of protein motion in BRD4. This is reflected in the larger backbone RMSD
values of the loop regions compared to the whole protein. The ff19SB-based force field
combinations have lower RMSD values than ff14SB and ff15ipq, with total average
RMSD values of about 1.25 A and 1.70 A, respectively. While the maximum RMSD
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values are closer, the RMSD standard deviations highlight that ff19SB-based
simulations spend significantly less time in protein loop conformations that differ
significantly from the original pose.

The higher average and max RMSD values for the ZA-loop region reveal that most of
the protein motion is in the ZA- rather than the BC-loop. Especially for ff14SB-TIP3P
and ff15ipq-SPCE, max RMSD values of 6-8 A are observed, indicating significant
conformational changes. These conformational changes in the ZA-loop are discussed
in more detail in Section 5.3.2.3.

Dissociation of Ligands
Ligand.. ff15ipg-SPCE  ff14SB-TIP3P  ff19SB-TIP3P ff19SB-0PC ff19SB-OPC3 ff19SB-OpenFF
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FIGURE 5.4: Proportions of ligand RMSD values across three replicas of 300 ns each

for 8 binders with BRD4. Blue : Bound (RMSD < 3 A), Yellow : Bound but significant

motion of ligand in binding site (3 A < RSMD < 5 A), Orange : Different binding pose

or in process of unbinding (5 A < RMSD < 10 A), Red : Ligand fully dissociated ( 10

A < RMSD). RMSD value of ligand calculated relative to first snapshot in trajectory
and for 1500 snapshots per 300 ns replica.

Finally, consider the motion of the ligand only in Table 5.2. Figure 5.4 visualizes the
proportions of snapshots in which the ligand is dissociated for the 8 binders in the
ligand set. Overall, the ff19SB-based combinations have lower average RMSD values
and almost no ligand dissociation. In contrast, {f{14SB-TIP3P and {f15ipq-SPCE have
higher average RMSD values and multiple clear instances of ligands dissociating, as
evident in Figure 5.4. While ligands 4 and 6 have regions of ligand motion between 3
and 5 A for all force fields, ff19SB-based combinations have smaller regions with
RMSD beyond 5 A. For ligands 3, 5,7, 8,9, and 10, ff19SB-OPC and ff19SB-OPC3
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ligand RMSD values are almost all < 3 A, i.e., the ligand is strongly bound. At the
same time, ff14SB-TIP3P has significant unstable ligand configurations in ligands 5
and 8. Likewise, ff15ipq-SPCE in ligands 8, 9, and 10. These differences show that the
average ligand RMSD is higher across the board for ff14SB-TIP3P and ff15ipq-SPCE
compared to ff19SB-based force field combinations.

5.3.2.3 ZA-loop motion

FIGURE 5.5: Opened (red) and closed (blue) ZA-loop conformation in BRD4 bound to
ligand 9 using {f14SB+TIP3P force field combination.

The RMSF plot in Figure 5.3 and ZA-loop RMSD values in Table 5.2 indicate that the
majority of protein motion observed, especially for force fields ff14SB-TIP3P and
tf15ipq-SPCE, is concentrated in the ZA-loop. The ZA-loop is attached to the main
body of the protein by two Asp residues shown in Figure 5.2 (residues 45 and 53).
Figure 5.5 is a closer view of the ZA-loop structure in BRD4 in complex with ligand 9.
The blue ZA-loop configuration, which we will refer to as the closed configuration, is
the conformation observed in the co-crystal structures of BRD4 and the initial pose for
our simulations. The red conformation of the ZA-loop, which we call the open
conformation, is adopted by the protein in several simulations for multiple ligands. In
this section, we characterize the open loop conformation and determine for which

ligands and force field combinations this alternate ZA-loop conformation is observed.

Visually, the ZA-loop opening moves the tip of the ZA-loop outward, away from the
binding site. The Asp residues on either side of the ZA-loop act like hinges for the
outward loop rotation [165]. The transition takes a few nanoseconds but once
adopted, the open-loop conformation is maintained for the rest of the trajectory.
Visual inspection of the trajectories indicates two separate instances of the ZA-loop
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opening. First, ZA-loop opening after ligand dissociation, and second, ZA-loop
opening while the ligand is bound and remains bound.

ZA-BC Distance (Angstrom)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Snapshot

FIGURE 5.6: Distance in A between the ZA- and BC-loops of BRD4 bound to ligand
9. Replica 0 in blue and replica 1 in orange. Grey band shows area indicative of open
ZA-loop conformation.

The ZA-loop opening can be consistently identified by measuring the distance
between the top of the ZA-loop and the BC-loop and by calculating the dihedral
angles of the Asp hinges, which mediate the ZA-loop opening. Figures 5.6 and 5.7
show the distance between the ZA- and BC-loops (A) and Asp-hinge dihedral angles
for each snapshot in replicas 0 and 1 of BRD4 bound with ligand 9 using ff14SB-TIP3P.

Replica 0, shown in blue, does not undergo ZA-loop opening, and the ZA- to BC-loop
distance remains in the range of 15-18 A, and Asp dihedrals do not change
systematically. Replica 1, in orange, undergoes ZA-loop opening at snapshot 200. This
is evidenced by the increase in ZA- to BC-loop distance (18-21 A) and abrupt change
in dihedral angles. The increased loop distance and changed dihedral remain constant

until the end of the simulation.

Using the ZA- to BC-loop distance and dihedral angles, ZA-loop opening is easily and
reliably identified. For trajectories generated using the force field combination ff145B

for the protein, GAFF1 for the ligand, and the TIP3P water model, ZA-loop opening is
observed for ligands 1, 3, 4, 5, 6, 7, and 9. For ligands 1 and 4, the ZA-loop opening is a
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FIGURE 5.7: Asp45 and Asp53 dihedral angles (degrees) for replica 0 (blue) and replica
1 (orange) for BRD4 bound to ligand 9 using ff14SB-TIP3P force field combination.

result of the dissociation of the ligand from the protein. For the force field combination
tf15ipq-SPCE, the ZA-loop opening is observed for ligands 4 and 6 but occurs after the
ligand dissociates from the protein. No instances of ZA-loop opening are observed in
trajectories generated using the ff19SB-TIP3P, ff19SB-OPC, and ff19SB-OPC3 force
field combinations. For ff19SB-OpenFF-OPC3, all ligands dissociate, and ZA-loop
motions resembling the ZA-loop opening occur in the unbound protein.

In summary, ZA-loop opening occurs when the ligand dissociates for force field
combinations ff14SB-TIP3P, ff15ipq-SPCE, and ff19SB-OpenFF-OPC3. Only in
tf14SB-TIP3P trajectories is the ZA-loop opening observed with ligands 3, 5, 6,7, and 9
bound to the protein and is irreversible on the timescale of the trajectories.

5.3.3 Discussion
5.3.3.1 £f19SB produces more stable trajectories

In terms of trajectory stability, the ff19SB protein force field combined with GAFF2 for
the ligand and the OPC, OPC3, or TIP3P water models have significantly lower
protein backbone RMSD values (= 1 A) compared to ff14SB+GAFF+TIP3P and
ff15ipq+GAFF2+SPCE (~ 1.3 A). The spread of backbone RMSD values in
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tf19SB-based combination is also less than half of that in non-ff19SB-based force fields.
Specifically, in the ZA- and BC-loops, the ff14SB and ff15ipq force field combinations
lead to significantly more protein motion. This is partly due to the open ZA-loop
conformation observed only in ff14SB and ff15ipq, which leads to maximum ZA-loop
RMSD values of 6 to 8 A. Overall, the 8 binders remain more firmly bound in
tf19SB-based trajectories, while ligands in the ff14SB trajectories take on multiple,
often significantly different, binding modes throughout the simulation. There are also
no instances of complete ligand dissociation in the ff19SB-based force field
combinations, whereas multiple ligands dissociate completely in ff14SB and, to a

lesser extent, ff15ipq.

5.3.3.2 Protein conformational change in ff14SB

The ZA-loop opening described in Section 5.3.2.3 and illustrated in Figure 5.5, can be
identified by measuring the distance between the ZA- and BC-loops and the dihedral
angles of the Asp protein residues at the base of the ZA-loop. This ZA-loop transition
was previously observed and characterized in simulations of the unbound BRD4
protein by Heinzelmann et al. in 2017 [165]. According to Heinzelmann, the transition
is irreversible on the timescale of hundreds of ns, occurs after 20 to 60 ns in
simulations of the unbound protein, and is about -2.5 kcal/mol more favorable than
the closed-loop conformation in the crystal structure of the unbound protein.
Heinzelmann did not observe the ZA-loop opening for bound protein-ligand
complexes, but it appears no extensive unconstrained sampling of the protein in
complex with the ligand was performed. The trajectories were produced using {f14SB
with GAFF2 and the TIP3P and SPCE water models. Recently, Huggins et al. [157]
published an absolute binding free energy study in BRD4 and confirmed the ZA-loop
opening in the unbound protein, which they observed in 4 out of 5 100 ns MD
simulations using the protein force field ff14SB and SPC/E water model. Long
timescale MD simulations were not performed on the bound protein-ligand complex,
and ZA-loop opening was not observed in the 2.4 ns A-windows of the free energy
calculations. In 2021 Guest et al. [58] studied 297 co-crystal structures of BRD4 bound
to small molecules and showed that BRD4 maintains high structural similarity
regardless of the ligand choice. Although the ZA-loop showed the most flexibility in
the active site, the differences observed are tiny compared to the ZA-loop
transformation produced by our ff14SB-based MD simulations.

In our ff14SB trajectories, the ZA-loop opening is observed with the ligand bound for
5 out of 10 ligands. As observed by Heinzelmann et al. [165], the ZA-loop opening
appears to be mediated by two Asp hinges whose dihedral angles change
characteristically (Figure 5.7) during the loop opening. In our simulations of the
bound protein-ligand complexes, the ZA-loop opening occurs, for some ligands, in
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only one or two of the three 300 ns replicas, indicating that the transition may, on
average, take hundreds of ns to occur. Other research has shown that ligand binding
stabilizes the ZA-loop motion in BRD4 [170], potentially explaining the longer time to
transition in the complex than in the unbound protein.

The ZA-loop opening is not observed for any ligands in trajectories generated using
tf19SB-based force field combinations. The difference we observe between trajectories
using ff19SB and ff14SB may be explained by the improved treatment of protein
backbone dihedral parameters in ff19SB compared to its predecessor {f14SB (or {f99SB)
[18]. In ff19SB, explicit coupling between the ¢ and ¢ dihedral parameters is enabled
by training against two-dimensional quantum mechanical energy surfaces rather than
only local minima in ff14SB. Furthermore, the treatment of polarization was made
more consistent in mapping ff19SB dihedral parameters, and amino acid specific
correction maps were added to account for the dependence of atomic dihedral
parameters on the protein residue. Finally, a backbone side-chain coupling correction
is also considered for the first time in ff19SB. These improvements in ff19SB over
tf14SB (or ff99SB) lead to better reproduction of amino acid specific differences and

closer agreement with experimental properties [18].

