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Dense quark matter is expected to behave as a type-II superconductor at strong coupling. It
was previously shown that if the strange quark mass ms is neglected, magnetic domain walls in the
so-called 2SC phase are the energetically preferred magnetic defects in a certain parameter region.
Computing the flux tube profiles and associated free energies within a Ginzburg-Landau approach,
we find a cascade of multi-winding flux tubes as “remnants” of the domain wall when ms is increased.
These flux tubes exhibit an unconventional ring-like structure of the magnetic field. We show that
flux tubes with winding numbers larger than one survive for values of ms up to about 20% of the
quark chemical potential. This makes them unlikely to play a significant role in compact stars, but
they may appear in the QCD phase diagram in the presence of an external magnetic field.

I. INTRODUCTION

Cold and dense matter is a color superconductor, in which certain color-magnetic fields are screened just like ordinary
magnetic fields are screened in an electronic superconductor [1]. What happens if a color superconductor is placed
in an external ordinary magnetic field? This question is, firstly, of theoretical interest because it addresses the phase
structure of Quantum Chromodynamics (QCD). Especially for vanishing baryon density, where lattice calculations
can be employed, the behavior of QCD in an external magnetic field has caught a lot of attention [2, 3], motivated
by the creation of large magnetic fields in heavy-ion collisions [4, 5]. Secondly, the question is of phenomenological
interest because color-superconducting quark matter may be found in the interior of neutron stars or in quark stars.
Some of these compact stars (then called magnetars) are known to have surface magnetic fields up to about 1015 G.
Effects on the QCD phase structure can be expected to occur for magnetic fields of the order of 1018 G and higher [3].
This is compatible with estimates for the maximal possible magnetic fields in the interior of the star [6–8], although
explicit calculations suggest that it is unlikely that the field in the core increases by several orders of magnitude
from surface to core [9]. Possibly, although perhaps less likely, color superconductors may also be created in future
collider experiments that aim to reach large baryon densities [10]. How a color superconductor responds to an external
ordinary magnetic field strongly depends on the particular color-superconducting phase.

In this paper we mostly focus on the so-called 2SC phase [11], where only up and down quarks participate in
Cooper pairing, while the strange quarks and all quarks of one color remain unpaired. In this phase, just like in the
color-flavor-locked (CFL) phase [12], there is a certain combination of the photon and the gluons whose magnetic field
penetrates the color superconductor unperturbed [13]. In other words, the Cooper pairs are neutral with respect to a
“rotated charge”, which is a combination of electromagnetic and color charges. As a consequence, a certain fraction of
an external ordinary magnetic field can penetrate in the form of this rotated field. It turns out that at strong coupling
(strong coupling constant much greater than the electromagnetic one) this fraction is in fact very large, such that only
a small fraction of the magnetic field is expelled. Nevertheless, it may be energetically favorable to admit additional
ordinary magnetic flux through certain magnetic defects. Another way of saying this is that there is a combination
of the photon and the gluons whose magnetic component is completely expelled for small external magnetic field but
(partially) penetrates the color superconductor for sufficiently large external fields. As in electronic superconductors,
this scenario is referred to as type-II superconductivity. We expect the 2SC and CFL phases to be in the type-II
regime for sufficiently large pairing gaps, which are estimated to be reached for realistic coupling strengths under
compact star conditions [14–17].

The main idea of this paper is as follows. If the strange quark mass ms is neglected, then the usual 2SC phase is
indistinguishable from the phase where only up and strange quarks form Cooper pairs. To avoid confusion, we refer to
these phases as 2SCud and 2SCus, respectively (the third possibility, 2SCds, is different even for ms ' 0 because of the
electric charges of the quarks). This enhanced flavor symmetry renders a planar domain wall configuration possible,
which smoothly interpolates from 2SCud to 2SCus. Indeed, there is a parameter regime where, due to the admission of
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additional magnetic flux through the wall, the formation of such domain walls becomes energetically favorable [17]1.
At sufficiently large densities, ms can safely be neglected compared to the chemical potential, but this is no longer true
in the context of compact stars (where we may still neglect the masses of up and down quarks). In this case, the free
energies of 2SCud and 2SCus phases become non-degenerate because there is an energy cost involved in including the
massive strange quarks in the Cooper pair condensate. Therefore, the two phases can no longer coexist on two sides
of a planar defect. As we shall see, the planar defect turns into a flux tube whose radius decreases with increasing ms.
This is realized in a descending sequence of multi-winding flux tubes, until we are left with flux tubes with winding
number one at sufficiently large values of ms. The flux tubes in this sequence are 2SCud flux tubes with a 2SCus

core. Flux tubes with a core different from normal-conducting matter are possible in multi-component systems such
as quark matter, for instance CFL flux tubes with a 2SC core, which are preferred over CFL flux tubes with a normal
core for realistic parameters [17]. Related examples are two-component mixtures of superconductors with superfluids,
where the core of the flux tubes is normal-conducting, but the superfluid condensate remains nonzero [19–21]. Our
flux tubes are different from these examples in that the induced condensate in the core is zero far away from the center
of the flux tube. They also differ from these cases with regard to the multi-winding solutions: While it has been
pointed out that multi-winding flux tubes can become favored in CFL matter [22] and in superconductor/superfluid
mixtures [19], this concerns a small region close to the transition point between type-I and type-II behavior of the
superconductor, whose precise phase structure is further complicated by a first-order transition due to an attractive
long-range interaction between the flux tubes [15, 17, 21, 23]. The multi-winding 2SC flux tubes discussed here exist
in a much larger parameter region within the type-II regime.

We shall work within a Ginzburg-Landau framework, which has often been used to study certain aspects of color
superconductivity [14, 24–29]. In particular, our starting point is a direct extension of Ref. [17], making use of
mass insertions considered previously [30–32]. While the Ginzburg-Landau approach in principle allows us to make
model-independent predictions, it also has several shortcomings. Perhaps most importantly, it is purely bosonic and
thus does not account for the fermionic constituents of the Cooper pairs. This is relevant since the magnetic fields
considered here are large enough to potentially modify the microscopic structure of the Cooper pair condensates, as
demonstrated in fermionic frameworks [33–37]. Moreover, for our numerical evaluation we shall employ the weak-
coupling form of the Ginzburg-Landau parameters and extrapolate the results to large values of the strong coupling
constant. Also, we do not attempt to construct any flux tube arrays, but rather focus on single flux tubes. This
enables us to compute the critical magnetic field at which it becomes favorable to place a single magnetic flux tube
into the system, Hc1 in the usual terminology, but we cannot determine the precise structure of the phase above this
critical magnetic field. Finally, we only include the effect of the quark mass to lowest nontrivial order and thus for
large quark masses our results have to be considered with some care.

We emphasize that the flux tubes considered here are “pure” magnetic flux tubes, i.e., they have (quantized)
magnetic flux, but zero baryon circulation. In color-superconducting matter, such flux tubes are not protected by
topology [16, 38]. We shall compute the parameter regime where they become energetically stable, i.e., where they
cannot decay despite their non-topological nature. Since the 2SC phase is not a superfluid, pure magnetic flux tubes
are the only possible line defects. For comparison, the CFL phase allows for defects with nonzero magnetic flux
and nonzero baryon circulation [39, 40]. As for ordinary superfluid vortices, their energy is formally divergent, while
the magnetic flux tubes considered here have finite energy, just like magnetic flux tubes in an ordinary electronic
superconductor.

The main difference of our magnetic flux tubes compared to the textbook scenario is the appearance of multiple
condensates and gauge fields. Therefore, our study can also be put into the wider context of magnetic defects in
unconventional superconductors. By considering the diagonal subsector of the order parameter in color-flavor space,
we allow for three nonzero condensates, and as a consequence we can restrict ourselves to three gauge fields of the
color and electromagnetic gauge group SU(3) × U(1). This is somewhat similar to electroweak strings with gauge
group SU(2) × U(1) [41–43]. In the so-called semilocal approximation, where the SU(2) remains ungauged, these
strings are described within an abelian Higgs model [44]. In this context, the flux tube profiles are often calculated at
the transition point between type-I and type-II superconductivity, also referred to as the Bogomolny limit [45]. Our
calculation is not restricted to this point and in fact we shall see that the multi-winding flux tubes are only stable
away from this transition point. As in Ref. [44] we will see that for the multi-winding flux tubes the profiles of the
magnetic field are ring-like, i.e., the maximum of the magnetic field is not at the center of the flux tube. This ring-like
structure has also been observed in a model with a non-standard magnetic permeability [46], and it is similar to the
experimentally observed structure of two-component superfluid vortices [47].

1 These domain walls are different from the 2SC domain walls associated with the spontaneous breaking of the axial U(1)A [18], which
are perpendicular, not parallel, to the magnetic field and which have nothing to do with the rotation from the ud to the us condensate.
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Our paper is organized as follows. We start with setting up the Ginzburg-Landau formalism in Sec. II, including
the discussion of the mass terms and the rotated electromagnetism. In Sec. III we discuss the homogeneous phases
as a preparation for the subsequent sections. The critical magnetic field Hc and the upper critical field Hc2 are
computed in Sec. IV, and we set up the calculation of the flux tube profiles in Sec. IV C needed for the numerical
calculation of the lower critical field Hc1. The main results are presented and discussed in Sec. V, which is divided
into the discussion of the flux tubes themselves, Sec. V A, and the resulting phase diagram, Sec. V B. We give a
summary and an outlook in Sec. VI. Our convention for the metric tensor is gµν = diag(1,−1,−1,−1). We work in
natural units ~ = c = kB = 1 and use Heaviside-Lorentz units for the gauge fields, in which the elementary charge is
e =
√

4πα ' 0.3, where α is the fine-structure constant.

II. SETUP

A. Ginzburg-Landau potential

In three-flavor quark matter with sufficiently small mismatch in the Fermi momenta of the different fermion species,
Cooper pairing predominantly occurs in the spin-zero channel and in the antisymmetric anti-triplet channels in color
and flavor space, [3̄]c and [3̄]f . As pairing is assumed to occur between fermions of the same chirality, the flavor channel
stands for either left-handed or right-handed fermions. Therefore, the order parameter for Cooper pair condensation
can be written as

Ψ = ΦijJi ⊗ Ij ∈ [3̄]c ⊗ [3̄]f , (1)

where the anti-symmetric 3 × 3 matrices (Ji)jk = −iεijk and (Ij)k` = −iεjk` form bases of the three-dimensional
spaces [3̄]c and [3̄]f , respectively. As a consequence, we can characterize a color-superconducting phase by the 3× 3
matrix Φ, which has one (anti-)color and one (anti-)flavor index. We shall put the colors in the order (r, g, b) (for red,
green, blue) and the flavors in the order (u, d, s) (for up, down, strange). The color charges are only labels and thus
their order is not crucial, but the order of the flavors matters since electric charge and quark masses break the flavor
symmetry2. In this convention, for instance, Φ11 carries anti-indices r̄ and ū and thus describes pairing of gd with bs
quarks and of gs with bd quarks.

