
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained by

the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research

or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced

or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The

content of the thesis and accompanying research data (where applicable) must not be changed in any way or

sold commercially in any format or medium without the formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) ”Full thesis title”, University of Southampton, name of the University

Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]





UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Sciences
School of Engineering

Theoretical Methods to Predict the
Interaction of Aero-engine Fan Tone
Radiation with the Fuselage and its

Boundary Layer

by

Dionysios Marios Rouvas
Master of Engineering

ORCiD: https://orcid.org/0009-0001-6646-4444

A thesis for the degree of
Doctor of Philosophy

21st June 2023

http://www.southampton.ac.uk
http://orcid.org/https://orcid.org/0009-0001-6646-4444




University of Southampton

Abstract
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Theoretical Methods to Predict the Interaction of Aero-engine Fan Tone Radiation with the
Fuselage and its Boundary Layer

by Dionysios Marios Rouvas

The work in this thesis is focused on the acoustic installation effects of an aero-engine fan
noise source adjacent to a cylindrical fuselage with a boundary layer running down its length.
The main scope of this work is the development of theoretical methods to quantify
scattering/diffraction by the fuselage and the refraction effect due to the presence of the
boundary layer. The aim is to provide a faster and less computationally demanding alternative
to high-fidelity numerical methods. The acoustic near-field of an installed fan noise source has
been investigated before with the use of numerical methods to solve the problem of sound
propagation through the shear layer. Therefore, in this work analytic expressions are derived
that describe the acoustic pressure both in the near-field, in the form of a Fourier series and a
Fourier integral, and in the far-field, in the form of a Fourier series. The use of numerical
methods is avoided by utilising an asymptotic method for thin linear boundary-layer profiles.
Additionally, a rudimentary step-function profile is investigated that avoids the solution to the
Pridmore-Brown equation altogether. The capability of the two profiles to approximate the
effects of more complex boundary layer profiles such as the quarter-sine and the 1/7th
power-law profile is investigated. The analytic expressions are validated by comparing
theoretical results to existing numerical results for the pressure on the fuselage surface. The
two equivalent simplified profiles prove to be able to approximate the same effects as more
realistic profiles especially for thin boundary layers. The linear profile accurately predicts
shielding effects for thin boundary layers, but the step-function profile retains its accuracy
regardless of the boundary-layer thickness. Both theoretical approaches are able to capture the
pressure contour pattern and amplitude of shielding on the fuselage surface. The main
advantage of this novel theoretical approach is the speed at which it can produce reliable
results since there is no need for numerical schemes. Therefore, a multi-mode parametric
study is conducted that identifies shielding trends on the fuselage surface and far-field
directivity trends in various stages of flight. Multiple flow and source characteristics are
examined with flight Mach number, cut-off ratio of the modal output of the fan, and
boundary-layer thickness standing out as the major factors that affect shielding on the fuselage
surface and directivity phase shifts in the far-field. The results of the multi-mode parameteric
study highlight the capability of this novel theoretical approach to produce quick and reliable
results that can serve as a preliminary analysis to a more in-depth numerical analysis.
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1

Chapter 1

Introduction

With the introduction of the turbojet engine in the 1950s, commercial aviation entered an era of
unprecedented growth. This new radical development enabled international travel to become
mainstream thus improving the quality of life across the planet. However, as it is the case with
many technological advancements, this rapidly growing industry introduced new problems
and challenges along with its many benefits. Increased CO2 emissions and levels of noise
pollution instantly became issues that needed resolving due to their harmful impact on our
health. These harmful emissions are expected to become an even bigger problem according to
Airbus (2019) and Boeing (2019), which predict an increase in air traffic by 5% per year around
the world and even 6.5% for some regions in Asia until 2037. With the number of flights and
passengers per year constantly increasing, it is no wonder that intense efforts for maintaining
the levels of noise pollution to a minimum are of utmost importance.

Over the years, organisations around the world, for example the International Civil
Aviation Organisation (2008) and the American Federal Aviation Administration, have
introduced rules and regulations that dictate certain standards regarding noise produced by
aircrafts. These standards serve the ultimate goal of maintaining low noise pollution levels
even though the frequency of flights keeps on increasing. It is clear that in order for the
industry to meet these standards, the use of accurate noise prediction methods is required. The
Council of ICAO has introduced the balanced approach in order to resolve the problem. This
approach is based on understanding the four key elements of aircraft noise management
(International Civil Aviation Organisation (2008), International Coordinating Council
of Aerospace Industries Associations (2004)): reduction of noise at source, land use planning
and management, noise abatement operational procedures and operating restrictions.
Obviously, for the air travel industry the first element is the important one as it effectively
means producing quieter aircraft.

Since the 1960s, the noise produced by aircraft has been greatly reduced. This reduction is the
equivalent of 20dB or in other terms, aircraft have become 75% quieter (International
Coordinating Council of Aerospace Industries Associations (2004)). This is largely due to the
optimisation of the components of the turbofan engine. Specifically, the introduction of the
high bypass ratio turbofan reduced significantly the jet noise which at the time was the
dominant noise source (International Coordinating Council of Aerospace
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Industries Associations (2004) and Astley (2014)). Also, improvements in the sweeping of the
rotors and stators have had an important impact on the noise produced by the fan. The most
important noise control feature found in modern engines is probably the acoustic liners. By
installing an acoustic liner in the fan’s intake and bypass duct system, the modal noise
component is reduced significantly, a fact that has lead to a very comprehensive research on
liners in recent years.

Despite these efforts over the years, new local limitations are constantly being introduced
since the impact on communities near airports is everchanging due to the increase of air traffic.
The certification standards set forth by the Council of ICAO aim to encourage the
manufacturers to comply with all the limitations. The certification levels are determined using
the Effective Perceived Noise Level (EPNL) which is unique for every aircraft and is measured
in EPNLdB (Chapter 4 of International Civil Aviation Organisation (2008)). The EPNL is scaled
to include exposure duration and tonal content. These effective noise levels are measured in
three different positions along the flight path for three different operating conditions. These
three positions are: Approach, Sideline and Cutback or Flyover and are shown in Fig.(1.1).

FIGURE 1.1: ICAO Aircraft Certification Reference Conditions. Taken from International Civil
Aviation Organisation (2008).

Back in 2001 ACARE (2001) set a collection of goals to be achieved by 2020 with the ultimate
aim to maintain a competitive air travel industry whilst reducing the environmental impact to
a minimum. One of these goals was to eliminate noise nuisance. This translated to a reduction
of 50%, but there were no specific details given on how this goal was to be achieved (Astley
(2014)). The goals set forth by ACARE were updated by the European Commission (2011) to
65% reduction of perceived noise emission by 2050, which means a cumulative reduction of 45
EPNLdB for the three operating conditions (Astley (2014)). As stated by Astley (2014), the
European Commission recognised the need for a balanced approach, not only in the sense
expressed by ICAO, but also in a more practical way, meaning that all the noise sources on the
aircraft must be reduced in a uniform way if a cumulative reduction of perceived noise is to be
achieved. This balanced approach requires the ability to predict how the noise sources on the
aircraft interact with each other. Following this approach, this thesis focuses on the interaction
of fan noise, generated by the turbofan, with the adjacent fuselage. The alterations of the
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sound field due to interactions of the noise source with components of the aircraft are called
installation effects and are the main focus of this thesis.

1.1 Aircraft Noise Sources

The most important noise sources can be categorised into three broad groups. Engine noise, jet
noise and airframe noise. The distribution, strength and directivity of these sources depend on
the configuration of the aircraft. The engine position, engine model, fuselage and wing
configuration are all factors to be taken into consideration when one attempts to calculate the
contribution of each source. However, for the commonly used tube-wing configuration, the
noise sources are laid out as shown in Fig.(1.2).

(a) (b)

FIGURE 1.2: [(a)] Aircraft noise sources and [(b)] directivities of engine sources. Taken from
Astley (2014).

Engine noise is usually split into other subcategories. That happens because of the complexity
of the turbojet engine and specifically the turbofan engine. As can be seen in Fig.(1.2), the
engine generates fan and compressor noise from the intake, turbine and combustion noise
from the exhaust outlet and also jet noise is generated when the hot exhaust gases mix with
the usually much cooler ambient fluid (Astley (2014)). Furthermore, airframe noise is always
present. Airframe noise is generated when high-speed unsteady flow impinges on the
components of the airframe (Astley (2014)). Generally, the smoother the airframe geometry the
less noise is generated. Consequently, the main contributors of airframe noise are landing gear,
high-lift devices and trailing edge sources (Lilley (2001)). Generally landing gear noise is
dominant, although according to Smith (1989) the discontinuities on the wing’s geometry such
as flaps and slats can cause a significant increase in the EPNL.

The work in this thesis focuses on the installation effects of fan noise for the following reasons.
The most commonly used turbofan engine ingests air which it then splits into two streams. The
core stream is directed through the compressor into the combustor where it is mixed with fuel
and then burned. After the combustion, the jet of exhaust gases are accelerated and expanded
through the turbine and exits the rear of the engine where it is mixed with the ambient air and
the air of the outer stream. The outer stream of air is directed around the core through a
bypass duct and is accelerated by a fan and then propelled out of the rear of the engine. The
outer stream of air is cooler than the core stream and its speed is considerably smaller. This
difference in conditions leads to the mixing of those two streams to generate jet noise. The
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bigger the discrepancies between the two streams the more noise is generated, leading to jet
noise being the dominant engine noise source over the fan noise, which is the noise generated
by the fan and propagated out of the intake, the bypass and the exhaust duct. Modern high
bypass ratio turbofan engines direct the largest percentage of the air ingested around the core.
This means that the desired thrust is achieved at slower jet velocity. It has been proven by
Lighthill (a)-Lighthill (b), that the intensity of jet noise is scaled by u8, meaning that a
reduction in jet velocity leads to significant reduction in jet noise. As a result, modern engines
tend to generate much less jet noise, effectively making the fan noise the dominant source.

Apart from the jet itself, there are a couple of mechanisms involving the jet that can lead to
potentially powerful noise sources on the aircraft. Experimental studies by Mead and Strange
(1998) revealed that the two main jet noise installation effects are reflection by the wing, which
tends to affect higher frequencies, and interaction between the jet and the wing and its
high-lift devices and/or its trailing edge, which tends to affect lower frequencies. These
installation effects are projected to cause an increase in noise over 2 dB. The jet-wing
interaction noise sources usually resemble the radiation by a dipole with its axis perpendicular
to the wing axis, meaning that the effect is negligible at locations close to the wing axis. One
such location is the fuselage, therefore jet-wing interaction noise sources do not affect the
pressure levels that reach the fuselage. However, more recent publications (Mayoral and
Papamoschou (2013), Bychkov et al. (2016), Bychkov and Faranosov (2018)) point out that this
might be misleading in more modern configurations. Modern configurations incorporate
larger engines and therefore the jet is closer to the wing, exacerbating this effect.

Further theoretical and computational studies on jet-wing interaction sources (Mayoral and
Papamoschou (2013), Bychkov et al. (2016), Bychkov and Faranosov (2018)) have repeatedly
revealed that this phenomenon is largely dominant in the rear arc. Quantitative results show
that propagation in the rear arc is far more pronounced than in the forward arc, with 10 dB
minimum difference. It is important to note that this is true for both near- and far-field cases.
The airframe surfaces that are more likely to be affected by the jet-wing interaction sources are
located downstream of the jet. Jet-wing interaction noise sources have also been investigated
for flight conditions although only in qualitative terms. These qualitative studies (Mead and
Strange (1998), Mayoral and Papamoschou (2013), Bychkov et al. (2016), Bychkov and
Faranosov (2018)) have indicated that higher flight Mach numbers tend to alleviate the effects
especially in the rear arc by compacting the affected area. Therefore, since in this work the
focus is the upstream area (forward arc) and the fuselage surface pressure during flight, it is
deemed that the jet-wing interaction noise sources are relatively small compared to the fan
noise sources.

Apart from the general configuration of the aircraft and its engine, another significant factor
that affects the noise signature of the sources is the operating condition of the aircraft. Figure
(1.3) shows the distribution of the noise sources at the three designated operating conditions
as set forth by the council of ICAO for an aircraft with a high bypass ratio turbofan engine. Jet
noise is dominant only at the sideline position. During the approach, even though the engine
is on idle, fan noise is still a significant contributing factor to the total aircraft EPNL, although
airframe noise is the dominant source. On the other hand, during take-off (or cutback) fan
noise is undoubtedly the dominant noise source. This persistent presence of fan noise is
another reason for its inclusion in this thesis as the main noise source.
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FIGURE 1.3: Noise source distribution. Taken from Lawrence (2014).

Since fan noise appears to be dominant, this thesis will investigate how this noise interacts
with the adjacent aircraft components. The primary aim of the thesis will be the scattering and
refraction of fan noise by the fuselage and its boundary layer. Fan noise includes strong tonal
components, thus the analysis in this thesis will be done using time-harmonic spinning modes
exiting the intake of the engine. Of course, fan noise propagates to the rear of the engine but
the focus of this work will be on sound radiation from the intake duct. The fan broadband
noise problem is by itself a complicated one. It is generated by the interaction between the fan
and turbulence. This interaction leads to the generation of broadband noise that propagates
towards the exhaust of the engine. This mechanism is far too complex to be modeled using
analytic methods and so it is out of the scope of the work presented here.

1.2 Installation Effects

As stated previously the noise generated by the sources on the aircraft will interact with the
rest of the aircraft’s components. These various interactions lead to substantial alterations in
the acoustic field compared with the same source in free space. Alterations are expected both
for the near- and the far-field. For that reason it is misleading to calculate only the free-field
response of the noise source, its interactions must be included. Installation effects are of
utmost importance for the industry since the EPNL measured includes these effects and the
community experiences the noise generated by the aircraft as a whole.

More specifically, the aim of this work is to develop and validate analytic expressions that
describe the acoustic near- and far-field from an installed fan noise source adjacent to a
cylindrical fuselage. This model replicates the real-life situation of a turbofan engine mounted
under the wing with its intake duct next to the fuselage. The derived expressions aim to
simulate the predicted scattering on the fuselage and the predicted refraction due to the
presence of a boundary layer on the fuselage. In this work, the term scattering will refer to
reflection and diffraction around a cylindrical fuselage. The primary noise source will be a
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distributed disc source which aims to simulate an acoustic mode exiting the fan duct. This
mode then radiates and impinges on the fuselage or is refracted as it propagates through the
boundary layer on the fuselage. The total field is calculated in the near- and far-field with the
ultimate goal of providing some insight on the actual acoustic field that the community
experiences.
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FIGURE 1.4: Sketch of an installed turbofan aero-engine. Taken from McAlpine et al. (2015).

1.3 Aim and Objectives

The main aim of this work is to develop theoretical methods to predict the acoustic installation
effects for an advanced ultra high bypass ratio turbofan engine. The ultimate goal of this thesis
is to propose alternative methods that avoid the use of high-fidelity numerical methods. These
numerical methods often prove to be costly and time-consuming. Theoretical methods, on the
other hand, are capable of providing quick and accurate results that facilitate the identification
of trends. More specifically, the work focuses on the scattering of a fan noise source by an
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adjacent cylindrical fuselage, and more importantly on the refraction of sound due to the
boundary layer on the fuselage. The objectives that have been achieved during the course of
this PhD project are:

1. Derive a disc source model that describes the incident pressure in the near- and far-field
radiated from the intake of an Ultra High By-Pass Ratio Turbofan engine. The model will
be based on the previous work of spinning modes exiting an intake duct.

2. Derive analytical expressions for the total pressure on the fuselage surface and in the
far-field after scattering by an adjacent cylindrical fuselage with no boundary layer (only
scattering on the fuselage is considered without a refraction effect).

3. Derive analytical expressions for the total pressure on the fuselage surface and in the
far-field after scattering and refraction by an adjacent cylindrical fuselage with a
rudimentary step-function boundary layer velocity profile.

4. Derive analytical expressions for the total pressure on the fuselage surface and in the
far-field after scattering and refraction by an adjacent cylindrical fuselage with a more
complex linear boundary layer velocity profile.

5. Validate the expressions analytically and then numerically.

6. Investigate an appropriate method to approximate the effects of a more complex and
realistic boundary layer profile, such as the 1/7th power-law profile which resembles a
turbulent boundary layer, by using the simplified step-function or linear profiles.

7. Conduct a parametric multimodal study in which the pressure on the fuselage surface
and in the far-field is calculated for realistic aircraft dimensions and varying flight
parameters:

• Dominant mode’s cut-off ratio.

• Flight altitude.

• Flight Mach number.

• Fan rpm or frequency.

• Boundary-layer thickness.

1.4 Original Contributions

Most previous work on acoustic installation effects has been focused on the scattering and
refraction of a propeller noise source by a cylindrical fuselage. Since propeller aircraft are on
the decline for the last 30 years and turbofan engines are now the most commonly used
propulsion system it is pertinent to investigate installation effects for fan noise sources. The
scattering of a fan noise source has only very recently been investigated by McAlpine et al.
(2015). Their work focused on the near-field, specifically on the pressure on the fuselage
surface. This thesis will use the same disc source as derived in McAlpine et al. (2015).
However, unlike in McAlpine et al. (2015), this thesis will also focus on both the near- the
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far-field pressure, giving an insight into the installation effects that impact the community. The
acoustic far-field for an installed engine has been investigated before but only for a propeller
noise source (Lu (1990)). So far, that far-field problem has never been applied to fan noise.
Therefore, the derivation of an expression that describes the acoustic far-field when a fan noise
source is scattered on an adjacent cylindrical fuselage (with and without a boundary layer) is
an original contribution.

This thesis also aims to develop analytic methods to solve the boundary layer problem. So far,
in order to investigate the refraction effect of the fuselage boundary layer, previous researchers
have utilised numerical methods. Given that a realistically thin boundary layer allows the use
of asymptotic methods and the fact that high-fidelity numerical methods can be
time-consuming, it is beneficial to develop a fully analytic approach. That is why the ultimate
goal of this thesis is to develop methods that are analytic and avoid the use of more complex
and costly hybrid approaches that combine low- and high-fidelity methods that have already
been used in previous work. Therefore, another original contribution of this thesis is the
development of theoretical methods to solve the problem of sound propagation through a
shear layer. This is performed by using simplified velocity profiles: either a step-function
profile or a linear profile.

In the case of the rudimentary step-function velocity profile, the analysis is split into two
solutions: inside and outside of the boundary layer. Both these regions are governed by the
Helmholtz equation, thus the two solutions are matched at the edge of the boundary layer to
obtain the total installed field. This procedure has been proposed by Hanson (1984) who used
a propeller noise source and assumed no flow inside the boundary layer. The novel
contribution of this thesis is the use of a fan noise source and a generalisation of the
step-function profile to include any constant arbitrary Mach number inside the boundary
layer. The novel solution is then extended to include expressions for both the pressure on the
fuselage surface and on the far-field.

In the case of the linear velocity profile, the analysis is again split into two solutions inside and
outside the boundary layer. The challenge and original contribution here is solving
analytically the Pridmore-Brown equation (Pridmore-Brown (1958)), which governs the sound
propagation inside the shear layer. All previous work resorted to using numerical methods to
solve the Pridmore-Brown equation. The novel work in this thesis proposes using an
asymptotic method used in duct acoustics by Eversman and Beckemeyer (1972), in order to
solve the equation analytically. The two solutions are then matched at the edge of the
boundary layer to obtain the total installed field. The novel final solution is then extended to
include expressions for both the pressure on the fuselage surface and in the far-field.

Another original contribution in this thesis is the investigation of the optimal method to utilise
a simplified profile (linear or step-function) that approximates the same refraction effect as a
more complex boundary-layer profile, such as the 1/7th power-law profile which resembles a
turbulent boundary layer. To the best of the author’s knowledge, the methods presented have
not been considered before.

Finally, since the methods proposed here are theoretical and avoid the use of costly numerical
methods, a parametric multimodal study is conducted that allows a wide range of varying
parameters to be tested. This study produces results on the fuselage surface and far-field
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pressure for different stages of flight allowing for quick, accurate and realistic trends to be
identified. Such a wide range of results represents the validation of an original and novel
theoretical tool that can be very useful in future applications.

A part of the results and derivations presented in this thesis has been presented before in the
published papers, Rouvas and McAlpine (2021), Rouvas and McAlpine (2022b), Rouvas and
McAlpine (2022a).

1.5 Layout of the Thesis

Every objective mentioned above is fulfilled in the chapters that follow.
Chapter 2: Literature Review. In this chapter, the literature on installation effects, fan tone
propagation and sound propagation through a shear layer is studied and presented. By
studying the various publications on the subject of installation acoustics the potential research
areas are identified.
Chapter 3: Theoretical Analysis. As mentioned before, the focus of the work in this thesis is the
development of theoretical methods. In this chapter, expressions for the far-field and near-field
acoustic pressure around the cylindrical fuselage are derived. Firstly, the analysis is conducted
assuming no boundary layer on the fuselage. The second section includes the analysis with
the presence of a step-function boundary layer profile on the fuselage. The third section
includes the analysis with the presence of a linear boundary layer profile on the fuselage. The
expressions are validated analytically by reducing them to known solutions.
Chapter 4: Code Development. The derived expressions are coded and their convergence rate is
investigated. Numerical problems are encountered and solved using approximations.
Chapter 5: Validation. The generated code is used to produce results that will further prove the
validity of the derived expressions. This is done by comparing the results with equivalent
results generated using numerical methods. Parameters such as frequency, Mach number and
boundary-layer thickness are investigated. The limitations of the theoretical methods are
investigated.
Chapter 6: Parametric Study Results. The layout of the parametric study is presented and the
flight parameters to be used are presented. The key results and conclusions are presented.
Useful trends are identified.
Chapter 7: Discussion of the Results. The parametric study results are revisited in order to gain
perspective and insight into the trends that have been revealed. Also, a comparison between
the results generated using a step-function profile and the results generated using a linear
profile is conducted.
Chapter 8: Conclusion. The key results and conclusions presented in this thesis are summarised
and suggestions for future work are proposed.
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Chapter 2

Literature Review

In the following chapter, a review of the key publications on acoustic installation effects is
presented. The purpose of this chapter is to identify the gaps in knowledge concerning
installation effects so that realistic objectives can be set and original contributions can be made.
The papers reviewed here deal with installation effects caused by the fuselage, namely
scattering around the fuselage. By the end of this chapter it will be shown that research on
installation effects only recently included a fan noise source. Previously, all the work regarding
acoustic installation effects used propeller noise sources or other elementary sources. As
explained in the introduction, in recent decades the turbofan engine has surpassed in
popularity all other means of propulsion, meaning that a deeper understanding of the
scattering of a fan noise source by the fuselage is desirable. The review starts by giving a
background on fan-tone radiation. Then the simplest case of noise scattering around the
fuselage without a boundary layer is presented. Due to the importance of the presence of a
boundary layer on the fuselage, a comprehensive background is presented on sound
propagation through a shear layer. Lastly, a thorough review is given on how the boundary
layer affects the scattering around the fuselage.

2.1 Fan-tone Radiation

Since the work described in this report concerns mainly the acoustic installation effects of a
turbofan engine, it would be helpful to describe its basic functions and provide some insight
on how it generates and radiates sound. A turbofan engine works on the basic principle of
compressing air, combusting it and then propelling it backwards from the rear of the engine.
Firstly, a large portion of the air ingested by the engine is compressed through the fan. This
compressed bypassed air is accelerated to the rear outlet of the engine thus producing thrust.
A smaller portion of the air ingested is directed into a compressor located behind the fan.
There, the air is gradually compressed before it reaches the next component of the engine
which is the combustion chambers. At these chambers the compressed air is mixed with fuel
and then burned. The resulting exhaust fumes expand and accelerate towards the rear outlet
of the engine while passing through a turbine. After exiting the turbine, the exhaust fumes are
propelled out of the rear outlet of the engine in the form of a jet. All these complex rotating
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mechanisms generate sound which propagates to the front and rear of the engine where it
ultimately radiates to the open space. A very comprehensive study on fan noise generation
and propagation was conducted by Tyler and Sofrin (1962) and their findings are presented
below.

Tyler and Sofrin (1962) firstly described the generating mechanisms of noise inside a turbofan
engine. They focused their research on rotor noise and rotor-stator noise, meaning the noise
generated by the rotation of the blades of the rotor or their interaction with the vanes of the
stator, since the two most significant generating mechanisms are the steady aerodynamic blade
loading and blade thickness. Additionally, the authors focused on the importance of the blade
passing frequency since it is the dominant frequency in the spectrum of turbofan noise. The
significance of these factors was verified with experimental tests, which revealed that the
pressure field for rotor only configurations consisted of a group of lobed patterns rotating at
the same speed as the rotor. Also, the number of lobes on each pattern was related to the BPF
or its harmonics, meaning that the first pattern (associated with the first BPF) had as many
lobes as the blades, while the second pattern (associated with the second harmonic of the BPF)
had twice as many lobes. The amplitude of the lobes was found to be dependent on the
aerodynamic characteristics of the blades. It became clear that the pressure pattern will always
be rotor-locked no matter the characteristics of the blade. It was noted that this was not the
case for rotor-stator interaction.