Fundamentally, it is not possible to assess which trajectories are closer to the true
dynamics of the protein-ligand complex. However, the above results should be
carefully considered in choosing a trajectory as input for the expensive QM-PBSA
binding energy study of BRD4. To our assessment, the dissociation of multiple
binders, adoption of non-crystallographic binding poses, and the ZA-loop
conformation not observed in any crystallographic structure of BRD4 indicate that the
tf19SB trajectories should be chosen over those generated with ff14SB. The more stable
trajectories of ff19SB-based force field combinations, which feature more strongly
conserved binding modes similar to the ligand’s crystallographic poses, thus lend
themselves more easily as inputs for quantum mechanical binding free energy

prediction.

5.3.3.3 Pairing of water model with ff19SB

In the development of ff19SB, particular emphasis was placed on disentangling the
interdependence of the protein force field and the choice of an explicit water model. In
contrast, the ff14SB protein force field relies on fortuitous error cancellation with the
TIP3P water model [18], which was used during the parameterization of ff14SB.
Regarding trajectory stability, the pairing of ff19SB+GAFF2 with OPC, OPC3, and
TIP3P leads to indistinguishable backbone, ligand, and ZA-loop RMSD values.
Furthermore, no ligands dissociate, and no ZA-loop motion is seen, irrespective of the
choice of water model for ff19SB. This indicates that the significant differences
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between ff19SB-based combinations and ff14SB+TIP3P arise primarily from the

change in the protein force field.

5.3.4 Conclusion

Based on the findings of this preliminary MD study of BRD4 with a series of force field
combinations, we selected ff19SB as our protein force field of choice and the 900ns of
MD generated as the basis for our QM-PBSA study presented in Section 5.5.

It is important to stress that the above exploration is insufficient to make general
claims about the relative accuracy and reliability of the force fields explored. Due to
the limited sampling of 3x300 ns, long-time-scale protein motions are not sufficiently
captured to formulate statistical hypotheses about their importance nor any
thermodynamic properties associated with these motions. Additionally, we have only
explored these force field combinations in a single protein bound with 10 ligands.
However, the ZA-loop opening in the BRD4 bound protein-ligand complex for ff14SB
illustrates that the choice of molecular mechanics force field can substantially impact
the conclusions drawn and binding energies derived from molecular dynamics

studies of protein-ligand binding.

While our findings suggest that the observed differences are due to changes made
between the protein force field ff14SB and ff19SB, the inconsistent use of GAFF1 and
GAFF2 between these two force field combinations in our study may have also had an
unforeseen impact. To thoroughly explore the ZA-loop transition and its force field
dependence, we would recommend running the following additional simulations and

analyses:

e replica all ff14SB simulations with GAFF2 instead of GAFF1,

¢ multiple long-time-scale MD simulations of the unbound protein with {f14SB
and ff19SB would show for which force fields the unbound protein adopts the

open-loop conformation,

¢ multiple ff19SB simulations starting from the open-loop configuration produced
by the ff14SB simulations to see if the switch to the ff19SB force field would lead

to the closing of the ZA-loop from the open-loop confirmation,

¢ atleast 3 additional re-runs for each force field and ligand to gather more

significant statistics on the occurrence and time-scale of ZA-loop opening if
ff14SB,

¢ the conformational energy of the protein-ligand complex in the open and closed
loop could be explored. Heinzelmann et al. [165] performed such an analysis for

the loop-opening in the unbound protein.
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For our QM-PBSA study, we believe that this preliminary study demonstrated that the
900 ns of MD generated by the force field combination ff19SB+GAFF2+OPC3 should
be used as input for end-point binding free energy calculations. The following section
explores MM-PBSA and MM-GBSA binding energy predictions in detail before
investigating QM-PBSA in BRD4 in Sections 5.5.

54 MM-PBSA and MM-GSA binding energies

Having analyzed the MD trajectories of BRD4 bound to 10 ligands generated by a
selection of force field combinations in the previous chapter, we now apply the
end-point classical mechanical binding free energy methods MM-PBSA and
MM-GBSA to the generated trajectories. We explore the inclusion of explicit water
molecules as part of the protein in the binding energy calculations and the Interaction
Entropy correction term. This section serves as a basis against which the later
QM-PBSA results may be compared and additionally explores the impact of the force
field and input trajectories on the calculated binding energies in BRD4.

5.4.1 Methods
5.4.1.1 Design of computational study

The 900ns of MD trajectories per ligand generated in the previous chapter are used as
input for MM-PBSA and MM-GBSA. Binding energies calculated from the ff14SB and
ff19SB trajectories, together with different explicit water models, are compared. The
Interaction Entropy (IE) correction term from Duan et al. [62] is tested. Lastly,
different numbers of water molecules are included explicitly as part of the protein in
the MM-PBSA and MM-GBSA calculation. The predictive power as compared to
experiment of the computed relative binding free energies is evaluated using the

RMSDtr and Spearman’s correlation coefficient ;.

The MM-PBSA and MM-GBSA methods are suitable only for predicting relative,
rather than absolute, binding free energies. The root mean squared deviation after
removal of the systematic error (mean signed error), called RMSDtr, introduced in
Section 4.5.1.2, is used to describe the error against experiment. While the RMSDtr
metric assesses the closeness of predicted and experimental relative binding energies,
Spearman’s rank correlation factor r; quantifies the predictive power of the relative
binding energy rank ordering. A value of 1 corresponds to a calculated rank order
equivalent to the experimental binding energies. Because Spearman’s rs describes the
rank ordering of binding energies, it can be applied directly to the calculated binding

energies.
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The chosen ligand set of 10 ligands contains one confirmed non-binder, ligand 1, and
one ligand of very low binding affinity, ligand 2 (32% inhibition at 250 yM). As these
ligands” actual binding energies are unknown, they are excluded from the RMSDtr
calculations. The non-binders are, however, included in the rank orderings as
quantified by Spearman’s r; with “experimental” binding energies of 0 kcal/mol.

Estimates of the statistical error due to finite sampling in the computed metrics are
obtained using the block averaged standard error (BASE) method[182]. The trajectory
is split into M segments of length n. Then, the metric of interest, for example,
Spearman’s r;, is calculated for each of the M segments. The standard deviation in 7,
among the block averages, 0y, is then used to estimate the overall standard error at
block size n using BASE(n) = \%M At n =1 the BASE is equal to the analytic
standard error (SE) of the metric across the whole trajectory. As n increases to up to
one-fifth of the total trajectory length, the estimated BASE increases until it reaches a
plateau. The value at which the BASE plateaus is a reliable estimator for the true
standard error [182]. This study uses the maximum BASE value obtained as the upper

bound on the uncertainty in the RMSDtr and 7.

5.4.1.2 Computational details

MM-PBSA MM-PBSA is performed using Amber20’s MMPBSA .py utility. The
two-term non-polar solvation term is used in which the cavity and dispersion terms
are treated separately. The recommended values are used for the cavity offset (-0.5692)
and cavity surface tension (0.0378). An ionic strength of 0, fill ration of 4.0, solute

dielectric of 1, and Amber’s pre-calculated atomic radii are used.

MM-GBSA MM-GBSA is performed using Amber20’s MMPBSA.py utility. Default
settings in Amber20 with a modified GB model (igh=5) developed by A. Onufriev, D.
Bashford, and D.A. Case were used, and parameters «, 8, and 7y set to 1.0, 0.8, and 4.85,
respectively [34]. A solute dielectric constant of 1 is used. A link to the MM-PBSA and
MM-GBSA inputs and outputs is provided in Appendix C.

Explicit waters  The inclusion of explicit water molecules is not specifically
supported in Amber’s MMPBSA. .py framework. The ‘closest’ method in cpptraj was
used to create trajectories containing the N closest water molecules to the ligand in
each snapshot. Thus the total number of waters remains constant throughout the
trajectory, although the individual explicit waters are not conserved. Including 1-10,
15, 25, 50, and 100 waters was tested, and binding energies were calculated using
MMPBSA.py with the water molecules defined as part of the host.
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Interaction Entropy The Interaction Entropy method by Duan et al. [62] was
implemented in Python and applied to the MM-PBSA /GBSA results as a
post-processing step. The Interaction Entropy is outlined in more detail in Section
3.1.3.5.

5.4.2 Results

5.4.2.1 Block averaged standard errors

To estimate the statistical errors in the metrics calculated from the relative binding free
energy estimates, i.e., the RMSDtr and Spearman’s 7, the standard error (SE) of these
metrics is calculated using the block averaged standard error (BASE). Figure 5.8
shows the block averaged standard error (BASE) of the RMSDtr of predicted against
experimental binding free energies using MM-GBSA and the force field combination
tf19SB-OPC. The series labeled ON represents the BASE when no explicit waters are
considered in the MM-GBSA calculation. At a block size of 1 snapshot, the BASE is
equivalent to the metric’s analytic SE, which represents a lower bound on the
statistical error in the calculated metric due to imperfect sampling. It corresponds
roughly to the SE for the RMSDtr calculated by bootstrapping. The bootstrapped SE
for the RMSDtr are 0.01-0.02 kcal/mol for MM-PBSA and -GBSA binding energies
without explicit waters for the combined 4500 snapshot ensemble and between
0.02-0.04 kcal/mol for individual replicas with 1500 snapshots each. A more realistic
estimate of the statistical error due to finite sampling in the RMSDtr is given by the
value at which the BASE, as shown in Figure 5.8, plateaus with increasing block size
(n). We use the maximum BASE value observed for 1 < n < 900 snapshots as the
estimated upper limit of the statistical error in the calculated RMSDtr and correlation
coefficients. The example BASE plot of figure 5.8 corresponds to an RMSDtr BASE of
0.07 kcal/mol for the MM-GBSA binding energies without explicit waters using the
tf19SB-OPC3 force field combination. The full set of maximum BASE values are given
in Tables B.1, B.2, B.3, and B.4 in Appendix B.

5.4.2.2 Binding energies without explicit waters

The RMSDtr and Spearman’s rank correlation coefficient (rs) are calculated for the
MM-PBSA and -GBSA binding energies for force field combinations ff145B-TIP3P,
tf19SB-OPC, £f19SB-OPC3, and ff19SB-TIP3P to assess the accuracy and predictive
power. Binding energies are calculated with and without the Interaction Entropy
correction term. Table 5.3 shows the RMSDtr for the 8 binders and Spearman’s r; for
all 10 ligands in BRD4. The maximum BASE are given in Appendix B in Tables B.1 to
B.4.
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FIGURE 5.8: Block averaged standard error (BASE, kcal/mol) at different block sizes

(n) of the root mean square deviation (RMSDtr) of the predicted MM-GBSA against

experimental binding free energies using ff19SB-OPC3 across three replicas of 300 ns

each. BASE is shown for binding energies without explicit waters (ON), 5 explicit wa-
ters (6N), and 100 explicit waters (100N).

Consider first the null-hypothesis that all ligands have the same absolute binding
energy. Over the set of only binders, the null-hypothesis yields an RMSDtr of 1.45
kcal/mol due to the limited binding affinity range of 4.46 kcal/mol. Including the
non-binders yields a null-hypothesis RMSDtr of 3.50 kcal/mol. The correlation
coefficients of the null-hypothesis are always zero.