We consider the following Ginzburg-Landau potential up to fourth order in Φ,

U = −12
{

Tr[(D0Φ)†(D0Φ)] + u2Tr[(DiΦ)†(DiΦ)]
}
− 4µ2Tr[Φ†Φ] + 4σTr

[
Φ†
(
M2

2µq
+ µeQ

)
Φ

]

+16(λ+ h)Tr[(Φ†Φ)2]− 16h(Tr[Φ†Φ])2 +
1

4
F aµνF

µν
a +

1

4
FµνF

µν . (2)

Apart from the mass correction, proportional to the parameter σ, this is exactly the same potential, and the same
notation, as in Ref. [17], where the starting point was the potential for Ψ, based on previous works [14, 25, 26, 28].
Due to the broken Lorentz invariance in the medium, the temporal and spatial parts of the kinetic term have different
prefactors, u = 1/

√
3. The covariant derivative is given by

DµΦ = ∂µΦ− igAaµTTa Φ + ieAµΦQ , (3)

where g and e are the strong and electromagnetic coupling constants, respectively. The color gauge fields are denoted
by Aaµ, a = 1, . . . , 8, and Aµ is the electromagnetic gauge field. Furthermore, Ta = λa/2, with the Gell-Mann
matrices λa, are the generators of the color gauge group SU(3), and the electric charge matrix for the Cooper
pairs Q = diag(qd + qs, qu + qs, qu + qd) = diag(−2/3, 1/3, 1/3) is the generator of the electromagnetic gauge group
U(1). Here, qu, qd, qs denote the individual quark charges in units of the elementary charge e. The field strength
tensors are F aµν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν for the color sector, where fabc are the SU(3) structure constants, and

Fµν = ∂µAν − ∂νAµ for the electromagnetic sector. The constants in front of the quadratic and quartic terms in Φ
are written conveniently as combinations of µ, λ and h, whose physical meaning will become obvious after performing
the traces (see Eq. (4)).

2 For the CFL phase the order (d, s, u) is often used, which is convenient since then the generator of the electromagnetic gauge group is
proportional to the eighth generator of the color gauge group. Since our main focus is on the 2SC phase, this re-ordering is not necessary
and we work with the more common order (u, d, s).
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We have incorporated a mass correction to lowest order, with the (fermionic) quark chemical potential µq and the
mass matrix for the Cooper pairs M = diag(md + ms,mu + ms,mu + md) ' diag(ms,ms, 0), i.e., we shall neglect
the masses of the light quarks, mu ' md ' 0, and keep the strange quark mass ms as a free parameter. We have
also included the contribution of the electric charge chemical potential µe, which is of the same order for small quark
masses, µe ∝ m2

s/µq. The correction term is identical to the one used in Refs. [30, 31], which is easily seen by an
appropriate rescaling of Φ.

In the following we restrict ourselves to diagonal order parameters, Φ = 1
2diag(φ1, φ2, φ3) with φi ∈ C, where φ1

corresponds to ds pairing, φ2 to us pairing, and φ3 to ud pairing. If flavor symmetry was intact, off-diagonal order
parameters could always be brought into a diagonal form by an appropriate rotation in color and flavor space. This
is no longer true when flavor symmetry is explicitly broken, and thus our restriction to diagonal order parameters
is a simplification of the most general situation [48]. Even in this simplified case, 23 = 8 qualitatively different
homogeneous phases have to be considered in principle, accounting for each of the three condensates to be either
zero or nonzero. The restriction to diagonal matrices Φ allows us to consistently set all gauge fields with off-diagonal
components to zero, A1

µ = A2
µ = A4

µ = A5
µ = A6

µ = A7
µ = 0, such that the only relevant gauge fields are the two color

gauge fields A3
µ, A8

µ, and the electromagnetic gauge field Aµ. Moreover, we are only interested in static solutions and
drop all electric fields, i.e., we only keep the spatial components of the gauge fields, giving rise to the magnetic fields
B3 = ∇×A3, B8 = ∇×A8, and B = ∇×A.

Within this ansatz, performing the traces in Eq. (2) yields

U =

∣∣∣∣(∇+
igA3

2
+
igA8

2
√

3
+

2ieA

3

)
φ1

∣∣∣∣2 +

∣∣∣∣(∇− igA3

2
+
igA8

2
√

3
− ieA

3

)
φ2

∣∣∣∣2 +

∣∣∣∣(∇− igA8√
3
− ieA

3

)
φ3

∣∣∣∣2
−(µ2 −m2

1)|φ1|2 − (µ2 −m2
2)|φ2|2 − (µ2 −m2

3)|φ3|2 + λ(|φ1|4 + |φ2|4 + |φ3|4)

−2h(|φ1|2|φ2|2 + |φ1|2|φ3|2 + |φ2|2|φ3|2) +
B2

3

2
+

B2
8

2
+

B2

2
. (4)

This potential can be viewed as a generalized version of a textbook superconductor which has a single condensate
coupled to a single gauge field, see for instance Ref. [49]. Here we have three condensates with identical (bosonic)
chemical potential µ, with self-coupling λ, cross-coupling h, and three different effective masses (squared)

m2
1 = σ

(
m2
s

2µq
− 2µe

3

)
, m2

2 = σ

(
m2
s

2µq
+
µe
3

)
, m2

3 = σ
µe
3
. (5)

All three gauge fields couple to the condensates. We can simplify the potential by a suitable rotation of the gauge
fields.

B. Rotated electromagnetism and Gibbs free energy

We apply the double rotation from Ref. [17], which, denoting the rotated gauge fields by Ã3
µ, Ã8

µ, and Ãµ, reads, Ã3
µ

Ã8
µ

Ãµ

 =

 cosϑ2 0 sinϑ2

0 1 0
− sinϑ2 0 cosϑ2

 1 0 0
0 cosϑ1 sinϑ1

0 − sinϑ1 cosϑ1

 A3
µ

A8
µ

Aµ

 , (6)

where the mixing angles ϑ1 and ϑ2 are given by

sinϑ1 =
e√

3g2 + e2
, cosϑ1 =

√
3g√

3g2 + e2
, (7a)

sinϑ2 =

√
3e√

3g2 + 4e2
, cosϑ2 =

√
3g2 + e2√
3g2 + 4e2

. (7b)

This rotation is the most convenient choice for our purpose of calculating flux tube profiles in the 2SC phase: The
first rotation, with the usual “2SC mixing angle” ϑ1, ensures that in the homogeneous 2SC phase, where only the
condensate φ3 is nonzero, only the B̃8 field is expelled. The other two rotated fields penetrate the superconductor
unperturbed (assuming zero magnetization from the unpaired quarks). If we were only interested in the homogeneous
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2SC phase, this rotation would be sufficient. However, we will allow for φ1 and φ2 to be induced in the core of the flux
tube. Therefore, we apply a second rotation with mixing angle ϑ2. This rotation leaves B̃8 invariant and creates a
field, namely B̃, which is unaffected by the superconductor even if all three condensates are nonzero. Thus, B̃ simply
decouples from the condensates and can be ignored in the calculation of the flux tube profiles. For g � e both mixing
angles are small and thus in this case Ã3

µ and Ã8
µ are “almost” gluons with a small admixture of the photon, while

Ãµ is “almost” the photon with a small gluonic admixture. For consistency, we shall work with the rotated fields (6)
throughout the paper, including the discussion of the homogeneous phases in Sec. III.

Applying the gauge field rotation and writing the complex fields in terms of their moduli and phases,

φi(r) =
ρi(r)√

2
eiψi(r) , i = 1, 2, 3, (8)

the Ginzburg-Landau potential (4) becomes

U = U0 +
B̃2

3

2
+

B̃2
8

2
+

B̃2

2
, (9)

with

U0 =
(
∇ψ1 + q̃3Ã3 + q̃81Ã8

)2 ρ2
1

2
+
(
∇ψ2 − q̃3Ã3 + q̃82Ã8

)2 ρ2
2

2
+
(
∇ψ3 − q̃83Ã8

)2 ρ2
3

2

+
(∇ρ1)2

2
+

(∇ρ2)2

2
+

(∇ρ3)2

2
− µ2 −m2

1

2
ρ2

1 −
µ2 −m2

2

2
ρ2

2 −
µ2 −m2

3

2
ρ2

3 +
λ

4
(ρ4

1 + ρ4
2 + ρ4

3)

−h
2

(ρ2
1ρ

2
2 + ρ2

1ρ
2
3 + ρ2

2ρ
2
3) , (10)

where we have introduced the rotated charges

q̃81 ≡
g

2
√

3
cosϑ1 +

2e

3
sinϑ1 =

3g2 + 4e2

6
√

3g2 + e2
, (11a)

q̃82 ≡
g

2
√

3
cosϑ1 −

e

3
sinϑ1 =

3g2 − 2e2

6
√

3g2 + e2
, (11b)

q̃83 ≡
g√
3

cosϑ1 +
e

3
sinϑ1 =

√
3g2 + e2

3
, (11c)

q̃3 ≡
g

2
cosϑ2 +

e

2
cosϑ1 sinϑ2 =

g

2

√
3g2 + 4e2√
3g2 + e2

. (11d)

In Eq. (9) we have separated the quadratic contributions of the magnetic fields, which is notationally convenient for
the following.

We shall be interested in the phase structure at fixed external magnetic field H, which we assume to be homogeneous
and along the z-direction, H(r) = Hez. Therefore, we need to consider the Gibbs free energy density

G =
1

V

∫
d3r (U −H ·B) , (12)

where V is the volume of our system. We can obviously assume that all induced magnetic fields have only z-
components as well. Denoting the z-components of the rotated fields by B̃3, B̃8, and B̃, we have H ·B = H[sinϑ1 B̃8 +

cosϑ1(sinϑ2 B̃3 + cosϑ2 B̃)]. Since B̃ does not couple to any of the condensates, it remains homogeneous even in

the presence of flux tubes. Consequently, the equation of motion for Ã is trivially fulfilled, and we determine B̃ by
minimizing the Gibbs free energy, which, using Eq. (9), yields

B̃ = H cosϑ1 cosϑ2 . (13)

Reinserting this result into G, we obtain

G = −H
2 cos2 ϑ1 cos2 ϑ2

2
+

1

V

∫
d3r

[
U0 +

B̃2
3

2
+
B̃2

8

2
−H(sinϑ1 B̃8 + cosϑ1 sinϑ2 B̃3)

]
. (14)
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C. Parameter choices

The potential U0 (10) depends on the parameters µ, λ, h, σ. The discussion of the homogeneous phases in Sec. III
turns out to be sufficiently simple to keep these parameters unspecified and to investigate the general phase structure.
Our main results, however, require the numerical calculation of the flux tube profiles, and a completely general study
would be extremely laborious. Therefore, for the results in Sec. V, we employ the weak-coupling values of these
parameters [14, 15, 28, 30, 31, 38],

µ2 =
48π2

7ζ(3)
T 2
c

(
1− T

Tc

)
, λ =

72π4

7ζ(3)

T 2
c

µ2
q

, h = − 36π4

7ζ(3)

T 2
c

µ2
q

, σ = − 24π2

7ζ(3)

T 2
c

µq
ln
Tc
µq

, (15)

where Tc is the critical temperature. The ratio Tc/µq can be understood as a measure of the pairing strength since
Tc is closely related to the pairing gap. For instance, at weak coupling, which is applicable at asymptotically large
densities, the zero-temperature pairing gap is exponentially suppressed compared to µq. It is related by a numerical
factor of order one to Tc [50], and thus Tc/µq is also exponentially small. We shall extrapolate our results to strong
coupling, having in mind applications to compact stars, where the densities are large, but not asymptotically large.
In this case, model calculations as well as extrapolations of perturbative results suggest that Tc is of the order
of tens of MeV, while we expect µq ∼ (400 − 500) MeV in the cores of compact stars, which yields the estimate
Tc/µq ∼ 0.1. Besides the implicit dependence on Tc/µq our potential also depends on the ratio ms/µq. Since ms is
medium dependent, its value at non-asymptotic densities is poorly known. It is expected to be somewhere between
the current mass and the constituent mass within a baryon, ms ∼ (100− 500) MeV; for a concrete calculation within
the Nambu–Jona-Lasinio model see for instance Ref. [51]. With the range of the quark chemical potential given above
we thus expect ms/µq ∼ (0.2 − 1). Finally, our potential depends on the electric charge chemical potential µe. In a
fermionic approach, this chemical potential would be determined from the conditions of beta-equilibrium and charge
neutrality. Since our Ginzburg-Landau expansion is formally based on small values of the order parameter, we follow
Refs. [30, 31] and use the value of µe in the completely unpaired phase. At weak coupling and to lowest order in the
strange quark mass this value is (see for instance Refs. [52, 53])