Tyler and Sofrin modeled the transmission of these lobed patterns along the inlet duct of the
turbofan engine. They firstly assumed a rectangular duct and came to the conclusion that the
transmission of the pressure patterns depends on the driving frequency. When the driving
frequency is above or below a certain value, called cut-off, the transmission behaves very
differently. In the mathematical analysis, the transmission or propagation of the pressure
pattern depends on an exponent with imaginary argument. When the frequency is below a
certain value the argument of the exponent becomes real and so the expression for the
pressure becomes exponentially decaying. On the other hand, when the frequency is above
this critical value, the exponent’s argument is imaginary and so it describes a harmonic
fluctuation. The authors actually concluded that the exponential decay is greater when the
frequency is well below the cut-off frequency. It became clear that only certain frequencies and
modes can propagate inside a duct.

The same physical properties were observed for an annular duct, although the expressions
were different. The main difference in the mathematical analysis between the cylindrical and
the rectangular duct is the presence of Bessel functions in the expression for the eigenmodes.
In an annular duct, the sound waves behave like standing waves in the radial direction and
their shape is described by a Bessel function. The argument of the Bessel function is dependent
on the radius of the duct and its boundary condition. This boundary condition refers to the
inner wall of the duct. By changing this boundary condition the pressure field can be altered
and attenuated. This boundary condition can be altered by placing liners on the inside of the
duct’s walls. The authors came to the same conclusion as in the case of the rectangular duct
that the propagation of the pressure pattern depends on the driving frequency. In the case of
the annular duct, the factor which determines the propagation or not of the pressure field is
the circumferential Mach number. This is the Mach number at which the pressure pattern
sweeps the duct’s walls and is controlled by the value of the frequency.
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A very important observation made by Tyler and Sofrin (1962) was that concerning the
rotor-stator interaction. A rotor will produce a single lobed pattern for a single frequency,
speed and number of blades. A rotor-stator structure will produce for the same characteristics
various lobed patterns rotating at various speeds. Once again, the lobed patterns are a product
of the periodic interaction of the blade wakes from the rotor and the stator vanes, meaning that
only their amplitude is dependent on the geometric and aerodynamic characteristics of the
blades and vanes. In fact there are an infinite number of possible patterns or modes but only a
finite number of them propagate and those modes can be determined using the number of
blades and vanes. This has been a very important discovery because by selecting the number
of blades and vanes it can be determined which modes will propagate while all the others will
be cut-off and exponentially decay.

Lastly, Tyler and Sofrin modeled the radiation of these lobes out of the duct. These “spinning
modes” can be used to model a distributed source at the face of the duct termination. The
acoustic axial particle velocity can be obtained from the pressure pattern of the mode. The
particle velocity can be used to formulate a Raleigh integral which will yield a distribution of
monopoles on the area of the duct termination. The authors used this distributed source to
model the radiation of the spinning modes out of the duct termination. Their results were
presented in the form of polar directivity plots. The common characteristic of these plots was
that, apart from the case of the plane wave, all other modes had zero pressure at the duct’s
centerline. Another trend discovered was the dependency on frequency and order of the
mode. The higher the frequency or the order of the mode, the more secondary lobes appear on
the directivity plot. Also, at high frequencies the principal lobe tends to be closer to the duct’s
centerline. Finally, the authors pointed out that due to the complexity of the fan noise
directivity, in comparison to the jet noise, it is very important that atmospheric turbulence and
temperature gradient be taken into account when one attempts to calculate the far-field
radiation of the fan modes.

More recent work in fan tone radiation and propagation has been conducted by Schwaller
et al. (1997). During their work, noise measurements were taken in the intake and in the
far-field of a fan test rig which had three configurations regarding the intake geometry,
ranging from a simple intake to a more complex droop intake. The purpose of this work was
to determine the influence of the intake geometry on the modal output of the fan engine. The
droop intake geometry will introduce distortion in the flow which will interact with the fan
and produce propagating modes. Their findings provide insight into the modal breakdown of
a fan engine which was possible with the use of a rotating microphone array. The rotor-locked
or rotor-alone mode that occurs when the fan tip speed becomes supersonic proves to be very
important as it dominates the other modes when it is cut-on by 10 dB or more. Another
conclusion by Schwaller et al. (1997) is that the intake distortion tends to offset the sound
energy towards the previous azimuthal order mode compared to the rotor-locked mode,
highlighting the importance of the rotor-locked mode.

Similar work was later conducted by Schwaller et al. (2006). Once again, a test rig was
constructed that was 1/3rd scale model of an actual fan engine. The purpose of the work
presented in this paper was to prove the effectiveness of a scale model and its ability to
produce results that are very similar to that of a full scale engine model. As in Schwaller et al.
(1997), the configuration had a droop intake which greatly influences the noise measurements.
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Results revealed a good agreement between the test rig and the full scale engine
measurements except at low frequencies where jet noise tends to dominate fan noise. An
interesting conclusion is the difference between the measured broadband and buzz-saw noise.
In the case of the broadband noise, the levels were higher when the droop intake was pointed
towards the observer whereas the opposite was true for the buzz-saw noise. That stems from
the fact that buzz-saw noise is dominated by the rotor-locked mode which is characterised by
low cut-off ratio. Furthermore, as in Schwaller et al. (1997), the importance of the rotor-locked
mode is exhibited and the distortion modes created by the droop intake. The distortion modes
are on either azimuthal side of the rotor-locked mode and exhibit the same increase in noise
levels of up to 20 dB compared with the rest of the modes detected.

Important work on mode detection and radiation has also been conducted by Achunche et al.
(2009). In this work, a prediction method for fan tone radiation and propagation is proposed
based on finite element (FE) methods and the results are compared with noise measurements
from a 1/3rd scale model of a fan. The conclusions are remarkably similar to previous papers
on mode detection, meaning that the equal energy per mode assumption is valid until
supersonic fan tip speeds. Once the tip velocities are supersonic, the rotor-locked mode
dominates over the other modes by at least 20 dB.

2.2 Scattering By the Fuselage Without a Boundary Layer

Research on purely scattering effects without the inclusion of a boundary layer on the fuselage
has been conducted with interesting results. It is important to note that earlier publications
considered propeller noise sources due to the popularity of the propeller against the fan
engine at the time. Initially, Fuller (1989) developed a mathematical formulation to calculate a
correction factor which can be used to correct the free-field pressure when there is a cylindrical
fuselage present. Fuller’s model was fairly simple as it did not include a mean flow so it
focused solely on scattering effects and not refraction effects caused by the boundary layer.
Fuller (1989) used both monopole and dipole sources in an attempt to simulate more
accurately a propeller noise source. The obtained correction factor was simply the ratio of the
free-field to the total acoustic pressure. The analysis used the Graf’s addition theorem the
same way it had been done for previous publications. There was no need for a Frobenius
method since there is no flow hence no boundary layer. Fuller (1989) chose to present the
results in terms of varying frequency and source location. The results reveal that frequency
plays a very important role even without a boundary layer. More specifically, the higher the
frequency the clearer the shadow zone behind the cylindrical fuselage. This can be explained
due to the fact that lower frequencies tend to diffract around the cylinder more than higher
frequencies meaning that at low frequencies the shadow zone tends to shrink due to more
creeping waves arriving at this location. Also, Fuller observed that by moving the source away
from the cylinder the correction factor was increased at the front of the cylinder. This
happened because when the source is far away from the surface, the incidence angle
approaches normal incidence in which case reflection is stronger than diffraction around the
cylinder. Fuller (1989) also conducted some calculations using a dipole as a source. The main
difference between the dipole and the monopole results was that the dipole results were more
oscillatory, a fact that is attributed to the highly directional nature of the dipole. Finally, Fuller
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constructed a rudimentary model for a propeller noise source using a rotating dipole. The
results revealed that the correction factor is highly sensitive to the position of the blade or the
dipole due to the directional nature of the source.

Another significant work on the scattering effect of the fuselage without a boundary layer was
done by McAlpine and Kingan (2012). In their paper, they focused on the far-field radiation of
an installed open rotor using distributed sources of rotating monopoles and dipoles to
simulate a realistic propeller noise source. The methodology used in that work was similar to
previous publications. The incident field was derived centered on the propeller and later
shifted to another coordinate system centered on the cylindrical fuselage, whilst the scattered
field is expressed as cylindrical outgoing waves. The expressions for the far-field obtained by
McAlpine and Kingan were consistent with far-field analysis, such as the strong dependence
on Bessel and Hankel functions. However, due to the added complexity of the propeller noise
sources used, the expressions included multiple summations which led to the authors
conducting a convergence study. They concluded that convergence is dependent to the
“relative” Mach number which depends on the flight speed and the rotation speed of the
propeller. Illustrative results were provided in the form of azimuthal directivity plots. These
plots showed the distinctive shadow zone behind the fuselage and also revealed that the
far-field pressure is dependent on geometrical characteristics such as the propeller’s radius or
its distance from the cylindrical fuselage. McAlpine and Kingan also extended the model to
include predictions for unsteady loading on the installed rotor. They used an impulsive
excitation which resembles the sound field produced when the wake from a pylon interacts
with the rotor’s blade. Once again, the azuimuthal directivity plot revealed that the far-field
pressure is dependent on the location of the fuselage and the rotor.

As mentioned before, the turbofan engine is much more widely used these days which led to
the work of McAlpine et al. (2015). This paper’s main distinctive feature was the introduction
of a fan noise source as opposed to a propeller noise source which had been used previously.
To model the fan noise source, the Rayleigh integral was used as suggested by Tyler and Sofrin
(1962). The axial particle velocity of a spinning mode is used to obtain a distribution of
monopoles on a disc source located at the face of the inlet duct. This method was first
introduced by Tyler and Sofrin (1962). This distributed disc source is used to obtain the
incident field caused by the spinning mode exiting the fan inlet. Then, the methodology
applied is the same as in McAlpine and Kingan (2012). It is important to note that initially no
boundary layer is included in the model by McAlpine et al. (2015). The near-field expression
derived by McAlpine et al. bears similarities with the near-field expression of McAlpine and
Kingan (2012), but with key differences relating to the source terms. McAlpine et al. did not
extend the model to the far-field. Since the use of this distributed source was new to the field
of acoustic installation effects, a validation study was performed to assess whether the
distributed source could accurately model a spinning mode exiting than fan inlet. As
expected, the distributed source was able to model accurately the spinning mode up to 75o

polar angles at which point the diffraction on the duct lip became dominant and was not
modeled by the distributed disc source. The diffraction around the duct’s lip can be modeled
using the Wiener-Hopf method as will be seen later. In order to validate the scattered field
expression, the results were compared to the results by Fuller (1989). This meant that the
derived expression had to be reduced to a stationary monopole, but nevertheless the
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comparison showed very good agreement. Once again, a convergence study was required
since, as in all previous work, the pressure is expressed in terms of Fourier series. The
convergence results showed that for relatively high frequency, more that 150 harmonics are
required for the series to converge. Finally, some illustrative results were presented. In that
paper the focus was on the near-field pressure, more specifically the pressure on the surface of
the fuselage. The results once again showed a clear shadow zone at the side of the fuselage
away from the source, whereas on the side of the source a doubling of pressure was observed
corresponding to a near normal incidence and reflection on the surface of the fuselage.
Another interesting observation was that the maximum pressure level was not predicted in the
plane of the source but further upstream of it. That was because the principal lobes of the
spinning modes considered were not directed at 90o since at that point diffraction would play
a far more important role.

M
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FIGURE 2.1: Sketch of refracted rays downstream and upstream of the source. Taken from
Gaffney (2016).

All publications that did not include a boundary layer recognised this omission. Indeed, those
solutions failed to predict accurately the noise levels on the fuselage since experimental results
showed considerably lower noise levels than the predicted ones (as shown in McAninch (1983)
and Hanson and Magliozzi (1985) which will be discussed in depth). This apparent shielding
is due to the refraction of sound upstream of the source, see Fig. (2.1). Therefore, the following
section thoroughly reviews previous research that aimed to model how sound propagation is
altered when a shear layer is present in the flow. Subsequently, a section follows that explains
how the sound propagation through a shear layer is applied to the fuselage scattering problem.

2.3 Sound Propagation Through Shear Layers

The problem of sound propagation through a shear layer is governed by the Pridmore-Brown
equation. Since the scope of the present work is to highlight and use different and novel
methods, mainly analytic, it is deemed necessary to provide a review of additional techniques
used to overcome the difficulty of solving the Pridmore-Brown equation. These techniques are
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used mainly in duct and liner acoustics when the flow in the duct includes shear boundary
layers at the duct walls. A lot of focus should be given in the use of asymptotic methods since
they provide an analytic solution to the problem without sacrificing too much accuracy.
However, as will be seen in later sections, many recent publications treat the problem of sound
passing through a shear layer mainly by employing numerical methods and bridging the
singularity present in the Pridmore-Brown equation using the Frobenius method. A thorough
review of these methods and how they apply on the fuselage scattering problem will follow in
section 2.3.2.

Pridmore-Brown (1958) was the first to attempt to solve the differential equation which was
later named after him. In his paper he simplified the problem by only considering
two-dimensional flow over a simple plane wall. This flow develops a shear layer above the
wall and he proceeded in studying the effects of that shear in the downstream propagating
acoustic plane wave. In the paper, two velocity profiles were investigated, a simplified linear
and a more realistic 1/7th power law turbulent layer profile. Firstly, the two-dimensional
differential equation is solved for a linear profile using an approximate method proposed by
Langer (1937). This allows an analytic solution to the problem as long as the Mach gradient in
the shear is sufficiently small. Then the problem is reduced to a simple eigenvalue problem.
Pridmore-Brown (1958) produced results for a medium and small velocity gradient, which
revealed that the shear affects the higher frequencies more than it does the lower ones. The
same technique was used to solve the equation for the turbulent layer. In this case the
approximate solution proposed by Langer (1937) breaks down at the wall, but this singularity
is bridged using a Laurent series. The turbulent layer results revealed the same trends as the
linear case, leading the author to suggest that a very good estimate for the realistic turbulent
layer can be achieved by using an equivalent linear boundary layer profile. Pridmore-Brown
(1958) also produced some results for acoustically soft walls, which revealed that the change of
the attenuation due to the lining of the wall is minimal when the boundary layer thickness is
comparable to the wavelength of the acoustic wave. That was expected since in that case the
refraction effect is very small compared to higher frequencies.

The work by Pridmore-Brown (1958) inspired a lot of subsequent research on the subject.
Mungur and Gladwell (1969) were the first ones to improve on Pridmore-Brown’s work. Their
analysis was also confined to two dimensions but they included viscosity terms in order to
investigate its effects on the propagation through the shear, although certain assumptions
were made, namely the temperature gradient being constant across the duct. Firstly, Mungur
and Gladwell (1969) validated the expression by investigating the inviscid case and comparing
it to the results by Pridmore-Brown (1958). The expression successfully reduces to the
two-dimensional Pridmore-Brown equation when viscosity is set to zero. In terms of solving
the equation, Mungur and Gladwell (1969) employed a fourth order Runge-Kutta scheme
assuming a power law profile. By doing so they eliminated the singularity at the wall present
in Pridmore-Brown’s paper, while the numerical results were very close to Pridmore-Brown’s
results. They also proceeded to solve the problem that included a finite impedance on the
walls. The complexity of the analysis was increased in that case but the results were more
realistic since the Pridmore-Brown method assumed the same pressure distribution across the
duct for both rigid and soft walls.
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Mungur and Plumblee (1969) extended the analysis of Mungur and Gladwell (1969) to
investigate the effects of wall impedance in an annular duct. They also assumed a duct with
finite length and introduced reflection at the duct termination. They begun by deriving the
Pridmore-Brown equation for cylindrical coordinates and employed the
nondimensionalisation that all subsequent papers on the subject used. This
nondimensionalisation can be applied to any circular duct. They initially validated the
expression by reducing the shear to a uniform flow and recovered the Bessel equation. Further
validation was performed by investigating the uniform flow case both for rigid and nonrigid
walls. The general inviscid case with finite wall impedance was then solved by employing an
extended version of the Runge-Kutta scheme used in Mungur and Gladwell (1969). The paper
presented an extensive parametric study with parameters like effects of sheared flow on mode
shapes and propagation and attenuation constants, with focus given especially on the effects
of shear on the attenuation. The boundary layer thickness varied from 1.5% to 12.5% of the
annular radius while the profile chosen was a quarter sine. The results indicated that with
increasing boundary layer thickness the attenuation was increased downstream because
sound was refracted towards the walls. Also, Mungur and Plumblee (1969) concluded that the
differences in attenuation are too large to ignore the shear effects. Another interesting
conclusion reached in this study was that it is inaccurate to use measurements from a
rectangular duct to predict the attenuation of an annular duct.

A different technique was used by Shankar (1971). Shankar (1971) addressed an issue that had
not been addressed before. He did not make any assumptions regarding the form of the
solution and instead used a perturbation scheme to obtain a solution. By doing so, the solution
was expressed in terms of a given sound pressure distribution which was determined by the
source. By using an initial plane wave perturbation, the solution could be written in a power
series form. Then the large time solution could be obtained which would give the pressure
distribution long after initial perturbation has passed and the transient effects have dissipated.
The results showed that refraction is dependent on the relation between the wavelength and
the duct width. Furthermore, Shankar (1971) concluded that upstream sound was refracted
away from the wall, and with increasing frequency and Mach number the effects of the shear
were also increased as expected. Shankar (1971) also pointed out that this method is confined
by the limitations of the perturbation scheme, meaning that when the shear effects become too
large they can no longer be treated as a small perturbation.

Mariano (1971) was another researcher who investigated the effect of shear layer in the
attenuation of a lined duct. He employed a finite difference scheme to solve the
Pridmore-Brown equation in a three-dimensional rectangular duct with lined walls with
viscosity and temperature effects neglected. The aim of this work was to calculate the
attenuation spectra along the duct. Mariano’s work was also focused on investigating the
practicality of using a linear velocity profile. More specifically he performed simulations both
for the 1/7th power law profile and an equivalent linear profile with half the thickness and the
results were indeed very close. This led to establishing a practical law that allows any
turbulent boundary layer profile to be replaced with an equivalent linear without sacrificing
accuracy. This was also suggested by Pridmore-Brown (1958). In order to estimate the value
for a typical boundary layer thickness, Mariano (1971) used flat plate theory to evaluate the
growth of the turbulent layer. He assumed a constant value of the boundary layer thickness
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calculated at the center of the duct. Results were presented in a range of parameters, such as
Mach number, boundary layer thickness and the effect of slip on the wall. The boundary layer
thickness varied from 0.1% to 13.8% of the duct width and once again it largely affects the
attenuation spectra. As in previous publications the larger the boundary layer thickness the
larger the attenuation upstream. Also, it was reported that the cases with no slip at the wall
demonstrated larger decrease in attenuation. One distinctive feature of Mariano’s paper is the
comparison with experimental results. Measurements of the attenuation spectra were obtained
from three different materials. The comparison with the theoretical prediction revealed that
the prediction is very accurate on the upstream but slightly worse on the downstream.
Mariano (1971) concluded that the effect of the shear is much more important and pronounced
in the upstream than in downstream, and that the slip on the wall decreased the effect.

Ko (1972) also studied the effect of shear on the attenuation spectra. More specifically he
studied a circular duct and focused on the effect the shear has on the effectiveness of the liner.
Like Mariano (1971), he also used a finite difference scheme, specifically the central difference
formula along different radial stations of the duct and the liner. Ko (1972) proceeded to
conduct a thorough parametric study focused on the characteristics of the flow as well as the
characteristics of the liner. He investigated the effect on the attenuation of boundary layer
thickness, Mach number, frequency of the facing sheet, lining thickness and duct length. He
also compared some results with experimental measurements. He concluded that contrary to
popular belief, the fundamental mode might not be the least attenuated and that is because
there is a wide range of parameters that determine the attenuation and very important
amongst them is the boundary layer thickness. As expected, increased boundary layer
thickness led to considerable decrease in the attenuation upstream. Once again, Ko (1972)
underlines the importance of the presence of the shear for the upstream since the downstream
effects are negligible.

Another researcher that attempted to investigate the effect of boundary layer on the
attenuation of a lined circular duct was Eversman (1970). His motive was the discrepancies
between the uniform flow predictions and the actual experimental measurements. The
method used by Eversman (1970) is based on Mungur and Plumblee’s work with suitable
modifications since contrary to Mungur and Plumblee’s case where the duct was annular, now
the duct is circular which means there is a singularity at its center. As mentioned above,
Eversman (1970) uses the same Runge-Kutta technique to solve the problem but in order to
bridge the singularity at the center of the duct, he introduces a power series solution near the
center. Eversman (1970) investigated three different boundary layer thicknesses ranging from
0% to 10% of the duct radius. The conclusions he drew are very similar to the conclusions that
were reached by other researchers mentioned above. First of all, the downstream effects are
negligible while the upstream effects are quite pronounced. Secondly, larger boundary layer
thickness leads to a reduction in the attenuation upstream since more and more sound is
refracted away from the wall. These conclusions led Eversman (1970) to suggest that liner
performance is better downstream.

Eversman and Beckemeyer (1972) recognised that a Runge-Kutta method will always suffer
from high computational cost as all numerical methods do. They decided to introduce an
asymptotic method to solve the Pridmore-Brown equation. For thin boundary layers the
solution inside the boundary layer can be asymptotically expressed as a power series. That
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allows the solution to be in terms of integrals that can be solved analytically especially for
simpler profiles like the linear profile or the quarter-sine profile. Of course this method, being
an asymptotic solution, is valid only for sufficiently small boundary layer thicknesses
compared to the radius of the circular duct. It is evident then, that a validation study is in
order. Some initial results were presented by Eversman and Beckemeyer (1972) that involved
comparison with an exact Runge-Kutta solution. The comparison revealed that the
approximate solution is remarkably close to the exact one. However, this initial study was for
a very thin boundary layer (just 0.5% of the duct radius) and a very small Helmholtz number;
conditions that do not constitute a realistic example.

Eversman (1972) published shortly after Eversman and Beckemeyer (1972) the validation
study needed for the asymptotic expansion method. In this more recent paper, Eversman
(1972) presented comparisons with the Runge-Kutta method but this time for boundary layer
thicknesses up to 10% of the duct radius. Also, the Helmholtz numbers this time were higher
although still considered medium to low. The results revealed that the approximate method is
reliable even for very thick boundary layers. Of course, the accuracy tends to decrease with
larger boundary layer thicknesses but the error is less than 20% for thick boundary layers
which according to Eversman (1972) is acceptable for many practical applications. One
unexpected conclusion reached by Eversman (1972) is that there is deviation in the lower
frequencies from the exact solution. According to him, this is because of the impedance on the
walls which is very sensitive to change in low frequencies.

Finally, Goldstein and Rice (1973) introduced an entirely new method of solving the problem
analytically. In their paper they attempt to evaluate an effective wall impedance that will
replace the boundary layer as a boundary condition in a two-dimensional duct. Goldstein and
Rice (1973) assumed a linear boundary layer profile. By making that assumption and with an
elaborate change of variable the equation reduces to Weber’s equation which has a known
analytic solution expressed in Parabolic Cylinder Functions (PCFs). These PCFs allow the
two-dimensional problem to be solved entirely analytically. In addition, Goldstein and Rice’s
method does not appear to have a strict restriction regarding the thickness of the boundary
layer although they do mention that a very thick boundary layer compared to the wavelength
may present complications. Unfortunately, Goldstein and Rice (1973) did not present any
results of a more practical interest that would facilitate the validation of that method.

It was not until Scott (1979) used this technique to evaluate the far-field effect when sound
passes through a linear shear. Scott’s objective was to produce polar directivity plots for
multipole sources either close or inside the shear. He used line sources comprised by
monopoles, dipoles and quadrupoles. His governing equation was two-dimensional as in
Goldstein and Rice (1973). The differential equation is solved using the analysis proposed by
Goldstein and Rice (1973) which meant that the expressions are dependent on PCFs. Scott
(1979) derived not only exact expressions for the far-field directivity but approximate ones for
low and high frequency. This corresponds to small and large argument approximations for the
PCFs. Once again it was revealed that the boundary layer thickness is paramount in
determining the shear effect on sound. Scott’s work also revealed the difficult nature of PCFs,
since their computation poses certain challenges. More specifically, the code used for the exact
calculation of the PCFs struggled at high frequencies, although at that point the large
argument approximation could reliably replace the exact expression. In addition, a lot of
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difficulties were encountered at the calculation of the directivity at certain polar angles either
because of singular points or because of inability of the code to compute the PCFs. Despite
these difficulties, Scott (1979) concluded that this method is reliable for the evaluation of the
polar directivity.