MM-PBSA RMSDtr values range from 2.35 kcal/mol for {f14SB-TIP3P to 3.28
kcal/mol for ff19SB-OPC when no entropy correction is included. Maximum BASE
range from 0.07 to 0.16 kcal/mol across methods. The force field combination
tf14SB-TIP3P achieves the best rank ordering for MM-PBSA with and without the IE
correction term. However the calculated ligand rank order does not correspond well
to the experimental results (rs = 0.32 and r; = 0.53). All three ff19SB-based force field
combinations produce r; of about 0, i.e., do not show predictive power in ordering the
ligand binding energies. Maximum BASE in 7; range from 0.01 to 0.04.

When the Interaction Entropy correction term is added to the MM-PBSA results,
RMSDtr values become significantly larger across all force field combinations. The s
of ff14SB-TIP3P and ff19SB-OPC are slightly improved but suffer significant
deterioration in RMSDtr by the inclusion of the IE term. BASE for the RMSDtr also
increase, with maximum BASE between 0.17 and 0.7 kcal /mol.

For MM-GBSA, RMSDtr values range from 2.09 kcal/mol for ff19SB-OPC3 to 3.05
kcal/mol for ff14SB-TIP3P when no entropy correction is included. Maximum BASE
values are, on average, 0.3 kcal/mol lower than for MM-PBSA. MM-GBSA rank
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TABLE 5.3: Root mean squared deviation after the removal of systematic error (RMS-
Dtr, kcal/mol) of the predicted against experimental binding free energies for the 8
binders in complex with BRD4 using MM-PBSA and -GBSA with different force field
combinations. Spearman’s 7 of rank ordering of calculated against experimental bind-
ing energies for all 10 ligands (binder and non-binder) in BRD4. Results with and
without the Interaction Entropy correction term are shown. Binding energies were es-
timated from an ensemble of 4500 snapshots comprising 900 ns of MD (three replicas
combined). No explicit waters are included in MM-PBSA and -GBSA. Corresponding
maximum block averaged standard error (BASE) is shown in Tables B.1 to B.4.

Method Force Field Entropy RMSDtr (kcal/mol) Spearman’s r

MM-PBSA  {f14SB-TIP3P No 2.35 0.32
IE 7.14 0.53
ff19SB-TIP3P  No 2.65 -0.07
IE 4.72 0.04
ff19SB-OPC ~ No 3.28 0.00
IE 5.05 0.26
ff19SB-OPC3  No 2.96 -0.01
IE 6.11 -0.06
MM-GBSA  ff14SB-TIP3P No 3.05 0.81
IE 8.74 0.74
ff19SB-TIP3P  No 221 0.76
IE 6.43 0.56
ff19SB-OPC ~ No 2.19 0.78
IE 5.14 0.67
ff19SB-OPC3 No 2.09 0.81
IE 5.18 0.53
Null Hypothesis 1.45 0.00

orderings are surprisingly good, with all force field combinations achieving rs > 0.7.
As for MM-PBSA, the inclusion of the IE correction term deteriorates the RMSDtr

significantly and reduces s across all force field combinations.

Overall, the best performing method is MM-GBSA using ff19SB-OPC3 with RMSDtr
of 2.09 kcal/mol and rs = 0.81 and BASEs of 0.07 kcal/mol and 0.03, respectively.
Interaction Entropy correction terms increase error and reduce correlation while
significantly increasing BASE for both MM-PBSA and MM-GBSA.

5.4.2.3 Binding energies with explicit waters

When ligands are bound, the BRD4 binding site features several structural waters
within the binding site. We explore the effect of including the N closest waters to the
ligand as explicit waters in the MM-PBSA and MM-GBSA binding free energy
calculations on the error against experiment (RMSDtr) and rank ordering of ligands
(Spearman’s r;). Figures 5.9 and 5.10 illustrate the change in RMSDitr, for the set of 8
binders, with increasing numbers of explicit water included in the binding energy

calculation. Figures 5.11 and 5.12 give the rs ranking correlations with increasing
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nations with MM-PBSA and MM-GBSA.

number of explicit waters. Full tables of all RMSDtr and r; values are provided in
Tables B.6 to B.9 of Appendix B.

The ff19SB-OPC results have been intentionally omitted due to the severe effect of
including explicit waters on the calculated binding energies for this force field
combination. The inclusion of any explicit waters increases the RMSDtr values
dramatically. For MM-GBSA the RMSDtr increases from 2.2 kcal/mol without water
to 5.0 kcal/mol with just one explicit water and increases steadily to an RMSDtr of
110.0 kcal/mol when the 100 closest waters to the ligand are included. These errors
indicate an underlying problem in the calculated energies, as further discussed in

section 5.4.3.
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FIGURE 5.10: Error of predicted against experimental binding energies (RMSDtr,
kcal/mol) at different numbers of explicit waters using different force field combi-
nations with MM-GBSA (left) and MM-PBSA (right) without entropy correction.

Figure 5.9 clearly illustrates that the inclusion of 25, 50, or 100 closest waters in the
binding energy calculation universally deteriorates the quality of predictions in terms
of RMSDtr. RMSDtr values increase compared to the results without explicit waters
for MM-GBSA and MM-PBSA for all force field combinations. At 100 explicit waters,
all RMSDtr values are above 5 kcal/mol. For r;, Figures 5.11 and 5.12 show that
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beyond 10 explicit waters, rs become significantly worse as compared to those when

no explicit waters are considered.
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binding free energies without entropy correction (left) and with Interaction Entropy
(right).

Figure 5.10 shows the RMSDtr of MM-PBSA and MM-GBSA with 0 to 25 explicit
waters. Overall, MM-GBSA RMSDtr values are improved by including 1 to 5 explicit
waters. This holds for ff19SB- and ff14SB-based force field combinations but with
tf19SB-based combinations attaining significantly lower RMSDtr by ~ 1kcal/mol.
Beyond 8 explicit waters, RMSDtr values increase above the values without explicit
waters. Considering the maximum BASE in the RMSDtr of 0.14 kcal/mol (Table B.1),
these observed changes are significant. Including explicit waters does not
systematically improve RMSDtr values for MM-PBSA energies. Only ff14SB+TIP3P
shows a slight reduction in RMSDtr with 1 to 3 explicit waters.

Figure 5.11 and 5.12 show rg with increasing numbers of explicit waters. When no
entropy term is included, the inclusion of 1 to 5 explicit waters does not significantly
alter the observed r;. Beyond 5 explicit waters, rank ordering worsens across the
board for both MM-PBSA and MM-GBSA. The inclusion of the IE correction term does
not alter this behavior.
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5.4.3 Discussion

We observe a significant dependence of the RMSDtr on the choice of force field
combination in this MD study of BRD4. This observation is in line with the substantial
differences in protein conformational motion between ff19SB and {f14SB, as discussed
in Section 5.3. Overall, MM-GBSA produces significantly better ligand rank orderings
than MM-PBSA, irrespective of the choice of force field. MM-GBSA obtains the most
consistent results from ff19SB-based force field combinations yielding RMSDtr values
of 2.21,2.19, and 2.09 kcal/mol and r; of 0.76, 0.78, and 0.81. MM-PBSA, on the other
hand, appears incapable of ranking this ligand set in BRD4 with the computational
protocol employed in this study:.

Overall, the quality of binding energy estimates is not impacted significantly by the
pairing of OPC, OPC3, or TIP3P with ff19SB. Correlation metrics between the choices
of water model are indistinguishable for both MM-PBSA and MM-GBSA with or
without the inclusion of explicit waters in the binding free energy estimates. This is in
contrast to results by Heinzelmann et al. [165], whose protein-ligand binding energy
predictions in BRD4 depended strongly on the choice of water model when using the
tf14SB protein force field. Working on the same ligand set in BRD4 as our research,
Huggins et al. [157] found that the RMSE of absolute binding energy predictions using
f14SB depended heavily on the choice of water model (TIP3P, SPCE, TIP4P-Ewald,
and AM1-BCC ligand charge model).

An outlier from the above description is ff19SB+OPC, for which the inclusion of
explicit waters significantly deteriorates the RMSDtr and correlation coefficients
obtained by both MM-PBSA and -GBSA. We hypothesize this is because OPC is the
only four-point water model tested and is currently incompatible with the
implementation of MMPBSA.py in Amber20. We have reported this observation to the

developers.

Including the IE term increases the RMSDtr values of all tested methods and force
field combinations with and without the inclusion of explicit waters. Regarding the
rank ordering of ligands, including the IE term does not lead to an overall
improvement. Instead, the r; values for almost all force field combinations with and

without explicit waters worsen.

In terms of the closeness of predicted against experimental relative binding energies in
this ligand set in BRD4, MM-GBSA benefits clearly from the inclusion of 1-5 waters
and maintains low RMSDtr for 10 or less explicit waters. For MM-PBSA only the
tf14SB+TIP3P force field has reduced RMSDtr upon inclusion of one or two explicit
waters. The near-perfect rank ordering of MM-GBSA is maintained or slightly
improved when 1-5 waters are included but generally deteriorates beyond 7 explicit
waters. MM-PBSA rank ordering is slightly improved by including 1 to 5 waters but
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deteriorates significantly beyond 8 explicit waters. Including 25 or more explicit
waters increases RMSDtr and reduces 7, in all instances. At 25 or more explicit waters
the BASE in the RMSDtr also increases substantially (figure 5.8).
TABLE 5.4: Percentage occupation of water bridged interactions between ligand and
protein residues 54, 97, 49, and 39. “None” is the percentage of snapshots in which

no water bridge was detected. Based on 1500 snapshots extracted from 300ns of MD
using ff19SB+GAFF2+OPC3.

Residues / Ligands Tyr54 Asn97 none Leu49 Pro39

1 54.27 020 4547 0.00 0.00
2 3893 18.73 40.40 3.47 0.00
3 25.93 280 54.67 14.13 0.00
4 71.40 720 23.80 0.00 0.00
5 34.27 453 59.40 4.60 0.00
6 33.13 1.00 53.93 2.60 1.00
7 48.87 0.13 51.00 0.00 0.00
8 55.67 093 18.93 0.13 3347
9 26.67 6.20 41.60 32.07 0.00
10 733 11.73 5573  22.60 0.00

Given these findings, the inclusion of 1 to 5 explicit waters in MM-GBSA binding
energy calculations in BRD4 can be justified. The BRD4 binding site features 5-6
structural waters when ligands are bound [58], which may explain the improvement
in predicted binding energies when including some or all of these waters as part of the
protein. In 2021, Guest et al. [58] showed that 5-6 structural waters are conserved in
most BRD4-ligand co-crystal structures and docking poses. Additionally, they showed
that free energy perturbation (FEP) binding energy predictions are improved with the
explicit inclusion of these waters. They observed a water bridged hydrogen bond
forming between the ligands and the Asn97 residue of the protein. Based on this
observation by Guest et al. we used cpptraj in Amber20 to find and track the
occurrence and up-time of bridging water interactions between the ligand and protein
in our input trajectories. Table 5.4 shows the percentage of snapshots for which a
water bridge was found between the ligand and protein. Only residues with water
bridge occupation of more than 10% are included. This analysis confirms that
water-mediated interactions play an important role in our ligand set in BRD4.
Consider, for example, ligands 8 and 4, in which water bridged hydrogen bonds are
observed in about 80% of snapshots. The most prominent water-bridged interaction in
our ligand set is between residue Tyr54 and the ligand. While ligand 1 maximally
exhibits one concurrent bridging interaction, the other ligands can have 2-4 concurrent

bridging interactions between the protein and ligand.