µe =
m2
s

4µq
. (16)

With this result, it is convenient to trade the dimensionful parameter σ for the dimensionless “mass parameter”

α ≡ σm2
s

µ2µq
=
m2
s

2µ2
q

(
1− T

Tc

)−1

ln
µq
Tc

, (17)

such that the complete dependence of our potential on the strange quark mass is absorbed in α,

m2
1 =

µ2

3
α , m2

2 =
7µ2

12
α , m2

3 =
µ2

12
α . (18)

We shall see that if we are only interested in homogeneous phases, the phase structure is most conveniently calculated
in the space spanned by α, g, the normalized dimensionless magnetic field H/(µ2/λ1/2), and the ratio

η ≡ h

λ
. (19)

To ensure the boundedness of our potential, we must require η < 1/2. At weak coupling η = −1/2, as one can see
from Eq. (15). Later, in our explicit calculation of the flux tube profiles and the resulting critical magnetic fields,
we consider a fixed g and the parameter space spanned by H/(µ2/λ1/2), Tc/µq, and ms/µq. To choose a value of g,
realistic for compact star conditions, we observe that according to the two-loop QCD beta function (which should
not be taken too seriously at such low densities), µq ' 400 MeV corresponds to αs ' 1 and thus g =

√
4παs ' 3.5.

Of course, choosing such a large value for g in our main results is a bold extrapolation, given that we work with the
weak-coupling parameters (15). Furthermore, we shall set T = 0 in Eq. (17). Strictly speaking this is inconsistent
because the Ginzburg-Landau potential is an expansion in the condensates, and we use a value for µe (16) that is
only valid very close to a second-order transition to the unpaired phase. Choosing a different, nonzero temperature,
would not change our result qualitatively because it only enters the relation between ms/µq and α. The definition of
α (17) shows that the mass effect is smallest for zero temperature (i.e., in this case α is smallest for a given ms/µq).
Therefore, by our choice T = 0 in Eq. (17) we will obtain an upper limit in ms/µq for the presence of multi-winding
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2SC flux tubes. Any T > 0 in Eq. (17) will give a smaller ms/µq up to which these exotic configurations exist. In any
case, the temperature dependence in the present approach is somewhat simplistic to begin with because, firstly, in a
multi-component superconductor there can be different critical temperatures for the different condensates, resulting
in temperature factors different from the standard Ginzburg-Landau formalism [21]. And, secondly, away from the
asymptotic weak-coupling regime the phase transition becomes first order due to gauge field fluctuations [54], and
thus at strong coupling the behavior just below the phase transition would have to be modified in a more sophisticated
approach.

III. HOMOGENEOUS PHASES

Here we construct all possible homogeneous candidate phases within our ansatz and compute their Gibbs free energy
density. Since we have aligned the z-axis with the magnetic fields, we may write the gauge fields as Ã3 = xB̃3ey,

Ã8 = xB̃8ey with constant B̃3 and B̃8. Furthermore, in this section we assume the condensates ρi and their phases
ψi to be independent of r and thus all gradient terms in Eq. (10) vanish. Then, the equations of motion for the gauge
fields and the condensates become

0 = ρ2
1(q̃3B̃3 + q̃81B̃8) + ρ2

2(q̃3B̃3 − q̃82B̃8) , (20a)

0 = ρ2
1q̃81(q̃3B̃3 + q̃81B̃8)− ρ2

2q̃82(q̃3B̃3 − q̃82B̃8) + ρ2
3q̃

2
83B̃8 , (20b)

and

0 = ρ1

[
x2(q̃3B̃3 + q̃81B̃8)2 − (µ2 −m2

1) + λρ2
1 − h(ρ2

2 + ρ2
3)
]
, (21a)

0 = ρ2

[
x2(−q̃3B̃3 + q̃82B̃8)2 − (µ2 −m2

2) + λρ2
2 − h(ρ2

1 + ρ2
3)
]
, (21b)

0 = ρ3

[
x2q̃2

83B̃
2
8 − (µ2 −m2

3) + λρ2
3 − h(ρ2

1 + ρ2
2)
]
. (21c)

Since here we are only interested in homogeneous phases, the terms proportional to x2 have to vanish separately in
each equation (unless the equation is satisfied trivially by a vanishing condensate).

The simplest case is the normal phase, where all three condensates vanish, ρ1 = ρ2 = ρ3 = 0. Here we expect
to have no induced color-magnetic fields and the external magnetic field should penetrate unperturbed, i.e., in the
unrotated basis B3 = B8 = 0 and B = H. As a check, we can derive this result within our rotated basis. First we
observe that the equations of motion (20) and (21) are trivially fulfilled for vanishing condensates. Then, from Eq.
(10) we obtain U0 = 0. Inserting this into the Gibbs free energy density (14) and minimizing the result with respect to

B̃3 and B̃8 yields nonzero results for these rotated magnetic fields. By undoing the rotation one can check that these
results together with the result for B̃ (13) indeed give B3 = B8 = 0 and B = H, as expected. Then, substituting the
magnetic fields at the minimum back into the Gibbs free energy density yields

GNOR = −H
2

2
. (22)

This result does not receive any mass corrections since, within our Ginzburg-Landau approach, unpaired fermions
and any possible mass effects on them do not appear explicitly; the normal phase is the “vacuum” of our theory. We
will now discuss the various superconducting candidate phases, which all do receive mass corrections. These mass
corrections can be written in a general form using the masses m1, m2, m3. However, especially for the free energies
this leads to some lengthy expressions, which are not particularly instructive. Thus we make use of Eq. (18) and
express all free energies in this section to linear order in the mass parameter α.

A. CFL phase

In the CFL phase, all three condensates are nonzero. Here we obtain B̃3 = B̃8 = 0 and Eqs. (21) yield three coupled
equations for the condensates, which have the solution

ρ2
1 =

λ(µ2 −m2
1) + h(µ2 +m2

1 −m2
2 −m2

3)

(λ− 2h)(λ+ h)
=

µ2

λ(1− 2η)

(
1− 1

3
α

)
, (23a)
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ρ2
2 =

λ(µ2 −m2
2) + h(µ2 −m2

1 +m2
2 −m2

3)

(λ− 2h)(λ+ h)
=

µ2

λ(1− 2η)

[
1− (7− 2η)α

12(1 + η)

]
, (23b)

ρ2
3 =

λ(µ2 −m2
3) + h(µ2 −m2

1 −m2
2 +m2

3)

(λ− 2h)(λ+ h)
=

µ2

λ(1− 2η)

[
1− (1 + 10η)α

12(1 + η)

]
, (23c)

where, in the second steps, Eqs. (18) and (19) have been used3. In the massless limit, α = 0, we recover the result of
three identical condensates. The potential (10) becomes

U0 ' −
3µ4

4λ(1− 2η)

(
1− 2

3
α

)
, (24)

where we have dropped the contribution quadratic in α, i.e., all terms quartic in ms. This is consistent with our
starting point, which only includes corrections to linear order in α. The Gibbs free energy density (14) thus becomes

GCFL ' −
3g2H2

2(3g2 + 4e2)
− 3µ4

4λ(1− 2η)

(
1− 2

3
α

)
, (25)

where we have used the explicit form of the mixing angles (7).

B. 2SC phases

Next we discuss the three possible phases where exactly one condensate is non-vanishing. In each case, two flavors
and two colors participate in pairing. According to the flavor structure of the condensates we term the phases 2SCds,
2SCus, or 2SCud if ρ1, ρ2, or ρ3 is non-vanishing, respectively. As we shall see, only the 2SCud phase is relevant for
the phase structure since the other two phases turn out to be energetically disfavored. Therefore, we often use 2SC
synonymously for 2SCud.

Starting with the most relevant phase, we first consider a nonzero ρ3. From Eq. (21c) we then obtain

ρ2
3 =

µ2 −m2
3

λ
=
µ2

λ

(
1− α

12

)
, (26)

and B̃8 = 0. By inserting this into the Gibbs free energy density G and minimizing with respect to B̃3 we find

B̃3 =
3egH√

3g2 + e2
√

3g2 + 4e2
, (27)

and inserting this back into G yields

G2SCud
' − 3g2H2

2(3g2 + e2)
− µ4

4λ

(
1− α

6

)
. (28)

Analogously, if only the condensate ρ1 is nonzero, i.e., for the 2SCds phase, we find

ρ2
1 =

µ2

λ

(
1− 1

3
α

)
, (29)

as well as B̃3 = B̃8 = 0 from minimizing G, and we compute

G2SCds
' − 3g2H2

2(3g2 + 4e2)
− µ4

4λ

(
1− 2

3
α

)
. (30)

Finally, for the 2SCus phase, we find

ρ2
2 =

µ2

λ

(
1− 7

12
α

)
, (31)

3 Since the three condensates are different due to the strange quark mass, this phase was termed modified CFL (mCFL) in Ref. [31]. Here
we simply keep the term CFL.
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and the magnetic fields

B̃3 =
3eg(3g2 − 2e2)H

2(3g2 + e2)3/2
√

3g2 + 4e2
, B̃8 =

9eg2H

2(3g2 + e2)3/2
. (32)

This yields the Gibbs free energy density

G2SCus
' − 3g2H2

2(3g2 + e2)
− µ4

4λ

(
1− 7

6
α

)
. (33)

Comparing Eqs. (28), (30), and (33), we see that for all values of the magnetic field H and all nonzero values of α,
the 2SCud phase has the lowest Gibbs free energy and thus we can ignore the other two 2SC phases. In the massless
limit α = 0 the 2SCud and 2SCus phases become degenerate, as discussed in the introduction.

C. fSC phases

There are three possible phases in which exactly two condensates are non-vanishing. As for the 2SC phases, we
shall see that one of these phases is favored over the other two for all parameter values. This is the phase where
ρ2 = 0. In this case, there are gd/bs and gs/bd Cooper pairs from ρ1 and ru/gd and rd/gu Cooper pairs from ρ3.
Therefore, all three colors of the d quark are involved in pairing (while only two colors of the u and s quarks are
involved), and thus, following Ref. [31], we refer to this phase as dSC. Analogously, the phases with vanishing ρ1 and
ρ3 will be termed uSC and sSC, respectively. (Hence the collective term fSC, where f stands for the flavor.)