2.3.1 Two-dimensional Problem

In more recent publications several attempts have been made to analytically solve the problem
of sound propagation through a shear layer. These publications are characterised by the
simplicity of the boundary layer, which is usually two-dimensional, and the simplicity of the
source, point or line sources.

Jones (1977) was one of the first researchers to examine the problem of sound travelling
through a two-dimensional linear shear. The source used was a simple time-harmonic line
source. The sound would then propagate through the two-dimensional layer from lower Mach
number to the flow above it where the free stream value of the Mach number is achieved. The
main objective by Jones (1977) was to determine a limit of the layer thickness over which the
layer can no longer be simplified by a vortex sheet. Jones (1977) concluded that the vortex
sheet assumption is only valid for very thin layers. This is a conclusion reached by future
researchers too. Around the same time Amiet (1978) focused on the refraction of sound by a
shear layer. His scope was to determine which parameters are important when one considers
an open jet wind tunnel shear layer correction. Amiet (1978) found that the layer thickness is
not important at the high Mach numbers achieved in open jet tunnels. On the contrary, he
concluded that the shear layer shape can be more important in determining the correction
factor. It should be noted that the analytical expressions developed by Amiet (1978) assume
either an infinitesimally small or infinitely large shear layer thickness.

Campos et al. (1999), proposed linearly independent solutions based around the critical layer
that occurs in a linear shear. The critical layer is the layer on which the Pridmore-Brown
equation is singular and therefore is no longer valid. Physically the critical layer corresponds
to a point at which the phase velocity of pressure perturbation equals the local velocity of the
free stream. By moving the critical layer at the wall boundary and using the Frobenius
method, a final solution can be obtained for an incident wave that has the form of an acoustic
perturbation inside the boundary layer. The Frobenius solution and its advantages are
discussed in section 2.3.2. Campos and Serrao (1998) extended the theory to include an
exponential velocity profile and focused on the same effects, namely the ability of the critical
layer to act as an absorption mechanism for sound.

Campos and Kobayashi (Campos and Kobayashi (2000), Campos (2000)), explored a more
realistic example phenomenon of a shear with finite thickness between two free stream flows.
This phenomenon is usually present at flow separation in high Mach number flows. They
used hyperbolic tangent velocity profiles and examined the reflected and transmitted waves
through the transitioning flows. Campos and Kobayashi (2000) performed several examples
including varying shear layer thickness compared to the wavelength and angle of incidence.
They concluded that contrary to previous findings (Miles (1958)), the thickness of the shear
layer is very important. Only for thicknesses considerably smaller than the wavelength can the
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assumption of a vortex sheet be used. For thicker layers, the sound flow interaction must be
considered.

Campos and Kobayashi (2009) continued their work and introduced temperature gradients
inside the shear that are associated with the varying sound speed inside the shear. They
assumed constant enthalpy in order to create the temperature profile inside the shear. The
challenge in Campos and Kobayashi (2009) was the fact that the critical layers present on the
problem are now two instead of one. There is the critical layer associated with the flow, where
the Doppler shifted frequency vanishes which has been investigated in previous work
(Campos and Kobayashi (2000)), and the layer where the speed of sound vanishes which
creates another regular singularity. The three profiles used in the analysis were the linear,
exponential and the hyperbolic tangent. Campos and Kobayashi (2010) also placed a
rudimentary line source outside the boundary layer in order to model the refraction and
reflection of the shear layer. They concluded that the temperature gradient only affects the
refraction levels when the Mach number is supersonic. When the Mach number is subsonic,
the velocity profile is the one that plays the major role on the refraction behavior.

2.3.2 Frobenius Series Solution

It is the author’s opinion that the Frobenius solution to the problem of sound refraction by a
shear boundary layer merits its own section since it proved to be very influential and has
commonly been used to solve the Pridmore-Brown equation. Furthermore, as will be seen
later, this solution is used consistently in problems involving scattering by the fuselage and its
boundary layer for both propeller and fan noise sources.

McAninch (1983) was the first one to attempt to explain the apparent shielding effect caused
by the boundary layer. As mentioned before in section 2.2, experimental results (McAninch
(1983), Hanson and Magliozzi (1985)) showed that there is a discrepancy between the
theoretical predictions that omit the boundary layer and the actual measurements on the
fuselage surface upstream of the source. Since the microphones were mounted beneath the
boundary layer, it became obvious that its effect could not be neglected. McAninch (1983)
proposed a theoretical solution using a more realistic Pohlhausen velocity profile rather than a
simplified one which was used by current analytical models. The major mathematical
challenge with the proposed solution was a singularity occurring at a “critical” point inside
the boundary layer. At that critical point, the Pridmore-Brown equation presents a singularity
and is no longer valid. McAninch (1983) suggested using a Frobenius series method to bridge
this singularity around the critical point. The solution around the critical point is then
matched to the known solution at the edge of the boundary layer thus obtaining the full
analytical solution for sound waves travelling through a boundary layer. The Frobenius series
used by McAninch (1983) was inspired by the specific method proposed by Tam and Morris
(1980). Tam and Morris bridged the singularity present in Pridmore-Brown equation using a
Frobenius series in a two-dimensional plane. McAninch concluded that this refraction effect of
the boundary layer caused significant shielding, especially for propagating angles close to
being parallel to the axis of the fuselage, and that it is sensitive to frequency and Mach number.
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2.4 Propeller Noise Scattering by the Fuselage and Refraction

by its Boundary Layer

The Frobenius series solution has proved to be successful in being used alongside high-fidelity
numerical methods, such as Runge-Kutta routines. This section is dedicated to the problem of
propeller noise scattering by the fuselage and the refraction effect caused by the inclusion of a
boundary layer on the fuselage. As will be seen, the papers presented here use high-fidelity
numerical methods alongside the Frobenius solution to give estimates of the fuselage surface
pressure and the far-field pressure.

Hanson (1984) understood the need for an analytical model to describe propagation inside a
shear layer. The motivation for Hanson’s work was similar to McAninch’s in that he was
trying to explain the discrepancies between experimental measurements and the analytical
results. More specifically, Hanson (1984) based his work on a Prop-Fan scale model. The
experimental results of the model revealed much lower fuselage pressure levels than the
predicted doubling of 6dB. Hanson’s initial analytical model was simplified, meaning the
velocity profile was a simple step profile and the flow is two-dimensional. This simplification
eliminates the singularity present in McAninch’s model since the resulting equation is not the
Pridmore-Brown equation. Hanson’s model included scattering waves by the fuselage which
were not part of McAninch’s analysis. As usual the scattered waves take the form of the
scattering surface. In this simplified case the scattering surface was a flat plate, so both
scattered and incident waves are in the form of plane waves. Similar to McAninch (1983) the
pressure outside and inside the boundary layer is matched at the edge through continuity of
pressure and fluid particle displacement.

The results produced from Hanson’s analytical model revealed the significance of the role the
boundary layer plays in sound propagation. The shielding or refraction effect occurs mainly
upstream of the source, and is virtually negligible downstream of it with only the doubling of
6dB due to reflection being visible. Hanson concluded that forward of the source the refraction
effect is sensitive to Mach number and wavelength. In fact the lower the Mach number the
weaker the effect. On the other hand the smaller the wavelength the stronger the attenuation.
This can be explained by the fact that when the wavelength is much shorter than the boundary
layer thickness, multiple cycles of refraction will occur within the boundary layer. Another
conclusion from this work was that the attenuation effect would reduce at larger scale models.
This fact is closely related to the wavelength effect. Although this model was very simplified
(scattering by a flat plate, plane incident waves, step-function velocity profile) it revealed the
importance of the boundary layer and it became the basis for all the subsequent analytical
models.

The paper by Hanson and Magliozzi (1985) is probably one of the most important publications
regarding acoustic installation effects. It was the first example of a realistic prediction method
with minimal simplifications. This work was based on the initial model by Hanson (1984) but
it was extended to include a solution in three dimensions, a more complex boundary layer
profile and a more realistically shaped fuselage. In this case, the fuselage is represented by an
infinitely long, rigid cylinder while the boundary layer’s thickness is constant along and
around the fuselage. Another extension of the model was the inclusion of a realistic propeller



24 Chapter 2. Literature Review

source based on a previous model developed by Hanson (1985). That model was developed to
describe the acoustic near-field of a propeller using thickness loading and quadrupole sources.
In the case of Hanson and Magliozzi (1985) the propeller noise source is modeled using this
similar kind of distributed, rotating source.

The analysis performed by Hanson and Magliozzi (1985) formed the mathematical framework
for all future analytical work in acoustic installation effects. They focused on the calculation of
the near-field pressure and more specifically on the pressure on the fuselage since their results
were ultimately compared to measurements taken from the same experimental model as in
Hanson (1984) which had an array of microphones distributed along the fuselage. The
pressure was expressed in terms of a Fourier series since in this form it is easier to examine the
frequency and Mach number dependency. The cylindrical coordinate system for the incident
pressure field was naturally centered on the propeller axis as in Hanson (1985), but the
coordinate system used for the derivation of the scattered field needs to be centered on the
cylindrical fuselage because, as mentioned before, the scattered waves take the shape of the
scattering surface. Hanson and Magliozzi (1985) proposed using the Graf’s addition theorem
(Abramowitz and Stegun (1965)) to shift the incident coordinate system to the center of the
fuselage, thus facilitating the summation of the two fields into one total field. This
methodology has been proven to be very effective and popular for the topic of fuselage
scattering and it will be used in the work presented in this report. However, inside the
boundary layer the situation is more complicated stemming from the fact that the velocity
profile is arbitrary and not simplified. This means that the equation that needs solving is the
Pridmore-Brown equation which has the singularity mentioned in McAninch (1983). As in
McAninch (1983), Hanson and Magliozzi used the Frobenius method to bridge the singularity
as proposed by Tam and Morris (1980). Tam and Morris bridged the singularity using a
Frobenius series in a two-dimensional plane. That is why Hanson and Magliozzi choose to
unravel the cylindrical coordinate system into a two-dimensional plane, an approximation
that is valid since the thickness of the boundary layer is significantly smaller than the radius of
the cylindrical fuselage. Finally, the solution is matched with the free-stream one at the edge of
the boundary layer.

This analytical model proved to be very successful and confirmed the trends shown in the
experimental measurements. The model could provide an accurate picture of the fuselage
scattering effects. A distinctive shadow zone was visible behind the fuselage which was
expected, whereas on the source’s side of the fuselage there was almost full pressure doubling.
Once again, it was clear that the shielding was greater when the wavelength was shorter, or
when the frequencies were higher harmonics of the BPF. As concluded by Hanson (1984), the
refraction effect upstream of the source became stronger with increasing Mach number. The
results presented by Hanson and Magliozzi emphasise the fact that the scale of the model
plays an important role. They concluded that maximum shielding is achieved when complete
refraction occurs which is dependent on Mach number and frequency. Overall, the model
proved to be very accurate in predicting the acoustic installation effects by a cylindrical
fuselage even though the source model was reduced to a rather simplified one, meaning that
in the future efforts need to be made for more accurate representations of the source.

Although this model proved to be accurate, Lu (1990) proposed some extensions to improve it.
Lu’s model did not simplify the problem by assuming a thin and isothermal boundary layer.
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Lu (1990) also used asymptotic approximations to calculate the acoustic far-field as well as the
fuselage surface pressure. Furthermore, the thin boundary layer assumption made by Hanson
and Magliozzi (1985) is not present in Lu’s work. In that case the arbitrary boundary layer has
a constant thickness but it does not need to be much smaller than the radius of the fuselage.
Also, the boundary layer exhibits temperature variations in order to examine the dependency
of the installation effect on the boundary layer’s temperature profile. The source used in the
analysis was a rotating monopole to simulate a propeller source and the results were
compared to experimental measurements of a counter-rotating model propeller.

The analysis proposed by Lu is very similar to that used by Hanson and Magliozzi (1985). The
pressure is expressed in terms of a Fourier series and the Frobenius method is used to bridge
the singularity inside the boundary layer. Just like in Hanson and Magliozzi (1985), the Graf’s
addition theorem is used to shift the coordinate system from the monopole source to the centre
of the fuselage, thus obtaining the total pressure field in terms of Bessel and Hankel functions.
Moreover, an asymptotic approximation is used to calculate the far-field which will enable the
calculation of community noise. Results confirmed the trends predicted by Hanson and
Magliozzi (1985). The distinctive shadow zone behind the fuselage was again clear and the
monopole pressure distribution along the fuselage seemed to be shifted aft of the plane of the
source. This shifting is caused by the refraction effect and is observed in the paper by Hanson
and Magliozzi (1985). Also, the shielding effect is clearly visible upstream of the source as was
the case for all the previous work. Once again the dependency on Mach number and frequency
is presented. The higher the Mach number the stronger the shielding upstream with the same
happening for higher frequencies. Very similar trends are observed for the cases of varying
boundary layer thickness and varying azimuthal angle. The thicker the boundary layer the
stronger the shielding which is explained, as mentioned before, by the scale effect meaning
that the thicker the layer the more refracted the waves will become since they will be subject to
multiple cycles of refraction. By changing the azimuthal angle from zero, the distance travelled
by the wave is increased effectively strengthening the refraction effect. Another conclusion
reached by Lu (1990) is that the boundary layer velocity profile does not have a strong effect
on the sound attenuation. The same was observed for varying temperature. Different
temperatures of the boundary layer caused little to no change in the fuselage pressure levels.
On the other hand, the far-field pressure proved to be very sensitive to the boundary layer
effect. The installed far-field exhibited up to 4 dB difference than the free-field due to the
inclusion of the fuselage and its boundary layer. According to Lu (1990) the thickness of the
boundary layer plays a very important role in the directivity pattern of the far-field pressure.
Finally, comparison with the experimental measurements showed good agreement as far as
the trends are concerned but there were considerable discrepancies up to 5 dB. Lu attributed
these discrepancies mainly to the unrealistic monopole source used in the analysis, meaning
that a more complex source must be used that better resembles a propeller noise source

Two papers by Brambley et al. (Brambley et al. (2011), Brambley et al. (2012)) investigated the
use of the Frobenius series method to bridge the singularity around the critical point as
suggested by McAninch (1983) and Tam and Morris (1980). The focus of this work was to
investigate the impact of the critical layer and whether its inclusion in the analysis affects the
results. Brambley et al. (Brambley et al. (2011), Brambley et al. (2012)) highlighted the benefits
of the Frobenius series, namely its ability to facilitate accurate numerical solutions inside the
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shear layer. Brambley et al. concluded that when the source is outside the flow, the effects of
the critical layer decay rapidly along the duct where the sheared flow is located, therefore it is
not necessary to include the critical layer in the analysis. However, there are some instances
where the critical layer should be considered. According to Brambley et al., in some high
frequency examples the critical layer creates instabilities in the solution.

Research on the far-field propeller noise has also been performed by Belyaev (2012). The
techniques used to solve the problem of sound propagation through the boundary layer are
the same as previous publications, but there are differences in the modeling of the propeller
noise source. Belyaev (2012) proposed a more realistic and representative propeller noise
source, in contrast to point sources that had been used so far in previous work. This decision
was made due to the findings of Papamoschou (2012) and Ostrikov (2012) who proved that the
source distribution plays a vital role in scattering both in jet noise and bluff body interactions.
Therefore, Belyaev sought to model a more complex propeller noise source based on thickness
noise as proposed in Hanson (1985). Belyaev only examined the far-field and presented polar
directivity plots. These plots presented the far-field pressure for a variety of varying
parameters. These parameters were the free stream Mach number, boundary-layer velocity
profile and boundary-layer thickness among others. The conclusion reached by Belyaev was
that the far-field effect can be significant and it is recommended that it is not omitted. Also,
parameters such as boundary-layer thickness or free stream Mach number play a major role in
the far-field pressure and can greatly affect the results.

Brouwer (2016) also investigated both the near- and far-field of an installed open rotor
adjacent to a cylindrical fuselage. He derived analytical solutions for the incident field
produced by a single-rotor propeller and a contra-rotating propeller. Brouwer (2016) derived
these expressions using a lifting-line model which simulates very well the effect of a
single-rotor propeller and it closely approximates the effect of the contra-rotating open rotor
although not as well as the single-rotor. Like Lu (1990), far-field approximations are used for
distances away from the fuselage. Brouwer (2016) focused on the azimuthal directivity plots
and highlighted the importance of the asymptotic solution for the far-field and how it reduces
the computational cost compared to high-fidelity numerical solutions. As for the near-field,
the same conclusions have been reached as in previous research. Namely, the refraction due to
the presence of the boundary layer is substantial upstream of the source.

2.5 Fan Noise Scattering by the Fuselage and Refraction by its

Boundary Layer

As is evident, the research on installation effects over many years has been focused on
propeller noise. The first attempt to model fan noise installation effects was made by
McAlpine et al. (2015) (see its review in section 2.2), who did not include a boundary layer on
the fuselage. In this section, the few recent publications are reviewed that attempt to solve the
problem of fan noise scattering by the fuselage and its refraction due to the presence of a
boundary layer on the fuselage. It is important to note that the solutions presented here use
high-fidelity numerical methods as was the case in section 2.4.
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Gaffney and McAlpine (2017) extended the same distributed source model introduced in
McAlpine et al. (2015) to include a boundary layer around the fuselage. The incident and
scattered near-field expressions outside the boundary layer are the same as in McAlpine et al.
(2015). For the solution inside the boundary layer, the Pridmore-Brown equation must be
solved. As mentioned in previous publications (McAninch (1983), Hanson and Magliozzi
(1985), Lu (1990)), the singularity present in the Pridmore-Brown equation can be bridged
using a Frobenius method. The same technique is applied by Gaffney and McAlpine (2017).
As in previous publications, the solution inside the boundary layer is matched with the
solution outside at the layer’s edge. The Pridmore-Brown equation has no known analytical
solution, so a numerical Runge-Kutta solver was employed. The ODE solver is applied around
the “critical layer” which is the radial location at which the singularity is located. In close
proximity of this layer, the Frobenius method is used and it is matched to the surrounding
solution provided by the ODE solver. Further calculations were needed due to the fact that the
expressions are in the form of an inverse Fourier z-transform. Thus, a rigorous verification and
convergence investigation was conducted by Gaffney and McAlpine (2017). The code was
verified by setting the shear layer’s Mach number distribution equal to the free stream
constant Mach number. The results were compared with the free stream only solution and
showed good agreement, effectively verifying the code. A convergence study was also
conducted which investigated the effect of the width of the “critical layer” that needs to be
used for the Frobenius method to be accurate. For further validation of the method, it was
compared to the method proposed in Lu (1990) by reducing the disc source’s radius to
resemble a monopole source. The comparison revealed that although the solution in Gaffney
and McAlpine (2017) did predict substantial shielding upstream of the source, it did not agree
with the rapid increase in shielding that Lu had predicted. Gaffney and McAlpine (2017)
produced illustrative results for the pressure on the surface of the fuselage for varying flow
characteristics, such as boundary layer profile, and varying source characteristics, such as the
spinning mode exiting the fan duct. A shielding coefficient was introduced which corresponds
to the amount of acoustic energy refracted away from the surface of the fuselage. The results
revealed similar patterns as in previous publications (Hanson and Magliozzi (1985), Lu (1990),
Fuller (1989)). More specifically it was observed that higher frequencies were susceptible to
more shielding and that the thicker the boundary layer the more shielding it produced. Also,
refraction was more significant further upstream of the source since the incidence angle
becomes shallower meaning that waves are refracted more easily. It was also revealed that the
profile shape plays an important role in the shielding effect, with the power law mean-flow
profile producing less shielding than other profiles tested. This is due to the fact that the
power-law profile generally has a smaller gradient than other profiles, such as the quarter-sine
profile. Steeper gradients generally lead to more refraction. Gaffney and McAlpine (2017) also
concluded that refraction is more effective for well cut-on modes because their principal lobes
impinge on the fuselage at shallower incidence angles making them more susceptible to
refraction.

Finally, Gaffney and McAlpine (2018) extended the model even further to include a more
realistic source. Using the Wiener-Hopf method the diffraction around the duct’s lip can be
modeled giving a more realistic incident field which is valid for higher polar angles. Although
this method gives good results for high polar angles there are limitations, since at even higher
polar angles or even further downstream, other sources start to become dominant such as
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propagation from the bypass. The methodology used by Gaffney and McAlpine (2018) is the
same as in Gaffney and McAlpine (2017) with the main difference being the derivation of the
incident field. The incident field is no longer a disc source but rather the sum of the spinning
mode exiting the duct exit and its diffraction field. The scattered field and the propagation
inside the boundary layer are modeled exactly as in Gaffney and McAlpine (2017).
Preliminary results revealed that further upstream of the source, the pressure levels on the
surface of the fuselage are almost identical to the case of the disc source. However, closer to
the source’s plane the discrepancies become larger since the angle of incidence increases and
the Wiener-Hopf method becomes more accurate than the disc source. Gaffney and McAlpine
(2018) concluded that the maximum angle at which the disc source can be used to little loss of
accuracy is around 70o as concluded in other previous works. The results were once again
presented in the form of the shielding coefficient, and showed once more the shielding effect
of the boundary layer upstream of the source. The nature of the new Wiener-Hopf source
enabled rapid calculations of multi-mode simulations which gave a more realistic radiation
pattern for a turbofan engine. A slight increase of pressure levels is observed downstream of
the source since in this region the sound is refracted towards the surface. The conclusion was
that the shape of the boundary layer profile is not as significant as its thickness.

2.6 Computational and Experimental Methods

The following section presents a brief review of literature that exists concerning numerical and
experimental methods used for the prediction of installation effects. As will be seen, the
literature on these methods is not very comprehensive compared to theoretical methods due to
the computational requirements of the problem that needs to be solved. It should be pointed
out that the review that follows does not go into detail about the methods, but rather it focuses
on the results and conclusions.

One of the most popular numerical methods that are used in acoustics is ray-tracing. Atalla
and Glegg (1991) were the first to find an application for ray-tracing in predicting acoustic
installation effects. Atalla and Glegg (1991) used the theory of geometrical acoustics. This
allowed them to extend the ray-tracing algorithm to include bodies of arbitrary shape and an
arbitrary moving medium. This gives an advantage over analytic solutions since they are
dependent on simplifications. Of course, geometrical acoustics theory has other limitations
such as the requirement that the moving medium must have smoothly varying characteristics
or problems associated with the presence of singular points. Atalla and Glegg use rotating
sources since they are interested in rotor noise and they validate their method by running
simple examples that have analytic solutions and then comparing the results. A couple of
those examples are the case of a plane wave impinging on a sphere and a point source
impinging on a cylinder. The method proved to be very accurate except for the shadow zone
region where its performance deteriorates. Atalla and Glegg (1991) concluded that the
scattering effects cannot be neglected especially for highly directive sources. Also, the effect of
flow proved to be very important at high Mach numbers since it displaces the lobes and the
shadow zone. It should be noted that no shear layer was included in the analysis.
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Ray-tracing has been used more recently by Agarwal et al. (2007). In this paper the
geometrical theory of diffraction is used to predict the acoustic shielding from the “silent
aircraft” airframe. This flying wing configuration allows the engines to be mounted on top of
the blended wing body, thus allowing sound to propagate to the ground only through
diffraction by the edges of the body. The analysis in the paper is limited to low Mach number
homentropic flow, but unlike Atalla and Glegg (1991) it involves a more robust diffraction
theory. Once again, the method is validated by comparing the results for a simple problem of
diffraction around a cylinder. Moreover, the work by Agarwal et al. (2007) included
small-scale experimental measurements. The ray-tracing method produced results with good
agreement with the measurements, as long as the dimensions of the object are sufficiently
larger that the wavelength. It is also important to point out that the flow was assumed to be
low-Mach and with no boundary layer. It was concluded that the inclusion of a shear in the
flow would complicate the problem and would render the method too expensive to use.

Another computational approach to modeling installation effects was by Stanescu et al. (2002).
The work by Stanescu et al. (2002) involves the use of a spectral method to compute the field
around a configuration with fuselage and wing. The source used in this work was a spinning
mode simulating a fan noise source. Stanescu et al. (2002) used parallel processing to reduce
the computational cost of the problem, but the cost for a realistic range of frequencies is still
very high. Furthermore, the results in this work were for a stationary medium. The results
with the inclusion of a fuselage adjacent to the source revealed differences that are too
important to neglect. The field was greatly altered due to reflections on the fuselage. Another
example was the inclusion of a wing below the source. This led to significantly reduced noise
levels below the wing because of the expected reflection of sound upwards. It was concluded
that with the inclusion of fuselage and wing the sound pressure levels on the surface of the
fuselage were significantly increased.