Our findings add to a growing volume of research that supports the use of some
explicit waters in MM-GBSA and MM-PBSA protein-ligand binding free energy
calculations. In 2013, Maffucci et al. [54] demonstrated significant improvement in
ligand ranking by including 20 explicit waters in MM-GBSA calculations for
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topoisomerase and penicillopepsin. Mikulskis et al. [51] showed an improvement
when including explicit waters in MM-GBSA for 9 ligands binding to ferritin. Also, in
2014, Zhu et al. [56] improved MM-PBSA calculations by including 1-7 explicit waters
in a series of JNKS3 kinase inhibitors. In 2016, Maffucci et al. [55] demonstrated
improvements in protein-protein binding calculations by including explicit waters in
MM-GBSA. Most recently, Rodriguez et al. [173] used MM-GBSA with 8 explicit

waters to investigate the binding of olonine in BRD4.

In 2017, Aldeghi et al. [57] performed explicit water MM-PBSA on 11 ligands in BRD4
using the Nwat method by Maffucci et al. [54, 55]. Their Interaction Entropy
correction term did not improve ligand rank ordering, and they also observed a
significant increase in statistical error. In contrast to our findings, rank orderings were
slightly improved by including 20 to 50 explicit waters. Aldeghi’s MM-PBSA
produced far better ligand ranking than we observed for MM-PBSA in our ligand set,
despite 5 common ligands between the sets. Snapshots for MM-PBSA were generated
from Hamiltonian-exchange Langevin dynamics with a simulation length of only 10
ns and three replicas. Simulations were performed in Gromacs using ff99SB-ILDN
force field for the protein, GAFF1.5 for the ligand, and the TIP3P water model.
MM-PBSA was performed in GMXPBSA on 501 snapshots. A solute dielectric
constant of 2 was used compared to a value of 1 in our study. This choice was made as
previous studies on other protein-ligand systems had shown improved correlations at
higher dielectric constants for MM-PBSA [70]. Furthermore, a non-zero salt
concentration was used by Aldeghi et al., as well as a different surface tension for the
nonpolar term in the solvent accessible surface area term of the PBSA solvation model.
It is well established that MM-PBSA and -GBSA are sensitive to even small changes in
the simulation protocol in general [70], and in BRD4 [157]. The comparison of
Aldeghi’s MM-PBSA results and our own clearly illustrates this.

5.4.4 Conclusion

In this section, the end-point binding free energy methods MM-PBSA and MM-GBSA
were applied to the MD trajectories generated for ff14SB- and ff19S5B-based force field
combinations. The effect of the Interaction Entropy correction term was tested and the
inclusion of increasing numbers of explicit waters. These classical mechanical
protein-ligand binding free energy predictions in BRD4 serve as the benchmark
against which the quantum mechanical binding energies computed in the rest of this
chapter are compared.

As in Section 5.3, the conclusions of this MM-PBSA /GBSA study of BRD4 cannot be
naively extended to other protein-ligand systems. We are not advocating MM-GBSA
with 1-5 explicit waters as a “go-to” method in protein-ligand binding energy
prediction. The results from this section serve as a point of comparison for the
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following quantum mechanical study and highlight some important concepts in
end-point binding free energy prediction. The choice of force field can, as for the
protein motion, significantly impact estimated binding energies. Additionally,
including some explicit waters appears to be beneficial in BRD4 and corroborates
other studies investigating explicit water MM-PBSA /GBSA. The Interaction Entropy
correction term falls short and does not improve estimated energies. A more detailed
discussion of the IE term is provided as part of the QM-PBSA study below.

The method of choosing and including explicit waters employed in this study is very
basic and leads to several problems. While the number of water molecules is the same
in every snapshot, the individual waters present may be different molecules. Selecting
waters based on their proximity to the ligand also leads to the inclusions of waters
outside the binding site, which are unlikely to play an important role in ligand
binding. A more sophisticated approach should select all bridging waters and only
those waters inside the binding site. Mikulskis et al. [51] proposed a more general
approach of including different numbers of explicit waters in each snapshot and using
weighted averages when calculating the final binding energies. They also attempt to
capture the effect of the displacement of waters during binding with the MM-GBSA
approach.

Lastly, it is worth noting that it has been suggested that using a dielectric constant
higher than 1 inside the solute can improve MM-PBSA /GBSA binding energy
predictions [70]. We chose a value of 1 in this study because there has been no research
exploring the dielectric constant in QM-PBSA binding energies. Thus, the default
value of 1 was chosen for both QM-PBSA and MM-PBSA /GBSA to allow direct

comparison of results.

5.5 QM-PBSA binding energies

Having thoroughly explored our ligand set in BRD4 at the classical mechanical level
of theory, in this chapter, the quantum mechanical QM-PBSA binding free energies are
calculated and compared to their classical mechanical counterparts. Based on Section
5.3, the force field combination ff19SB-GAFF2-OPC3 was selected. This force field
combination led to the most stable MD trajectories with no ligand dissociation and did
not lead to the ZA-loop conformational change often observed with ff14SB. We
compare quantum mechanical QM-PBSA with traditional classical mechanical
MM-PBSA and MM-GBSA discussed in Section 5.4. Our comparison focuses on the
direct comparison of QM-PBSA and its classical analog MM-PBSA. We compute
entropy correction terms using normal mode analysis (NMA) and Interaction Entropy
(IE) [62]. Finally, we compare the results in BRD4 with our previous QM-PBSA study
of the much simpler T4-lysozyme [1] protein binding with 7 ligands from Chapter 4.
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5.5.1 Methods
5.5.1.1 Design of computational study

900ns of MD for the force field combination ff19SB-GAFF2-OPC3 generated in Section
5.3 are used as the basis for the binding energy calculations. From the combined 900
ns trajectory for each ligand, 4500 snapshots are extracted and binding energies
evaluated using MM-PBSA and MM-GBSA as in Section 5.4. A subset of 50 snapshots,
equally spaced in time, is taken from the 4500, and QM-PBSA binding energies are
calculated for all ligands. Normal mode entropy estimates are calculated for the
subset of 50 snapshots only. Interaction Entropy terms are calculated for MM-PBSA
and MM-GBSA across all 4500 snapshots. For the QM-PBSA, MM-PBSA, and
MM-GBSA results over 50 snapshots, the Interaction Entropy from only those 50
snapshots is considered.

As in Section 5.4, the root mean squared deviation after removal of the systematic
error (mean signed error), called RMSDtr, calculated over the set of binders and
Spearman’s rank correlation factor 75 over the whole ligand set are used to assess the
quality of the computed binding energies. The treatment of the non-binder, ligand 1,
and weak binder, ligand 2, is consistent with the MM study in Section 5.4.

Estimates of the statistical error due to finite sampling in the computed metrics are
obtained using the block averaged standard error (BASE) method [182] introduced in
Section 5.4.1.1. In addition to the BASE, the standard error in the computed metrics is
calculated using bootstrapping (with replacement) over 1000 iterations to provide a
second estimate of statistical error.

5.5.1.2 Computational details

QOM-PBSA, DFT QM energy evaluations are carried out by the linear-scaling DFT
code ONETEP [87]. The general purpose exchange-correlation functional PBE [77] and
D3 dispersion correction [142] were found to be the most promising in our previous
study on the T4-lysozyme [1]. A kinetic energy cutoff of 800eV is used. 4
non-orthogonal generalized Wannier functions (NGWFs) are used for carbon,
nitrogen, and oxygen, and 1 NGWF is used for hydrogen. For sulfur, fluorine, and
bromine 9 NGWFs are used. An NGWF radius of 8.0 atomic units is used throughout.
ONETEP default parameters for water at room temperature are used. The default
solvent surface tension is 4.7624 x 10-°Ha/Bohr? with an apolar scaling factor of
0.281075 and a solvation B of 1.3. The bulk permittivity is 78.54, and an interior
dielectric of 1 is used. To speed up the solution of the Poisson-Boltzmann equation,
the charge at the boundary of the simulation cell is coarse-grained. The default charge

coarse-graining factor at the boundary is 5, but by increasing this to 10, the energy
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evaluation of the complex is sped up by 20%. A link to QM-PBSA input and output
files is included in Appendix C.

Normal mode analysis Normal mode analysis is performed in Amber20 using
MMPBSA.py and default settings. The complex, host, and ligand’s vibrational,
translational, and rotational entropies are evaluated. Before NMA, MMPBSA.py
performs a two-part energy minimization comprised of a conjugate gradient method,
followed by the Newton-Raphson method on each snapshot with tight convergence
criteria. A Hawkins, Cramer, Truhlar (HCT) Generalized Born implicit solvent with an
internal dielectric of 1 is used for the frequency calculations and the energy

minimizations with infinite non-bonded cutoff.

5.5.2 Results

5.5.2.1 Convergence of energy terms

TABLE 5.5: Standard error of the mean (SEM) in kcal/mol for the absolute binding
energy (G_bind), net gas phase energy (Gas-phase) and net solvation energy (G_solv)
averaged across the ligand set for QM-PBSA and MM-PBSA over 50 snapshots.

Method / SEM (kcal/mol) QM-PBSA MM-PBSA

G_bind 0.44 0.47
Gas-phase 0.64 0.65
G_solv 0.40 0.63
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FIGURE 5.13: Absolute deviation of computed absolute binding energies at different
numbers of snapshots from the computed energies at 50 snapshots for QM-PBSA (left)
and MM-PBSA (right) in kcal/mol for all ligands.

The standard error of the mean (SEM) measures how far a sample’s mean is likely to
deviate from the true population mean. The MM-PBSA and QM-PBSA methods
average each energy term across the ensemble of snapshots, i.e., the population
sample. Table 5.5 shows the SEM, averaged over the ligand set, for the absolute
binding energies, net gas phase energies, and net solvation energies for QM-PBSA and



5.5. QM-PBSA binding energies 109

MM-PBSA. Net energies are the difference between the complex and its constituents.
The SEM of the absolute binding energies and net gas phase energies over 50
snapshots of QM-PBSA and MM-PBSA are almost identical. For the net solvation
energy, QM-PBSA has a slightly larger SEM by 0.2 kcal /mol. Figure 5.13 shows the
absolute deviation of the computed absolute binding energies at increasing numbers
of snapshots from the ”"converged” value at 50 snapshots with QM-PBSA and
MM-PBSA. The convergence behavior is comparable between MM and QM, and
beyond 30 snapshots, the absolute deviations are below 0.5 kcal/mol for most ligands.
The mean absolute difference in absolute binding energies across the ligand set
between MM-PBSA at 50 and 4500 snapshots is 0.36 kcal/mol. This means that on
average, if all 4500 snapshots are included, the calculated binding energies differ by

0.36 kcal/mol from those calculated over only 50 snapshots.

5.5.2.2 Absolute binding free energies

TABLE 5.6: QM-PBSA absolute gas phase energies and binding energies without en-

tropy and with Interaction Entropy and normal mode correction terms in kcal/mol.

The non-binder (ligand 1) and weak binder (ligand 2) are allocated experimental bind-
ing energies of 0 kcal /mol.