Starting again with the most relevant phase, we set ρ2 = 0. With the help of Eqs. (20) we obtain B̃3 = B̃8 = 0.
Then, Eqs. (21a) and (21c) yield two coupled equations for ρ1 and ρ3, with the solution

ρ2
1 =

λ(µ2 −m2
1) + h(µ2 −m2

3)

λ2 − h2
=

µ2

λ(1− η)

[
1− (4 + η)α

12(1 + η)

]
, (34a)

ρ2
3 =

λ(µ2 −m2
3) + h(µ2 −m2

1)

λ2 − h2
=

µ2

λ(1− η)

[
1− (1 + 4η)α

12(1 + η)

]
. (34b)

Thus we compute

GdSC ' −
3g2H2

2(3g2 + 4e2)
− µ4

2λ(1− η)

(
1− 5

12
α

)
, (35)

where again we have dropped the quadratic contribution in α.
Analogously, if ρ3 = 0, we find again B̃3 = B̃8 = 0, as well as

ρ2
1 =

µ2

λ(1− η)

[
1− (4 + 7η)α

12(1 + η)

]
, ρ2

2 =
µ2

λ(1− η)

[
1− (7 + 4η)α

12(1 + η)

]
, (36)

and

GsSC ' −
3g2H2

2(3g2 + 4e2)
− µ4

2λ(1− η)

(
1− 11

12
α

)
. (37)

Finally, for ρ1 = 0 we find B̃3 = B̃8 = 0,

ρ2
2 =

µ2

λ(1− η)

[
1− (7 + η)α

12(1 + η)

]
, ρ2

3 =
µ2

λ(1− η)

[
1− (1 + 7η)α

12(1 + η)

]
, (38)

and

GuSC ' −
3g2H2

2(3g2 + 4e2)
− µ4

2λ(1− η)

(
1− 2

3
α

)
. (39)

Since the Gibbs free energy densities (35), (37), (39) of all three phases receive the same contribution from the
magnetic field, the one with the lowest energy penalty from the strange quark mass term is preferred (and they all
become degenerate for vanishing mass). We can therefore focus on the dSC phase and ignore the other two phases.
While in the massless case none of these phases appears in the phase diagram [17], we find that a window for this
phase opens up in the presence of a strange quark mass, which was already observed (without external magnetic field)
in Refs. [30, 31].
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IV. CRITICAL MAGNETIC FIELDS

A. Critical field Hc

As we have just seen, the only relevant homogeneous phases within our ansatz are the CFL, 2SCud, dSC, and
NOR phases. From their Gibbs free energy densities we can now easily obtain the critical magnetic fields Hc for
the first-order transitions between them. In the usual terminology for ordinary superconductors, Hc is the critical
magnetic field for the first-order transition between the superconducting phase and the normal-conducting phase for a
type-I superconductor. For a color superconductor, the situation is more complicated because the various condensates
can be broken sequentially until for sufficiently large magnetic field the normal phase is reached. As of now, we have
not yet determined the transition from type-I to type-II behavior. To this end, the critical fields for the appearance
of inhomogeneous phases have to be calculated, which we shall do in the subsequent sections.

By pairwise equating the Gibbs free energies (22), (25), (28), and (35) we obtain the conditions for 6 potential
phase transitions. There is one transition which is independent of the magnetic field, namely the CFL/dSC transition,
which we can express for instance in terms of a critical value for η,

η = − 6− 7α

2(3 + α)
dSC/CFL . (40)

Then, there are 4 transitions for which we can compute a critical magnetic field,

H2
c

µ4/λ
=



(
1− 1

6
α

)
3g2 + e2

2e2
2SC/NOR

3

2(1− 2η)

(
1− 2

3
α

)
3g2 + 4e2

4e2
CFL/NOR

1 + η − (11 + 2η) α12

1− 2η

(3g2 + e2)(3g2 + 4e2)

9e2g2
2SC/CFL

1 + η − (4 + η)α6
2(1− η)

(3g2 + e2)(3g2 + 4e2)

9e2g2
2SC/dSC

. (41)

The remaining transition, between the NOR and dSC phases formally has a critical field as well,

H2
c

µ4/λ
=

1− 5
12α

1− η
3g2 + 4e2

4e2
dSC/NOR , (42)

but it turns out that this transition is never realized in the phase diagram.
The phase structure must of course be invariant under the rotation chosen for the gauge fields. As a check, in the

massless limit α = 0 one recovers the results of Ref. [17], where a different rotation was used. We see that if the

magnetic field is given in units of µ2/
√
λ, the parameter space has reduced to four dimensions, spanned by H, η, α,

and g (for given e ' 0.30). In Fig. 1 we show two slices of this parameter space, namely in the η-H plane for the
value of g used later, and in the g-H plane for the value of η used later. In each case we compare the massless result
with the α = 0.3 result. For a typical value Tc/µq ∼ 0.1 this value of α corresponds to ms/µq ∼ 0.5. We see that for
nonzero α there are two triple points, i.e., points where three phases have the same free energy. Both triple points
are realized in the left panel. The one where CFL, 2SC, and NOR phases meet, and which also exists in the massless
case, is given by (

η,
H

µ2/
√
λ

)
=

(
3
8

(
1 + 4

3α
)
g2 −

(
1− 11

12α
)
e2(

1− α
6

)
(3g2 + e2)

,

√(
1− α

6

) 3g2 + e2

2e2

)
. (43)

This point also occurs in the right panel, where it has the coordinates(
g,

H

µ2/
√
λ

)
=

(
2
√

2e√
3

√
1− 11

12α+ η
(
1− α

6

)
1 + 4

3α− 8η
(
1− α

6

) , 3√
2

√
1− 5

6α+ α2

9

1 + 4
3α− 8η

(
1− α

6

)) . (44)

The other triple point, where dSC, 2SC, and CFL phases meet, visible only in the left panel, is given by(
η,

H

µ2/
√
λ

)
=

(
− 6− 7α

2(3 + α)
,

1

6

√
α

(
15 +

4e2

g2
+

9g2

e2

))
. (45)
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Figure 1: Homogeneous phases at nonzero external magnetic field H in the plane spanned by H and the parameter ratio
η = h/λ (describing the cross-coupling between the condensates) for fixed strong coupling constant g = 3.5 (left) and in the
H-g plane for fixed η = −1/2 (right). In both panels, the solid curves are for a mass parameter α = 0.3, while the dashed
curves correspond to the massless limit, α = 0.

In the massless case, this point moves to the H = 0 axis and is no longer a triple point because the intermediate dSC
phase disappears in this limit.

To get an idea of the strength of the magnetic field in physical units, let us assume µq ' 400 MeV, Tc ' 0.05µq,
which is typical for the interior of compact stars. Then, for instance, the critical magnetic field between the NOR
and 2SC phases, Hc ' 14µ2/

√
λ, approximately corresponds to4 Hc ' 1.1× 1019 G.

The main effects of the strange quark mass, manifest in Fig. 1, are as follows. As expected and observed in many
other calculations, the strange quark mass tends to disfavor CFL compared to 2SC, and it also tends to slightly
disfavor the 2SC phase compared to the normal phase. The dSC phase only appears in the presence of a strange
quark mass, and does so already for vanishing magnetic field [31]. Both panels show that for the values η = −1/2 and
g = 3.5, which we shall use in our calculation of the flux tubes, the dSC phase plays no role. As already pointed out
in the massless case [17], there is a regime of small g where the system transitions directly from the CFL phase to the
NOR phase as we increase the magnetic field. Since our focus is on more realistic values of g applicable to compact
stars, we deal with the scenario where the transition to the NOR phase occurs via the 2SC phase. This is still true
with a nonzero strange quark mass.

Below a certain value of η, for instance η . −0.85 if g = 3.5, the 2SC phase is the ground state even at vanishing
magnetic field. This is worth mentioning since our main results concern 2SC flux tubes. For such a value of η, which
goes beyond the weak-coupling results, the 2SC phase is bounded by the NOR phase for large magnetic fields, but
not bounded by any other phase for low magnetic fields, and thus the region in which 2SC flux tubes can be expected
is larger than for the weak-coupling value η = −1/2. In the weak-coupling scenario – extrapolated to g = 3.5 – the
2SC phase is also bounded from below, namely by the CFL phase, and we shall see that this limits the region of 2SC
flux tubes.

B. Upper critical field Hc2

Before we turn to the flux tubes themselves, it is useful to compute their upper critical field Hc2. In the standard
scenario of a single condensate, this is the maximum magnetic field which can sustain a nonzero condensate, under
the assumption of a second-order transition to the normal phase. It is therefore the critical field below which an array
of flux tubes is expected. In our multi-component system the situation is more complicated, and we have to calculate

4 Here we have used 1 G = 1 g1/2cm−1/2s−1 and thus 1 G(c~)3/2 = β eV2 with the numerical factor β ' 0.06925. Together with√
4π BHL = BG, where BHL and BG are the magnetic fields in the Heaviside-Lorentz and the Gaussian system of electromagnetism, we

conclude that 1 eV2 in natural Heaviside-Lorentz units corresponds to
√

4π/βG ' 51.189 G in the Gaussian system.
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different critical fields Hc2 depending on which condensates melt. Having Hc and Hc2 at hand, we can then determine
the parameter regime where the color superconductor is of type II, and in particular where we expect 2SC flux tubes.

The calculation of Hc2 is a generalization to nonzero strange quark mass of the analogous calculation done in
Ref. [17]. That calculation, in turn, was a generalization of the standard single-component calculation which can be
found in many textbooks. In a single-component superconductor, one linearizes the Ginzburg-Landau equations for
a small condensate. The equation for the condensate then has the form of the Schrödinger equation for the harmonic
oscillator, from which one reads off the maximal possible magnetic field Hc2, corresponding to the ground state energy.
We know from the previous subsection that for strong coupling, as we decrease the magnetic field within the NOR
phase, we encounter the 2SC phase. Consequently, for the corresponding critical field Hc2 we only have to take into
account a single condensate, i.e., this case is analogous to the textbook scenario and leads to the simple generalization
of Eq. (40) in Ref. [17],

2SC/NOR: Hc2 =
3(µ2 −m2

3)

e
=

3µ2

e

(
1− α

12

)
. (46)

In this standard scenario all three critical magnetic fields Hc, Hc1, and Hc2 intersect at a single point (as a function
of a model parameter, usually the Ginzburg-Landau parameter κ). Therefore, this intercept defines the transition

between type-I and type-II behavior (usually at κ = 1/
√

2). Here, by equating Hc2 with Hc for the 2SC/NOR
transition in Eq. (41) we find for this transition point

Tc
µq

=

√
7ζ(3)

12
√

3π2

√
g2 +

e2

3
+O

(
m4
s

µ4
q

)
, (47)

where the weak-coupling expression of λ in Eq. (15) has been used. It thus turns out that Tc/µq is a natural parameter
to distinguish between type-I and type-II behavior – with large Tc/µq corresponding to type II. Interestingly, we see
that there is no mass correction to the transition point within the order of our approximation. We shall see later
that indeed Hc1 intersects Hc and Hc2 at the same Tc/µq. The reason is that in the vicinity of this point the system
effectively behaves as a single-component system. Additional condensates can be induced in the cores of 2SC flux
tubes – and our main results concern such unconventional flux tubes – but we will see that this is not the case close
to the point (47).