Wang and Zhou (1998) used a boundary element method based on the acoustic analogy to
model the effects of the presence of the fuselage adjacent to a propeller noise source. The
novelty in this paper was the inclusion of a non-rigid boundary condition on the fuselage
surface. Once again, refractive effects of the boundary layer are neglected by assuming a low
Mach number. The analysis was based on the Ffowcs Williams-Hawkings analogy. The
validation was carried out by reducing the fuselage to a vibrating sphere both in a stationary
and a moving medium, which has an analytic solution. The results showed good agreement
with the error being less than 0.1 dB. This method can be applied for arbitrary shapes of the
fuselage and it showed that the convective effects of the flow cannot be neglected even for low
Mach numbers.

Experimental work in installation effects is primarily focused on the shielding and mainly
turbulence scattering that occurs when sound propagates through a turbulent shear layer. The
work by Candel et al. (Candel et al. (1975), Candel et al. (1976)) investigated the sound
propagation and frequency scattering through a turbulent jet layer experimentally. Their
conclusion on shielding was that the layer thickness plays a very important role in the
shielding. Also, they noticed the phenomenon of total reflection at higher angles of
observation or rather at upstream regions. The most significant result on frequency scattering
was that the large scale structure of the turbulent jet layer determine the scattering process,
namely the scattered sound waves follow the same pattern as the turbulent structures.
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This phenomenon of haystacking or broadening of the far-field noise spectra was further more
investigated by Ewert et al. (2009). By using Computational AeroAcoustics methods, they
developed a prediction model for haystacking and compared the results with the experimental
measurements by Candel etal. (Candel et al. (1975), Candel et al. (1976)). As stated in Candel
et al. (Candel et al. (1975), Candel et al. (1976)), this haystacking effect is the result of fan tones
interacting with the turbulence inside a shear layer. The broadening of the spectra leads to a
reduction of the noise peaks in the far-field which means, as proposed by Ewert et al. (2009),
that this broadening can be used to attenuate sound peaks. In the work by Ewert et al. (2009),
the turbulent shear layer is calculated using a RANS code and CAA methods are used to
calculate the propagation of sound inside the shear layer. The numerical predictions showed
good agreement with the measurements performed by Candel et al..

Another very important computational work on the subject was done by Siefert and Delfs
(2011) who focused on high Mach number scattering rather than low Mach number as in the
work by Dittmar and Hall (1990). They used a RANS simulation to calculate the flow field and
they included turbulent fluctuations in the boundary layer to model the scattering inside the
layer. In this paper, the fuselage was simplified to a flat plate and the source to a monopole
due to the increased complexity of the problem. Siefert and Delfs (2011) highlight the
importance of the refraction due to the presence of the boundary layer which is prevalent in
their results. Furthermore, they concluded that refraction is more pronounced in higher
frequencies. Siefert and Delfs (2011) also modeled the frequency scattering inside the layer due
to turbulent fluctuations in the shear. These results revealed sound does transmit in the
shadow zone due to scattering and it can lead to significant alterations of the sound field. The
authors concluded that this effect might be misleading in certain regions because the
fluctuations become comparable to the numerical error far upstream of the source where the
refraction is dominant owing to the shallowness of the incidence angle.

Significant work on turbulence scattering by the fuselage boundary layer has also been
conducted by Dierke et al. (2013). The model used in this paper is more realistic and resembles
an aircraft with a rear-mounted fan engine. The purpose of the work was to investigate the
refraction and scattering effect of the turbulent boundary layer on the fuselage upstream of the
engine intake. The calculation of the boundary layer development and growth was conducted
with a RANS code that yielded a layer thickness of about 0.1m to 0.2m. The calculation of the
incident wave was conducted with the finite element code ACTRAN with azimuthal order
modes of 20 or 24 which correspond to rotor-locked modes. Finally, the propagation of the
sound waves was calculated with the CAA code PIANO. The conclusion reached by the
authors was that the refraction effect is substantial even for steep angles of incidence. Also, the
turbulence scattering effect does not play a significant role in the shadow zone but its
substantial effect on the frequency shift towards higher frequencies cannot be ignored.

Finally, a notable paper on experimental work was published by Burd and Eversman (2007).
The focus of the work was on measuring the interior noise of a business jet with twin turbojet
engines mounted at the rear of the plane. Both ground and flight tests were conducted. One of
the main conclusions of the experiment was that the inlet noise is dominant not very far
upstream of the engine. In fact, the further upstream the more dominant the boundary layer
excitation becomes, making it the main contributor to interior noise. The findings allowed for
a theoretical design of the optimal acoustic treatment for the engine inlet. Furthermore, a
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simplified method was developed for the prediction of the effect of the liner on the interior
noise.

Before moving on to the analysis, it is beneficial to sum up the extensive literature review
presented in the previous sections. It is clear that in the past, research focused on propeller
noise. Specifically, the installation effects of noise scattering and refraction by the fuselage and
its boundary layer were investigated extensively using propeller noise sources. The presence
of the boundary layer proves to be an extremely important factor in predicting the noise levels
on the fuselage surface. The refraction upstream of the source due to the boundary layer leads
to significant shielding in the upstream area of the fuselage. Furthermore, this literature
review revealed that high-fidelity numerical methods have been used extensively in
installation effects analysis. Theoretical methods are more widely used in simpler problems
that use rudimentary sources and two dimensions only. Therefore, the work in this thesis aims
to fill these gaps in knowledge. Namely, as explained in the introduction, the generation of
theoretical methods that describe the fan noise scattering by the fuselage and refraction by its
boundary layer.
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Chapter 3

Analysis

The ultimate goal of this thesis is to propose analytical methods to solve the problem of fan
noise refraction and scattering by an adjacent cylindrical fuselage and its boundary layer. In
order to develop such analytical methods, simplified boundary layer profiles will be used.
Thus, the derivation of theoretical methods is facilitated. The advantage of theoretical or
analytical methods is the low computational cost. By utilising such approaches one can avoid
the use of costly and time-consuming high-fidelity numerical methods. Research so far, has
relied on the use of such methods to solve the problem of sound propagation through a shear
layer in the flow. That trend has been established due to the presence of the Pridmore-Brown
equation (Pridmore-Brown (1958)) which has no known analytical solution.

It is the scope of this thesis to provide such an analytical solution, albeit subject to certain
restrictions and simplifications. Despite the assumptions the theoretical methods proposed
here rely on, they prove to be accurate enough in order to provide quick trends and
predictions. This ability to produce quick and accurate trends is very important for the
industry as it facilitates parametric studies to be conducted in a timely manner.

This chapter describes the theoretical formulations that have been conducted in order to solve
the problem in question. The layout of the chapter is:

1. Uniform flow analysis. Although the problem of the uniform flow has already been
developed and discussed in McAlpine and Kingan (2012), McAlpine et al. (2015),
Gaffney (2016), it is deemed important to iterate it here. The uniform flow solution is
important because it gives a baseline and a means to measure the shielding that will
occur when there is a boundary layer present on the fuselage. An original piece of work
in this section will be the derivation of a far-field pressure expression, which has not
been investigated before for that type of fan noise source.

2. Step-function boundary layer profile analysis. In this section a rudimentary step-function
velocity profile is introduced on the fuselage. This simple profile avoids the need to
solve the Pridmore-Brown equation since there is no shear in the flow. Original and
novel expressions both for the fuselage surface pressure and the far-field pressure are
derived and presented.
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3. Linear boundary layer profile analysis. In this section a more complex and more
representative linear velocity profile is introduced on the fuselage. This more complex
profile requires an asymptotic solution to the Pridmore-Brown equation. This more
realistic velocity profile will provide more accuracy to the results. Original and novel
expressions both for the fuselage surface pressure and the far-field pressure are derived
and presented.

3.1 Uniform Flow Analysis

The aim of this analysis is the development of a model that can predict the acoustic near-field
and far-field produced when a distributed source is scattered by an adjacent cylindrical
fuselage. In this model the cylindrical fuselage will be represented by a rigid cylinder while
the distributed source will take the form of a disc source. The objective is that this model will
simulate the scattering that occurs when the noise exiting from the fan duct, represented here
by the distributed disc source, impinges on the nearby fuselage, represented here by the rigid
cylinder.

As stated before, the same problem has been investigated before using propeller noise sources,
see Refs. Hanson and Magliozzi (1985), Lu (1990), Belyaev (2012), Brouwer (2016). Even
simpler models have been proposed that utilise rudimentary point sources that can simulate
an open rotor noise source, see Refs. Hanson (1984), Tam and Morris (1980), Fuller (1989). The
theoretical formulation presented in this thesis has similarities with the propeller noise source
analysis presented in those previous publications. It is clear that one significant difference
between the current work and previous work is the nature of the source, since the source
derived here represents a fan noise source and not a propeller noise source. Therefore, it is
reasonable to expect differences between the expressions derived here and in previous
publications. More specifically, these differences are manifested in the source terms. That is
readily understood considering the fact that a propeller noise source is typically modeled
using rotating point sources (monopoles to simulate thickness noise and dipoles to simulate
loading noise, McAlpine and Kingan (2012)), whereas in this work the fan noise source is
represented by a distribution of stationary monopoles. Other than this difference, the rest of
the uniform flow mathematical formulation is similar to previous propeller noise source
models that do not include a boundary layer.

The mathematical formulation will consist of the following steps. Firstly, the incident field
produced by the distributed source, originally in terms of the cylindrical coordinate system
centered around the disc source ((r, ϕ, z) in Fig. (3.1)), will be transformed to a cylindrical
coordinate system centered on the cylindrical fuselage, (r̄, ϕ̄, z̄) in Fig. (3.1). By doing so, the
total field can be easily calculated by simply summing the scattered and incident field. This
shifting of the coordinate system is important since the scattered field will be by definition
centered around the cylindrical fuselage (Hanson and Magliozzi (1985)). Once the
Fourier-transformed total field is obtained, the next step will be to solve the inverse Fourier
z-transform of the total field to obtain the acoustic pressure field in real space. Lastly, a
validation of the approach is presented by reducing the disc source to a monopole source and
comparing the result to a known reference solution.
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The analysis begins by considering a cylindrical ducted fan with radius a. The original
coordinate system that is used is a cylindrical one where the z-axis coincides with the duct
centerline. Also there is a subsonic mean flow, Mach number Mz = Uz/c0, directed in the
negative z-direction outside and inside the duct as shown in Fig.(3.1). The sound field
generated by the fan within the duct is modeled using “spinning modes“ (Tyler and Sofrin
(1962)). To avoid any confusion, it is stated that in the following analysis the convention that
will be used is exp[+iω0t]. A time-harmonic mode with azimuthal order l and radial order q
has acoustic pressure and axial particle velocity given by (eqs.(1) through (4) in McAlpine et al.
(2015))

p̂lq = PlqJl(κlqr)ei(−lϕ−kzlqz), (3.1)

ûzlq =
ξlq

ρ0c0
PlqJl(κlqr)ei(−lϕ−kzlqz), (3.2)

where Plq is the modal amplitude,

ξlq =
kzlq

(k0 + kzlq Mz)
, (3.3)

while the dispersion relationship is given by

k2
zlq + κ2

lq = (k0 + kzlq Mz)
2. (3.4)

The Bessel function of the first kind and order l is denoted by Jl . Also, κlq is the set of the
eigenvalues which satisfy J′l(κlqa) = 0, kzlq is the axial wavenumber of mode (l, q), c0 is the
speed of sound, ρ0 is the mean density of the air inside the duct and k0 = ω0/c0. The
cylindrical coordinates are (r, ϕ, z).

3.1.1 Incident field

According to McAlpine et al. (2015) the acoustic pressure generated by a fan tone exiting a
duct can be modeled by integrating a distribution of monopole sources over the cross-section
of the duct termination. The derivation of the incident field is described in McAlpine et al.
(2015) and in appendices A and B. Here only a review of the process is presented. The
governing equation that describes the incident field due to the presence of a rotating
monopole in uniform flow is the non-homogeneous convected wave equation,(︃
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which written in full in cylindrical polar coordinates is,
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where

q(r, ϕ, z, t) = Q0eiω0t δ(r − a)
r
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∑
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δ(ϕ − Ωt − 2πn)
)︃

δ(z), (3.7)
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with Q0 being the volume velocity of the monopole and Ω is the rotational velocity of the
monopole, see appendix A. Note that the process so far is typical of the derivation of a rotating
monopole source described in McAlpine and Kingan (2012), which is the most efficient way of
modeling the thickness noise produced by a propeller. Also in McAlpine and Kingan (2012),
the same process is repeated for a rotating dipole, giving an alternative for loading noise for a
propeller noise source. It is important to note that the difference between the two rotating
point sources is that a monopole is specified in terms of its volume velocity Q0 whereas a
dipole is characterised in terms of force per unit volume F. By taking the Fourier transform of
eq.(3.6) the resulting equation can be solved using the method of variation of parameters, see
appendix A. The Fourier transform involves Fourier transforms in z and t and the Fourier
series in ϕ as follows:

p′im (r, kz, ω) =
∫︂ ∞

−∞

∫︂ π

−π

∫︂ ∞

−∞
p′i(r, ϕ, z, t)ei(kzz+mϕ−ωt)dzdϕdt, (3.8)

⇒ p′i(r, ϕ, z, t) =
1

(2π)3

∞

∑
m=−∞

(︃∫︂ ∞

−∞

∫︂ ∞

−∞
p′im (r, kz, ω)e−i(kzz−ωt)dkzdω

)︃
e−imϕ. (3.9)

This transforms the derivatives as follows:

∂

∂z
→ −ikz,

∂

∂ϕ
→ −im and

∂

∂t
→ iω. (3.10)

Also, in this case the monopole is stationary so Ω = 0. By doing so the Fourier transformed
pressure due to a single monopole s is,

p′im (r, kz) =
π

2
Q(s)ρ0c0(k0 + kz Mz)H

(2)
m (Γzr>)Jm(Γzr<), (3.11)

where Γ2
z = (k0 + kz Mz)2 − k2

z is a radial wavenumber. Note that the radial wavenumber has
the same subscript z as the Mach number Mz. Generally, in the following analysis the radial
wavenumber will bear the same subscript as the Mach number with which it is involved. By
specifying the source strength as,

Q(s) =
ξlqPlq

ρ0c0
Jl(κlqη)e−ilsψδA, (3.12)

where δA is an elementary area occupied by a monopole on the surface of the disc source
(which is located at z = 0), η is the radial distance between the center of the disc source to the
monopole on its surface and ψ is the azimuthal angle on the disc source where the monopole
lies, see Fig. (B.1) in appendix B. Also, the variable r> is defined as r when r > η and as η

when r < η. Accordingly, r< is defined as η when r > η and as r when r < η. By integrating
over the surface of the disc source, the incident field is obtained as in eq.(20) from McAlpine
et al. (2015):

p′i (r, ϕ, z, t) =
ξlqPlq

4

∫︂ ∞

−∞
(k0 + kz Mz)Ψlq H(2)

l (Γzr) e−ikzz dkz e−ilϕ eiω0t. (3.13)
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More details can be found in appendix B. The function Ψlq is given by

Ψlq =
Γza

κ2
lq − Γ2

z
Jl(κlqa)J′l(Γza), Γz ̸= κlq, (3.14)

Ψlq =
1
2

(︃
a2 − l2

κ2
lq

)︃
J2
l (κlqa), Γz = κlq. (3.15)

Equation (3.13) is remarkably similar to the same result obtained in McAlpine and Kingan
(2012) for a rotating point source, representative of a propeller noise source. In fact the only
differences are in the source terms. Namely, terms ξlq, Plq, Ψlq and l that refer to the spinning
mode are replaced by the point source strength Q0 and its rotational velocity Ω.
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FIGURE 3.1: Coordinate systems for the source and the cylinder.

3.1.1.1 Shifting the Coordinate System

Graf’s Addition Theorem is used to shift the coordinate system from the duct’s centreline,
(r, ϕ, z), to the adjacent cylinder’s centreline,(r̄, ϕ̄, z̄). This must be done before the scattered
field is introduced because the scattered field will be based on the cylinder’s coordinate
system. Graf’s theorem according to Abramowitz and Stegun (1965),

ζm(w)eiχ =
∞

∑
n=−∞

ζm+n(u)Jn(v)einα, (3.16)

where ζ can be any of the Bessel functions or linear combinations thereof. Also the condition
|u| > |ve±iα| applies. The lengths w, u and v, and angles α and χ are part of the triangle shown
in Fig.(3.2). Direct application of Graf’s Theorem gives (triangle flipped taking
w = Γzr, v = Γzb and u = Γz r̄, while α = ϕ̄ − β and χ = ϕ − ϕ̄)

H(2)
l (Γzr) eilχ =

∞

∑
n=−∞

H(2)
l+n (Γz r̄) Jn (Γzb) einα. (3.17)



38 Chapter 3. Analysis

u
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χ

α

FIGURE 3.2: Graf’s Addition theorem.

Note that by using the far-field assumption, r̄ >> b, the theorem’s condition, |u| > |v|, is
satisfied. By setting l → −l and n → −n

H(2)
−l (Γzr) e−il(ϕ−ϕ̄) =

∞

∑
n=−∞

H(2)
−l−n (Γz r̄) J−n (Γzb) e−in(ϕ̄−β), (3.18)

which becomes

H(2)
l (Γzr) e−ilϕ =

∞

∑
n=−∞

H(2)
l+n (Γz r̄) Jn (Γzb) e−i(l+n)ϕ̄ einβ. (3.19)

Renaming l + n → m so that n = m − l

H(2)
l (Γzr) e−ilϕ =

∞

∑
m−l=−∞

H(2)
m (Γz r̄) Jm−l (Γzb) e−imϕ̄ ei(m−l)β. (3.20)

The l on the summation can be dropped since it is considered a constant in comparison to the
m which runs from −∞ to ∞, and so eq.(3.20) becomes

H(2)
l (Γzr) e−ilϕ =

∞

∑
m=−∞

H(2)
m (Γz r̄) Jm−l (Γzb) e−imϕ̄ ei(m−l)β. (3.21)

Substitution on eq.(20) from McAlpine et al. (2015) and renaming m → n

p′i (r̄, ϕ̄, z̄, t) =
1

(2π)2

∞

∑
n=−∞

∫︂ ∞

−∞
π2ξlqPlq (k0 + kz Mz)Ψlq ei(n−l)β Jn−l (Γzb)×

H(2)
n (Γz r̄) eiω0t e−ikz z̄ dkz e−inϕ̄,

(3.22)

or

p′i (r̄, ϕ̄, z̄, t) =
1

(2π)2

∞

∑
n=−∞

∫︂ ∞

−∞
p′in (r̄, kz, t) e−ikz z̄ dkz e−inϕ̄, (3.23)
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where

p′in (r̄, kz, t) = π2ξlqPlq (k0 + kz Mz)Ψlq ei(n−l)β Jn−l (Γzb)H(2)
n (Γz r̄) eiω0t. (3.24)

On the other hand, by taking the near-field assumption r̄ < b and flipping the triangle again
(so that u = Γzb, v = Γz r̄, w = Γzr and α = ϕ̄ − β, χ = π + β − ϕ) the incident field for the
near-field is recovered:

p′in (r̄, kz, t) = π2ξlqPlq(−1)l+n(k0 + kz Mz)Ψlq e−i(l−n)β H(2)
l−n (Γzb) Jn (Γz r̄) eiω0t. (3.25)

Note the change in r̄ dependence between the near- and far-field expressions. As shown by Lu
(1990), the far-field should be dependent on r̄ through a Hankel function contrary to the
near-field where the dependence is through a Bessel function. It is also important to highlight
the difference between the expressions derived here for a fan noise source (involving a
spinning mode) and a typical propeller noise source expression (involving rotating point
sources), such as the ones derived in McAlpine and Kingan (2012). The expressions are very
similar with the sole differences contained in the source terms. More specifically, terms that
would involve spinning mode characteristics (subscript lq, or more specifically ξlq, Plq and
Ψlq), in the case of a propeller noise source they instead involve the point source strength Q0

(or F in the case of a rotating dipole) and the rotational velocity Ω.

The key result of this section is the fact that by shifting the coordinate system, the incident
field in eq.(3.13) is written in a Fourier series form, eqs. (3.23), (3.24) and (3.25). This will
enable the derivation of a Fourier-transformed total field once the Fourier-transformed
scattered field is derived in the next section, since the Fourier-transformed incident field is
given in eq.(3.24) or (3.25).

3.1.2 Scattered and Total Field

The scattered field is basically the solution to the homogeneous convected wave equation
expressed in cylindrical coordinates around the cylindrical fuselage,

∂2 p′i
∂r̄2 +

1
r̄

∂p′i
∂r̄

+
1
r̄2

∂2 p′i
∂ϕ̄2 +

∂2 p′i
∂z̄2 − 1

c2
0

(︃
∂

∂t
− U

∂

∂z̄

)︃2

p′i = 0, (3.26)

and since the scattered waves need to be outward propagating cylindrical waves, then the
Fourier transformed scattered field will be expressed in terms of a Hankel function,

p′sn (r̄, kz, t) =
1

2π

∫︂ ∞

−∞
an(kz, ω)H(2)

n (Γz r̄)eiωtdω, (3.27)

or
p′sn (r̄, kz, t) =

1
2π

bn(kz, ω0)H
(2)
n (Γz r̄) eiω0t, (3.28)

if coefficient an can be rewritten an(kz, ω) = bn(kz, ω)δ(ω − ω0). By taking the total Fourier
transformed pressure field given by the sum of the incident and the scattered fields,

p′tn (r̄, kz, t) = p′in (r̄, kz, t) + p′sn (r̄, kz, t), (3.29)
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and by employing a rigid hard-wall boundary condition at the fuselage surface,

∂p′tn
∂r̄

=
∂p′in
∂r̄

+
∂p′sn
∂r̄

= 0 at r̄ = a0, (3.30)

where p′in is the near-field expression given by eq.(3.25) since the fuselage surface lies in the
near-field (a0 < b), one can solve for the coefficient bn(kz, ω0),

bn(kz, ω0) = −2π3ξlqPlq(−1)l+n e−i(l−n)β (k0 + kz Mz)Ψlq H(2)
l−n(Γzb)

J′n (Γza0)

H(2)′
n (Γza0)

. (3.31)

By substituting eq.(3.31) into eq.(3.28), the Fourier-transformed scattered field is obtained,

p′sn (r̄, kz, t) = −π2ξlqPlq(−1)l+n e−i(l−n)β (k0 + kz Mz)Ψlq H(2)
l−n(Γzb)H(2)

n (Γz r̄)
J′n (Γza0)

H(2)′
n (Γza0)

eiω0t.

(3.32)
Finally, the Fourier-transformed total field is found by summing the incident field and the
scattered field, either in the near-field in which case eqs. (3.25) and (3.32) are summed together,
or in the far-field in which case eqs. (3.24) and (3.32) are summed together. The total field in
real space is found by performing an inverse Fourier z-transform

p′t (r̄, ϕ̄, z̄, t) =
1

(2π)2

∞

∑
n=−∞

∫︂ ∞

−∞
p′tn (r̄, kz, t) e−ikz z̄ dkz e−inϕ̄. (3.33)

3.1.3 Fuselage Surface Pressure

The near-field case is of interest on setting r̄ = a0 since it describes the pressure on the fuselage
surface. By setting r̄ = a0 and using eq.(3.29) with the Fourier-transformed incident field given
by eq.(3.25) and scattered field given by eq.(3.32),

p′tn (a0, kz, t) = π2ξlqPlq (−1)l+n e−i(l−n)β (k0 + kz Mz)Ψlq H(2)
l−n (Γzb)×[︃

Jn (Γza0)H
(2)′
n (Γza0)− J′n (Γza0)H(2)

n (Γza0)

H(2)′
n (Γza0)

]︃
eiω0t.

(3.34)

Then by using the Wronskian formula,

Jn (x)H(2)′
n (x)− J′n (x)H(2)

n (x) = −i

(︄
2

πx

)︄
, (3.35)

the following is obtained,

p′tn (a0, kz, t) = π2ξlqPlq (−1)l+n e−i(l−n)β (k0 + kz Mz)Ψlq H(2)
l−n (Γzb)×[︃(︂

− i(2/πΓza0)
)︂

/H(2)′
n (Γza0)

]︃
eiω0t.