Ligand Gas-Phase G._bind G._bind(IE) G_bind(NMA) Experiment
1 -36.1 -34.3 -29.4 -19.4 0

2 -45.2 -37.3 -27.0 -20.9 0

3 -45.8 -44.1 -37.6 -26.2 -5.95
4 -32.6 -26.2 -15.0 -10.7 -6.36
5 -44.5 -40.4 -33.8 -23.3 -7.40
6 -55.3 -42.7 -36.2 -23.8 -7.84
7 -48.4 -45.2 -40.0 -26.7 -8.16
8 -42.9 -42.5 -34.7 -24.8 -8.99
9 -47.2 -46.4 -40.2 -28.4 -9.64
10 -47.7 -46.9 -38.5 -27.8 -10.4

While end-point binding free energy methods like QM-PBSA and MM-PBSA are only
suitable for calculating relative free energies of binding, an explicit look at the absolute
binding energies can prove informative. Table 5.6 shows the net gas-phase energy and
absolute binding energies for each ligand without entropy correction and with normal
mode and Interaction Entropy corrections. Ligand 4, pictured in Figure 5.15, is a clear
outlier and is excluded from the RMSDtr and Spearman’s rs analysis. The absolute
binding energy of ligand 4 without entropy is 16 kcal/mol more positive (weaker)
than the average across the rest of the ligand set and 8 kcal/mol weaker than the
known non-binder, ligand 1. A full discussion of ligand 4 is presented in Section
5.5.3.2 of the discussion. Additionally, Table 5.6 illustrates that QM-PBSA should not
be used to calculate absolute binding energies.
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5.5.2.3 Predictive power

The RMSDtr and Spearman’s ; are used to quantify the closeness of calculated to
experimental relative binding energies and rank ordering of ligands by binding
energy. Table 5.7 shows the RMSDtr and Spearman’s rs values for QM-PBSA,
MM-PBSA, and MM-GBSA. Results are shown for the ensemble subset of 50
snapshots evaluated using QM-PBSA, and MM results are additionally shown across
the entire ensemble of 4500 snapshots. Metrics are calculated without entropy, normal
mode entropy, and Interaction Entropy. As normal mode calculations for only 50
snapshots were performed, no results for MM-PBSA /GBSA over 4500 snapshots with
normal mode correction are shown. BASE and bootstrapped SE for each metric are
shown in Table B.5 in Appendix B. Ligand 4, the outlier, is excluded from the analysis
in this section and further discussed in Section 5.5.3.2.

Consider first the results without entropy correction. QM-PBSA has an RMSDtr of 1.77
kcal/mol and r; of 0.83. This is 1.22 kcal /mol lower than MM-PBSA and 0.89 kcal /mol
lower than MM-GBSA, over the same 50 snapshots, and thus a statistically significant
improvement with respect to the estimated statistical error of less than 0.2 kcal/mol.
MM-PBSA has no predictive power regarding rank ordering the ligands (rs = 0.01).
The ligand rank order produced by MM-GBSA is comparable with that of QM-PBSA.
Considering the full 4500 snapshots, MM-PBSA does not change significantly in terms
of RMSDtr or ;. MM-GBSA, on the other hand, shows an improved RMSDtr of 2.07
kcal/mol, which is 0.3 kcal/mol larger than that of QM-PBSA over 50 snapshots.

Overall, the inclusion of the normal mode entropy correction term improves the
performance of QM-PBSA, reducing the RMSDtr by 0.17 kcal/mol and increasing
by 0.02. However, these changes are within the estimated uncertainties of the two
metrics. This is in part due to the fact that the inclusion of normal mode entropy
increases the BASE and bootstrapped SE for both RMSDtr and rs. The inclusion of
normal mode entropy further deteriorates MM-PBSA. MM-GBSA shows a significant
drop in rs of 0.26 while improving RMSDtr by 0.49 kcal/mol, which is, however, of
comparable magnitude as the BASE of 0.47 kcal/mol.

Including the Interaction Entropy correction increases RMSDtr significantly and
reduces s across the board. The increase in error against experiment caused by the
Interaction Entropy term is much larger in the set of 4500 snapshots than in the set of
only 50 snapshots. The BASE in RMSDtr increases significantly from 50 to 4500
snapshots when the IE term is included.
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FIGURE 5.14: Plots of computed binding energies (shifted by mean signed error)
against experimental binding energies for 9 ligands in BRD4 for QM-PBSA, MM-PBSA
and MM-GBSA.
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TABLE 5.7: Root mean squared deviation of calculated binding energies shifted by the
mean signed error (RMSDtr) against the experimental binding energies of 7 binders in
BRD4 in kcal/mol. Spearman’s rank order coefficient, rs, of calculated binding ener-
gies against the experimental binding energies of 9 ligands (binders and non-binders)
in BRD4. Metrics are shown for QM-PBSA, MM-PBSA, and MM-GBSA without en-
tropy and with normal mode and Interaction Entropy term. Metrics for MM are shown
over 50 and over the complete set of 4500 snapshots. Block average standard errors
and bootstrapped standard errors are provided in Table B.5 in Appendix B. Normal
mode entropies are only calculated for 50 snapshots.

Snapshots Method Entropy RMSDtr (kcal/mol) Spearman’s r;
50 QOM-PBSA  No Entropy 1.77 0.83
Normal Mode 1.60 0.85

Interaction Entropy 2.30 0.76

MM-PBSA  No Entropy 2.99 0.01

Normal Mode 3.05 -0.30

Interaction Entropy 3.84 -0.13

MM-GBSA  No Entropy 2.66 0.79

Normal Mode 217 0.53

Interaction Entropy 3.22 0.48

4500 MM-PBSA  No Entropy 2.89 -0.03
Normal Mode NA NA

Interaction Entropy 6.18 0.03

MM-GBSA  No Entropy 2.07 0.78

Normal Mode NA NA

Interaction Entropy 5.54 0.53

5.5.3 Discussion
55.3.1 QM-PBSA

In the context of this set of ligands in BRD4, QM-PBSA produces relative binding free
energies that are closer to experiment and have better rank ordering than MM-PBSA
binding energies. MM-GBSA performs better than MM-PBSA but is still inferior to
QM-PBSA in terms of RMSDtr and rank ordering. Normal mode entropies improve
QM-PBSA results slightly but deteriorate MM-PBSA results significantly. In our
hands, Interaction Entropy corrections reduce the quality of estimated binding
energies across the board and are difficult to converge, mirroring observations by
other authors [183-185].

The ligand rank orderings produced by QM-PBSA are very good, with r; = 0.85 when
normal mode entropy is included and BASE and bootstrapped SE of 0.08 and 0.06,
respectively. Figure 5.14 shows plots of the experimental against computed binding
energies where the computed energies have been shifted by the mean signed error as
in the calculation of the RMSDtr. Plots are shown with and without normal mode
entropy and for the whole ligand set (excluding ligand 4). Visual comparison of

QM-PBSA with MM-PBSA also clearly shows an improvement in predictive power.
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With an RMSDtr of 1.60 kcal/mol and 7, of 0.85, QM-PBSA with normal mode entropy
has comparable accuracy against experiment and predictive power as MM-GBSA with
the inclusion of 1-3 explicit waters and no entropy correction, which was the best
performing method in Section 5.4.

We see similar results in comparing the results of this BRD4 study to our previous
QM-PBSA study in T4-lysozyme. In T4-lysozyme RMSDtr values of 1.84 kcal/mol
were obtained using the PBE exchange-correlation functional and D3 dispersion and
normal mode entropy compared to an RMSDtr of 1.60 kcal/mol in BRD4.
Interestingly, the standard error (SE) values for the absolute binding energies and net
solvation energies are slightly lower, by about 0.3 kcal/mol, in BRD4 than in
T4-lysozyme at 50 snapshots of sampling. This is because BRD4 has a solvent-exposed
binding site and does not require a cavity-correction term to account for the buried
cavity binding site in the T4-lysozyme [1, 38]. The cavity-correction term was the
largest source of standard error in the T4-lysozyme system. Both in BRD4 and
T4-lysozyme, the QM energies converge at the same rate as the MM energies,
indicating that, for these systems, evaluating structures generated using classical
mechanical force fields with a quantum mechanical energy Hamiltonian is viable. If
this observation is shown to hold for more protein-ligand systems, the QM-PBSA or
similar approaches can provide a realistic and accessible method of exploring
protein-ligand binding at a quantum mechanical level of theory.

In 2017, Aldeghi et al. [57] studied 11 ligands in BRD4 using both MM-PBSA and an
absolute alchemical binding free energy method. The single-trajectory MM-PBSA
approach achieved Spearman’s r; = 0.72 without entropy and 0.61 with an entropy
correction term. Absolute alchemical energies improved upon this with rs = 0.85.
Also, in 2017, Heinzelmann et al. [165] applied the attach-pull-release method to 7
ligands binding to BRD4, achieving Kendall T between 0.33 and 0.50 and RMSE of
1.14-3.21 kcal/mol depending on the details of the method. In 2022 Guest et al. [168]
applied FEP and multi-site lambda dynamics (MSAD) in BRD4 and reported
Spearman’s r; of 0.7 and 0.8, respectively, for 14 compounds. Average accuracy
against experiment for FEP was reported as 1.0 & 1.3 kcal/mol and 0.7 £ 0.5 kcal /mol
after the exclusion of one outlier. Also, in 2022, Huggins et al. [157] applied an
alchemical binding free energy method to the 8 binders from the Mobley BRD4
benchmark set also used in this study. Using the ff14SB protein force field, the
previous iteration of the ff19SB force field used in this study, they reported RMSE of
1.44 to 3.36 kcal/mol and Kendall 7 of 0.31 to 0.56 depending on the choice of water
model (TIP3P, TIP4P-Ewald, and SPCE) and ligand charge model (AM1-BCC and
RESP). Notably, ligand 4, which was excluded from our ligand set as an outlier for the
QM-PBSA method, was not an outlier for the alchemical method employed by
Huggins et al. [157]
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In comparison, our QM-PBSA method achieves RMSDtr of 1.6 kcal/mol across 7
binders and an 7, of 0.85 across the 9 ligands (binders and non-binders) in BRD4.
These results align with those of more thermodynamically rigorous classical
mechanical methods; however, as summarized in Section 5.5.3.4, the computational
cost of QM-PBSA is orders of magnitude larger.

FIGURE 5.15: Ligand 4, the outlier.

5.5.3.2 The outlier

The computed QM-PBSA binding energies of ligand 4, the outlier, are 16 kcal/mol
more positive than the average binding energy across the ligand set, while the
experimental binding energy for ligand 4 is essentially in the middle of the binding
set. We discuss here the attempts made to explain and correct this outlier.

Ligand 4, pictured in Figure 5.15, is the smallest ligand in the set and undergoes the
most motion during the MD simulation as measured by the ligand RMSD. During the
900 ns of MD, several similar binding poses are sampled by ligand 4. We re-ran the 900
ns MD for ligand 4 with a 2 kcal mol ™ A~? harmonic restraint imposed on the ligand
in an attempt to sample only the binding mode closest to the initial configuration. 10
restrained snapshots were evaluated by QM-PBSA but the resulting absolute binding
energies for ligand 4 differed only by 0.5 kcal/mol from those of the un-restrained
trajectory. Thus, we concluded that sampling multiple related binding modes in itself

is not the cause of ligand 4’s significantly underestimated QM binding energies.