The transition from the homogeneous 2SC phase, where φ3 is nonzero, to an inhomogeneous phase is slightly more
complicated. Assuming a second-order transition, we linearize the Ginzburg-Landau equations in φ1 and φ2. In the
massless limit, the resulting two (decoupled) equations yield the same critical magnetic field [17]. In other words, as
we approach the flux tube phase by decreasing H, both φ1 and φ2 become nonzero simultaneously (and continuously).
This is different for nonzero ms, in which case the two relevant equations are[(

∇+ iq̃3Ã3

)2

+ (µ2 −m2
1) + 2h|φ3|2

]
φ1 ' 0 , (48a)

[(
∇− iq̃3Ã3

)2

+ (µ2 −m2
2) + 2h|φ3|2

]
φ2 ' 0 , (48b)

where we have set Ã8 = 0 since B̃8 = 0 in the 2SC phase and where φ3 = ρ3/
√

2 is the condensate in the homogeneous

2SC phase (26). With the usual arguments and using the 2SC relation between B̃3 and H from Eq. (27), we obtain
two different critical fields,

H
(1)
c2 =

2(3g2 + e2)

3eg2
[µ2(1 + η)− (m2

1 + ηm2
3)] =

2µ2(3g2 + e2)

3eg2

(
1 + η − 4 + η

12
α

)
, (49a)

H
(2)
c2 =

2(3g2 + e2)

3eg2
[µ2(1 + η)− (m2

2 + ηm2
3)] =

2µ2(3g2 + e2)

3eg2

(
1 + η − 7 + η

12
α

)
. (49b)

The most relevant case for us is the one where both H
(1)
c2 and H

(2)
c2 are positive (a formally negative value indicates

that the critical field does not exist, indicating that the homogeneous phase persists down to H = 0). This is the case

for η = −1/2 and all reasonable, i.e., not too large, values of α. In this scenario, there is a transition at H
(1)
c2 from the

homogeneous 2SC phase to a phase where both φ1 and φ3 are nonzero, which is an inhomogeneous version of the dSC

phase (see Sec. III C). Then, as we reach the “would-be” H
(2)
c2 by further decreasing H, the approximation by which

this critical field was computed is no longer valid, and thus the value for H
(2)
c2 becomes irrelevant. Nevertheless, it can
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be expected that there will be some transition from an inhomogeneous dSC phase to an inhomogeneous CFL phase.
The existence of an intermediate inhomogeneous dSC phase due to the nonzero strange quark mass is an interesting
new observation, but it is beyond the scope of this paper to construct this phase explicitly.

We may again compute the transition point between type-I and type-II behavior. For η = −1/2 (where there is

no homogeneous dSC phase), we equate H
(1)
c2 with Hc for the 2SC/CFL transition from Eq. (41). Dropping terms

quadratic in α we find

Tc
µq
' c

(
1− α

4

)
, c ≡

√
7ζ(3)

12
√

2π2

g
√

3g2 + 4e2√
3g2 + e2

. (50)

Since α depends on Tc/µq this is an implicit equation for Tc/µq. To lowest nontrivial order in m2
s/µ

2
q the solution is

Tc
µq

= c

(
1 +

m2
s

8µ2
q

ln c

)
+O

(
m4
s

µ4
q

)
. (51)

Therefore, this transition point between type-I and type-II behavior does receive a correction quadratic in ms (linear
in α), in contrast to the transition point (47). The detailed phase structure around this point is expected to be
complicated. This is due to the intermediate inhomogeneous dSC phase, as just discussed, but even without mass
correction this transition point is affected in a nontrivial way by the multi-component nature of the system [17, 21].
Most importantly, if the lower boundary of the flux tube region Hc1 is computed in the usual way, i.e., assuming a
second-order transition, it turns out that the three critical fields no longer intersect in a single point, and the situation
becomes more complicated due to a first-order entrance into the flux tube phase. Here we do not have to deal with
these complications, since the precise location of the transition point (51) and the phase transitions in its vicinity are
not relevant for the 2SC flux tubes.

C. Flux tubes and lower critical field Hc1

Having identified the parameter range where type-II behavior with respect to 2SC flux tubes is expected, we can now
turn to the explicit construction of these flux tubes. We will restrict ourselves to the calculation of an isolated, straight
flux tube, such that we can employ cylindrical symmetry and our calculation becomes effectively one-dimensional in
the radial direction. This is sufficient to compute the critical field Hc1, which is defined as the field at which it
becomes favorable to place a single flux tube in the system, indicating a second-order transition to a phase containing
an array of flux tubes. Since the distance between the flux tubes goes to infinity as Hc1 is approached from above,
the interaction between flux tubes plays no role. As explained in the introduction, our main goal is to determine the
fate of the 2SC domain walls in the presence of a nonzero strange quark mass. Therefore, we focus exclusively on 2SC
flux tubes, i.e., configurations which asymptote to the 2SC phase far away from the center of the flux tube.

In order to compute the profiles of the condensates and the gauge fields we need to derive their equations of motion
and bring them into a form convenient for the numerical evaluation. We work in cylindrical coordinates (r, θ, z),
where, as above, the z-axis is aligned with the external magnetic field H and thus with the flux tube. We introduce
dimensionless condensates fi (i = 1, 2, 3), which only depend on the radial distance to the center of the flux tube,

ρi(r) = fi(r)ρ2SC , (52)

where we have denoted the condensate of the homogeneous 2SC phase (26) by ρ2SC. Since we are interested in 2SC
flux tubes, we impose the boundary conditions f3(∞) = 1 and f1(∞) = f2(∞) = 0. As in ordinary single-component
flux tubes, we allow for a nonzero winding number n ∈ Z, such that the phases of the condensates are

ψ1(r) = ψ2(r) = 0 , ψ3(r) = nθ . (53)

Here we have set the winding numbers for the “non-2SC” condensates f1 and f2 to zero. In principle, we might
include configurations where these windings are nonzero. (The baryon circulation around the flux tube vanishes for
arbitrary choices of the winding numbers as long as f1(∞) = f2(∞) = 0.) In such configurations, f1 and/or f2 would
have to vanish far away from the flux tube and in the center of the flux tube, i.e., at best they would be non-vanishing
in an intermediate domain. These configurations do not play a role in the massless limit [17] and there is no obvious
reason why they should become important if a strange quark mass is taken into account. Therefore, we shall work
with Eq. (53). As a consequence, the boundary condition for the 2SC condensate in the core is f3(0) = 0, while f1(0)
and f2(0) can be nonzero and must be determined dynamically.
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As we have seen in Sec. II, after the rotation of the gauge fields Ã decouples from the condensates. Therefore, we
are left with two nontrivial gauge fields, for which we introduce the dimensionless versions ã3 and ã8 via

Ã3(r) =

[
H cosϑ1 sinϑ2

2
r +

ã3(r)

r

]
eθ , Ã8(r) =

ã8(r)

r
eθ , (54)

with the boundary conditions ã3(0) = ã8(0) = 0. This yields the magnetic fields

B̃3 =

(
H cosϑ1 sinϑ2 + λρ2

2SC

ã′3
R

)
ez , B̃8 = λρ2

2SC

ã′8
R
ez , (55)

where prime denotes derivative with respect to R, which is the dimensionless radial coordinate

R =
r

ξ3
, ξ3 ≡

1√
λρ2SC

. (56)

Here, ξ3 is the coherence length; we have added a subscript 3 to indicate that in a 2SC flux tube it is the ud condensate
f3 whose asymptotic behavior is characterized by the coherence length. Following Ref. [17], we have separated a term

in Ã3 for convenience, which gives rise to the nonzero field B̃3 in the 2SC phase, i.e., far away from the flux tube.
Therefore, the dimensionless gauge fields do not create any additional magnetic fields at infinity, ã′3(∞) = ã′8(∞) = 0

(alternatively, this effect could have been implemented in the boundary condition for ã3). The behavior of B̃3 is
another qualitative difference of the 2SC flux tube to a textbook flux tube (besides potentially induced additional
condensates and the existence of two gauge fields). In a standard flux tube, the magnetic field is expelled in the
superconducting phase far away from the flux tube and penetrates through the normal-conducting centre. Here, we
have three magnetic fields: B̃, which fully penetrates the superconductor and thus is irrelevant for the calculation of
the flux tube profiles; B̃8, which behaves analogously to the ordinary magnetic field in an ordinary flux tube; and B̃3,
which is nonzero far away from the flux tube and is affected nontrivially by the flux tube profile. As a consequence,
since B̃3 depends on the external field H, the flux tube profiles and flux tube energies also depend on H, which poses
a technical complication. We should keep in mind, however, that it is the ordinary magnetic field B that dictates the
formation of magnetic defects. A flux tube configuration, in which the condensation energy is necessarily reduced,
may become favored if this energy cost is overcompensated by admitting magnetic B-flux in the system (this is the
meaning of the −B ·H term in the Gibbs free energy). It is therefore useful for the interpretation of our results to
compute the unrotated field B from the profiles. Undoing the rotation (6) and using Eqs. (13) and (55), we find

B

H
= cos2 ϑ1

[
1 +

e sinϑ1

4Ξ

(
ã′8
R

+
3g√

3g2 + 4e2

ã′3
R

)]
, (57)

where we have introduced the dimensionless magnetic field

Ξ ≡ q̃3H cosϑ1 sinϑ2

2λρ2
2SC

=
3eg2

4
√
λ(3g2 + e2)

(
1− m2

3

µ2

)−1
H

µ2/
√
λ
. (58)

We can now express the potential U0 (10) in terms of the dimensionless condensates and gauge fields,

U0 = U2SC +
λρ4

2SC

2

[
f ′21 + f ′22 + f ′23 + f2

1

(
f2

1

2
− µ2 −m2

1

µ2 −m2
3

)
+ f2

2

(
f2

2

2
− µ2 −m2

2

µ2 −m2
3

)
+

(1− f2
3 )2

2

+
(N1 + ΞR2)2f2

1 + (N2 − ΞR2)2f2
2 +N 2

3 f
2
3

R2
− η(f2

1 f
2
2 + f2

1 f
2
3 + f2

2 f
2
3 )

]
. (59)

Here we have denoted the potential of the homogeneous 2SC phase by

U2SC = − (µ2 −m2
3)2

4λ
, (60)

and we have abbreviated

N1 ≡ q̃3ã3 + q̃81ã8 , N2 ≡ −q̃3ã3 + q̃82ã8 , N3 ≡ n− q̃83ã8 . (61)
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Inserting Eq. (59) into the Gibbs free energy density (14) and using the expressions for the magnetic fields (55), we
derive the equations of motion for the gauge fields,

ã′′3 −
ã′3
R

=
q̃3

λ
[(N1 + ΞR2)f2

1 − (N2 − ΞR2)f2
2 ] , (62a)

ã′′8 −
ã′8
R

=
1

λ
[q̃81(N1 + ΞR2)f2

1 + q̃82(N2 − ΞR2)f2
2 − q̃83N3f

2
3 ] , (62b)

and for the condensates,

0 = f ′′1 +
f ′1
R

+ f1

[
µ2 −m2

1

µ2 −m2
3

− f2
1 −

(N1 + ΞR2)2

R2
+ η(f2

2 + f2
3 )

]
, (63a)

0 = f ′′2 +
f ′2
R

+ f2

[
µ2 −m2

2

µ2 −m2
3

− f2
2 −

(N2 − ΞR2)2

R2
+ η(f2

1 + f2
3 )

]
, (63b)

0 = f ′′3 +
f ′3
R

+ f3

[
1− f2

3 −
N 2

3

R2
+ η(f2

1 + f2
2 )

]
. (63c)

By taking the limit R→∞ of Eq. (62b) we conclude

ã8(∞) =
n

q̃83
, (64)

while no condition for ã3(∞) can be derived, hence this value has to be determined dynamically. Due to the boundary
value (64), the baryon circulation around the flux tube vanishes, as in a standard magnetic flux tube. We discuss the
asymptotic behavior far away from the center of the flux tube in Appendix A.