(3.36)
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Finally, the total pressure in real space is given by eq.(3.33) substituting p′tn (r̄, kz, t) with
p′tn (a0, kz, t) from eq.(3.36),

p′t (a0, ϕ̄, z̄, t) =
ξlqPlq

4
(−1)l e−ilβ eiω0t

∞

∑
n=−∞

{︁
(−1)n In (a0, z̄) e−in(ϕ̄−β)

}︁
, (3.37)

where

In (a0, z̄) =
∫︂ ∞

−∞
(k0 + kz Mz)Ψlq H(2)

l−n (Γzb)

[︄(︂
−i(2/πΓza0)

)︂
/H(2)′

n (Γza0)

]︃
e−ikz z̄ dkz. (3.38)

This integral cannot be solved analytically and therefore a numerical integration routine will
be employed. That will raise certain difficulties as will be seen later regarding certain
numerical singularities on the integration domain. Equations (3.37) and (3.38) are the key
results of this section and they give the pressure on the surface of the fuselage which is
relevant for the assessment of cabin noise. The previous sections and the pressure on the
cylinder are presented in more detail in McAlpine et al. (2015) and in Rouvas and McAlpine
(2021). The work by McAlpine et al. (2015) did not present any solutions for the far field. The
next section will deal with the derivation of the far-field pressure which was presented in the
paper by Rouvas and McAlpine (2021).

3.1.4 Total Far-Field

The same process is followed for the far-field case. Once again, the Fourier-transformed total
field is described by eq.(3.29):

p′tn (r̄, kz, t) = p′in (r̄, kz, t) + p′sn (r̄, kz, t). (3.39)

The Fourier-transformed scattered field is given by eq.(3.32) as in the near-field case. However,
for the far-field case the Fourier-transformed incidence field in eq.(3.29) is given by eq.(3.24).
These substitutions into eq.(3.39) yield

p′tn f f
(r̄, kz, t) = π2ξlqPlq (k0 + kz Mz)Ψlq ei(n−l)β Jn−l (Γzb)H(2)

n (Γz r̄) eiω0t

−
[︃

π2ξlqPlq(−1)l+n e−i(l−n)β (k0 + kz Mz)Ψlq H(2)
l−n (Γzb)×

H(2)
n (Γz r̄)

J′n (Γza0)

H(2)′
n (Γza0)

eiω0t
]︃

,

(3.40)

which can be rewritten

p′tn f f
(r̄, kz, t) = π2ξlqPlq ei(n−l)β (k0 + kz Mz)Ψlq H(2)

n (Γz r̄) eiω0t×[︃ Jn−l (Γzb)H(2)′
n (Γza0)− H(2)

n−l (Γzb) J′n (Γza0)

H(2)′
n (Γza0)

]︃
.

(3.41)
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Notice the change in notation with the subscript f f that denotes far-field quantity. Finally the
total far-field in real space is obtained by

p′t f f
(r̄, ϕ̄, z̄, t) =

1
(2π)2

∞

∑
n=−∞

∫︂ ∞

−∞
p′tn f f

(r̄, kz, t) e−ikz z̄ dkz e−inϕ̄. (3.42)

The resulting inverse Fourier z-transform integral in eq.(3.42) can be solved asymptotically by
employing spherical polar coordinates and a large argument approximation for the Hankel
function term which is dependent on r̄. This expresses the integral in an appropriate form to
be solved by applying the method of stationary phase, as shown in the appendix of Rouvas
and McAlpine (2021).

3.1.4.1 Asymptotic Evaluation of the Integral with the Method of Stationary Phase

In order to solve eq.(3.42), first the inverse Fourier z-transform must be determined

In =
1

2π

∫︂ ∞

−∞
p′tn f f

(r̄, kz, t) e−ikz z̄ dkz. (3.43)

The integral can be evaluated using the method of stationary phase which is given by Self
(2005) (chapter 4, eqs.(50) and (53))

I(x) =
∫︂ b

a
f (t)eixϕ(t)dt, as x → ∞. (3.44)

Then, if there is a single point a ≤ c ≤ b such that ϕ′(c) = 0, provided that ϕ′′(c) ̸= 0, then

I(x) ∼ f (c)
(︃

2π

x|ϕ′′(c)|

)︃1/2

eixϕ(c)±iπ/4, as x → ∞. (3.45)

Since the aim is the evaluation of the far-field pressure, spherical polar coordinates are
employed (R̄, θ̄, ϕ̄). The integral will be calculated in the limit as R̄ → ∞. The substitutions are

r̄ = R̄ sin θ̄ and z̄ = R̄ cos θ̄ (3.46)

The dependence of the function p′tn (r̄, kz, t) on r̄ is through the Hankel function which for
large R̄ can be replaced by its asymptotic form

H(2)
n (Γz r̄) = H(2)

n (ΓzR̄ sin θ̄) ∼

√︄
2

πΓzR̄ sin θ̄
e

1
2 nπi e

1
4 πi e−iΓz R̄ sin θ̄ as R̄ → ∞. (3.47)

Also, exp(−ikz z̄) → exp(−ikzR̄ cos θ̄) so the integral in eq.(3.43) can be expressed in the form

In ∼ 1
2π

∫︂ ∞

−∞
fn(kz, R̄, θ̄) e−iR̄(Γz sin θ̄+kz cos θ̄) dkz as R̄ → ∞, (3.48)
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where

fn(kz, R̄, θ̄) = π2ξlqPlq ei(n−l)β (k0 + kz Mz)Ψlq

√︄
2

πΓzR̄ sin θ̄
e

1
2 nπi e

1
4 πi×

[︃ Jn−l (Γzb)H(2)′
n (Γza0)− H(2)

n−l (Γzb) J′n (Γza0)

H(2)′
n (Γza0)

]︃
eiω0t.

(3.49)

By introducing the similarity variables as in Chapman (2000)

σ2 = 1 − M2
z , (3.50)

R̂ =
R̄
σ
(1 − M2

z sin2 θ̄)1/2, (3.51)

cos θ̂ =
cos θ̄

(1 − M2
z sin2 θ̄)1/2

, (3.52)

sin θ̂ =
σ sin θ̄

(1 − M2
z sin2 θ̄)1/2

, (3.53)

τ = σ2 kz

k0
− Mz, (3.54)

Γz =
k0

σ
(1 − τ2)1/2, (3.55)

kz =
k0

σ2 (τ + Mz), (3.56)

dkz =
k0

σ2 dτ, (3.57)

the integral In in eq.(3.48) can be rewritten in the form

In ∼ 1
2π

∫︂ ∞

−∞
gn(kz, R̂, θ̂) eiR̂ϕ̂(τ) dτ as R̂ → ∞, (3.58)

where

ϕ̂(τ) = −
(︃

k0

σ
(1 − τ2)1/2 sin θ̂ +

k0

σ
(τ + Mz) cos θ̂

)︃
, (3.59)

and

gn(τ, R̂, θ̂) = π2ξlqPlq ei(n−l)β
(︁
k0 +

k0

σ2 (τ + Mz)Mz
)︁

Ψlq(
k0

σ
(1 − τ2)1/2)√︄

2

π k0
σ (1 − τ2)1/2R̂ sin θ̂

e
1
2 nπi e

1
4 πi eiω0t k0

σ2 ×

[︃ Jn−l (
k0
σ (1 − τ2)1/2b)H(2)′

n ( k0
σ (1 − τ2)1/2a0)− H(2)

n−l (
k0
σ (1 − τ2)1/2b) J′n (

k0
σ (1 − τ2)1/2a0)

H(2)′
n ( k0

σ (1 − τ2)1/2a0)

]︃
.

(3.60)

The equation ϕ′(c) = 0 yields c = cos θ̂. Also, when |τ| > 1, Γz becomes imaginary, so the
integrand will become exponentially small as R̂ → ∞. That means the limits of the integral can
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be replaced by (−1, 1). With this substitution, the integral in eq.(3.58) becomes

In =
1

2π
gn(c)

(︃
2π

R̂|ϕ̂′′
(c)|

)︃1/2

eiR̂ϕ̂(c)+iπ/4, as R̂ → ∞. (3.61)

where
ϕ̂(c) = − k0

σ
(1 + Mz cos θ̂), (3.62)

ϕ̂
′′
(c) =

k0

σ sin2 θ̂
. (3.63)

In =
1

2π
π2ξlqPlq ei(n−l)β

(︁
k0 +

k0

σ2 (cos θ̂ + Mz)Mz
)︁

Ψlq(
k0

σ
sin θ̂)

√︄
2

π k0
σ R̂ sin2 θ̂

e
1
2 nπi e

1
4 πi×

eiω0t k0

σ2

[︃ Jn−l (
k0
σ sin θ̂b)H(2)′

n ( k0
σ sin θ̂a0)− H(2)

n−l (
k0
σ sin θ̂b) J′n (

k0
σ sin θ̂a0)

H(2)′
n ( k0

σ sin θ̂a0)

]︃
×√︄

2π

R̂ k0
σ sin2 θ̂

e−iR̂ k0
σ (1+Mz cos θ̂)+iπ/4,

(3.64)

where Ψlq(
k0
σ sin θ̂) is Ψlq as defined in eq.(3.14) calculated taking Γzc =

k0
σ sin θ̂. Then

returning to the original coordinates using eqs. (3.51)-(3.57), and setting ∆z =
k0 sin θ̄

(1−M2
z sin2 θ̄)1/2

and S(θ̄) = ((1−M2
z sin2 θ̄)1/2+Mz cos θ̄)

σ2 , the following is obtained

In =
iπξlqPlqk0

R̄
ei(n−l)β S(θ̄)

(1 − M2
z sin2 θ̄)

Ψlq(∆z)×[︃ Jn−l (∆zb)H(2)′
n (∆za0)− H(2)

n−l (∆zb) J′n (∆za0)

H(2)′
n (∆za0)

]︃
e

1
2 nπi eiω0t e−ik0R̄S(θ̄).

(3.65)

So from eqs.(3.42) and (3.43)

p′t f f
(R̄, θ̄, ϕ̄, t) =

1
(2π)

∞

∑
n=−∞

In e−inϕ̄, (3.66)

or

p′t f f
(R̄, θ̄, ϕ̄, t) =

iξlqPlqk0

2R̄
Ψlq(∆z)

S(θ̄)
(1 − M2

z sin2 θ̄)

∞

∑
n=−∞

ei(n−l)β e
1
2 nπi eiω0t×

e−ik0R̄S(θ̄) e−inϕ̄

[︃ Jn−l (∆zb)H(2)′
n (∆za0)− H(2)

n−l (∆zb) J′n (∆za0)

H(2)′
n (∆za0)

]︃
.

(3.67)

Equation (3.67) is the final expression that gives the pressure in the far-field. This far-field
expression is expressed in terms of a Fourier series and has been validated by reducing the
disc source to a point source. When this is performed, after considerable algebraic
manipulation, eq.(3.67) reduces to the known solution for a stationary monopole adjacent to a
cylinder given by Bowman (page 127, eq.(2.149) from Ref. Bowman et al. (1969)). The
validation process is outlined in detail in appendix C.

Once again, attention should be drawn to the similarities between the expression derived here
(for a fan noise source) and the equivalent expressions for a propeller noise source derived in
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Lu (1990) and McAlpine and Kingan (2012). The expressions are very similar apart from the
source terms. Fan noise source terms ξlq, Plq and Ψlq are instead replaced by rotating point
source terms, such as volume velocity Q0 and rotational velocity Ω. A concluding analogy
could be made at this point. Amplitude terms, such as ξlq and Plq, have equivalent
counterparts in propeller noise source cases. These equivalent terms are the volume velocity
Q0 or force per unit volume F in a rotating dipole case. On the other hand, more nuanced
terms, such as Ψlq which generally are involved in directivity, are more related to the
rotational velocity Ω in the propeller noise case.

3.1.5 Section Summary

The aim of summing up this chapter is to highlight the key expressions derived and presented
in this part of the analysis. The first derived expression that will be used to produce uniform
flow results is the fuselage surface pressure expression in eqs.(3.37) and (3.38). Although, the
derivation of this expression is the result of previous work (see McAlpine et al. (2015)), it is
deemed important for the process to be revisited and presented again for clarity. Equations
(3.37) and (3.38) will be used to calculate the acoustic pressure on the fuselage surface when
there is no boundary layer on the fuselage.

The novel work presented in this chapter is the derivation of the uniform flow far-field
expression in eq.(3.67). The disc source analysis of the problem that had been proposed by
McAlpine et al. (2015) did not include the far-field. The far-field derivation presented here
aims to fill that gap. Equation (3.67) will be used to calculate the far-field pressure when there
is no boundary layer present on the fuselage.

3.2 Step-Function Boundary Layer Profile Analysis

As explained in the literature review, the assumption of uniform flow can no longer be
considered accurate, see McAninch (1983) through Hanson (1985), and Gaffney and McAlpine
(2017), Gaffney and McAlpine (2018). Therefore, the presence of the boundary layer on the
fuselage must be taken into account in order to capture the realistic refraction effect of the
boundary layer. In this thesis, two simplified boundary layer velocity profiles will be
investigated that enable an analytical solution, thus working towards the ultimate goal of the
work in this thesis: avoid the use of high-fidelity numerical methods. The two velocity profiles
are the step-function velocity profile, whose analysis will be detailed in the following sections,
and the more complex linear velocity profile, whose analysis will be detailed later on.

The first and most rudimentary approximation of a boundary layer velocity profile is the
step-function profile. Its advantage over the linear profile is the fact that it requires no solution
to the Pridmore-Brown equation (Pridmore-Brown (1958)) because there is no shear in the
flow. The problem of fan noise refraction due to the presence of a step-function boundary layer
on the fuselage has not been addressed analytically before to the best of the author’s
knowledge. Therefore, the derivations that follow are a novel work.
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The process that is followed is a simple matching procedure. Since there is no shear, the
solutions inside and outside the boundary layer are the solutions to the uniform flow problem.
These two solutions are matched at the edge of the boundary layer to obtain the total field.
The boundary layer profile M(z) with thickness δ is replaced with a simple step-function
profile with effective thickness δSF. The effective thickness δSF is usually the displacement
thickness (Hanson (1984) and Hanson (1985)) and thus is smaller than the actual boundary
layer thickness δ. Inside the boundary layer, a0 < r̄ < a0 + δSF, the flow has a Mach number
M0 which is smaller than the free stream Mach number M∞ outside the boundary layer,
r̄ > a0 + δSF. The analysis is also outlined briefly in the paper by Rouvas and McAlpine
(2022a).

M∞

0M

r

αo

δSF

source

FIGURE 3.3: Boundary layer with step-function velocity profile.

3.2.1 Inside the Boundary Layer

As explained before, due to the simple form of the step-function profile, a solution to the
Pridmore-Brown equation is avoided. That is because there is no shear in the flow. Essentially,
the problem consists of two uniform flows on top of each other as seen in Fig. (3.3). The total
field inside the boundary layer, a0 < r̄ < a0 + δSF, is the solution of the homogeneous
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convected wave equation expressed in the cylinder’s polar coordinates since the scattering
object is a cylinder (McAlpine and Kingan (2012)),

∂2 p′t0
∂r̄2 +

1
r̄

∂p′t0
∂r̄

+
1
r̄2

∂2 p′t0
∂ϕ̄2 +

∂2 p′t0
∂z̄2 − 1

c2
0

(︃
∂

∂t
− U0

∂

∂z̄

)︃2

p′t0 = 0, (3.68)

where U0 is the flow velocity inside the boundary layer, denoted by the subscript 0. By taking
the Fourier transform of eq.(3.68) and following the procedure outlined in McAlpine and
Kingan (2012) and in section 3.1, an appropriate solution is obtained of the form,

p′t0n
(r̄, kz, t) =

1
2π

∫︂ ∞

−∞

(︁ ˜︁An (kz, ω) Jn (Γr̄) + ˜︁Bn (kz, ω)H(2)
n (Γr̄)

)︁
eiωt dω, (3.69)

where Γ2 = (k + kz M0)
2 − k2

z as shown in section 3.1. Also as before,˜︁An (kz, ω) = An (kz, ω) δ (ω − ω0) and ˜︁Bn (kz, ω) = Bn (kz, ω) δ (ω − ω0). In the absence of a
boundary layer, the term ˜︁An (kz, ω) would be set to zero so when r̄ → ∞ the solution would
represent an outward propagating wave, as demonstrated in McAlpine and Kingan (2012).
However, in the presence of the boundary layer, the range of r̄ is confined inside the boundary
layer, thus both the Bessel and the Hankel function terms in eq.(3.69) are retained.
The total pressure must satisfy the rigid wall boundary condition on the surface of the
cylinder, since the cylinder is considered acoustically hard

∂p′t0
∂r̄

= 0 at r̄ = a0. (3.70)

On taking the Fourier transform, the condition becomes

∂p′t0n

∂r̄
= 0 at r̄ = a0. (3.71)

By substituting eq.(3.69) into the boundary condition and taking into account the Dirac-delta
functions, the following is obtained

1
2π

An (kz, ω0) Γ0 J′n (Γ0a0) eiω0t +
1

2π
Bn (kz, ω0) Γ0 H(2)′

n (Γ0a0) eiω0t = 0, (3.72)

which becomes
An (kz, ω0)J′n (Γ0a0) + Bn (kz, ω0)H

(2)′
n (Γ0a0) = 0, (3.73)

where Γ2
0 = (k0 + kz M0)

2 − k2
z. Note that the “radial” wavenumber bears the same subscript as

the Mach number it refers to as explained in section 3.1. In this case since the wavenumber
refers to the inside Mach number it bears the subscript 0 as in M0.

3.2.2 Outside the Boundary Layer

Outside of the boundary layer but still in the near-field, a0 + δSF < r̄ < b, the incident field is
described by eq.(27) in McAlpine et al. (2015) and eq.(3.25) in section 3.1. Note the change in
notation from Γz to Γ∞, where Γ2

∞ = (k0 + kz M∞)2 − k2
z because the incident field refers to the

region outside the boundary layer where the Mach number is equal to the free stream Mach
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number M∞. From eq.(3.25),

p′i∞n
(r̄, kz, t) = En (kz, ω0) Jn (Γ∞ r̄) eiω0t for a0 + δSF < r̄ < b, (3.74)

where En (kz, ω0) = π2ξlqPlq (−1)(l+n) e−i(l−n)β (k0 + kz M∞)Ψlq H(2)
l−n (Γ∞b), and Ψlq is

dependent on Γ∞ as shown in McAlpine et al. (2015) or in section 3.1.
The scattered field outside the boundary layer is once again the solution to the convected
wave equation (eq.(3.68)), only this time the Bessel function term is discarded because it does
not satisfy the outward propagating wave condition at infinity. Therefore, as in McAlpine et al.
(2015),

p′s∞n (r̄, kz, t) =
1

2π

∫︂ ∞

−∞
˜︁Cn (kz, ω)H(2)

n (Γr̄) eiωt dω, (3.75)

where ˜︁Cn (kz, ω) = Cn (kz, ω) δ (ω − ω0) and Γ is defined now as Γ2 = (k + kz M∞)2 − k2
z since

it refers to the free stream Mach number outside the boundary layer. Taking into consideration
the Dirac delta function, eq.(3.75) can be rewritten as

p′s∞n (r̄, kz, t) =
1

2π
Cn (kz, ω0)H(2)

n (Γ∞ r̄) eiω0t, (3.76)

where Γ2
∞ = (k0 + kz M∞)2 − k2

z.
Before moving on further with the analysis, it is important to mention again some important
practices regarding the “radial” wavenumbers Γ∞ and Γ0. As explained in McAlpine et al.
(2015) and in appendix B there is a range of kz in which the wavenumbers are real and
positive. Outside this range these wavenumbers become imaginary and are modified
accordingly in order to represent an outgoing wave,

Γ∞ =
√︂
(k0 + kz M∞)2 − k2

z, when (k0 + kz M∞)2 > k2
z

Γ∞ = −iγ∞, where γ∞ =
√︂

k2
z − (k0 + kz M∞)2, when (k0 + kz M∞)2 < k2

z,
(3.77)

and

Γ0 =
√︂
(k0 + kz M0)2 − k2

z, when (k0 + kz M0)
2 > k2

z

Γ0 = −iγ0, where γ0 =
√︂

k2
z − (k0 + kz M0)2, when (k0 + kz M0)

2 < k2
z.

(3.78)

In those cases, γ∞ and γ0 are always real and positive. Figure (3.4) demonstrates the different
regions on the kz-axis where these transitions from real to imaginary numbers occur. Note that
there are also two points along the kz-axis at which Ψlq(Γ∞) is singular. These points are called
kz1 and kz2 and will always lie between the two points where Γ∞ becomes 0. Figure (3.4) shows
the only two combinations that can occur between the transition points of Γ and the singular
points of Ψlq along the kz-axis. The importance of these regions and these singular points will
become apparent during the numerical integration of the inverse Fourier z-transform that will
be shown at the end of this chapter.

3.2.3 Matching of the Two Solutions

The pressure expressions outside and inside the boundary layer involve three unknown
coefficients, An (kz, ω0), Bn (kz, ω0) and Cn (kz, ω0), that must be evaluated. Therefore, three
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.

equations are needed in order to evaluate the coefficients and describe the entire pressure
field. One such equation is eq.(3.73) which has been derived using the boundary condition on
the wall of the cylinder. The remaining two equations will be obtained by employing a
matching of the two solutions at the edge of the boundary layer.
The two solutions are matched at the edge of the boundary layer, r̄ = a0 + δSF. The first
matching condition is that of pressure continuity. The pressure inside the boundary layer must
be the same as the pressure outside the boundary layer at the edge. This is expressed as
follows:

p′t0n
= p′t∞n

at r̄ = a0 + δSF, (3.79)

which can be rewritten as

p′t0n
= p′i∞n

+ p′s∞n at r̄ = a0 + δSF, (3.80)

since outside the boundary layer, the sum of the incident and scattered field equals the total
field in that region. By substituting equations (3.69), (3.74) and (3.76) into eq.(3.80), the
following is obtained:

1
2π

An (kz, ω0)Jn (Γ0(a0 + δSF)) +
1

2π
Bn (kz, ω0)H

(2)
n (Γ0(a0 + δSF)) =

= En (kz, ω0)Jn (Γ∞(a0 + δSF)) +
1

2π
Cn (kz, ω0)H

(2)
n (Γ∞(a0 + δSF)).

(3.81)
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By substituting An (kz, ω0) in accordance with eq.(3.73), the Cn (kz, ω0) coefficient can be
expressed in terms of the Bn (kz, ω0) coefficient:

Cn (kz, ω0) =
Bn (kz, ω0)

H(2)
n (Γ∞(a0 + δSF))

[︃
H(2)

n (Γ0(a0 + δSF))− Jn (Γ0(a0 + δSF))
H(2)′

n (Γ0a0)

J′n (Γ0a0)

]︃
− 2π En (kz, ω0)

Jn (Γ∞(a0 + δSF))

H(2)
n (Γ∞(a0 + δSF))

.

(3.82)

The second matching condition is the displacement continuity condition. According to this
condition, the fluid particles on either side of the interface at the edge of the boundary layer
have the same displacement as explained by Hanson (1984). The displacement condition is
more physically representative than the simpler pressure gradient continuity condition and it
is recommended by Hanson (1984) and others (Mariano (1971), Ko (1972), Eversman (1970),
Eversman (1972)) for problems involving sound transmitting through shear layers.
The analysis for the displacement condition starts with the linearised momentum equation:

ρ0
D0u
Dt

= −∇p′, (3.83)

where D0
Dt = ∂

∂t + U · ∇ and U = −U0ẑ since flow velocity is directed towards the negative
z-axis. Using these relations eq.(3.83) can be rewritten as

ρ0
∂u
∂t

− ρ0U0
∂u
∂z

= −∇p′. (3.84)

Taking only the r̄-axis components, since the displacement condition applies to the axis
perpendicular to the edge of the boundary layer,

ρ0
∂ur̄

∂t
− ρ0U0

∂ur̄

∂z
= −∂p′

∂r̄
. (3.85)

The displacement η is found by integrating eq.(3.85) as in Hanson (1984) by using the
definition of the radial velocity ur̄ =

D0η
Dt . By substituting this relation into eq.(3.85), the

following is obtained:

ρ0c2
0

(︃
1
c0

∂

∂t
− U0

c0

∂

∂z

)︃2

η = −∂p′

∂r̄
. (3.86)

Finally, by taking into consideration the following definitions, M = U0/c0, k0 = ω0/c0, and
taking the Fourier transforms, ∂

∂z → −ikz, ∂
∂t → iω0,

ρ0c2
0
(︁
k0 + Mkz

)︁2
η =

∂p′

∂r̄
. (3.87)

Using eq.(3.87) the displacement condition can be expressed as follows:

η0 = η∞ at r̄ = a0 + δSF, (3.88)

or
∂p′t0n

∂r̄
1(︁

k0 + kz M0
)︁2 =

∂p′t∞n

∂r̄
1(︁

k0 + kz M∞
)︁2 at r̄ = a0 + δSF, (3.89)
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and finally

∂p′t0n

∂r̄
1(︁

k0 + kz M0
)︁2 =

(︃
∂p′i∞n

∂r̄
+

∂p′s∞n

∂r̄

)︃
1(︁

k0 + kz M∞
)︁2 at r̄ = a0 + δSF. (3.90)

By substituting equations (3.69), (3.74) and (3.76) into eq.(3.90) the following is obtained:[︃
1

2π
An (kz, ω0) Γ0 J′n (Γ0(a0 + δSF)) +

1
2π

Bn (kz, ω0) Γ0 H(2)′
n (Γ0(a0 + δSF))

]︃
1(︁

k0 + kz M0
)︁2 =

=

[︃
En (kz, ω0) Γ∞ J′n (Γ∞(a0 + δSF)) +

1
2π

Cn (kz, ω0) Γ∞ H(2)′
n (Γ∞(a0 + δSF))

]︃
1(︁

k0 + kz M∞
)︁2 .