Since ligand 4 has the only bromine atom in the test set, we examined whether the
DFT calculations might treat the bromine incorrectly. We replaced the bromine in
ligand 4 with a hydrogen and re-equilibrated and re-ran 900ns of MD. This altered
ligand, ligand 4H, is a real binder with similar binding energy as the bromine variant
[158]. After evaluating three snapshots of ligand 4H with QM-PBSA, we found that
the net difference in absolute binding energies by changing the bromine to a hydrogen

was only -0.52 kcal/mol. Thus we abandoned this hypothesis.

It is well established that the BRD4 binding site features a number of structural waters,
which are observed both in crystal structures and simulation [58]. Using Amber20’s
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cpptraj we analyzed the bridging waters between the ligands and BRD4 protein. The
occupations percentages for each water bridge are shown in Table 5.4 of Section 5.4.3.
We observed that for ligand 4 the bridging water between the ligand and the protein
residue Tyr54 is highly conserved and present in more than 70% of snapshots with the
same water molecule being conserved over many nanoseconds of MD. While bridging
waters are present in the trajectories for the other ligands, the average occupation is
less than 30 % with no single ligand, except ligand 4, having an occupation of more
than 55% for the Tyr54 water bridge. Additionally, the mean number of water bridges
per snapshot is 1.2 for ligand 4, while all other ligands, except ligand 6, have mean
values << 1. We hypothesized that the small and loosely bound ligand 4 requires the
bridging water interactions with the protein to bind. The explicit inclusion of these
bridging waters in the QM-PBSA calculation may "fix” the underestimated QM
binding energies. We performed QM-PBSA over 50 snapshots for ligand 4 in which
any bridging waters between the ligand and protein were explicitly included as part
of the protein in the DFT calculations. This approach is analogous to explicit water
MM-PBSA, which has successfully been applied in several studies [51, 53-58].

Our own MM-PBSA /GBSA calculations with explicit waters in the Section 5.4 showed
that including a few waters can improve the quality of predicted binding energies.
While the net gas-phase energy of our explicit water QM-PBSA for ligand 4 did
become 10 kcal/mol more favorable to binding, the solvation and normal mode
entropy became less favorable for binding. As a result, the entropy corrected
calculated binding energy of ligand 4 with explicit bridging waters was only about 1
kcal/mol stronger than the original estimate. Thus the inclusion of the highly
conserved bridging water in ligand 4 did not bring its outlier energy into line with the
rest of the ligand set. Two reported X-ray structures of ligand 4 in BRD4 (PDB:4HBV)
and the highly conserved CREBBP bromodomain (PDB:4NYV) show subtle
differences in the binding modes of the ligand and changes in the structure and
number of waters in the binding site. A potential issue is that our dynamics
simulation does not sufficiently sample the different arrangements of structural

waters in the binding site.

5.5.3.3 Interaction Entropy

Including an IE correction term increases RMSDtr and worsens rank ordering in all
cases. The negative impact of the IE term is especially pronounced when all 4500
snapshots are included in the MM-PBSA and MM-GBSA calculations. Overall, the IE
correction also increases the BASE and bootstrapped SE significantly. Figure 5.16
shows the calculated IE correction for MM-PBSA as increasing numbers of snapshots
are included, up to 4500. The sharp increases in IE indicate that individual snapshots

with peak interaction energies dominate the IE results. We also observe that the IE
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FIGURE 5.16: Interaction Entropy correction term in kcal/mol for MM-PBSA as in-
creasing numbers of snapshots are included for each ligand binding to BRD4.

increases as more snapshots are included for almost all ligands. This observation is in
line with the findings of Ekberg et al. [185], who showed that the IE increases with the
number of snapshots sampled and that the exponential average is poorly conditioned.
They suggest that when the standard deviation of the interaction energy is larger than
3.5 kcal/mol, the Interaction Entropy method becomes almost impossible to converge.
In our test set, the standard error of the interaction energy is 4.8 kcal/mol when
averaged across the ligand set. Thus, according to Ekberg et al., the IE method is not
applicable. Similarly, Menzer et al. [184] observed that rare events dominate the IE
term. Also, in 2018, Kohut et al. [183] showed that IE depends strongly on the highest
peak interaction energies and does not significantly change after peak energy has
distorted the IE term. This behavior is mirrored in our results in Figure 5.16. Kohut et
al. concluded that the IE method is not applicable, especially when conformational

changes occur.

5.5.3.4 Computational cost

To calculate quantum mechanical protein-ligand binding energies using the QM-PBSA
method on a total of 10 ligands binding to BRD4 using 50 snapshots per ligand
required about 7.3 million core-hours on AMD EPYC 7742 62-core processors on the
ARCHER?2 supercomputer. A single solvated DFT single-point energy evaluation on
the BRD4 protein (2035 atoms) has a wall-time of about 5 hours on 8 nodes with 128
cores each (dual socket AMD EPYC). Given access to the whole ARCHER2
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supercomputer, the entire QM-PBSA BRD4 study could have been completed in less
than 10 hours due to the trivially parallel nature of QM-PBSA. Including additional

calculations and initial testing, we estimate a total usage of 10 million core-hours on
ARCHER?2 and IRIDIS5 (University of Southampton supercomputer).

5.5.4 Conclusion

This study is, to our knowledge, the first application of full-protein DFT binding
energy calculations on a real-world, pharmaceutically relevant protein and ligand set.
Building on our QM-PBSA validation study in T4-lysozyme [1], we demonstrate the
application of QM-PBSA in BRD4. We find a significant improvement in accuracy
against experiment and ligand rank ordering over classical mechanical MM-PBSA.
The best results are obtained by including a normal mode entropy correction term. As
in the T4-lysozyme study, the QM binding energies appear equally converged as the
MM binding energies with SEM < 0.5 kcal/mol at 50 snapshots of sampling.
Exploring whole protein-ligand complexes at a quantum mechanical level of theory is
both computationally and methodologically viable and opens a variety of
opportunities for further investigation like the potential applications of extracting

further information from the full-QM electronic densities for protein-ligand systems.
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Chapter 6

Conclusions

In this body of research, we have investigated the use of full-protein density
functional theory calculations to predict protein-ligand free energies of binding. The
accurate prediction of ligand binding energies and their relative rank ordering is of
central importance in the growing field of computational drug discovery and design.
Based on our explorative study of the T4-lysozyme protein system [1], we selected
optimal parameters for applying the quantum mechanical QM-PBSA binding free
energy method. In the first application of a DFT-based full-protein QM binding energy
method on a pharmaceutically relevant protein, BRD4, we demonstrated near-perfect
ligand rank ordering and errors relative to experiment of 1.6 kcal/mol when the
normal mode entropy term is included. The quantum mechanical binding energies
appear similarly converged as their classical mechanical counterparts. The QM-PBSA
calculations in BRD4 used molecular dynamics trajectories from our in-depth
molecular dynamics study of BRD4, in which the trajectory stability, protein motion,
and ligand dissociation were investigated for several force field combinations.
Additionally, classical MM-PBSA and MM-GBSA binding energies for multiple force
field combinations were calculated. Including explicit water molecules as part of the
end-point binding free energy calculations was considered along with an entropy

correction term.

In this final chapter, we outline the state of the QM-PBSA method after three years of
active research, illustrate avenues of continued research and showcase some current
advances in the wider field of quantum mechanical protein-ligand binding energy

prediction. We conclude with some closing remarks.
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6.1 The state of QM-PBSA

Having applied the QM-PBSA quantum mechanical binding energy method to two
distinct proteins and ligand sets, we summarize the key findings, outline some
outstanding issues, and highlight avenues for continued research.

The biggest challenge of studying protein-ligand interaction at a quantum mechanical
level of theory is the large size of proteins. Even when working with only the active
regions of a protein, like in the first bromodomain of the bromodomain containing
protein 4, the systems under investigation still have thousands of atoms and tens of
thousands of electrons. By choosing linear-scaling DFT as our quantum method, we
can perform thousands of full-protein DFT calculations on our protein systems of
interest. Our T4-lysozyme and BRD4 QM-PBSA studies have shown beyond doubt
that full-protein DFT calculations are viable and can be performed at scale in an
academic research environment. One of our core missions is to communicate this
capability with the wider computational chemistry community to promote more
research in this field.

The second major challenge in quantum mechanical protein-ligand binding energy
prediction is the convergence of the calculated binding energies. Because sampling is
performed at the classical mechanical level, the QM energy evaluation in QM-PBSA is
performed on a classical ensemble of snapshots. While this is undeniably a theoretical
weak point of our methodology, we can show in T4-lysozyme and BRD4 that the
convergence of the QM-PBSA binding energies mirrors that of the MM-PBSA and
MM-GBSA binding energies. Because it is not possible to evaluate the true
convergence of the predicted binding energies in an absolute sense, it is promising
that our QM-PBSA method achieves the same convergence characteristics as the
popular and much-applied classical mechanical MM-PBSA. Additionally, our
extended sampling of 100 QM-PBSA snapshots in T4-lysozyme indicates that 50
snapshots of sampling per ligand are sufficient to obtain reliable binding energy
estimates. The BRD4 study confirmed this. It is, however, unclear if this observation is
transferable to other protein-ligand systems. Fundamentally, the QM-PBSA
methodology needs to be applied to more protein-ligand systems to fully characterize

its convergence across different types of proteins and ligand sets.

We have obtained mixed results regarding the predictive power of QM-PBSA. In
T4-lysozyme, the accuracy against experiment, measured by the RMSDtr, is
comparable between QM-PBSA and MM-PBSA. In BRD4, QM-PBSA outperforms its
classical analog MM-PBSA significantly. However, MM-GBSA, with the inclusion of a
few explicit waters, results in comparable RMSDtr and r; at a fraction of the
computational cost. Again, QM-PBSA must be benchmarked against more systems to
form a full image of its potential to predict more accurate and reliable protein-ligand

free energies of binding.
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A core piece of peer-review feedback obtained in the publication of our research was
that it is difficult to tell to what extent the methodological improvement of MM force
tield to DFT in the gas-phase energies can improve overall binding energies when the
approximate implicit solvation scheme and normal mode estimation remain
unaltered. While the minimal parameter implicit solvation model in ONETEP is more
involved and accurate than traditional PBSA solvation [43], the simplification of
implicit solvation remains severe, as illustrated by our findings regarding the role of
explicit waters in the BRD4 binding site. Given the improvements in MM-GBSA
binding energies by including some explicit waters in BRD4, including explicit waters
in QM-PBSA is a potential avenue to improve the methodology. Due to the
linear-scaling, adding a few explicit water molecules would have no noticeable impact
on the computational cost of QM-PBSA.

Nonetheless, the approximations inherent in the formulation of MM-PBSA and
QM-PBSA may prove too severe to systematically improve the accuracy of predicted
binding energies by treating the individual terms of the method with more accurate
methodologies. In two reviews of hybrid QM/MM-PBSA methods, Ryde et al. [39]
and Soderhjelm et al. [8] both express the sentiment that MM-PBSA is not accurate
enough for predictive drug design, and that its approximations are too severe to be
used as the basis of more accurate methods like QM-PBSA. On the other hand, the
methodological ease of modifying MM-PBSA to QM-PBSA, the low sampling
requirements, and the trivially-parallel nature of this end-point method makes it an

attractive starting point for quantum mechanical approaches.