The Gibbs free energy density can be written as

G = U2SC −
H2 cos2 ϑ1

2
+
L

V

(
F − Φ̃8H sinϑ1

)
, (65)

where L is the size of the system in the z-direction, and

Φ̃8 =

∮
ds · Ã8 =

2πn

q̃83
, (66)

with a closed integration contour encircling the flux tube at infinity, is the magnetic B̃8-flux through the flux tube.
Employing partial integration and the equations of motion (63), the free energy of a single flux tube per unit length
is F = πρ2

2SCI with

I ≡
∫ ∞

0

dRR

[
λ(ã′23 + ã′28 )

R2
− f4

1

2
− f4

2

2
+

1− f4
3

2
+ η(f2

1 f
2
2 + f2

1 f
2
3 + f2

2 f
2
3 )

]
. (67)

Written in this form, the free energy does not have any explicit dependence on the mass correction and is identical to
the one in Ref. [17] (of course, the dependence on the mass enters implicitly through the equations of motion). The
critical field Hc1 is defined as the field above which G is lowered by the addition of a flux tube, i.e., by the point at
which the term in parentheses in Eq. (65) is zero. This condition can be written as

Ξc1 =
g2I(Ξc1, n)

8λn
, (68)

where Ξc1 is the dimensionless version of Hc1 via Eq. (58). In the ordinary textbook scenario, the free energy of
a flux tube does not depend on the external magnetic field, and thus (68) would be an explicit expression for the
(dimensionless) critical magnetic field. The free energy of a 2SC flux tube, however, does depend on the external
magnetic field. Therefore, Eq. (68) is an implicit equation for Ξc1, which has to be solved numerically.

As we shall see in the next section, Hc1 may intersect with H
(1)
c2 , which indicates the second-order transition from

the homogeneous 2SC phase to an inhomogeneous phase where the condensate f1 is switched on. Since Hc1 becomes
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meaningless beyond this intercept, it is useful to compute this point explicitly. To this end, we write H
(1)
c2 from Eq.

(49a) (setting η = −1/2) in terms of the dimensionless field Ξ (58), which yields to linear order in α

Ξ
(1)
c2 '

1

4

(
1− α

2

)
. (69)

Solving this equation simultaneously with Eq. (68), i.e., setting Ξ
(1)
c2 = Ξc1, gives the intersection point. In the

practical calculation, this is best done by inserting Eq. (69) into Eq. (68) and solving the resulting equation for Tc/µq
(for given strange quark mass and winding number). This calculation is relevant for the phase diagrams in Fig. 6.

V. NUMERICAL RESULTS AND DISCUSSION

We are now prepared to compute the flux tube profiles and the resulting critical fields Hc1, which we will put
together with Hc and Hc2 from the previous section. As in the calculations of the critical fields Hc and Hc2 we use the
bosonic masses (5), keep terms linear in α in Eqs. (63), and, as discussed in Sec. II C, we set η = −1/2 and g = 3.5 for
all following results. Then we solve the coupled second-order differential equations (62) and (63) numerically without
further approximations using the successive over-relaxation method, which has been used before in similar contexts
[17, 21, 22, 55–57]. Each numerical run yields a flux tube profile for given ms/µq, Tc/µq (from which α and λ are
obtained), dimensionless external magnetic field Ξ, and winding number n. Since we are interested in the critical
field Ξc1, we need to solve Eq. (68), for which we employ the bisection method. This requires solving the differential
equations about 10 – 20 times until a reasonable accuracy for Ξc1 is reached. This whole procedure thus yields a
critical field Hc1 for given ms/µq, Tc/µq, and n. As argued in the introduction and as we shall see below, solutions
with high winding numbers are expected to play an important role. Therefore, in principle, the procedure has to
be repeated for all n to find the preferred flux tube configuration for each point in the parameter space spanned by
ms/µq and Tc/µq. In practice, we have performed the calculation for the lowest few n, and for selected parameter
sets for much larger n to check our conclusions. An additional complication arises because in certain parameter
regions there is more than one solution to the set of differential equations. The single-component flux tube with
f1 ≡ f2 ≡ 0 always exists. Configurations where the condensate f2 is induced in the core of the flux tube, but not f1,
turn out to be preferred over the single-component configuration whenever they exist and we shall discuss them in
detail. Configurations where both f1 and f2 are induced in the core do exist as well, but only in a parameter region
where Hc2 indicates that the ground state is a more complicated flux tube array. We shall therefore not discuss these
three-component configurations.

A. Flux tube properties

We start by discussing individual flux tube profiles and the associated magnetic fields. We do so by choosing a fixed
Tc/µq such that for vanishing strange quark mass there is a magnetic field at which it is energetically favorable to put
a domain wall in the system. The values of Tc/µq for which this is the case are known from Ref. [17] (see Fig. 5 in that
reference). The domain wall interpolates between the 2SCud and 2SCus phases, i.e., on one side, and far away from
it, we have f3 = 1, f2 = 0, and on the other side f2 = 1, f3 = 0. At nonzero ms the free energies of 2SCud and 2SCus

are obviously no longer equal, as we have seen explicitly in Sec. III, and thus the domain wall configuration becomes
unstable. In Fig. 2 we have chosen 10 different nonzero values of ms/µq, such that the configuration with lowest Hc1

(to which we will refer as the “energetically preferred” or simply the “preferred” configuration) has winding number
n = 10, . . . , 1 as ms/µq is increased. The profiles and magnetic fields are plotted at the corresponding minimal Hc1.
The critical fields as a function of the winding number for the parameters of Fig. 2 are shown in Fig. 3, which proves
the successive decrease in the preferred winding from low to high strange quark mass.

Let us first discuss the profiles themselves in Fig. 2. For the smallest masses shown here the profiles of the
condensates are reminiscent of a domain wall profile: The second condensate, which is induced in the core, assumes
essentially the value of the homogeneous 2SC condensate. Of course, in contrast to a domain wall, the flux tubes
have a finite radius, which decreases as the winding number decreases (with increasing strange quark mass). For
a quantitative discussion of the size of the flux tubes we use the various characteristic length scales obtained from
the asymptotic behavior of the flux tube profile, see Appendix A. The penetration depth ` usually is characteristic
for the decay of the magnetic field away from the center of the flux tube. In our case this scale corresponds to the
decay of the B̃8 field (in Fig. 2 we have restricted ourselves to plotting the ordinary magnetic field B). The coherence
length ξ3 introduced in Eq. (56) indicates the scale on which the ud condensate f3 recovers its homogeneous value and
corresponds to the usual coherence length of a single-component flux tube. Finally, and in contrast to the standard
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Figure 2: Upper panels: Flux tube profiles of the dimensionless condensates f2 and f3 (black) and
√
f2
2 + f2

3 (red) as functions
of the dimensionless radial coordinate R. The condensate f3 is the usual 2SC condensate of ud Cooper pairs and asymptotes to
1 for large R, while the us condensate f2 is induced in the core of the flux tube. For all plots g = 3.5 and Tc = 0.0856µq, while
ms/µq assumes the values given in each panel, i.e., it increases from upper left to lower right. The masses are chosen such that
the preferred configurations are flux tubes with winding numbers n = 10, . . . , 1 from upper left to lower right (and each plot
shows the preferred configuration). For compact star conditions, R = 10 translates to about r ' 7.7 fm. Lower panels: Ratio
of the induced magnetic field over the external magnetic field, B/H, in the X-Y plane perpendicular to the flux tube for the
10 configurations of the upper panels (X and Y in the same dimensionless units as R). The scale of the shading is adjusted
for each plot separately, from black (maximal) to white (minimal). The magnetic field enters the superconductor in ring-like
structures for small strange quark mass (large winding number) and turns into the conventional flux tube behavior for large
mass (small winding number). This structure is reflected in the red curves of the upper panels.

single-component scenario, our calculation in Appendix A shows that there is a third scale ξ2, characteristic for the
induced us condensate f2. Using Eqs. (A8), (A9), and (A10) we can write these three length scales in physical units
as

` ' 0.94

[
1 +

1

48

(
ms

µq

)2

ln
µq
Tc

]( µq
400 MeV

)−1

fm , (70a)
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Figure 3: Critical magnetic fields Hc1 as a function of the winding number n (continuous lines inserted to guide the eye) for
the same parameters as in Fig. 2. Each line corresponds to a different strange quark mass, which increases from bottom to top
(the values are given in the caption of Fig. 2). The configuration with lowest Hc1 goes from n = 10 (bottom) successively to
n = 1 (top).

ξ3 '
0.066

Tc/µq

[
1 +

1

48

(
ms

µq

)2

ln
µq
Tc

]( µq
400 MeV

)−1

fm , (70b)

ξ2 ' 1.3

(
H

µ2/
√
λ

Tc
µq

)−1/2 ( µq
400 MeV

)−1

fm , (70c)

where we have used Eq. (15) with T = 0, the 2SC condensate (26), and g = 3.5. The length scale ξ2 on which the
induced condensate varies depends on the external magnetic field H, for which the dimensionless value (in units of

µ2/
√
λ) can be inserted into Eq. (70c). For the parameters used in Fig. 2 the mass terms in Eqs. (70a) and (70b)

are negligibly small and setting µq = 400 MeV we find ` ' 0.94 fm, ξ3 ' 0.77 fm, and ξ2 ' (1.4 − 1.5) fm, while the
maximal value of the radial coordinate in this figure R = 10 corresponds to r ' 7.7 fm. These values, characterizing
the radial extent of the core of the flux tube do not depend on the winding number n. In the derivation in Appendix
A we have worked with a fixed and finite n while sending the radial coordinate to infinity. However, from the full
numerical profiles we see that the core of the flux tube clearly grows with increasing n. For instance, taking the point
where the two condensates have the same value as a rough measure for the size of the core, we see that for the largest
winding shown here, n = 10, corresponding to the smallest mass, ms = 0.046µq, this size is r ' 4.6 fm. This is about
six times larger than the coherence length ξ3, but it also shows that it only takes a relatively small strange quark
mass to reduce the size of the flux tubes from infinity (domain wall) to a few fm.

The plots in the upper panels also show the profile of the function
√
f2

2 + f2
3 , which is the radial coordinate of

the space spanned by (f2, f3), i.e., a domain wall can be understood as a rotation in this space from the horizontal
to the vertical axis. This function illustrates the depletion of the “combined” condensate in a cylindrical layer at
nonzero radius for large winding numbers and in the center of the tube for low winding numbers. This depletion
reflects the structure of the magnetic field, which is shown in the lower panels. We recall that the 2SC phase (just like
the CFL phase) admits a fraction of the external field H even in the homogeneous phase, and this fraction is close
to one for g � e. Therefore, the energetic benefit of a 2SC flux tube is to admit additional magnetic flux on top of
the flux already present. As a consequence of our choice g = 3.5, the ratio B/H is larger than 99% already in the
homogeneous 2SC phase, as one can see for instance from Eq. (57). The magnetic field profiles in the figure, showing
B/H between its minimal homogeneous 2SC value (white) and the maximal value (black) turn out to be in the range
0.9975 . B/H . 0.9995. Therefore, the magnetic field variations are unlikely to have any physical impact in the
strong coupling regime. One might also wonder about the numerical accuracy needed to resolve such tiny variations
of B/H. However, from Eq. (57) it is obvious that it is the small mixing angle ϑ1 (sinϑ1 ' 0.05 for g = 3.5) that
maps the variations into a tiny interval and thus the required numerical accuracy is not as high as one might think.

