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Abstract. We review the results of a phenomenological model for cold and
dense nuclear matter exhibiting a chiral phase transition. The idea is to model
the quark-hadron phase transition under neutron star conditions within a single
model, but without adding quark degrees of freedom by hand. To this end,
strangeness is included in the form of hyperonic degrees of freedom, whose
light counterparts provide the strangeness in the chirally restored phase. In the
future, the model can be used for instance to compute the surface tension at
the (first-order) chiral phase transition and to study the possible existence of
inhomogeneous phases.

1 Introduction and main results

At high temperatures or high baryon densities, Quantum Chromodynamics (QCD) is ex-
pected to form a quark-gluon plasma, while the low-temperature and low-density regime is
inhabited by hadrons due to confinement. The intermediate transition regions pose a great
theoretical challenge due to the difficulty of first-principle calculations, which are currently
limited to the regime of very small baryon densities. However, it is this intermediate region
that holds the details of quark confinement and the quark-hadron phase transition, along with
a microscopic description for the physics of compact stars.

We explore this interesting region within a phenomenological approach, focusing on zero
temperature and large baryon densities. Hadron and quark phases can be described by indi-
vidual models, but in order to predict the phase transition and its properties we need more
than the sum of the two parts. This is why in this work, rather than stitching together two
individual models (which can have other benefits [1–6]), we choose a single model approach
(as done, in other variants, before [7–11]). In particular, we include strangeness in the form
of hyperonic degrees of freedom, to account for a more realistic “quark matter” phase, ex-
tending previous studies, where the only baryonic degrees of freedom in the Lagrangian were
neutrons and protons [12–15]. The idea of a unified model for the chiral phase transition is
illustrated in Fig. 1.

Our model exhibits chiral symmetry restoration at large baryon densities. This is possible
because, by construction, the baryonic mass is entirely generated by the chiral condensate.
The chirally restored phase is made of baryonic – confined – degrees of freedom, but, due
to their lightness, shares some properties with dense quark matter in QCD. For instance, we
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Figure 1. Schematic representation of a two-model (left) and unified (right) approach, showing the
quark-hadron transition in the plot of the free energy Ω vs. the chemical potential µ. Using two models,
the critical chemical potential varies as the vacuum pressure of either of the models is changed and thus
it is a parameter of the approach, not a prediction. Moreover, a unified approach naturally provides an
effective potential connecting the stationary points (inset), which is relevant for instance to compute the
surface tension. And, in principle, the single-model allows for a smooth crossover if the two phases are
not distinguished by an exact symmetry.

find that we can easily force the system to reproduce the asymptotic limit of the speed of
sound, although in our model this limit is approached from above. This is different from
perturbative QCD, which is the correct description at asymptotically large baryon densities.
We also find that our model parameters can be chosen such that asymptotically dense matter
has nonzero strangeness. However, we have not found parameters which reproduce flavor
symmetry asymptotically, i.e., a strangeness fraction of 1/3, and at the same time respect as-
trophysical constraints. Since we include a small explicit chiral symmetry breaking term, our
model allows for a chiral crossover, but, again, the constraint of producing realistic masses
of compact stars excludes the corresponding parameter regime. We also find that realistic pa-
rameter sets do not allow for hyperons to appear in the chirally broken phase, i.e., strangeness
is only found beyond the chiral phase transition. Finally, we show that putting together all
constraints, the model can be used to predict poorly known properties of low-density nuclear
matter, such as the slope of the symmetry energy at saturation. These results, and this entire
contribution to the proceedings, is based on our previous work [16].

2 Lagrangian and approximations

We begin by writing down the Lagrangian of the model. The baryonic part (containing the
full baryon octet, i = n, p,Σ0,Σ−,Σ+,Λ,Ξ0,Ξ−) is

LB =
∑

i

ψ̄i(iγµ∂µ + γ0µi)ψi , (1)

where the chemical potentials of the baryons are denoted by µi. Three-flavor QCD allows for
three independent chemical potentials, and in our main applications this is reduced to one by
the constraints of electric neutrality and electroweak equilibrium. The mesonic part is

LM =
1
2
∂µσ∂
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1
4
ωµνω
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1
4
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0 + φµφ

µ)2 , (2)



where we have only written the mesons that will form a condensate, where d > 0 is the quartic
self-coupling of the vector mesons, and where the vacuum potential for the chiral condensate
is

U(σ) =

4∑
n=1

an

n!
(σ2 − f 2

π )n

2n − ε(σ − fπ) , (3)

with parameters a1, a2, a3, a4, ε, and the pion decay constant fπ. The baryon-meson interac-
tions are given by

LI = −
∑

i

ψ̄i(giσσ + giωγ
µωµ + giργ

µρ0
µ + giφγ

µφµ)ψi , (4)

with Yukawa coupling constants giσ, giω, giρ, giφ. We add non-interacting electrons and muons
to the system, characterized by the electron chemical potential µe, such that the total La-
grangian is L = LB + LM + LI + Lleptons. Importantly, there are no explicit mass terms for
the baryons. Their medium-dependent masses Mi are dynamically generated via interactions
with the condensate of the scalar sigma meson σ̄, which is interpreted as the (non-strange)
chiral condensate, Mi = giσσ̄, with σ̄ ∼ 〈uū + dd̄〉.