The research volume in quantum mechanical protein-ligand free energy of binding
prediction is still minimal. In 2022, excluding the author’s work, we found only four
publications on QM protein-ligand binding energies. Vennelakanti et al. [9] published
an opinion piece about the future of large-scale QM and QM /MMM for predictive
modeling in enzymes and proteins. Maier et al. [186] benchmarked a QM
molecule-in-molecules (MIM) approach, which partitions the protein system into
small, overlapping fragments on which independent QM calculations are performed.
The energies of the fragments are then recombined to recover the total energy. They
reported improvements over traditional MM-PBSA /GBSA and Pearson correlation
coefficients between 0.81 and 0.97. However, no errors against experiment were given,
and the method only applies to sets of structurally similar ligands. Additionally, no
sampling is performed in the MIM approach; instead, single energy-minimized crystal
structures are used to compute binding energy estimates. This eliminates the
possibility of capturing multiple binding modes, binding site flexibility, and ligand
flexibility. Chen et al. [187] applied the GFN-FF force field and the family of GFN-xTB
SEQM methods to 90 protein-ligand complexes. They truncated the protein for the
SEQM calculations and tested different truncation radii. GFN2-xTB was the best
performing SEQM method tested with mean absolute errors after removing the
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systematic error of 7 kcal/mol for charged systems and 5 kcal/mol for neutral
systems. The correlations of the SEQM approach and traditional MM-PBSA were
comparable. Lastly, Kirsopp et al. [188] computed quantum mechanical protein-ligand
interactions natively on a quantum computer. They studied 12 inhibitors to the
BACET1 protein on different quantum computers and a simulated quantum computer.
They obtained coefficients of determinants, R?, 0f 0.55,0.77, and 0.56, depending on
the QM-hardware. In comparison, a DFT-based approach achieved R? = 0.65.

6.2 Future work

In the absence of resource limitations, the QM-PBSA method should be tested on
various other protein-ligand benchmark systems to confirm its convergence
characteristics and assess its predictive power. The protein systems BACE-1, FXR,
CDK2 Kinase, SYK Kinase, CathepsinS, and Stromelysin-1 all have publicly available
ligand sets with co-crystal structures and experimental binding energies and are
between 1700 and 3300 atoms large. A full QM-PBSA benchmarking study of the
roughly 100 ligands across the protein systems listed in the previous sentence would
require just under 100 million core-hours on the current generation AMD EPYC CPUs.
This estimation was made in the context of an application to compute time on
Europe’s largest supercomputer. At the time of application, we had only completed
the QM-PBSA study on T4-lysozyme. In the final decision, we were asked to
investigate an additional, more realistic protein system before embarking on a
large-scale benchmarking study. We expect the promising results obtained in our
subsequent QM-PBSA study of BRD4 will strengthen the case for a large HPC grant,
which would be required to perform QM-PBSA on multiple protein systems. We have
developed the technological infrastructure to deploy and manage such volume
calculations.

Thus far, the binding energies have been considered the only output of the expensive
QM-PBSA calculations. While the accurate prediction of protein-ligand binding
affinities is the ultimate goal, the binding energy as a single number gives little insight
into the binding mechanism. In every solvated DFT single-point energy evaluation
performed in QM-PBSA, the full-protein electron densities and electrostatic potentials
are calculated and written to the disk. These electron densities are, in principle, a full
QM representation of the protein-ligand system. It encodes all the physical
interactions described by DFT. From our BRD4 study presented in Chapter 5 we have
access to full-protein QM electron densities for 50 configurations each of BRD4 in
complex with 10 ligands. These electron densities represent a novel and rich data
source to understand the mechanisms of protein-ligand binding at the quantum
mechanical level of theory. By systematically identifying regions of change between
the electron densities of the protein in complex with different ligands or competing
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binding poses of the same ligand, the concrete changes in electron behavior could be
studied and visualized. However, in our experience, the electron densities remain
very similar, and changes are often tiny and difficult to detect in the huge
three-dimensional density matrix. We propose that machine learning algorithms for
image recognition could be applied to detect similarities and differences between
electron densities. These algorithms take two or three-dimensional matrices with
intensities, or RGB values, at each point as input parameters and may identify patterns

that a difficult to discover in such an extensive three-dimensional data set manually.

In addition to their direct study, the electron densities and potentials could be used as
input for the training of classical mechanical force fields like the bespoke-QM force
tield QUBE [189]. The QUBE force field uses quantum mechanical calculations to
derive system-specific bespoke force field parameters. While the approach is currently
still limited to small molecules, the electron densities and potentials of full-protein
calculations could be incorporated into the training data in the future to improve, for
example, protein residue-specific dihedral parameters. While the field of
machine-learned molecular mechanics force fields is still mostly considering small
molecules, as the field advances to protein force fields, the QM electron densities and
potentials produced by QM-PBSA binding energy estimations may become a valuable
source of training data [190].

6.3 Closing remarks

While the scientific output of our research efforts has been described in detail in
Chapters 4 and 5, we would like to highlight some additional aspects. There is, to our
knowledge, no precedent for the volume of full-protein DFT calculations performed
for this body of research. Including exploratory calculations, we estimate that more
than 10000 full-protein DFT calculations were performed. To achieve this, we
developed scalable solutions for managing and running many concurrent calculations
and utilities to collect, store, and analyze the simulation outputs. Many of these have
been made available through the supporting information of our publications.

A key objective of our research was to demonstrate to the wider computational
chemistry community that treating full proteins at a quantum mechanical level of
theory is viable and tractable for individual research groups. Through conferences,
our publications, and collaborations with other researchers and industry, we have
aimed to motivate and empower others to invest their time into the prospects of

quantum mechanical protein-ligand simulations.

It is our firm belief that if a fraction of the scientific effort that has been invested into
developing highly advanced and complicated classical mechanical methods for

estimating protein-ligand binding over the past 60 years were to be invested in
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quantum-based approaches, significant improvements in accuracy, transferability, and
domain of applicability could be achieved given the availability of modern

high-performance computing resources.
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Appendix A
T4-Lysozyme

Figures A.1-A.7: The standard error of the mean (SEM) calculated by bootstrapping
(1000 re-samples) of the change upon binding in the gas-phase energy, (AE), solvation
energy, (AGgojpation), cavity-corrected solvation energy, (AGsojvation—cav—cor), and total
enthalpy, (AHping) = (AE) + (AGsorvation), for each ligand up to 100 snapshots for MM,
the DFT functional PBE and the SEQM method GFN2-XTB.

Figures A.10-A.16: Absolute deviation of (AHy;,) at different numbers of randomly
selected snapshots from the ‘converged” mean over 100 snapshots. Two different sets

of random snapshots shown in blue and orange.
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FIGURE A.17: Root mean square error deviation from experiment after removal of

mean signed error (kcal/mol) of calculated binding free energies for ligand set B, at

different levels of entropy sampling. Enthalpy sampled over 100 snapshots. RMSDtr
calculated with upper limit for non-binder.
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FIGURE A.18: Root mean square error deviation from experiment after removal of

mean signed error (kcal/mol) of calculated binding free energies for ligand set B, at

different levels of entropy sampling. Enthalpy sampled over 100 snapshots. RMSDtr
calculated with lower limit for non-binder.
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FIGURE A.19: Root mean square error deviation from experiment after removal of

mean signed error (kcal/mol) of calculated binding free energies for ligand set B, at

different levels of entropy sampling. Enthalpy sampled over 100 snapshots. RMSDtr
calculated with binders only.
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FIGURE A.20: Root mean square error deviation from experiment after removal of

mean signed error (kcal/mol) of calculated binding free energies for ligand set B, at

different levels of entropy and energy sampling. Enthalpy and energy sampled over
same snapshots. RMSDtr calculated with upper limit for non-binder.
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FIGURE A.21: Root mean square error deviation from experiment after removal of

mean signed error (kcal/mol) of calculated binding free energies for ligand set B, at

different levels of entropy and energy sampling. Enthalpy and energy sampled over
same snapshots. RMSDtr calculated with lower limit for non-binder.
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mean signed error (kcal/mol) of calculated binding free energies for ligand set B, at

different levels of entropy and energy sampling. Enthalpy and energy sampled over
same snapshots. RMSDtr calculated with binders only.



Appendix B

BRD4

TABLE B.1: Maximum block averaged standard errors in RMSDtr (kcal/mol) of MM-
PBSA and MM-GBSA without entropy correction for 10 ligand binding to BRD4 with
different numbers of explicit waters (XN).

ON

3N

5N

10N

25N

tf14SB-TIP3P_mmgbsa
tf14SB-TIP3P_mmpbsa
tf19SB-OPC3_mmgbsa
tf19SB-OPC3_mmpbsa
tf19SB-OPC_mmgbsa

tf19SB-OPC_mmpbsa

tf19SB-TIP3P_mmgbsa
tf19SB-TIP3P_mmpbsa

0.113887
0.161999
0.065149
0.111130
0.093136
0.129076
0.070586
0.096735

0.143778
0.126941
0.047955
0.093385
0.206653
0.905175
0.084165
0.061421

0.121237
0.131458
0.047753
0.088731
0.225344
1.374065
0.105516
0.062102

0.109799
0.150861
0.063251
0.096996
0.337697
4.578537
0.119304
0.060126

0.127694
0.100190
0.085598
0.085509
0.912879
4.749408
0.123853
0.109208

TABLE B.2: Maximum block averaged standard errors in RMSDtr (kcal/mol) of MM-
PBSA and MM-GBSA with Interaction Entropy correction for 10 ligand binding to
BRD4 with different numbers of explicit waters (XN).
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ON 3N 5N 10N 25N
tf14SB-TIP3P_mmgbsa 0.354684 0.444692  0.420979  0.743306  0.863566
tf14SB-TIP3P_mmpbsa 0.437248 0.402654  0.370999  0.831603  0.850804
tf19SB-OPC3_mmgbsa  0.169021 0.236866  0.284536  0.200134  0.556649
ff19SB-OPC3_mmpbsa 0.704806 0.476319  0.914648  0.469965  0.857187
ff19SB-OPC_mmgbsa  0.343108 2.439163  1.011918  1.706925  2.631498
ff19SB-OPC_mmpbsa  0.242921 9.091368 12.769034 15.579301 10.734350
tf19SB-TIP3P_mmgbsa 0.247113 0.450745  0.643758  0.534131  0.452680
tf19SB-TIP3P_mmpbsa 0.215740 0.292108  0.519423  0.773108  1.082458
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TABLE B.3: Maximum block averaged standard errors in Spearman’s r of MM-PBSA
and MM-GBSA without entropy correction for 10 ligand binding to BRD4 with differ-
ent numbers of explicit waters (XN).