The magnetic profiles show interesting features. We see that the flux tubes with higher winding (small ms) have
their excess magnetic field concentrated in ring-like structures. This effect has been observed in the literature before
with the help of a two-component abelian Higgs model [44] and a one-component model with non-standard coupling
between the condensate and the abelian gauge field [46] (see also Refs. [58, 59] for similar structures of magnetic
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Figure 4: Left panel: Value of the dimensionless us condensate f2(R = 0) in the center of the 2SC flux tube as a function of
Tc/µq at the critical field Hc1 (which depends on Tc/µq and n) for strange quark mass ms = 0.15µq (solid lines) and ms = 0
(dotted lines), each for winding numbers n = 1, . . . , 6, from right to left. The standard, single-component flux tube solution
exists throughout the parameter space. The vertical dashed line marks the transition point between type-I and type-II behavior.
Right panel: Ratio of length scales for depleted condensate f3 and induced condensate f2 according to Eqs. (70) for the n = 1
curves of the left panel, with the blue curves corresponding to the massless (dotted) and massive (solid) cases. The vertical
lines indicate the transition from zero to nonzero induced condensate, while the horizontal lines mark the corresponding values
of the ratio ξ2/ξ3 at this transition.

monopoles in a non-abelian model). In these studies, the so-called Bogomolny limit was considered for simplicity,
which corresponds to the transition point between type-I and type-II behavior. Here we observe the effect in a
numerical evaluation of the general Ginzburg-Landau equations, and in particular we can point out regions in the
phase diagram where the exotic ring-like structures are the preferred configuration (for a systematic discussion of the
phase diagram see next subsection). The ring-like structure is easy to understand: In the domain wall (ms = 0) the
excess magnetic field is concentrated in the wall for symmetry reasons. As the strange quark mass is increased, the
wall “bends” to form a flux tube with finite radius, and it is obvious for continuity reasons that for very small masses
the maximum of the magnetic field is still sitting in the transition region. Then, as the sequence in Fig. 2 shows,
the magnetic rings gradually turn into ordinary flux tubes as ms is increased (and the winding number decreases).
Furthermore, we observe a double-ring structure, clearly visible in the multi-winding flux tubes. We have found that
the double ring does not always occur. For instance, for the smaller value Tc = 0.08µq the double ring is replaced by
a single ring.

All profiles in Fig. 2 are “unconventional” in the sense that they contain two condensates. As already mentioned
above, these two-component solutions are not found everywhere in the parameter space. In the left panel of Fig. 4 we
show the value of the induced condensate in the core f2(0) as a function of the parameter Tc/µq for winding numbers
n = 1, . . . , 6 and for a nonzero strange quark mass, compared to the massless case. We see that as Tc/µq decreases, the
induced condensate becomes smaller until it continuously goes to zero at a point that depends on the winding number.
Interestingly, as the winding number is increased, this point seems to converge to the point (47) that distinguishes
type-I from type-II superconductivity. In particular, the behavior of f2(0) becomes more and more step-like for larger
windings, i.e., f2(0) is close to one until it sharply decreases near the type-I/type-II transition point. However, flux
tubes with higher winding are energetically disfavored in the vicinity of the type-I/type-II transition point (as we
shall see below), such that this interesting behavior does not seem to be physically relevant.

The right panel of Fig. 4 is useful to understand why the induced condensate only appears in a certain parameter
regime. In this plot we show the ratio of ξ2 and ξ3 given in Eqs. (70). We see that the induced condensate vanishes
if this ratio becomes too small. For a possible interpretation note that the coherence length is connected to the size
of the Cooper pair. If we view ξ3 as a typical size of the Cooper pair (also for us pairing), then the right panel of
Fig. 4 suggests that the length scale for the variation of the induced condensate, which is determined by the external
magnetic field, must be sufficiently large (at least by a factor of about 1.5) compared to the size of a Cooper pair.
Otherwise the condensate “does not fit” into the core of the flux tube.



20

domain wallsty
pe
I

ty
pe
II

n=1

n=2
n=6

ms=0

0.05 0.06 0.07 0.08
-0.6

-0.4

-0.2

0.0

0.2

0.4

Tc/μq

Δ
H
c1

[μ
2
/λ
1/
2
]

ty
pe
I

ty
pe
II

n=1

n=2n=6

ms=0.15μq

0.05 0.06 0.07 0.08
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Tc/μq

Δ
H
c1

[μ
2
/λ
1/
2
]

Figure 5: Critical fields for the emergence of flux tubes with winding n relative to the critical field of the n = 1 flux tube,
∆Hc1 = Hc1(n) − Hc1(1), as a function of Tc/µq for the massless case (left panel) and ms = 0.15µq (right panel). In the
massless case, domain walls (n =∞) are the preferred configuration for Tc/µq & 0.068, as indicated by the vertical dashed line.
The other vertical dashed line marks the change from type-I to type-II behavior. The dots on the curves indicate the points
above which the flux tubes have a core with induced condensate f2 (see also Fig. 4).

B. Phase structure

We have seen that there are parameter choices for (g, Tc/µq,ms/µq) where multi-winding 2SC flux tubes with a
ring-like structure of the magnetic field are energetically preferred. In this section we investigate the parameter space
more systematically. We should keep in mind that in QCD the parameters, g, Tc, and ms are uniquely given by µq
(at T = 0). Therefore, as we vary the quark chemical potential, the system will move along a unique, but unknown,
curve in this three-dimensional parameter space. For instance, at asymptotically large µq, we start from small g � 1,
exponentially suppressed Tc and negligibly small ms (compared to µq). Since we do not know the values of ms and
Tc at more moderate densities we keep our parameters as general as possible. In this sense, keeping g = 3.5 fixed for
our results is a simplification, in an even more general calculation one might also vary g.

In Fig. 5 we compare the critical magnetic fields of flux tubes with different winding numbers for two different values
of ms as a function of Tc/µq. We plot the difference of the critical fields to the critical field of the n = 1 configuration
because the different curves would be barely distinguishable had we plotted the critical fields themselves. It is
instructive to start with the massless case (left panel). For Tc/µq ' 0.05 we observe the standard behavior at the
type-I/type-II transition: In the type-I regime, the critical field Hc1 can be lowered by increasing the winding number,
and as n → ∞ one expects Hc1(n) to converge to Hc, the critical field at which the NOR and 2SC phases coexist.
Just above the critical value Tc/µq ' 0.05 the order of the different Hc1(n) is exactly reversed, and Hc1 is given by
the flux tube with lowest winding, n = 1, the higher-winding flux tubes are disfavored. It is a good check for our
numerics that all curves intersect at the same point, and this point is given by Eq. (47), whose derivation is completely
independent of the numerical evaluation. This conventional behavior in the vicinity of the type-I/type-II transition
point is expected because the second condensate plays no role here, at least for the lowest winding numbers, as we
have seen in Fig. 4.

Now, as Tc/µq is increased, the unconventional 2SC behavior becomes apparent. For any winding n > 1 there is
a critical Tc/µq at which this higher winding becomes favored over n = 1. Similar to the type-I regime, there is a
region in which Hc1(n) decreases monotonically with n until, for n → ∞, it is expected to intersect Hc1(1) at the
critical point where domain walls set in (we have only plotted the curves for a few winding numbers, obviously the
numerics become more challenging for large n). This point, Tc/µq ' 0.068, is taken from Ref. [17], where it was
computed explicitly by using a planar instead of a cylindrical geometry (see Figs. 4 and 5 in that reference). Here we
have marked the onset of domain walls by a vertical dashed line.

In the right panel we first note that the behavior in the vicinity of the type-I/type-II transition in the presence of a
strange quark mass is qualitatively the same as in the massless case. The transition point itself, as we already know
from Eq. (47), is even exactly the same, at least up to lowest nontrivial order in ms. Now, however, the behavior
for larger Tc/µq, where the second condensate does play a role, is qualitatively different. For the chosen value of
ms/µq, we find that for windings n ≤ 6 there is a regime in which flux tubes with winding n are preferred, while flux
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Figure 6: Left panel: Phase diagram in the plane of external field H and Tc/µq for ms = 0.15µq (black solid lines) compared
to the massless result from Ref. [17] (red dashed lines). The numbers at the critical field for the emergence of 2SC flux tubes
with us core indicate the winding number n, with n =∞ indicating the domain wall in the massless case. The critical lines for
the emergence of 2SC flux tubes without a us core (which always have winding n = 1) are marked with S1. Right panel: Phase
diagram in the ms/µq-Tc/µq plane indicating the preferred flux tube configurations. In the shaded region dSC and CFL flux
tubes appear, and the red arrows indicate the range where, at ms = 0, domain walls are preferred. This phase diagram shows
one of the main results of the paper, namely that remnants of the domain wall in the form of multi-winding flux tubes survive
up to ms ' 0.21µq.

tubes with n > 6 are never preferred. We see that the lowest Hc1 corresponds to flux tubes with winding numbers
1,6,5,4,3,2, as Tc/µq is increased. These structures can be viewed as “remnants” of the domain wall.

With the help of the results of this panel we can construct the phase diagram in the H-Tc/µq plane for this particular
mass ms = 0.15µq. To this end, we need to bring together the critical fields Hc1 from Fig. 5 with the critical fields Hc

from Sec. IV A and the critical fields Hc2 from Sec. IV B. The result is shown in the left panel of Fig. 6. This panel
contains the first-order transition between NOR and 2SC phases (41), the second-order transitions from the NOR to
the “2SC flux tube” phase (46) and from the 2SC to the “CFL flux tube” phase (49a), and the second-order transition
from the 2SC to the “2SC flux tube” phase just discussed, including the different segments corresponding to different
winding numbers. We have included the phase transitions of the massless case for comparison, including the segment
where domain walls are formed. The single-component flux tube configuration, i.e., the one without a us condensate
in the core, is denoted by S1, following the notation of Ref. [17]. This configuration always has winding number 1.

The region labeled by “CFL flux tubes” is bounded from above by H
(1)
c2 , which actually indicates a transition to dSC

flux tubes (see discussion below Eqs. (49)). For the given parameters, the “would-be” critical magnetic field H
(2)
c2 is

very close to H
(1)
c2 , and thus we have, slightly inaccurately, termed the entire region “CFL flux tubes”, although we

know that there is at least a thin slice where the inhomogeneous phase is not made of CFL flux tubes.
Since our calculation only allows us to determine the critical fields for the entrance into the flux tube phases, we can

only speculate about the structure of these inhomogeneous phases away from the second-order lines. It is obvious that
the structure will be more complicated than in a standard single-component superconductor. This, firstly, concerns
the transition between the phases labeled by “CFL flux tubes” and “2SC flux tubes”. We have continued the Hc2

transition curve into the flux tube regime as a thin dotted line, but of course this curve should not be taken too
seriously because it was calculated under the assumption of a homogeneous 2SC phase on one side of the transition.
Secondly, and more closely related to our main results, the different winding numbers that occur upon entering the
2SC flux tube phase also suggest a complicated structure of the flux tube arrays. It is conceivable that there are
transitions between “pure” arrays of a single winding number or that there are arrays composed of flux tubes with
different winding numbers.