Due to the phenomenological nature of the model it is sensible to explore the parameter
space, searching for qualitatively different scenarios within the experimentally given con-
straints. We fix our parameters in terms of:

• Vacuum masses of baryons and mesons and the vacuum value of the chiral condensate.

• Saturation density n0 = 0.153 fm−3 and corresponding binding energy EB = −16.3 MeV
of isospin-symmetric nuclear matter.

• Incompressibility K ' (200 − 300) MeV, symmetry energy S ' (30.2 − 33.7) MeV, and
slope of the symmetry energy with respect to the baryon density L ' (40 − 140) MeV
at saturation. We fix S = 32 MeV and K = 250 MeV, having checked that variations of
neither of these quantities within the allowed range change our results dramatically. The
slope parameter is not fixed a priori but turns out to be constrained indirectly by all our
other conditions, as we shall discuss later, see Fig. 4.

• Effective nucleon mass at saturation M0 ' (0.7 − 0.8) mN . Our results are very sensitive
with respect to variations of this quantity, and we go beyond the empirical range to explore
qualitatively different behaviors, see also Fig. 4.

• Hyperon potential depths in symmetric nuclear matter at saturation, U(N)
Λ

= −30 MeV, and
U(N)

Σ,Ξ ' −70 MeV to + 30 MeV. We use these (poorly known) potentials as a guidance to
fix our Yukawa couplings, together with theoretical input from a chiral SU(3) approach,
see Ref. [16] for more details.

We restrict ourselves to zero temperature and employ the mean-field and no-sea approxi-
mations. We are only interested in thermodynamic equilibrium, and thus our main calculation
concerns the free energy density Ω, from which all other relevant quantities can be computed.
This is done by solving the stationarity equations for the meson condensates together with
the equation of local charge neutrality, all under the condition of beta equilibrium. This re-
sults in the condensates and µe as (multi-valued) functions of the neutron chemical potential
µn. Inserting these functions back into the action yields the free energy density Ω(µn). With
standard thermodynamic relations this yields the equation of state, which can be inserted into
the Tolman-Oppenheimer-Volkoff equations to compute mass-radius curves of compact stars.
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Figure 2. Left panel: Effective nucleon mass as a function of the neutron chemical potential. Solid
lines represent the stable phases, dashed lines the metastable/unstable phases. The open square marks
the appearance of the first hyperonic degree of freedom. Dots mark the chiral phase transition, and the
three stable branches are labelled by vacuum (V), nuclear matter (N) and quark matter (Q). Right panel:
Density fractions for each degree of freedom as functions of the total baryon density (normalized by
nuclear saturation density). The gap in densities reflects the first-order transition. The arrow marks the
density in the core of the heaviest star for this particular parameter choice, which is for both panels
M0 = 0.8 mN , d = 21, U (N)

Σ,Ξ = −50 MeV and all other parameters as discussed in Sec. 2.

3 Results

The typical behavior of the system in the presence of a first-order phase transition is best
explained with the help of Fig. 2. On the left, the effective nucleon mass is plotted as a
function of the chemical potential. The shape of the curve is valid for all baryons, as their
mass is proportional to the nucleon mass. The plot demonstrates that with increasing chemical
potential we go from the vacuum (V) via nuclear matter (N) to a phase with very low nucleon
mass, i.e., a phase with approximately restored chiral symmetry, which we interpret as an
approximation to quark matter (Q). The first-order nature of the phase transition is manifest
in the discontinuity of the effective mass, whose location must be determined from the free
energy density. The plot also shows the critical chemical potential for the appearance of the
first hyperon (open square). For the particular parameters used here, hyperons only appear
in the metastable nuclear branch, not in a stable segment of the chirally broken phase. It is
only after the chiral symmetry restoration that they can be found in the system, having a very
low mass, and thus giving rise to nonzero strangeness of the quark matter branch. This can
also be seen in the right panel, which shows that fermions with strangeness (blue) emerge
right after the chiral phase transition. The particle fractions are shown up to densities much
larger than present in neutron stars. This allows us to check whether our model exhibits
strangeness asymptotically, as expected from QCD. The curves show that the asymptotic
strangeness fraction is nonzero, but it turns out to be smaller than 1/3, in contradiction to
beta-equilibrated, charge neutral QCD, which asymptotes to weakly interacting quark matter
with the same number of up, down and strange quarks. We were able to find parameter
sets where this flavor symmetry is recovered, but these do not produce sufficiently massive
neutron stars.