ON 3N 5N 10N 25N

tf14SB-TIP3P_mmgbsa 0.039464 0.029677 0.024196 0.032561 0.043276
tf14SB-TIP3P_mmpbsa 0.030009 0.037180 0.049081 0.053779 0.070333
ff19SB-OPC3_mmgbsa  0.032882 0.011037 0.023905 0.019419 0.021269
tf19SB-OPC3_mmpbsa 0.041054 0.018614 0.015115 0.042225 0.018981
ff19SB-OPC_mmgbsa  0.016873 0.046490 0.037105 0.021954 0.034867
tf19SB-OPC_mmpbsa  0.025289 0.041166 0.025647 0.027044 0.041475
tf19SB-TIP3P_mmgbsa 0.011623 0.012483 0.040791 0.043208 0.042862
tf19SB-TIP3P_mmpbsa 0.038651 0.038696 0.042142 0.020286 0.029816

TABLE B.4: Maximum block averaged standard errors in Spearman’s r of MM-PBSA
and MM-GBSA with Interaction Entropy correction for 10 ligand binding to BRD4
with different numbers of explicit waters (XN).

ON 3N 5N 10N 25N

tf14SB-TIP3P_mmgbsa 0.023287 0.068015 0.065219 0.095281 0.101481
tf14SB-TIP3P_mmpbsa 0.164355 0.123980 0.149120 0.162340 0.095670
ff19SB-OPC3_mmgbsa 0.043273 0.044291 0.046246 0.096725 0.055534
tf19SB-OPC3_mmpbsa 0.050621 0.066010 0.061014 0.109621 0.113346
ff19SB-OPC_mmgbsa  0.038676 0.056860 0.057404 0.080917 0.079079
tf19SB-OPC_mmpbsa  0.069964 0.090772 0.051550 0.139993 0.121452
tf19SB-TIP3P_mmgbsa 0.041556 0.061794 0.073116 0.053676 0.063685
tf19SB-TIP3P_mmpbsa 0.088453 0.112944 0.079008 0.086278 0.114220

TABLE B.5: Block averaged standard erros (BASE) and bootstrapped standard errors

(SE) for RMSDtr and Spearman’s rs for QM-PBSA, MM-PBSA and MM-GBSA without

entropy correction, normal moden entropy and Interaction Entropy correction at dif-
ferent numbers of snapshots.

Snapshots Method Entropy RMSDtr BASE RMSDtr Bootsrapped SE s BASE 15 Bootsrapped SE
50 QM-PBSA  No Entropy 0.19 0.15 0.03 0.02
Normal Mode 0.23 0.26 0.08 0.06

Interaction Entropy 0.21 0.20 0.06 0.08

MM-PBSA  No Entropy 0.18 0.18 0.07 0.04

Normal Mode 0.24 0.25 0.15 0.19

Interaction Entropy 0.45 0.41 0.09 0.11

MM-GBSA  No Entropy 0.20 0.15 0.02 0.05

Normal Mode 0.47 0.27 0.06 0.09

Interaction Entropy 0.21 0.29 0.06 0.11

4500 MM-PBSA  No Entropy 0.12 0.18 0.04 0.04
Normal Mode NA NA NA NA

Interaction Entropy 0.71 1.15 0.12 0.21

MM-GBSA No Entropy 0.05 0.13 0.03 0.04

Normal Mode NA Na NA NA

Interaction Entropy 0.73 1.10 0.09 0.14
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Ligand Number Ligand Structure G_bind (kcal/mol) PDB Code
1 Non-Binder

2 Weak-Binder 4MEQ
3 -5.95 4LYs
4 -6.36 4HBV
5 -7.40 3Us)
6 -7.84 4MR4
7 -8.16 3US5L
8 -8.99 4MR3
9 -9.64 RMXF
10 -10.41 4LRG

FIGURE B.1: Benchmarking ligand set for BRD4(1) with ligand structure, experimental
binding energies and PDB codes [158-164] as compiled by Mobley et al.[135]
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TABLE B.6: Spearman’s rs for MM-PBSA and MM-GBSA with different force field
combinations at different numbers of explicit waters without entropy correction.

ON IN 2N 3N 4N 5N 6N 7N 8N O9N 10N 15N 25N 50N 100N

ff14SB-TIP3P mmgbsa  0.809 0.888 0.924 0.815 0.815 0.815 0.748 0.748 0.748 0.748 0.687 0486 0492 0389 0.231
ff14SB-TIP3P mmpbsa  0.316 0.328 0.377 0.328 0.310 0310 0219 0152 0.152 0.152 0.134 0.030 -0.049 -0.468 -0.571
ff19SB-OPC3 mmgbsa  0.815 0.869 0.778 0.802 0.802 0.802 0.699 0371 0280 0292 0292 0.280 0.036 -0.055 -0.383
ff19SB-OPC3 mmpbsa -0.012  0.097 0.201 0.134 0.146 0.182 0.182 0.097 0.061 -0.122 -0.164 -0.219 -0.286 -0.626 -0.638
ff19SB-OPC mmgbsa 0.778 0.444 0426 0.061 -0.146 -0.146 -0.146 -0.280 -0.371 -0.371 -0.371 -0.286 -0.304 -0.450 -0.492
ff19SB-OPC mmpbsa 0.000 -0.140 0.091 0.292 0456 059 0.657 0705 0.778 0.778 0.729 0.644 -0.669 -0.644 -0.644
ff19SB-TIP3P mmgbsa  0.760 0.894 0.815 0.796 0.748 0.748 0.748 0.614 0.596 0553 0.505 0413 0334 0249 -0.188
ff19SB-TIP3P mmpbsa -0.073  0.006 0.182 0.176 0.134 0.134 0.024 0.018 0.018 -0.085 -0.122 -0.152 -0.310 -0.626 -0.638

TABLE B.7: Root mean squared deviation after removal of the systematic error (RMS-
Dtr, kcal/mol) for MM-PBSA and MM-GBSA with different force field combinations
at different numbers of explicit waters without entropy correction.

ON IN 2N 3N 4N 5N 6N 7N 8N 9N 10N 15N 25N 50N 100N

ff14SB-TIP3P mmgbsa 3.049 2307 2147 2.052 2026 2058 2126 2204 2284 2360 2439 2785 3.185 3.930 5.059
ff14SB-TIP3P mmpbsa 2.349  1.832 2033 2312 2514 2626 2677 2705 2700 2.657 2614 2342 2.631 5.399 6.185
ffl9SB-OPC3 mmgbsa 2.091 1495 1.601 1.663 1.824 2032 2249 2452 2638 2817 29% 3711 4.492 5.534 7.641
ff19SB-OPC3 mmpbsa 2961 3222 3.636 3907 4108 4252 4359 4417 4443 4444 4450 4.346 4.487 7.110 7.856
ff1I9SB-OPC mmgbsa ~ 2.192  5.020 6.942 7.884 9.071 10.469 12.039 13.720 15476 17.384 19.330 29.934 49973 81515 110.114
ff19SB-OPC mmpbsa  3.284 10.567 13.915 15465 17281 19.985 24.061 28.363 33.834 39.112 44.393 64.139 105.615 619.528 712.993
ff19SB-TIP3P mmgbsa 2.207 1439 1466 1496 1605 1757 1.922 2074 2223 2359 2493 3.017 3.556 4.425 6.039
ff19SB-TIP3P mmpbsa 2.645 2924 3221 3438 3611 3723 3754 3763 3752 3728 3.690 3478 3.730 6.811 7.652

TABLE B.8: Spearman’s rs for MM-PBSA and MM-GBSA with different force field
combinations at different numbers of explicit waters with Interaction entorpy correc-
tion.

ON IN 2N 3N 4N 5N 6N 7N 8N 9N 10N 15N 25N 50N 100N

ff14SB-TIP3P mmgbsa  0.736 0.711 0742 0736 0.705 0.729 0.754 0.675 0.492 0492 0468 0389 0249 0261 0.195
ff14SB-TIP3P mmpbsa  0.529 0.578 0.529 0.638 0.602 0.614 0.693 0432 0456 0456 0480 0.365 0.061 -0.043 -0.243
ff19SB-OPC3 mmgbsa  0.535 0.723 0.456 0.018 0.012 0.012 0.158 -0.128 -0.146 -0.207 -0.280 -0.304 -0.377 -0.340 -0.407
ff19SB-OPC3 mmpbsa -0.061 -0.176 -0.055 -0.359 -0.371 -0.419 -0.316 -0.304 -0.316 -0.353 -0450 -0.717 -0.663 -0.717 -0.717
ff19SB-OPC mmgbsa 0.675 0.164 0.030 -0.164 -0.249 -0.353 -0.310 -0.274 -0.310 -0.377 -0.274 -0.261 -0.377 -0.383 -0.468
ff19SB-OPC mmpbsa 0.261 -0.365 -0.049 0.109 0492 0535 0705 0.693 0.693 0.693 0.766 0.742 -0.571 -0.584 -0.614
ff19SB-TIP3P mmgbsa  0.559 0498 0.584 0.182 0.243 0.024 -0.012 -0.012 -0.036 -0.024 0.000 -0.073 -0.401 -0.401 -0.432
ff19SB-TIP3P mmpbsa  0.043 -0.055 -0.109 -0.036 -0.085 -0.207 -0.195 -0.219 -0.249 -0.255 -0.267 -0.201 -0.492 -0.480 -0.468

TABLE B.9: Root mean squared deviation after removal of the systematic error (RMS-
Dtr, kcal/mol) for MM-PBSA and MM-GBSA with different force field combinations
at different numbers of explicit waters with Interaction Entropy correciton.

ON IN 2N 3N 4N 5N 6N 7N 8N IN 10N 15N 25N 50N 100N

ff14SB-TIP3P mmgbsa 8745 8.094 7.680 8135 8238 8267 8235 8012 8518 8263 8021 8919 10176 11452 12.612
ff14SB-TIP3P mmpbsa 7.140 6476 5782 5940 5921 5755 5592 5666 6397 6322 5933 6.658 8.092 11.166  12.389
ff19SB-OPC3 mmgbsa 5.179 4546 4420 5.021 5829 5961 5586 5676 6815 7.534 7252 9.606 10.797 12356 15.036
ff19SB-OPC3 mmpbsa  6.107  5.684 5917 6.794 7366 7288 7.147 7073 8216 8598 8488 9711 10.727 14.825 16.173
ff1I9SB-OPC mmgbsa ~ 5.144 8275 10.883 14.337 19.182 22.724 27.847 33.687 33.557 38.844 46.529 58268 83.544 129.849 179.597
ff19SB-OPC mmpbsa  5.049 10.443 15585 17.796 17.851 19.477 22519 24221 24.656 25.145 24.041 38224 131.993 647.913 752.060
ff19SB-TIP3P mmgbsa 6.431  6.134 6.167 6.244 5965 5236 6.089 5534 5389 5923 6346 7.707 9.651 11.016  13.492
ff19SB-TIP3P mmpbsa 4.719 5200 4.884 4.899 5005 5127 5490 5475 5193 5719 6.134 6.739 9.575 12.032 13.828




Appendix C

Links to Data Repositories

T4-Lysozyme Link to input and output files:
https:/ /github.com/gundelach /ESI-PCCP

BRD4: MD, MM-PBSA, and MM-GBSA Link to input and output files:

https:/ /github.com/gundelach/ESI-JCIM

BRD4: QM-PBSA Link to input and output files:
https:/ /doi.org/10.5258 /SOTON /D2384
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