We may now ask up to which values of the strange quark mass the multi-winding flux tubes survive. More precisely,
at which value of ms do only n = 1 flux tubes form at the entire phase transition curve Hc1 between the homogeneous
2SC phase and the “2SC flux tube” phase? This question can be answered by repeating the calculation needed for left
panel of Fig. 6 for different values of ms and determining the sequence of the preferred configurations as a function of
Tc/µq in each case. The result is shown in in the right panel of Fig. 6. In this panel, the ms/µq-Tc/µq plane is divided
into different regions, each region labeled by the preferred flux tube configuration. One can check that a slice through
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this plot at ms = 0.15µq reproduces exactly the sequence of phases shown in the left panel. In particular, we have
indicated the transition between the standard flux tubes S1 and the two-component flux tubes with winding number
n = 1 by a dashed curve. We have restricted our calculation to winding numbers n ≤ 10, but it is obvious how the
pattern continues: As we move towards ms = 0, say at fixed Tc/µq, the winding number of the preferred configuration
increases successively and more rapidly. Eventually, the winding number and thickness of the flux tube go to infinity,
which corresponds to the domain wall, whose range is indicated with (red) arrows. Therefore, the lines that bound
the region of multi-winding configurations at small ms from both sides – here calculated from n = 10 – will slightly
change if higher windings are taken into account and they are expected to converge to the arrows at ms = 0. In the

shaded region, dSC and CFL flux tubes start to become relevant, its boundary is given by the condition Hc1 = H
(1)
c2

(see also the discussion around Eq. (69)).
The main conclusion of this phase diagram is that the maximal strange quark mass for which remnants of the

domain wall (i.e., 2SC flux tubes with winding number larger than one) exist, is ms ' 0.21µq. This is on the lower
end of the range expected for compact stars. Therefore, at least within our approximations, we conclude that it is
conceivable, but unlikely that 2SC flux tubes with exotic structures as shown in Fig. 2 play an important role in the
astrophysical setting. However, our phase diagram shows that two-component flux tubes (with n = 1) do survive for
larger values of ms. Since they have a us condensate in their core, they can also be considered as remnants of the
domain wall, albeit with conventional magnetic field structure. We have checked that if the phase diagram in the
right panel of Fig. 6 is continued to about ms = 0.5µq, there is still a sizable range (of roughly the same size as for
ms = 0.25µq), starting at Tc/µq ' 0.083, where 2SC flux tubes with us core are preferred. Consequently, they may
well have to be taken into account for the physics of compact stars.

In the discussion of the applicability of our results to compact stars, we should also return to the actual magnitude
of the magnetic fields considered here. Using the conversion to physical units given below Eq. (45) and the expressions
for µ and λ in Eq. (15), we find that the magnetic field in Gauss can be computed from

H = 1.6× 1019 H

µ2/
√
λ

Tc
µq

(
1− T

Tc

)( µq
400 MeV

)2

G . (71)

Consequently, setting T = 0, the triple point at Tc/µq ' 0.05 in the left panel of Fig. 6, where NOR, 2SC, and
2SC flux tube phases meet, corresponds to about H ' 1.1 × 1019 G, while the critical fields at Tc/µq = 0.08 are
Hc1 ' 1.3 × 1019 G and Hc2 ' 2.9 × 1019 G (note that H in physical units also varies along the horizontal direction
of this plot since µ2/λ1/2 depends on Tc/µq). Magnetic fields of this magnitude are getting close to the limit for the
stability of the star, and they are several orders of magnitude larger than observed at the surface. It is thus highly
speculative, although possible, that these huge magnetic fields are reached in the interior of the star. However, exotic
flux tubes as discussed here may be formed dynamically, for instance if the star cools through the superconducting
phase transition at a roughly constant magnetic field [16]. And, if color-magnetic flux tubes exist in compact stars,
they help to sustain possible ellipticities of the star, resulting in detectable gravitational waves [60]. Therefore, even
though the equilibrium situation studied here may never be reached in an astrophysical setting, it is important to
understand the various possible – non-standard – flux tube configurations.

VI. SUMMARY AND OUTLOOK

Using a Ginzburg-Landau approach, we have investigated magnetic flux tubes in the 2SC phase of dense quark
matter, i.e., flux tubes that asymptote far away from their center to a phase where u and d quarks form a Cooper
pair condensate. Improving earlier studies, we have included the strange quark mass ms as a free parameter in the
microscopic calculation of the flux tube profiles and their free energies. This is more realistic and makes a qualitative
difference: In the presence of the strange quark mass, domain wall configurations that interpolate between ud and
us condensates and that have previously been found to be energetically favored in a certain parameter region are no
longer stable. We have shown that these domain walls – which can be viewed as flux tubes with infinite radius –
turn into flux tubes with finite radius and high winding number as the strange quark mass is switched on. These
unconventional flux tubes, which have a us condensate in their core, exhibit a ring-like structure of the magnetic
field, i.e., the maximum of the magnetic field sits at a nonzero value of the radial distance from the center. Already
for moderate values ms ' 0.05µq, the flux tube radius is reduced to under 5 fm, and flux tubes with winding number
larger than one survive up to about ms ' 0.2µq. This roughly corresponds to the lower limit that is expected for
the effective strange quark mass in a compact star environment. Therefore, at least within our approximations, we
have concluded that the exotic multi-winding flux tubes – “remnants” of the domain walls from the massless limit –
probably play no major role in compact stars, although flux tubes with a us core, but winding number one, survive
up to much larger masses. Also, since we have only addressed equilibrium configurations, all our magnetic defects
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require magnetic field strengths of the order of 1019 G, which are unlikely to be reached in compact stars, while it is
conceivable that the defects exist as a metastable configuration during the evolution of the star. Our study is also
relevant for the QCD phase diagram at a nonzero external magnetic field and for a more general understanding of
two-component magnetic flux tubes. Although the situation in dense quark matter is very specific due to the presence
of color-magnetic fields and their mixing with the ordinary magnetic field, our 2SC flux tubes with ring-like magnetic
fields are not unlike configurations previously found in different models [44, 46].

Our results suggest a very rich structure of the 2SC flux tube phase for not too large values of ms, containing flux
tubes of different winding numbers. It would be interesting to see if there are phase transitions between different flux
tube arrays or if there are arrays composed of flux tubes with different winding. We have also pointed out that the
upper critical field of the CFL flux tubes, i.e., the transition to a homogeneous 2SC phase, is affected qualitatively
by the strange quark mass. Just below this upper critical field dSC flux tubes seem to be favored, such that also
the CFL flux tubes phase appears to be more complicated than expected from the massless limit. Also the CFL flux
tubes themselves may be revisited using our setup in order to systematically investigate the effect of the strange quark
mass. In this case, there is no equivalent of the domain wall and thus the effect is probably less dramatic than in the
2SC phase.

We have used various approximations that can be improved in future studies. It would be interesting, but also
very challenging, to start from a fermionic approach rather than from the bosonic Ginzburg-Landau model. This may
modify our results since the magnetic fields considered here are sufficiently large to resolve the fermionic structure of
the Cooper pairs. A more straightforward extension would be to explore the parameter space more systematically.
We have restricted ourselves to the weak-coupling values for the parameters of the Ginzburg-Landau potential, and
extrapolated the results to a large strong coupling constant realistic for compact stars. Also, we have neglected off-
diagonal components in the order parameter matrix, which become potentially relevant due to the explicitly broken
flavor symmetry. It would also be interesting to improve the treatment of temperature in the Ginzburg-Landau
potential used here and in previous studies. Since there are several condensates which are not expected to melt at
the same point, a more refined temperature dependence would include more than one critical temperature [21].
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Appendix A: Asymptotics for large distances

In this appendix, we discuss the asymptotic behavior of the condensates and the gauge fields far away from the center
of the flux tube, in particular the non-standard behavior of the condensate induced in the core, i.e., the condensate
that vanishes at infinite radial distance. We restrict ourselves to the situation of two non-vanishing condensates, the
ud condensate f3, which assumes its homogeneous value at large distances, and the induced us condensate f2. The
third condensate, f1, is omitted because it never plays a role in the preferred 2SC flux tube configurations. As in the
analogous calculation of CFL flux tubes [17, 22] we use the following ansatz for the gauge fields and the condensates,

ã3(R) = ã3(∞) +Rṽ3(R) , ã8(R) =
n

q̃83
+Rṽ8(R) , (A1a)

f2(R) = u2(R) , f3(R) = 1 + u3(R) , (A1b)

where we have taken into account the boundary conditions at R = ∞ for ã8, f2, and f3, while the boundary value
for ã3 is a dynamical quantity. We have introduced the functions ṽ3, ṽ8, u2, u3, which all approach 0 as R→∞. We
assume (and this will be confirmed a posteriori) that they fall off exponentially at large R.

With this ansatz we find that the equation of motion for f2 (63b) becomes

0 ' u′′2 +
u′2
R

+ u2(−Ξ2R2 + . . .) , (A2)

where the dots stand for terms that are suppressed exponentially or by powers of R compared to the Ξ2R2 term. This
term thus plays a crucial role in the asymptotic behavior, and we find the asymptotic solution

u2(R) ' d2

R
e−ΞR2/2 , (A3)
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where d2 is an integration constant which can only be computed from solving the full differential equations numerically.
The solution (A3) fulfills Eq. (A2) if we neglect terms that are suppressed by powers of R compared to the leading-
order terms. Note that here and in the rest of this appendix we treat the winding number n as fixed and finite. A
different analysis, carefully taking into account the two limits R→∞ and n→∞ would be needed for the transition
from flux tube to domain wall solutions, see Ref. [61] for a recent study in the abelian Higgs model.

Next, we consider the equation of motion for ã3 (62a), which becomes

Rṽ′′3 + ṽ′3 −
ṽ3

R
' q̃3d

2
2

λR2
(Ξ2R2 + . . .)e−ΞR2

. (A4)

Again only keeping the leading-order contributions we find that the asymptotic behavior of the gauge field ã3 is given
by

ṽ3 '
q̃3d

2
2

4λΞR3
e−ΞR2

. (A5)

We see that the condensate f2 and the deviation of the gauge field ã3 from ã3(∞) are both suppressed by exp(−const×
R2). This is in contrast to the behavior of a single-component flux tube, where the suppression is exp(−const× R),
which, as we shall now see, is assumed by the functions ã8 and f3. Anticipating the milder suppression of ṽ8 and u3,
i.e., neglecting terms of order exp(−const × R2), we can approximate the remaining equations of motion (62b) and
(63c) by

0 ' R2ṽ′′8 +Rṽ′8 − ṽ8

(
1 +

q̃2
83

λ
R2

)
, (A6a)

0 ' R2u′′3 +Ru′3 − 2u3R
2 . (A6b)

These equations are identical to the standard single-component case, and their solution can be written in terms of
modified Bessel functions of the second kind. Here we simply quote the leading asymptotic behavior,

ṽ8(R) ' c̃8√
R
e−q̃83R/

√
λ , u3(R) =

d3√
R
e−
√

2R , (A7)

where c̃8 and d3 are constants that can be determined from the full numerical solution. Recalling the definition of
the dimensionless radial coordinate R (56), we see that this results indicates the usual behavior: The length scale for

the exponential decay of the rotated magnetic field B̃8 is given by the penetration depth,

q̃83R√
λ

=
r

`
, ` =

1

q̃83ρ2SC
, (A8)

and the length scale on which the condensate approaches its homogeneous value is the coherence length, already
introduced in Eq. (56),

R =
r

ξ3
, ξ3 =

1√
λρ2SC

. (A9)

In contrast, the induced condensate decays on a different length scale, given by the external magnetic field,

Ξ1/2R =
r

ξ2
, ξ2 =

(
q̃3H cosϑ1 sinϑ2

2

)−1/2

=

[
3eg2H

4(3g2 + e2)

]−1/2

, (A10)

where we have used the definition of the dimensionless magnetic field Ξ (58). We have added the subscript 2 to
indicate that it is the condensate f2 that varies on the length scale ξ2.
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