(3.91)

Furthermore, by substituting the coefficient An (kz, ω0) using eq.(3.73) and the coefficient
Cn (kz, ω0) using eq.(3.82), and solving for Bn (kz, ω0), eq.(3.91) becomes

Bn (kz, ω0) =

[︃
J′n (Γ∞(a0 + δSF))− H(2)′

n (Γ∞(a0 + δSF))
Jn (Γ∞(a0+δSF))

H(2)
n (Γ∞(a0+δSF))

]︃
Dn (kz, ω0)

× 2π En (kz, ω0)
Γ∞(︁

k0 + kz M∞
)︁2 ,

(3.92)

where the coefficient Dn (kz, ω0) is defined as

Dn (kz, ω0) =

[︃
H(2)′

n (Γ0(a0 + δSF))− J′n (Γ0(a0 + δSF))
H(2)′

n (Γ0a0)

J′n (Γ0a0)

]︃
Γ0(︁

k0 + kz M0
)︁2

−
[︃

H(2)
n (Γ0(a0 + δSF))− Jn (Γ0(a0 + δSF))

H(2)′
n (Γ0a0)

J′n (Γ0a0)

]︃
× Γ∞(︁

k0 + kz M∞
)︁2

H(2)′
n (Γ∞(a0 + δSF))

H(2)
n (Γ∞(a0 + δSF))

.

(3.93)

The expression for the coefficient Bn (kz, ω0) can be simplified by using the Wronskian formula

J′n (x)H(2)
n (x)− Jn (x)H(2)′

n (x) = i
(︃

2
πx

)︃
, (3.94)

which when introduced, modifies eq.(3.92) to give

Bn (kz, ω0) =
4i En (kz, ω0)

(a0 + δSF)
(︁
k0 + kz M∞

)︁2 Dn (kz, ω0)H(2)
n (Γ∞(a0 + δSF))

. (3.95)

Coefficient An (kz, ω0) now can also be evaluated using eqs.(3.73) and (3.95),

An (kz, ω0) = − 4i En (kz, ω0)H(2)′
n (Γ0a0)

(a0 + δSF)
(︁
k0 + kz M∞

)︁2 Dn (kz, ω0)H(2)
n (Γ∞(a0 + δSF)) J′n (Γ0a0)

, (3.96)

and coefficient Cn (kz, ω0) using eqs.(3.82) and (3.95).
With all of the coefficients known, expressions for the acoustic pressure both inside and
outside the boundary layer can be derived. Since the areas of interest are the surface of the
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cylindrical fuselage (for the evaluation of cabin noise levels) and the far-field (for the
evaluation of community noise), the next sections are dedicated to the evaluation of those
expressions.
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FIGURE 3.5: Sketch showing the zones where near and far field solutions are valid.

3.2.4 Fuselage Surface Pressure

The fuselage surface is inside the boundary layer. With the coefficients An (kz, ω0) and
Bn (kz, ω0) known, an expression for the pressure inside the boundary layer can be written by
using eq.(3.69)

p′t0n
(r̄, kz) =

An (kz, ω0)

2π
Jn (Γ0r̄) +

Bn (kz, ω0)

2π
H(2)

n (Γ0r̄), (3.97)

and by replacing the coefficients An (kz, ω0) and Bn (kz, ω0) with their expressions according
to eqs. (3.96) and (3.95) respectively:

p′t0n
(r̄, kz) =

2i En (kz, ω0)

π(a0 + δSF)
(︁
k0 + kz M∞

)︁2 Dn (kz, ω0)H(2)
n (Γ∞(a0 + δSF))

×
[︃

H(2)
n (Γ0r̄)− Jn (Γ0r̄)

H(2)′
n (Γ0a0)

J′n (Γ0a0)

]︃
.

(3.98)
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By setting r̄ = a0 and using the Wronskian formula as in eq.(3.94), the surface pressure
expression is recovered:

p′t0n
(a0, kz) =

−4 En (kz, ω0)

π2Γ0 a0(a0 + δSF)
(︁
k0 + kz M∞

)︁2 Dn (kz, ω0)H(2)
n (Γ∞(a0 + δSF)) J′n (Γ0a0)

.

(3.99)
Equation (3.99) represents the Fourier-transformed total field on the surface of the cylindrical
fuselage. In order to acquire the total field in real space an inverse Fourier transform
integration must be carried out. The dependence on ϕ̄ is represented as always, in the form of
a Fourier series:

p′t0 (a0, ϕ̄, z̄, t) =
1

(2π)2

∞

∑
n=−∞

∫︂ ∞

−∞
p′t0n

(a0, kz) e−ikz z̄ dkz e−inϕ̄ eiω0t, (3.100)

which becomes, using eq.(3.99),

p′t0 (a0, ϕ̄, z̄, t) =
ξlqPlq

4
(−1)l e−ilβ

∞

∑
n=−∞

(−1)n einβ I(sbl)
n (a0, z̄) e−inϕ̄ eiω0t (3.101)

where the inverse Fourier integral is given by:

I(sbl)
n (a0, z̄) =

∫︂ ∞

−∞
−

(k0 + kz M∞)Ψlq H(2)
l−n (Γ∞b)

π2

4 Γ0 a0(a0 + δSF)
(︁
k0 + kz M∞

)︁2 Dn (kz, ω0)H(2)
n (Γ∞(a0 + δSF)) J′n (Γ0a0)

× e−ikz z̄ dkz,

(3.102)

where sbl stands for step boundary layer. Equations (3.101) and (3.102) are the essential results
of this section. The integral I(sbl)

n (a0, z̄) cannot be solved analytically so it is evaluated
numerically. As will be demonstrated in later chapters, the numerical evaluation of this
integral will pose certain difficulties since the integrand has singular points along the kz-axis
of integration, as shown in Fig.(3.4). It is also worth noting that eqs. (3.37) and (3.101) are
exactly the same apart from the integral, which contains the terms that have to do with the
interaction between the two flow regions, outside and inside the boundary layer.

3.2.5 Near-field Validation

For clarity and validation purposes, this section also describes the evaluation process for the
total field outside the boundary layer but still in the near-field zone, see Fig.(3.5). The total
field outside the boundary layer in that region, a0 + δSF < r̄ < b − a, is the sum of the incident
and scattered field:

p′t∞n
= p′i∞n

+ p′s∞n . (3.103)

The incident and scattered fields are given from eqs. (3.74) and (3.76) respectively,

p′t∞n
(r̄, kz) = En (kz, ω0) Jn (Γ∞ r̄) +

1
2π

Cn (kz, ω0)H(2)
n (Γ∞ r̄) for a0 + δSF < r̄ < b − a,

(3.104)
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and by substituting the coefficient Cn (kz, ω0) using eqs. (3.82) and (3.95), eq.(3.104) becomes

p′t∞n
(r̄, kz) =En (kz, ω0)

[︄
Jn (Γ∞ r̄) +

2i

π(a0 + δSF)
(︁
k0 + kz M∞

)︁2 Dn (kz, ω0)H(2)
n (Γ∞(a0 + δSF))

×

×
[︃

H(2)
n (Γ0(a0 + δSF))− Jn (Γ0(a0 + δSF))

H(2)′
n (Γ0a0)

J′n (Γ0a0)

]︃
H(2)

n (Γ∞ r̄)

H(2)
n (Γ∞(a0 + δSF))

− Jn (Γ∞(a0 + δSF))

H(2)
n (Γ∞(a0 + δSF))

H(2)
n (Γ∞ r̄)

]︄
.

(3.105)

The initial analytic validation carried out in this section, serves the purpose of ensuring the
robustness of the analytical process. At this point of the analysis the only validation process
that can be used, is to reduce the boundary layer profile to a uniform flow and check whether
the reduced solution converges towards a known analytic solution for uniform flow. A
benchmark solution for the uniform flow problem is the one presented by McAlpine et al.
(2015), which has been described in earlier sections of this thesis.

Assuming that the methods used in this chapter are correctly implemented, when the two
Mach numbers inside and outside the boundary layer are equal, the derived solution
described by eqs. (3.98)-(3.102) must reduce to the uniform flow solution given by McAlpine
et al. (2015) and described in section 3.1. The same must be true for the solution for the
pressure outside the boundary layer. Both expressions must reduce to the same known
uniform flow solution. For the derived solution to be analytically valid the following needs to
be true: eqs. (3.98) and (3.105) converge to eq.(39) in McAlpine et al. (2015) (which is the
Fourier-transformed uniform flow solution) when M0 → M∞.
When M0 → M∞, it immediately follows that Γ0 → Γ∞ and the coefficient Dn (kz, ω0) from
eq.(3.93) is reduced as follows

Dn (kz, ω0) =− Γ∞(︁
k0 + kz M∞

)︁2
H(2)′

n (Γ∞a0)

J′n (Γ∞a0)

×
[︃

J′n (Γ∞(a0 + δSF))− Jn (Γ∞(a0 + δSF))
H(2)′

n (Γ∞(a0 + δSF))

H(2)
n (Γ∞(a0 + δSF))

]︃
,

(3.106)

and using the Wronskian formula from eq.(3.94),

Dn (kz, ω0) = −H(2)′
n (Γ∞a0)

J′n (Γ∞a0)

2i

π (a0 + δSF)
(︁
k0 + kz M∞

)︁2 H(2)
n (Γ∞(a0 + δSF))

. (3.107)
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Therefore, eq.(3.105) can be reduced using the new form of Dn (kz, ω0) from eq.(3.107) and
setting Γ0 → Γ∞,

p′t∞n
(r̄, kz) =En (kz, ω0)

[︄
Jn (Γ∞ r̄)− J′n (Γ∞a0)

H(2)′
n (Γ∞a0)

×

×
[︃

H(2)
n (Γ∞(a0 + δSF))− Jn (Γ∞(a0 + δSF))

H(2)′
n (Γ∞a0)

J′n (Γ∞a0)

]︃
H(2)

n (Γ∞ r̄)

H(2)
n (Γ∞(a0 + δSF))

− Jn (Γ∞(a0 + δSF))

H(2)
n (Γ∞(a0 + δSF))

H(2)
n (Γ∞ r̄)

]︄
,

(3.108)

which finally becomes

p′t∞n
(r̄, kz) = En (kz, ω0)

[︃
Jn (Γ∞ r̄)− J′n (Γ∞a0)

H(2)′
n (Γ∞a0)

H(2)
n (Γ∞ r̄)

]︃
, (3.109)

which is exactly the same as eq.(39) in McAlpine et al. (2015), proving that the total pressure
field outside the boundary is successfully reduced to a uniform flow solution in the absence of
a boundary layer.

The same can be proven for the total pressure field inside the boundary layer in eq.(3.98)
following the same procedure by setting Γ0 → Γ∞ and substituting Dn (kz, ω0) with its
reduced form as in eq.(3.107),

p′t0n
(r̄, kz) =− 2i En (kz, ω0)

π(a0 + δSF)
(︁
k0 + kz M∞

)︁2 H(2)′
n (Γ∞a0)
J′n (Γ∞a0)

2iH(2)
n (Γ∞(a0+δSF))

π (a0+δSF)
(︁

k0+kz M∞

)︁2
H(2)

n (Γ∞(a0+δSF))

×
[︃

H(2)
n (Γ∞ r̄)− Jn (Γ∞ r̄)

H(2)′
n (Γ∞a0)

J′n (Γ∞a0)

]︃
,

(3.110)

which becomes

p′t0n
(r̄, kz) = En (kz, ω0)

[︃
Jn (Γ∞ r̄)− J′n (Γ∞a0)

H(2)′
n (Γ∞a0)

H(2)
n (Γ∞ r̄)

]︃
, (3.111)

which is exactly the same as eq.(39) in McAlpine et al. (2015).

3.2.6 Total Far-field

As demonstrated in the case of the uniform flow in section 3.1, extra care must be taken for the
derivation of the far-field pressure expression due to the difference in the incident field
expression when r̄ > b + a. As explained before, the far-field region (see Fig.(3.5)) requires a
flip in the triangle of the Graf’s Addition theorem. So for the far-field, eq.(3.74) cannot be used
to describe the incident field. The correct expression for the incident field when r̄ > b + a is
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given in eq.(3.24) in section 3.1,

p′i∞n
(r̄, kz) = π2ξlqPlq e−i(l−n)β (k0 + kz M∞)Ψlq Jn−l (Γ∞b)H(2)

n (Γ∞ r̄) for r̄ > b+ a. (3.112)

With the incident field known, the total field can be obtained since the scattered field p′s∞n is
known from eq.(3.76),

p′t∞n
= p′i∞n

+ p′s∞n ⇒

p′t∞n
= π2ξlqPlq e−i(l−n)β (k0 + kz M∞)Ψlq Jn−l (Γ∞b)H(2)

n (Γ∞ r̄) +
1

2π
Cn (kz, ω0)H(2)

n (Γ∞ r̄),

(3.113)

or

p′tn f f
= π2ξlqPlq e−i(l−n)β (k0 + kz M∞)Ψlq Jn−l (Γ∞b)H(2)

n (Γ∞ r̄)

+
Bn (kz, ω0)

2πH(2)
n (Γ∞(a0 + δSF))

[︃
H(2)

n (Γ0(a0 + δSF))− Jn (Γ0(a0 + δSF))
H(2)′

n (Γ0a0)

J′n (Γ0a0)

]︃
H(2)

n (Γ∞ r̄)

− En (kz, ω0)
Jn (Γ∞(a0 + δSF))

H(2)
n (Γ∞(a0 + δSF))

H(2)
n (Γ∞ r̄).

(3.114)

By substituting Bn (kz, ω0) and En (kz, ω0) with their expressions according to eq.(3.95),

p′tn f f
= π2ξlqPlq e−i(l−n)β (k0 + kz M∞)Ψlq Jn−l (Γ∞b)H(2)

n (Γ∞ r̄)

+
4i π2ξlqPlq (−1)(l+n) e−i(l−n)β (k0 + kz M∞)Ψlq H(2)

l−n (Γ∞b)

2πH(2)
n (Γ∞(a0 + δSF))(a0 + δSF)

(︁
k0 + kz M∞

)︁2 Dn (kz, ω0)H(2)
n (Γ∞(a0 + δSF))

×
[︃

H(2)
n (Γ0(a0 + δSF))− Jn (Γ0(a0 + δSF))

H(2)′
n (Γ0a0)

J′n (Γ0a0)

]︃
H(2)

n (Γ∞ r̄)

− π2ξlqPlq (−1)(l+n) e−i(l−n)β (k0 + kz M∞)Ψlq H(2)
l−n (Γ∞b)

Jn (Γ∞(a0 + δSF))

H(2)
n (Γ∞(a0 + δSF))

H(2)
n (Γ∞ r̄).

(3.115)

Before continuing further, certain terms must be introduced for the sake of brevity. By setting

Fn (kz, ω0) = π2ξlqPlq e−i(l−n)β (k0 + kz M∞)Ψlq, (3.116)

and the term in the square brackets

Yn (Γ0) =

[︃
H(2)

n (Γ0(a0 + δSF))− Jn (Γ0(a0 + δSF))
H(2)′

n (Γ0a0)

J′n (Γ0a0)

]︃
, (3.117)

and finally by considering the following property of the Hankel function

(−1)(l+n) H(2)
l−n (Γ∞b) = (−1)(l+n) (−1)(n−l) H(2)

n−l (Γ∞b) = H(2)
n−l (Γ∞b), (3.118)
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eq.(3.115) can be rewritten as:

p′tn f f
(r̄, kz) =Fn (kz, ω0)

[︄
Jn−l (Γ∞b)

+

[︃
2i Yn (Γ0)

π(a0 + δSF)H(2)
n (Γ∞(a0 + δSF))

(︁
k0 + kz M∞

)︁2 Dn (kz, ω0)

− Jn (Γ∞(a0 + δSF))

]︃ H(2)
n−l (Γ∞b)

H(2)
n (Γ∞(a0 + δSF))

]︄
H(2)

n (Γ∞ r̄).

(3.119)

Following the same procedure as in the near-field case, an inverse Fourier z-transform must be
performed in order to obtain the total field in real space. Also, a Fourier series is introduced
for the dependence on ϕ̄ as in the case of the near-field,

p′t f f
(r̄, ϕ̄, z̄, t) =

1
(2π)2

∞

∑
n=−∞

∫︂ ∞

−∞
p′tn f f

(r̄, kz) e−ikz z̄ dkz e−inϕ̄ eiω0t. (3.120)

As in the uniform flow case, this inverse Fourier z-transform can be solved analytically using
the method of stationary phase. The process is very similar to the uniform flow case in section
3.1.4.1 and is presented in appendix D. Here, only the key results are shown:

p′t f f
(R̄, ϕ̄, θ̄, t) =

iξlqPlq k0 Ψlq(∆∞)

2R̄
S (θ̄)

(1 − M2
∞ sin2 θ̄)

e−ik0R̄S(θ̄)

×
∞

∑
n=−∞

Sn(θ̄) e
1
2 nπi ei(n−l)β e−inϕ̄ eiω0t,

(3.121)

where

Sn(θ̄) =

[︄
Jn−l (∆∞b) +

[︃
2i (1 − M2

∞ sin2 θ̄)Yn (∆0)

π(a0 + δSF)H(2)
n (∆∞(a0 + δSF)) k2

0 S2 (θ̄) Dn (∆∞, ∆0)

− Jn (∆∞(a0 + δSF))

]︃ H(2)
n−l (∆∞b)

H(2)
n (∆∞(a0 + δSF))

]︄
.

(3.122)

The rest of the terms are

Dn (∆∞, ∆0) =

[︃
H(2)′

n (∆0(a0 + δSF))− J′n (∆0(a0 + δSF))
H(2)′

n (∆0a0)

J′n (∆0a0)

]︃
× ∆0

k2
0
(︁
1 + C (θ̄) M0

(1−M2
∞ sin2 θ̄)1/2

)︁2

−
[︃

H(2)
n (∆0(a0 + δSF))− Jn (∆0(a0 + δSF))

H(2)′
n (∆0a0)

J′n (∆0a0)

]︃
× sin θ̄(1 − M2

∞ sin2 θ̄)1/2

k0 S2 (θ̄)

H(2)′
n (∆∞(a0 + δSF))

H(2)
n (∆∞(a0 + δSF))

,

(3.123)
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with ∆∞ = k0 sin θ̄

(1−M2
∞ sin2 θ̄)1/2 and

∆0 =
k0

(1 − M2
∞ sin2 θ̄)1/2

√︂
(1 − M2

∞ sin2 θ̄) + C (θ̄)[2M0(1 − M2
∞ sin2 θ̄)1/2 − C (θ̄)σ2

0 ]. (3.124)

Finally, S (θ̄) = (1−M2
∞ sin2 θ̄)1/2+M∞ cos θ̄

σ2
∞

, C (θ̄) = cos θ̄+(1−M2
∞ sin2 θ̄)1/2 M∞
σ2

∞
, σ2

∞ = 1 − M2
∞ and

σ2
0 = 1 − M2

0. Equation (3.121) is the essential conclusion of this section. It describes the
acoustic pressure in the far-field around the fuselage using spherical polar coordinates
centered on the cylindrical fuselage, while taking into account the step-function boundary
layer on the surface of the fuselage.

While the method of stationary phase is preferred in far-field approximations (see Lu (1990)),
the presence of multiple branch cuts along the integration domain gives rise to an issue that
should be addressed. The presence of branch cuts implies that the integrand close to those
branch points (see Fig. (3.4) may be significant and the method of stationary phase may ignore
its impactful contribution. Therefore, the method of steepest descent is employed as in Gabard
(2008). This method is more robust than the method of stationary phase because, unlike the
stationary phase method which integrates along the real kz-axis, the steepest descent method
deforms the integration path onto the complex plane avoiding the branch points but retaining
the impactful contribution of the integrand around those points. The solution of the integral in
eq.(3.120) with the method of steepest descent is carried out in appendix E.

The final expression in appendix E is exactly the same as in eq.(3.121). This essentially means
that the method of steepest descent yields the same result as the method of stationary phase.
This is also demonstrated in appendices D and E where it is proven that the point of stationary
phase is the same as the saddle point in the steepest descent method. The method of stationary
phase only takes into account the contribution of the integrand around the point of stationary
phase. On the other hand, the method of steepest descent only takes into account the
contribution of the integrand around the saddle point along the steepest descent deformed
integration contour. Therefore, if the point of stationary phase is the same as the saddle point,
the integration should yield the same result for both methods. Thus, it is proven that in this
case the presence of branch points along the integration domain does not affect the overall
result. For that reason, a deformation of the integration contour onto the complex plane is not
necessary and therefore the method of stationary phase is capable of producing a
mathematically robust solution.

3.2.7 Far-field Validation

As in the case of the near-field, the analytical validation process involves reducing the
step-function boundary layer to a uniform flow. Assuming that the analytical methods used in
the previous section are valid, when the two Mach numbers inside and outside the boundary
layer are equal, the derived solution described by eq.(3.121) must reduce to the uniform flow
far-field solution given by eq.(3.67). For the derived solution to be analytically valid the
following needs to be true: eq.(3.121) converges to eq.(3.67) when M0 → M∞.
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When M0 → M∞ it immediately follows that σ0 → σ∞. It must also follow that ∆0 → ∆∞,

∆0 =
k0

(1 − M2
∞ sin2 θ̄)1/2

√︂
(1 − M2

∞ sin2 θ̄) + C (θ̄)[2M∞(1 − M2
∞ sin2 θ̄)1/2 − C (θ̄)σ2

∞]

=
k0 sin θ̄

(1 − M2
∞ sin2 θ̄)1/2

= ∆∞.

(3.125)

The term Dn (∆∞, ∆0) will also reduce to the form of Dn (∆∞),

Dn (∆∞, ∆0) =

[︃
H(2)′

n (∆∞(a0 + δSF))− J′n (∆∞(a0 + δSF))
H(2)′

n (∆∞a0)

J′n (∆∞a0)

]︃
× sin θ̄(1 − M2

∞ sin2 θ̄)1/2

k0S2(θ̄)

−
[︃

H(2)
n (∆∞(a0 + δSF))− Jn (∆∞(a0 + δSF))

H(2)′
n (∆∞a0)

J′n (∆∞a0)

]︃
× sin θ̄(1 − M2

∞ sin2 θ̄)1/2

k0 S2 (θ̄)

H(2)′
n (∆∞(a0 + δSF))

H(2)
n (∆∞(a0 + δSF))

.

(3.126)

This expression can be simplified,

Dn (∆∞) =− sin θ̄(1 − M2
∞ sin2 θ̄)1/2

k0S2(θ̄)

H(2)′
n (∆∞a0)

J′n (∆∞a0)

×
[︃

J′n (∆∞(a0 + δSF))− H(2)′
n (∆∞(a0 + δSF))

Jn (∆∞(a0 + δSF))

H(2)
n (∆∞(a0 + δSF))

]︃
,

(3.127)

and by using the Wronskian formula from eq.(3.94),

Dn(∆∞) = − sin θ̄(1 − M2
∞ sin2 θ̄)1/2

k0S2(θ̄)

H(2)′
n (∆∞a0)

J′n (∆∞a0)

2i

π∆∞(a0 + δSF)H
(2)
n (∆∞(a0 + δSF))

.