In Fig. 3 we plot the speed of sound squared c2
s for 4 different parameter sets. In each case

we see that c2
s → 1/3 asymptotically, which can be traced back to the presence of the quartic

meson coupling d [16]. Our model is of course not asymptotically free and thus interactions
still play a role at asymptotic densities. Therefore, the speed of sound does not approach its
asymptotic value from below, as predicted by perturbative QCD. The most prominent feature
of the speed of sound is the large discontinuity from the chiral phase transition in 3 of the



Figure 3. Speed of sound squared as a func-
tion of the neutron chemical potential for 4 pa-
rameter sets. The arrows indicate the chemical
potential in the center of the heaviest star for
each case. The dashed line marks the asymp-
totic limit c2

s = 1/3. The red curve corresponds
to the parameters of Fig. 2, while the others are
obtained by varying M0/mN = 0.72 (black),
0.85 (blue), 0.92 (green).

4 cases, showing a larger speed of sound in the chirally restored phase. Putting together the
predictions from perturbative QCD (c2

s approaching 1/3 from below) and the constraints of
heavy neutron stars (requiring c2

s > 1/3), it might be more natural to expect a jump down
as we go up in density. However, there is no first-principle argument why this should be the
case. It is conceivable that in a more realistic approach than ours, and in QCD itself, c2

s is
non-monotonic in the quark matter phase, such that it can approach 1/3 from below even after
having jumped up at the chiral transition. The plot includes a parameter choice that leads to
a chiral crossover. As a remnant of the phase transition, the speed of sound still changes
rapidly, yet continuously, as shown in the inset. However, as the smallness of the speed of
sound already suggests, this case does not allow for the observed large masses of neutron
stars.

To study the parameter space systematically we enforce the following requirements: (i)
The model should predict compact stars compatible with the current maximum mass limit
set by observations, Mmax = 2.1 M� [17]. (ii) The asymptotic flavor content of chirally
restored matter must include strangeness, as expected in QCD. (iii) Nuclear matter must be
absolutely stable at zero pressure. It is conceivable that nuclear matter is metastable (“strange
quark matter hypothesis” [18, 19]), but in this case quark matter will be thermodynamically
preferred at all pressures and there is no quark-hadron transition to study, which is the main
motivation of our work.

These 3 criteria can be translated into 3 curves in the M0 - d plane and, equivalently and
more physically, the M0 - L plane, see Fig. 4. Together, the curves define an “allowed” region,
which is shaded in both panels. Interestingly, the allowed region spans a very narrow range in
the slope parameter L range, much narrower than constrained by current experiments, given
their uncertainties. We see from the right panel that this region is not significantly enhanced
by varying the hyperon potentials U(N)

Σ,Ξ, and as a result we conclude that our model predicts
L ' (88 − 92) MeV. The left panel confirms that the need for heavy stars requires that
the chiral phase transition happens before the hyperon onset, and as a result we can only
find hyperons in their chirally restored form. This illustrates – within a single model – the
“hyperon puzzle” [20] and its solution: Hyperons should appear at some point as the density
is increased but at the same time they seem to prevent stars to become massive. Our model
shows that indeed they do appear, but if strongly coupled quark matter takes over at the chiral
phase transition, the hyperon onset can be relegated to a metastable or even unstable branch,
while the stable quark matter core renders the star sufficiently massive. While the quantitative
predictions of our phenomenological model should be taken with care, it is remarkable to see
the hyperon puzzle and its solution being laid out dynamically within a single model.
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FAPERJ, and INCT-FNA (Process No. 464898/2014-5). R.M. thanks CNPq for financial
support.
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Figure 4. Left panel: Allowed region in the M0-d parameter space for U (N)
Σ,Ξ = −50 MeV. In the 4 areas

defined by the solid blue lines, the label (“/s”) “s” indicates (no) strangeness asymptotically, while N (Q)
indicates that nuclear (quark) matter is stable at zero pressure. The blue dashed curve is the 2.1 solar
mass limit. Above the dash-dotted line hyperons appear before the chiral phase transition, and above
the dotted line the quark-hadron transition is a crossover. The gray shaded area is the empirical range
for M0. The asterisks mark the 4 choices of Fig. 3, while the blue shaded area obeys the three criteria
listed in the text. Right panel: The blue curves and area correspond to the left panel, now translated into
the M0-L plane. Two additional cases are shown: U (N)

Σ,Ξ = −30 MeV (green) and U (N)
Σ,Ξ = −70 MeV (red).

The d = 0 line marks the boundary of the parameter space.
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