(3.128)
Finally the reduced form of the Sn(θ̄) term in eq.(3.121) can be evaluated,

Sn(θ̄) =

[︄
Jn−l (∆∞b)

+

[︃
−2i (1 − M2

∞ sin2 θ̄)Yn (∆∞)

π(a0 + δSF)H(2)
n (∆∞(a0 + δSF)) k2

0 S2 (θ̄) sin θ̄(1−M2
∞ sin2 θ̄)1/2

k0S2(θ̄)
H(2)′

n (∆∞a0)
J′n (∆∞a0)

2i
π∆∞(a0+δSF)H

(2)
n (∆∞(a0+δSF))

− Jn (∆∞(a0 + δSF))

]︃ H(2)
n−l (∆∞b)

H(2)
n (∆∞(a0 + δSF))

]︄

=

[︄
Jn−l (∆∞b) +

[︃
−Yn (∆∞)

J′n (∆∞a0)

H(2)′
n (∆∞a0)

− Jn (∆∞(a0 + δSF))

]︃ H(2)
n−l (∆∞b)

H(2)
n (∆∞(a0 + δSF))

]︄
,

(3.129)
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and since from eq.(3.117),

Yn (∆∞) =

[︃
H(2)

n (∆∞(a0 + δSF))− Jn (∆∞(a0 + δSF))
H(2)′

n (∆∞a0)

J′n (∆∞a0)

]︃
, (3.130)

eq.(3.129) can be further simplified,

Sn(θ̄) =

[︄
Jn−l (∆∞b) +

[︃
−H(2)

n (∆∞(a0 + δSF))
J′n (∆∞a0)

H(2)′
n (∆∞a0)

+ Jn (∆∞(a0 + δSF))
H(2)′

n (∆∞a0)

J′n (∆∞a0)

J′n (∆∞a0)

H(2)′
n (∆∞a0)

− Jn (∆∞(a0 + δSF))

]︃ H(2)
n−l (∆∞b)

H(2)
n (∆∞(a0 + δSF))

]︄

=

[︄
Jn−l (∆∞b)− H(2)

n−l (∆∞b)
J′n (∆∞a0)

H(2)′
n (∆∞a0)

]︄
.

(3.131)

The final form of eq.(3.131) is identical to the bracket term in eq.(3.67) for the uniform flow
case. The rest of the terms in eq.(3.121) cannot be further reduced or simplified since they are
not dependent on M0 in any way. This leads to the reduced form of eq.(3.121),

p′t f f
(R̄, ϕ̄, θ̄, t) =

iξlqPlq k0 Ψlq(∆∞)

2R̄
S (θ̄)

(1 − M2
∞ sin2 θ̄)

e−ik0R̄S(θ̄)

×
∞

∑
n=−∞

[︄
Jn−l (∆∞b)− H(2)

n−l (∆∞b)
J′n (∆∞a0)

H(2)′
n (∆∞a0)

]︄
e

1
2 nπi ei(n−l)β e−inϕ̄ eiω0t,

(3.132)

which is exactly the same as the uniform flow expression in eq.(3.67). Note the difference in
notation, since in the uniform flow case there was only one Mach number Mz and one ∆z term
which can arbitrarily be renamed M∞ and ∆∞ since their definitions are exactly the same as in
the step-function boundary layer case.

3.2.8 Section Summary

The aim of this chapter was to derive some key expressions and equations that will be used to
produce pressure calculations when there is a step-function boundary layer profile present on
the surface of the fuselage. Specifically, the first of these expressions describe the pressure on
the fuselage surface in eqs. (3.101) and (3.102). The far-field solution for the same problem is
also derived and presented in this chapter. Equation (3.121) gives the pressure in the far-field
of the fuselage when there is a step-function boundary layer on it. The main advantage of
using such a simple profile that has no shear, is to avoid solving the Pridmore-Brown equation.

As stated before, the step-function boundary layer profile may not seem realistic enough in
order to produce results that closely match those of a more representative profile but it
provides plenty of insight into the refraction problem as will be seen later. Furthermore, as
will be seen later, the simplicity of the step-function profile will lead to certain advantages
over other methods. The results in this chapter represent a novel work of an analytical
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solution of fan noise refraction by a step-function boundary layer that has not been presented
before to the best of the author’s knowledge.

3.3 Linear Boundary Layer Profile Analysis

The step-function boundary layer profile is a good initial approximation for a more complex
boundary layer. The next stage of the analysis will include an even more realistic velocity
profile. This profile is chosen to be the linear profile because it is still relatively simple and
enables an analytical solution. As stated before, the challenge of having a shear layer in the
flow is the necessity to solve the Pridmore-Brown equation (Pridmore-Brown (1958)),

D0

Dt

(︄
D0

2 p
Dt2 −∇2 p

)︄
− 2M′ ∂2 p

∂r̄∂z̄
= 0, (3.133)

where M′ = dM/dr̄ is the Mach number gradient. All previous work on fuselage boundary
layer refraction relied on numerical methods to solve the Pridmore-Brown equation, namely
Runge-Kutta routines (Hanson and Magliozzi (1985), Lu (1990), Brambley et al. (2011),
Brambley et al. (2012), Gaffney and McAlpine (2017), Gaffney and McAlpine (2018), Campos
et al. (1999)).

The key novel contribution of this thesis is the use of an asymptotic analytical approach to
solve the Pridmore-Brown equation. This solution has been proposed by Eversman and
Beckemeyer (1972) who used it in order to calculate the sound propagation through a shear
layer that develops on the walls of a duct. Eversman (1972) concluded that the solution is valid
and accurate for sufficiently thin boundary layers. Therefore, in this thesis this analytical
method will be used to solve the problem of sound propagation through a shear layer that
develops on the wall of the fuselage. A simple linear shear will be used in order to simplify the
calculations and facilitate quicker results in contrary to previous numerical work. Also, by
allowing a slip velocity at the wall, the linear profile can be used to simulate other profiles
such as the quarter-sine or the 1/7th power law. These results are also available in the paper
by Rouvas and McAlpine (2021).

The process that is followed is once again a matching procedure. The solution inside the
boundary layer (the solution to the Pridmore-Brown equation) is matched to the solution
outside the boundary layer (which is a simple uniform flow problem as described in previous
sections) at the edge of the boundary layer in order to obtain the total field. The boundary
layer profile M(z) with thickness δ is replaced with a linear velocity profile with effective
thickness δL. Inside the boundary layer, a0 < r̄ < a0 + δL, the flow exhibits a linear shear layer
with a Mach number at the wall Mw which is smaller than the free stream Mach number M∞

outside the boundary layer, r̄ > a0 + δL. The importance of allowing a slip at the wall has
already been described in Rouvas and McAlpine (2021) and will be shown later in this thesis in
more detail. The analysis is also outlined briefly in the paper by Rouvas and McAlpine (2021).
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FIGURE 3.6: Boundary layer with linear velocity profile.

3.3.1 Inside the Boundary Layer

Inside the boundary layer the sound propagation is governed by the Pridmore-Brown
equation. The analysis begins with the Fourier-transformed Pridmore-Brown equation
expressed in cylindrical polar coordinates, given in Gaffney (2016) eq.(5.1.13), which describes
the total field inside a linear boundary layer with slip on the wall Mw and free stream Mach
number M∞,

d2 p′tinn

dr̄2 +

(︃
1
r̄
− 2kz M′

k0 + kz M

)︃dp′tinn

dr̄
+

[︃
(k0 + kz M)2 − k2

z −
n2

r̄2

]︃
p′tinn

= 0. (3.134)

The initial part of the analysis is to change variables firstly to y = r̄−a0
a0

, and then to ζ = y
ε , with

the parameter

ε =
δL
a0

, (3.135)

as the non-dimensional boundary-layer thickness. Essentially, this change of variables is done
in order to perform an inner expansion inside the boundary layer. Thus, the limits of the
boundary layer are shifted from a0 < r̄ < a0 + δL to 0 < ζ < 1. With these changes, eq.(3.134)
becomes

d2 p′tinn

dζ2 +

(︃
ε

εζ + 1
− 2KM∞

1 + KM
dφ

dζ

)︃dp′tinn

dζ

+ ε2
{︃
(k0a0)

2[︁(1 + KM)2 − K2]︁− n2

(εζ + 1)2

}︃
p′tinn

= 0,

(3.136)

where K = kz/k0. The boundary condition at the fuselage surface is a rigid hard-wall
boundary condition as before, which means

dp′tinn

dζ
= 0 at ζ = 0, (3.137)
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because r̄ = a0 ⇒ ζ = 0 by definition. Also, the Mach number profile inside the linear
boundary layer is defined as

M = M∞ φ(ζ) = M∞

(︄
ζ

M∞ − Mw

M∞
+

Mw

M∞

)︄
. (3.138)

3.3.1.1 Power Series Solution

Following Eversman and Beckemeyer (1972), eq.(3.136) can be solved using a power series
solution in ε of the form,

p′tinn
(ζ) = p′0(ζ) + εp′1(ζ) + ε2 p′2(ζ) + ε3 p′3(ζ) + . . . . (3.139)

Note that for convenience and brevity the arguments kz and t are omitted from the
Fourier-transformed pressure p′tinn

. Before moving any further it is important to highlight the
fact that this is a power series solution, which means that it is valid for sufficiently thin
boundary layers. This fact is also investigated by Eversman (1972), who concluded that the
solution is indeed valid for fairly thick boundary layers but its use there should be avoided.
The validity bounds of the proposed solution will be thoroughly investigated in later chapters
of this thesis.

The next step is to substitute the power series solution in eq.(3.139) into eqs. (3.136) and
(3.137). By doing so and equating the terms that are of the same order of ε from the left hand
side with the same order from the right hand side, differential equations and their respective
boundary conditions can be obtained for each of the terms in the power series.

Zeroth order term:
d2 p′0
dζ2 − 2KM∞

1 + KM∞ φ

dφ

dζ

dp′0
dζ

= 0, (3.140)

dp′0
dζ

(ζ = 0) = 0. (3.141)

For the first order term

2ζ
d2 p′0
dζ2 +

d2 p′1
dζ2 +

dp′0
dζ

− 4ζKM∞

1 + KM∞ φ

dφ

dζ

dp′0
dζ

− 2KM∞

1 + KM∞ φ

dφ

dζ

dp′1
dζ

= 0, (3.142)

which, by using eq.(3.140), will become

d2 p′1
dζ2 − 2KM∞

1 + KM∞ φ

dφ

dζ

dp′1
dζ

= −
dp′0
dζ

, (3.143)

dp′1
dζ

(ζ = 0) = 0. (3.144)
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For the second order term

ζ2 d2 p′0
dζ2 + 2ζ

d2 p′1
dζ2 +

d2 p′2
dζ2 + ζ

dp′0
dζ

+
dp′1
dζ

− ζ22KM∞

1 + KM∞ φ

dφ

dζ

dp′0
dζ

− 4ζKM∞

1 + KM∞ φ

dφ

dζ

dp′1
dζ

− 2KM∞

1 + KM∞ φ

dφ

dζ

dp′2
dζ

+ Xp′0 − n2 p′0 = 0,

(3.145)

which, by using eqs. (3.140) and (3.143), will become

d2 p′2
dζ2 − 2KM∞

1 + KM∞ φ

dφ

dζ

dp′2
dζ

= −
dp′1
dζ

+ ζ
dp′0
dζ

− Xp′0 + n2 p′0, X = (k0a0)
2
[︃
(1+KM∞ φ)2 −K2

]︃
,

(3.146)
dp′2
dζ

(ζ = 0) = 0. (3.147)

For the third order term

ζ2 d2 p′1
dζ2 + 2ζ

d2 p′2
dζ2 +

d2 p′3
dζ2 + ζ

dp′1
dζ

+
dp′2
dζ

− ζ22KM∞

1 + KM∞ φ

dφ

dζ

dp′1
dζ

− 4ζKM∞

1 + KM∞ φ

dφ

dζ

dp′2
dζ

− 2KM∞

1 + KM∞ φ

dφ

dζ

dp′3
dζ

+ 2ζXp′0 + Xp′1 − n2 p′1 = 0,

(3.148)

which, by using eqs. (3.143) and (3.146), will become

d2 p′3
dζ2 − 2KM∞

1 + KM∞ φ

dφ

dζ

dp′3
dζ

= −
dp′2
dζ

+ ζ
dp′1
dζ

− ζ2 dp′0
dζ

− Xp′1 + n2 p′1 − 2ζn2 p′0, (3.149)

dp′3
dζ

(ζ = 0) = 0. (3.150)

As per Eversman and Beckemeyer (1972), by arbitrarily specifying the pressure at the wall, for
the zeroth term,

p′0(ζ = 0) = p′tinn
(0), (3.151)

then the rest of the higher-order terms

p′1(ζ = 0) = 0,

p′2(ζ = 0) = 0 etc.
(3.152)

Equations (3.140)-(3.150) are second order differential equations that can be solved by
reducing them to first order differential equations. By doing so the method of separation of
variables can be used along with the integrating factor method in order to yield expressions
for the pressure terms in the power series of eq.(3.139). Equation (3.140) is solved by setting
dp′0
dζ = q. By doing so, the equation is transformed into a first order differential equation,

dq
dζ

− 2KM∞

1 + KM∞ φ

dφ

dζ
q = 0. (3.153)
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By separating the variables, this leads to

q = c(1 + KM∞ φ)2 ⇒
dp′0
dζ

= c(1 + KM∞ φ)2, (3.154)

where c is the integrating constant. This simple differential equation is easily solved by using
the boundary condition in eq.(3.141)

dp′0
dζ

(ζ = 0) = 0 ⇒ c(1 + KM∞ φ(0))2 = 0 ⇒ c(1 + KMw)
2 = 0. (3.155)

It immediately follows that either c = 0 or kz = − k0
Mw

. The solution kz = − k0
Mw

represents a
special case where the critical layer occurs at the wall. This special solution will not be
investigated here. The more general solution is c = 0, which gives the solution for the zeroth
order term of the power series, because if c = 0 then it follows from eq.(3.154),

dp′0
dζ

= 0 ⇒ p′0(ζ) = constant,

⇒ p′0(ζ) = p′tinn
(0). (3.156)

where p′tinn
(0) is the arbitrarily specified pressure at the fuselage wall p′tin

(ζ = 0) as in
eq.(3.151).

Equation (3.143) is solved the same way, by setting dp′1
dζ = q. Also, by using eq.(3.156),

eq.(3.143) is transformed into
dq
dζ

− 2KM∞

1 + KM∞ φ

dφ

dζ
q = 0, (3.157)

which is the same as eq.(3.153). Also, since the boundary condition in eq.(3.144) is the same as
in the zeroth order term case (eq.(3.141)), it follows that the first order term will have the same
solution as the zeroth order term in eq.(3.156),

dp′1
dζ

= 0 ⇒ p′1(ζ) = constant,

⇒ p′1(ζ) = p′1(ζ = 0) = 0. (3.158)

Moving on to the solution for the second order term. This is eq.(3.146) and once again it is

solved by setting dp′2
dζ = q. Also following from the solutions of the zeroth and first terms, eqs.

(3.156) and (3.158) respectively, eq.(3.146) is transformed into

dq
dζ

− 2KM∞

1 + KM∞ φ

dφ

dζ
q = −Xp′tinn

(0) + n2 p′tinn
(0), (3.159)

which becomes
dq
dζ

− 2KM∞

1 + KM∞ φ

dφ

dζ
q =

[︁
µ − ν(1 + KM∞ φ)2]︁p′tinn

(0), (3.160)

where
ν = (k0a0)

2 and µ = (k0a0)
2K2 + n2. (3.161)
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Equation (3.160) can be solved with the method of the integrating factor. Let the integrating
factor be

u(ζ) = (1 + KM∞ φ)−2. (3.162)

So the solution to eq.(3.160), according to the integrating factor method, will be

q =

∫︁
u(ζ)

[︁
µ − ν(1 + KM∞ φ)2]︁p′tin

(0)dζ + c
u(ζ)

, (3.163)

where c is the integrating constant. By using a dummy variable,

dp′2
dζ

= µp′tin
(0)(1+ KM∞ φ)2

∫︂ ζ

0

dη

(1 + KM∞ φ(η))2 − νp′tinn
(0)ζ(1+ KM∞ φ)2 + c(1+ KM∞ φ)2.

(3.164)
Once again, this simple differential equation can be solved by utilising the boundary condition
in eq.(3.147). Indeed by setting ζ = 0 in eq.(3.164) yields

c(1 + KMw)
2 = 0, (3.165)

and as before the general solution c = 0 is chosen. With c known, an expression for dp′2
dζ can be

recovered from eq.(3.164) and by integrating an expression for p′2 can also be recovered,

dp′2
dζ

= p′tinn
(0)(1 + KM∞ φ)2

[︂
µ
∫︂ ζ

0

dη

(1 + KM∞ φ(η))2 − νζ
]︂
, (3.166)

⇒ p′2(ζ) = p′tinn
(0)

∫︂ ζ

0

{︄
(1 + KM∞ φ(σ))2

[︂
µ
∫︂ σ

0

dη

(1 + KM∞ φ(η))2 − νσ
]︂}︄

dσ.(3.167)

The same process is followed for the third order term. By integrating using the integrating
factor method, the solution for the third order term is recovered,

dp′3
dζ

= −p′tinn
(0)(1 + KM∞ φ)2

{︂∫︂ ζ

0

[︂
µ
∫︂ ξ

0

dη

(1 + KM∞ φ(η))2 − νξ
]︂
dξ +

2
∫︂ ζ

0

mn2

(1 + KM∞ φ(m))2 dm
}︂

, (3.168)

⇒ p′3(ζ) = −p′tinn
(0)

∫︂ ζ

0
(1 + KM∞ φ(σ))2

{︂∫︂ σ

0

[︂
µ
∫︂ ξ

0

dη

(1 + KM∞ φ(η))2 − νξ
]︂
dξ +

2
∫︂ σ

0

mn2

(1 + KM∞ φ(m))2 dm
}︂

dσ. (3.169)

3.3.1.2 Total Field

With these terms known, the power series expression can be evaluated that describes the total
field inside the boundary layer. For the pressure, up to the second order terms are retained in
order to have an error of O(ε3),

p′tinn
(ζ) = p′0(ζ) + εp′1(ζ) + ε2 p′2(ζ). (3.170)
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Substituting eqs. (3.156), (3.158) and (3.167) into eq. (3.170) gives

p′tinn
(ζ) = p′tinn

(0)

{︄
1 + ε2

∫︂ ζ

0

[︄
(1 + KM∞ φ(σ))2

[︂
µ
∫︂ σ

0

dη

(1 + KM∞ φ(η))2 − νσ
]︂]︄

dσ

}︄
. (3.171)

In order to retain comparative relative error, following Eversman and Beckemeyer (1972), the
expression for the pressure derivative is carried to within an error of O(ε4),

dp′tinn

dζ
(ζ) =

dp′0
dζ

(ζ) + ε
dp′1
dζ

(ζ) + ε2 dp′2
dζ

(ζ) + ε3 dp′3
dζ

(ζ). (3.172)

Substituting the terms from eqs. (3.156), (3.158), (3.166) and (3.168) into eq. (3.172) gives,

dp′tinn

dζ
(ζ) =ε2 p′tinn

(0)(1 + KM∞ φ)2

{︄[︂
µ
∫︂ ζ

0

dη

(1 + KM∞ φ(η))2 − νζ
]︂

− ε

[︄∫︂ ζ

0

[︂
µ
∫︂ ξ

0

dη

(1 + KM∞ φ(η))2 − νξ
]︂
dξ + 2n2

∫︂ ζ

0

m
(1 + KM∞ φ(m))2 dm

]︄}︄
.

(3.173)

The integrals in eqs. (3.171) and (3.173) need to be evaluated in order to obtain expressions for
the pressure and its derivative as a function of ζ.

Before the integrals are evaluated, the following quantities are introduced to facilitate the
integrations and also for brevity. These quantities are

s = K(M∞ − Mw), (3.174)

and
g = K(M∞ − Mw)(1 + KMw) = s(1 + KMw). (3.175)

This will transform the term (1 + KM∞ φ)2 into

(1 + KM∞ φ)2 = (1 + Kζ(M∞ − Mw) + KMw)
2 = (g/s + ζs)2. (3.176)

Then solving the integrals in eq.(3.171) leads to the power series Fourier-transformed pressure
as a function of ζ to within an error of O(ε3),

p′tinn
(ζ) = p′tinn

(0)

{︄
1 + ε2

[︄
−νs2 ζ4

4
+

ζ3

3
(︁ s2µ

g
− 2νg

)︁
+

ζ2

2
(︁
µ − ν

g2

s2

)︁]︄}︄
. (3.177)
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Additionally, solving the integrals in eq.(3.173) leads to the power series Fourier-transformed
pressure derivative as a function of ζ to within an error of O(ε4),

dp′tinn

dζ
(ζ) = ε2 p′tinn

(0)

{︄
−νs2ζ3 + ζ2(µ

s2

g
− 2νg) + ζ(µ − νg2/s2)

− ε

[︄
(2n2 − µ)

[︂
(ζ + g/s2)2 ln

(︃
s2ζ

g
+ 1
)︃
− ζ

g
s2

]︂
− νs2 ζ4

2
+ ζ3(µ

s2

g
− νg)− ζ2

[︂
2(n2 − µ) +

ν

2
g2

s2

]︂]︄}︄
.

(3.178)

3.3.2 Matching of the Two Solutions

In order to match the two solutions at the edge of the boundary layer, r̄ = a0 + δL or
equivalently ζ = 1, the pressure and its derivative at that point must be known. Therefore,

p′tinn
and

dp′tinn
dr̄ in eqs. (3.177) and (3.178) are evaluated at ζ = 1.

p′tinn
(ζ = 1, kz, t) = p′tinn

(0)

{︄
1 + ε2

[︄
µ
(︂ s2

3g
+

1
2

)︂
− ν
(︂ s2

4
+

2
3

g +
1
2

g2

s2

)︂]︄}︄
eiω0t. (3.179)

dp′tinn

dr̄
(ζ = 1, kz, t) =

ε

a0
p′tinn

(0)(1 + KM∞)2

{︄
µ
(︂ 1

g
− 1

(s2 + g)

)︂
− ν

− ε

[︄
(2n2 − µ)

s2 ln
(︃

s2 + g
g

)︃
− 2n2

s2 + g
+

µ

g
− ν

2

]︄}︄
eiω0t.

(3.180)

Outside the boundary layer the mean flow is uniform and thus the total field can be expressed
in terms of an incident and scattered field derived previously in section 3.1. The
Fourier-transformed incident field is given in eq.(3.25)

p′i∞n
(r̄, kz, t) = En(kz, ω0)Jn (Γ∞ r̄) eiω0t, (3.181)

where
En(kz, ω0) = π2ξlqPlq(−1)l+n(k0 + kz M∞)Ψlq e−i(l−n)β H(2)

l−n (Γ∞b). (3.182)

Also, according to the uniform flow theory (see section 3.1), the Fourier-transformed scattered
field will be in terms of a Hankel function, because outward propagating cylindrical waves are
required,

p′s∞n (r̄, kz, t) =
1

2π
CL

n (kz, ω0)H
(2)
n (Γ∞ r̄) eiω0t, (3.183)

where Γ∞ exhibits the behaviour outlined in section 3.2. Inside the boundary layer, the Fourier
transformed total field is described in eqs. (3.177) and (3.178). The matching of the two
solutions is essential in order to determine the two unknowns of the problem, namely the
Fourier-transformed pressure at the fuselage wall p′tinn

(0) in eqs. (3.177) and (3.178), and the

coefficient CL
n (kz, ω0) in eq.(3.183). The evaluation of p′tinn

(0) is one of the key results of the
analysis in this section since it specifies the pressure at the wall which is practically the most
important part of the near-field solution.
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The matching is performed by using two boundary conditions at the edge of the boundary
layer, r̄ = a0 + δL or equivalently ζ = 1. The pressure continuity condition,

p′tinn
(ζ = 1) = p′t∞n

(r̄ = a0 + δL), (3.184)

and the particle displacement continuity condition, as previously in section 3.2. After all, this
is the nominal continuity condition as explained in Hanson (1984). However, in the linear
profile case this reduces to a pressure gradient continuity condition. This is evident from
eqs. (3.87) through (3.89), where in the linear profile case the internal Mach number is the same
as the external Mach number at the edge of the boundary layer (M0 = M∞). Therefore, the
continuity condition reduces to

dp′tinn

dr̄
(ζ = 1) =

dp′t∞n

dr̄
(r̄ = a0 + δL). (3.185)

Since the total Fourier-transformed field outside the layer is the sum of the incident and the
scattered field, the pressure continuity condition is expressed as

p′tinn
(ζ = 1) = p′i∞n

(r̄ = a0 + δL) + p′s∞n(r̄ = a0 + δL), (3.186)

and by substituting eqs. (3.179), (3.181) and (3.183) into eq.(3.186),

p′tinn
(0)

{︄
1 + ε2

[︄
µ

(︃
s2

3g
+

1
2

)︃
− ν

(︃
s2

4
+

2
3

g +
1
2

g2

s2

)︃]︄}︄

= En(kz, ω0)Jn (Γ∞(a0 + δL)) +
1

2π
CL

n (kz, ω0)H
(2)
n (Γ∞(a0 + δL)).

(3.187)

The same procedure is followed for the pressure gradient continuity condition,

dp′tinn

dr̄
(ζ = 1) =

dp′i∞n

dr̄
(r̄ = a0 + δL) +

dp′s∞n

dr̄
(r̄ = a0 + δL), (3.188)

and substituting eq.(3.180), (3.181) and (3.183) into eq.(3.188),

ε

a0
p′tinn

(0)(1 + KM∞)2

{︄
µ

(︃
1
g
− 1

(s2 + g)

)︃
− ν − ε

[︄
(2n2 − µ)

s2 ln
(︃

s2 + g
g

)︃
− 2n2

s2 + g
+

µ

g
− ν

2

]︄}︄

= En(kz, ω0)Γ∞J′n (Γ∞(a0 + δL)) +
1

2π
CL

n (kz, ω0)Γ∞H(2)′
n (Γ∞(a0 + δL)),

(3.189)

Using eqs. (3.187) and (3.189), solving for p′tinn
(0) and CL

n (kz, ω0) leads to

p′tinn
(0) =

En(kz, ω0)

G

[︄
Jn (Γ∞(a0 + δL))

+

[︂
J′n (Γ∞(a0 + δL))− R

G
ε

Γ∞a0
(1 + KM∞)2Jn (Γ∞(a0 + δL))

]︂
[︂

R
G

ε
Γ∞a0

(1 + KM∞)2H(2)
n (Γ∞(a0 + δL))− H(2)′

n (Γ∞(a0 + δL))
]︂H(2)

n (Γ∞(a0 + δL))

]︄
,

(3.190)
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where

G =

{︄
1 + ε2

[︄
µ
(︂ s2

3g
+

1
2

)︂
− ν
(︂ s2

4
+

2
3

g +
1
2

g2

s2

)︂]︄}︄
, (3.191)

and

R =

{︄
µ
(︂ 1

g
− 1

(s2 + g)

)︂
− ν − ε

[︄
(2n2 − µ)

s2 ln
(︃

s2 + g
g

)︃
− 2n2

s2 + g
+

µ

g
− ν

2

]︄}︄
. (3.192)

The evaluation of p′tinn
(0) is a key result of this part of the work, since it represents the

Fourier-transformed pressure on the surface of the fuselage. However, it is important to
mention the other quantities that can be determined. The Fourier-transformed scattered field
is essential for the evaluation of the far-field case. The coefficient CL

n (kz, ω0) is

CL
n (kz, ω0) =

2πEn(kz, ω0)
[︂
J′n (Γ∞(a0 + δL))− R

G
ε

Γ∞a0
(1 + KM∞)2Jn (Γ∞(a0 + δL))

]︂
[︂

R
G

ε
Γ∞a0

(1 + KM∞)2H(2)
n (Γ∞(a0 + δL))− H(2)′

n (Γ∞(a0 + δL))
]︂ . (3.193)

Thus, the Fourier-transformed scattered field is given from eq.(3.183) upon substituting
CL

n (kz, ω0) with its expression from eq.(3.193),

p′s∞n
(r̄, kz, t) =

En(kz, ω0)
[︂
J′n (Γ∞(a0 + δL))− R

G
ε

Γ∞a0
(1 + KM∞)2Jn (Γ∞(a0 + δL))

]︂
[︂

R
G

ε
Γ∞a0

(1 + KM∞)2H(2)
n (Γ∞(a0 + δL))− H(2)′

n (Γ∞(a0 + δL))
]︂ H(2)

n (Γ∞ r̄)eiω0t.

(3.194)

3.3.3 Near-Field Validation

Before moving on, an initial validation can be performed at this point by taking the limit as
δL → 0 in eqs. (3.190) and (3.194). When the boundary layer vanishes then the expressions
should reduce to the uniform flow expressions given by McAlpine et al. (2015) and outlined in
section 3.1. Therefore, it is expected that when δL → 0, eq.(3.190) reduces to eq.(3.36). Also,
eq.(3.194) will reduce to eq.(3.32) which is the scattered field for uniform flow.

Firstly, the bracketed terms G and R are evaluated in the limit as δL → 0. Considering that
δL → 0 also means that ε → 0, by definition

lim
ε→0

G = 1, (3.195)

and

lim
ε→0

R =

{︄
µ
(︂ 1

g
− 1

(s2 + g)

)︂
− ν

}︄
. (3.196)
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Therefore, when δL → 0 or ε → 0, eq.(3.190) will become

p′tinn
(r̄ = a0, kz) = En(kz, ω0)

[︄
Jn (Γ∞a0)

+

[︂
J′n (Γ∞a0)−

(︂
µ
(︂

1
g − 1

(s2+g)

)︂
− ν
)︂

0
Γ∞a0

(1 + KM∞)2Jn (Γ∞a0)
]︂

[︂(︂
µ
(︂

1
g − 1

(s2+g)

)︂
− ν
)︂

0
Γ∞a0

(1 + KM∞)2H(2)
n (Γ∞a0)− H(2)′

n (Γ∞a0)
]︂H(2)

n (Γ∞a0)

]︄
,

(3.197)

or

p′tinn
(r̄ = a0, kz) = En(kz, ω0)

[︄
Jn (Γ∞a0) +

J′n (Γ∞a0)

−H(2)′
n (Γ∞a0)

H(2)
n (Γ∞a0)

]︄
, (3.198)

which becomes, by using the Wronskian formula J′n (x)H(2)
n (x)− Jn (x)H(2)′

n (x) = i
(︃

2
πx

)︃
,

p′tinn
(r̄ = a0, kz) = En(kz, ω0)

[︄
−i2

πΓ∞a0H(2)′
n (Γ∞a0)

]︄
, (3.199)

which is the same as eq.(41) in McAlpine et al. (2015) or eq.(3.36) in section 3.1 of this thesis.

On the other hand, by taking eq.(3.194) when δL → 0 or ε → 0,

p′s∞n
(r̄, kz) = En(kz, ω0)

×

[︂
J′n (Γ∞a0)−

(︂
µ
(︂

1
g − 1

(s2+g)

)︂
− ν
)︂

0
Γ∞a0

(1 + KM∞)2Jn (Γ∞a0)
]︂

[︂(︂
µ
(︂

1
g − 1

(s2+g)

)︂
− ν
)︂

0
Γ∞a0

(1 + KM∞)2H(2)
n (Γ∞a0)− H(2)′

n (Γ∞a0)
]︂H(2)

n (Γ∞ r̄),
(3.200)

or
p′s∞n (r̄, kz) = −En(kz, ω0)

J′n (Γ∞a0)

H(2)′
n (Γ∞a0)

H(2)
n (Γ∞ r̄), (3.201)

which is exactly the same as in eq.(36) in McAlpine et al. (2015) or eq.(3.32) in section 3.1 of this
thesis.

3.3.4 Fuselage Surface Pressure

Equation (3.190) represents the Fourier-transformed pressure on the fuselage surface. In order
to obtain the pressure in real space an inverse Fourier z-transform must be performed. The
dependence on ϕ̄ is represented as always, in the form of a Fourier series. Thus, following
from eq.(3.33), the pressure on the fuselage surface is

p′tin
(a0, ϕ̄, z̄, t) =

1
(2π)2

∞

∑
n=−∞

∫︂ ∞

−∞
p′tinn

(a0, kz) e−ikz z̄ dkz e−inϕ̄ eiω0t, (3.202)
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which becomes, using eq.(3.190),

p′tin
(a0, ϕ̄, z̄, t) =

1
(2π)2

∞

∑
n=−∞

∫︂ ∞

−∞
En(kz, ω0)

[︄
Jn (Γ∞(a0 + δL))

1
G

+

[︂
J′n (Γ∞(a0 + δL))− R

G
ε

Γ∞a0
(1 + KM∞)2Jn (Γ∞(a0 + δL))

]︂
[︂

R
G

ε
Γ∞a0

(1 + KM∞)2H(2)
n (Γ∞(a0 + δL))− H(2)′

n (Γ∞(a0 + δL))
]︂ H(2)

n (Γ∞(a0 + δL))

G

]︄

× e−ikz z̄ dkz e−inϕ̄ eiω0t.

(3.203)

This can be written in compact form as

p′tin
(a0, ϕ̄, z̄, t) =

ξlqPlq

4
(−1)le−ilβ

∞

∑
n=−∞

(−1)neinβ I(lbl)
n (a0, z̄)e−inϕ̄ eiω0t, (3.204)

where
I(lbl)
n (a0, z̄) =

∫︂ ∞

−∞
(k0 + kz M∞)Ψlq H(2)

l−n (Γ∞b) Sn(kz, ω0)e−ikz z̄ dkz, (3.205)

and

Sn(kz, ω0) =

[︄
Jn (Γ∞(a0 + δL))

1
G

+

[︂
J′n (Γ∞(a0 + δL))− R

G
ε

Γ∞a0
(1 + KM∞)2Jn (Γ∞(a0 + δL))

]︂
[︂

R
G

ε
Γ∞a0

(1 + KM∞)2H(2)
n (Γ∞(a0 + δL))− H(2)′

n (Γ∞(a0 + δL))
]︂ H(2)

n (Γ∞(a0 + δL))

G

]︄
.

(3.206)

The inverse Fourier z-transform integral in eq. (3.205) with the superscript (lbl) denoting linear
boundary layer cannot be solved analytically, which means that a numerical integration routine
is required to evaluate it. Equations (3.204) and (3.205) are the essential results of this section.
It is important to note that the integrand contains certain singularity points along the kz-axis,
but all the singularities are integrable. Once again it is worth noting that eqs. (3.37), (3.101) and
(3.204) are exactly the same apart from the integral, which contains the terms that differentiate
each case from each other.

3.3.4.1 Critical Layer

Finally, it is important to note that the expressions derived here contain the logarithm term
ln
(︁ s2+g

g
)︁
. This poses a potential issue, because the argument of the logarithm can become

negative, in which case the logarithm would become imaginary.

The region where this happens coincides with the region where there is the critical layer. For
the linear boundary layer the critical layer lies in the region −k0/Mw < kz < −k0/M∞ as
shown in Fig. (3.7). The critical layer is the point at which k0 + kz M(r̄c) = 0. At this point the
Pridmore-Brown equation is no longer valid and thus cannot be used to describe the pressure
field. Previous researchers (Hanson and Magliozzi (1985), McAninch (1983), Tam and Morris
(1980), Brambley et al. (2012) Gaffney and McAlpine (2017), Lu (1990), Campos et al. (1999))
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utilised a power series solution around the singularity in order to bridge it, namely a
Frobenius solution.
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FIGURE 3.7: Critical layer along the kz-axis.

However, according to Gaffney (2016) and Brambley et al. (2012) the critical layer region
contributes very little to the integrand in eq.(3.205). That led to the conclusion that the
inclusion of the critical layer region in the integration can be omitted without significant loss
in the accuracy. Although the solution with the critical layer is in the scope of future
investigation, the work presented here does not include it. In order to ensure that, the lower
limit of the integral in eq.(3.205) is truncated before the critical layer region.

3.3.4.2 Special Case

As explained during the derivation process presented in section 3.3, the only requirement for
the validity of the linear velocity profile method is that the boundary layer is sufficiently small
compared to the fuselage radius. That requirement stems from the fact that a power series is
utilised which involves ε which is the non-dimensional boundary-layer thickness. Therefore,
as will be seen in later chapters, for the method to be practically valid one must ensure that the
boundary layer is sufficiently thin.

It is important to note that this restriction applies only to the thickness of the boundary layer
and not the velocity profile involved. That effectively means that the methodology and
derivation process outlined in section 3.3 can be applied to any arbitrary velocity profile,
always provided that the thickness is sufficiently small. In fact, this is pointed out by
Eversman and Beckemeyer (1972) who suggested that any arbitrary velocity profile can be
used, including a quarter-sine or 1/7th power-law profile. Indeed, the exact same
methodology presented in section 3.3 can be applied to any arbitrary velocity profile, with the
differences between the profiles expressed in the Mach distribution function φ(ζ) in eq.(3.138).
The difference in function φ(ζ) will yield different results in the integrals of eqs. (3.171) and
(3.173). However, up to that point of the analysis, the equations obtained will be the same
regardless of the velocity profile used. Apart from the quarter-sine or 1/7th power-law profile



74 Chapter 3. Analysis

that could be used as suggested by Eversman and Beckemeyer (1972), any arbitrary profile is
applicable, such as a polynomial profile (Pohlhausen solution) or a manufactured profile
based on measurements. The difference in the analysis lies solely on the manipulation of the
function φ(ζ), which depending on the profile adds to the complexity of the problem.

However, there is one special case of velocity profile that might present problems during the
derivation of its analytical solution. Regardless of the velocity profile, the critical layer region
will lie at the position shown in Fig. (3.7). Generally this position is in the region where the
integrand becomes insignificant and can be omitted as explained in Gaffney (2016). However,
in the case when there is separation in the flow, the Mach number distribution inside the
detached boundary layer may involve negative values. An example of flow separation inside
the boundary layer is shown in Fig. (3.8).

M∞ M∞
r r

δ

Md

FIGURE 3.8: Flow separation inside the boundary layer. [left] Arbitrary profile, [right] simpli-
fied linear profile.

Let us consider the simplified linear case shown in Fig. (3.8). With the presence of the Md

value which is negative, the critical layer region shown in Fig. (3.7), which in normal cases
would span from −k0/Mw to −k0/M∞ (both of these values are in the negative kz region far
away from the region that contributes the most in the integration), now will occupy the region
−k0/M∞ < kz < −k0/Md where −k0/Md > 0. This will inevitably shift the critical layer
region to occupy a large part of the integration domain that contributes the most in the
integration. The problem is shown in Fig. (3.9). In this case, it is no longer valid to omit the
contribution of the critical layer to the integration and therefore it must be taken into account.
The analysis that includes the critical layer is not in the scope of this thesis. Therefore, the
analytical methods presented in this work should not be used to model the refraction effect of
a boundary layer that undergoes flow separation.

3.3.5 Total Far-Field

In order to derive the far-field pressure expression when there is a linear boundary layer
present, the same procedure is followed as in the step-function boundary layer case in section
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FIGURE 3.9: Critical layer along the kz-axis when flow separation is present.

3.2.6. As in section 3.2.6, the correct expression for the incident field is required as given in
eq.(3.24)

p′i∞n
(r̄, kz) = π2ξlqPlq e−i(l−n)β (k0 + kz M∞)Ψlq Jn−l (Γ∞b)H(2)

n (Γ∞ r̄) for r̄ > b+ a. (3.207)

The Fourier-transformed scattered field outside the boundary layer (which is the scattered
field that radiates towards the far-field) is given in eq.(3.194). Thus the total pressure in the
far-field will be, as already mentioned in previous sections, the sum of the incident and the
scattered field. Thus, the total Fourier transformed far-field pressure is

p′tn f f
(r̄, kz) = p′i∞n

(r̄, kz) + p′s∞n (r̄, kz), (3.208)

which, by substituting eqs. (3.24) and (3.194), leads to

p′tn f f
(r̄, kz) = Fn(kz, ω0)

[︄
Jn−l (Γ∞b)

+ H(2)
n−l (Γ∞b)

[︂
J′n (Γ∞(a0 + δL))− R

G
ε

Γ∞a0
(1 + KM∞)2Jn (Γ∞(a0 + δL))

]︂
[︂

R
G

ε
Γ∞a0

(1 + KM∞)2H(2)
n (Γ∞(a0 + δL))− H(2)′

n (Γ∞(a0 + δL))
]︂]︄H(2)

n (Γ∞ r̄),

(3.209)

where, as before,
Fn(kz, ω0) = π2ξlqPlq (k0 + kz M∞)Ψlq e−i(l−n)β. (3.210)

Following the same procedure as in the near-field case, an inverse Fourier z-transform must be
performed in order to obtain the total field in real space, i.e.

p′t f f
(r̄, ϕ̄, z̄, t) =

1
(2π)2

∞

∑
n=−∞

∫︂ ∞

−∞
p′tn f f

(r̄, kz) e−ikz z̄ dkz e−inϕ̄ eiω0t. (3.211)
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As in the uniform flow case and the step-function boundary layer case, the integral

In =
1

2π

∫︂ ∞

−∞
p′tn f f

(r̄, kz) e−ikz z̄ dkz. (3.212)

is in the appropriate form to be evaluated by the method of stationary phase as presented in
appendix D. In fact the procedure is exactly the same, the only difference being the bracketed
term in eq.(D.7) of appendix D is replaced with the bracketed term in eq.(3.209). The rest of the
procedure is unchanged and presented in appendix F.

As in the step-function boundary layer case, in this section only the key results are shown:

p′t f f
(R̄, θ̄, ϕ̄, t) =

iξlqPlqk0

2R̄
S(θ̄)

Θ
Ψlq(∆∞)e−ik0R̄S(θ̄)eiω0t

∞

∑
n=−∞

Ln(θ̄)e−i(l−n)βe
1
2 nπie−inϕ̄, (3.213)

where

Ln(θ̄) =

[︄
Jn−l (∆∞b)+H(2)

n−l (∆∞b)

[︂
J′n (∆∞(a0 + δL))− R(θ̄)

G(θ̄)
ε(Θ1/2+M∞C(θ̄))2

k0a0 sin θ̄Θ1/2 Jn (∆∞(a0 + δL))
]︂

[︂
R(θ̄)
G(θ̄)

ε(Θ1/2+M∞C(θ̄))2

k0a0 sin θ̄Θ1/2 H(2)
n (∆∞(a0 + δL))− H(2)′

n (∆∞(a0 + δL))
]︂]︄,

(3.214)
with

G(θ̄) =

{︄
1 + ε2

[︄(︂
n2 + ν

C2(θ̄)

Θ

)︂[︂C(θ̄)(2M∞ + Mw) + 3Θ1/2

6
(︂

Θ1/2 + MwC(θ̄)
)︂ ]︂

− ν

Θ

[︂C2(θ̄)(M∞ − Mw)2

4
+
(︂

Θ1/2 + MwC(θ̄)
)︂(︄

C(θ̄)(
2
3

M∞ − 1
6

Mw) +
1
2

Θ1/2
)︂)︄]︂]︄}︄

,

(3.215)

and

R(θ̄) =

{︄
νC2(θ̄) + n2Θ(︂

Θ1/2 + MwC(θ̄)
)︂(︂

Θ1/2 + M∞C(θ̄)
)︂ − ν

− ε

[︄
n2Θ

C2(θ̄)(M∞ − Mw)

[︂
C(θ̄)

(︄
C(θ̄)(M∞ − 2Mw)− Θ1/2(︂

Θ1/2 + MwC(θ̄)
)︂(︂

Θ1/2 + M∞C(θ̄)
)︂)︄

+
1

(M∞ − Mw)
ln
(︃

Θ1/2 + M∞C(θ̄)
Θ1/2 + MwC(θ̄)

)︃]︂
+

ν

(M∞ − Mw)

[︂ C(θ̄)(︂
Θ1/2 + MwC(θ̄)

)︂ − (M∞ − Mw)

2

− 1
(M∞ − Mw)

ln
(︃

Θ1/2 + M∞C(θ̄)
Θ1/2 + MwC(θ̄)

)︃]︂]︄}︄
.

(3.216)

Also, ∆∞ = k0 sin θ̄

(1−M2
∞ sin2 θ̄)1/2 , Θ = (1 − M2

∞ sin2 θ̄), S(θ̄) =
(︁

Θ1/2+M∞ cos θ̄
)︁

σ2
∞

,

C(θ̄) =
(︁

cos θ̄+M∞Θ1/2
)︁

σ2
∞

and σ2
∞ = 1 − M2

∞.

Equation (3.213) is the essential conclusion of this section. It describes the acoustic pressure in
the far-field around the fuselage using spherical polar coordinates centered on the cylindrical
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fuselage, while taking into account the linear boundary layer on the surface of the fuselage.

3.3.6 Far-Field Validation

As in the case of the step-function boundary layer, the validation process involves reducing
the linear velocity profile to a uniform flow. Assuming that the analytical methods used in the
previous section are valid, when the boundary layer vanishes, the derived solution described
in eq.(3.213) must reduce to the uniform flow far-field solution given by eq.(3.67). For the
derived solution to be analytically valid the following needs to be true: eq.(3.213) converges to
eq.(3.67) when δL → 0 or ε → 0.

When ε → 0,

R(θ̄) =
νC2(θ̄) + n2Θ(︂

Θ1/2 + MwC(θ̄)
)︂(︂

Θ1/2 + M∞C(θ̄)
)︂ − ν, (3.217)

and G(θ̄) = 1 making their ratio finite. Also the term in the bracket Ln(θ̄),

ε(Θ1/2 + M∞C(θ̄))2

k0a0 sin θ̄Θ1/2 → 0, (3.218)

which means that the bracket Ln(θ̄) from eq.(3.214) will reduce to

Ln(θ̄) =

[︄
Jn−l (∆∞b)− J′n (∆∞a0)

H(2)′
n (∆∞a0)

H(2)
n−l (∆∞b)

]︄
, (3.219)

which is identical to its uniform flow counterpart in eq.(3.67). No other terms in eq.(3.213) are
dependent on ε or δL, so the expression reduces to

p′t f f
(R̄, θ̄, ϕ̄, t) =

iξlqPlqk0

2R̄
S(θ̄)

Θ
Ψlq(∆∞)e−ik0R̄S(θ̄)eiω0t

×
∞

∑
n=−∞

[︄
Jn−l (∆∞b)− J′n (∆∞a0)

H(2)′
n (∆∞a0)

H(2)
n−l (∆∞b)

]︄
e−i(l−n)βe

1
2 nπie−inϕ̄,

(3.220)

which is exactly the same as the uniform flow expression from eq.(3.67) apart from the
difference in notation as explained in section 3.2.7.

3.3.7 Section Summary

The aim of this section was to derive some key expressions and equations that will be used to
produce pressure calculations when there is a linear boundary layer velocity profile with a slip
at the wall present on the surface of the fuselage. Specifically, the first of these expressions
describe the pressure on the fuselage surface in eqs. (3.204) and (3.205). The far-field solution
for the same problem is also derived and presented in this section. Equation (3.213) gives the
pressure in the far-field of the fuselage when there is a linear boundary layer on it. The main
advantage of using such a simple profile is the fact that an analytical solution for the
Pridmore-Brown equation is rendered possible. Thus, the necessity of using high-fidelity
numerical methods disappears.
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As stated before, the linear boundary layer profile may not seem realistic enough in order to
produce results that closely match those of a more representative profile, such as a 1/7th
power-law profile. However, as will be seen later on by manipulating the thickness and the
slip at the wall one can create a linear boundary layer that can closely match the same effects
as any other more complex boundary layer profile. Furthermore, it is once again noted that the
linear boundary layer theory is subject to the restriction of thickness. In order for the theory to
be valid a sufficiently thin boundary layer is required. The validity bounds of the proposed
theory will be investigated in later chapters of this thesis. The results in this section represent a
novel work of an analytical solution of fan noise refraction by a linear boundary layer that has
not been presented before to the best of the author’s knowledge.
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Chapter 4

Code Development

The expressions derived in the previous chapter need to be coded efficiently in order to
demonstrate the effectiveness of using these analytical methods. Therefore, the next challenge
is the development of a code that efficiently calculates the pressure either on the surface of the
fuselage, i.e. using eqs. (3.37)-(3.38), (3.101)-(3.102), (3.204)-(3.205), or in the far-field, i.e. using
eq.(3.67), (3.121), (3.213). These equations involve Fourier series, which means a convergence
study must be carried out. Furthermore, an integration routine must be developed that will
compute efficiently the inverse Fourier integrals I(sbl)

n in eq.(3.102) or I(lbl)
n in eq.(3.205), since

these integrals cannot be solved analytically. Finally, due to the presence of singular and
transitional points in the kz domain, special care must be taken when handling both eq.(3.102)
and eq.(3.205). The aim of this chapter is not only to describe the methods used to overcome
these numerical difficulties, but also to provide validation results that demonstrate the
effectiveness of the code.

4.1 Integration Routine

As explained before, calculating the pressure on the fuselage surface using eqs.(3.101) and
(3.204) requires solving the integral from eqs.(3.102) and (3.205). This integral cannot be solved
analytically so one must resort to numerical methods. This particular integral also presents
problems since the integrand involves singular and transitional points along the kz-axis. These
points are shown in Fig.(3.4).

By studying Fig.(3.4), it becomes clear that compartmentalisation is required in order to
perform the integration correctly. That is because there are regions where the “radial
wavenumbers” become imaginary (regions I and VII) or regions where one of them is
imaginary but the other one remains real (regions II, V, VI and VII). This means that the
expression of the integrand requires different manipulation for different regions. In order to
tackle this problem the integration domain is split into the regions I to VII and the final value
of the integral is found by summing the values of the integrals from each different region.

An additional difficulty encountered in this integration problem are the possible singular
points that occur along the kz-axis. Specifically, the points where either Γ0 or Γ∞ become zero
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are possible singularity points where the numerical routine might struggle to produce a value.
Tables 4.1 and 4.2 show some of the possible combinations which might cause the integrand to
return a “Not-A-Number” when being evaluated. In order to investigate these cases, the
quantity ∆ is introduced which is the part of the integrand in eq.(3.102) that may require to be
evaluated asymptotically in cases when the numerator/denominator tend to zero and/or
infinity.

∆(Γ0, Γ∞) =
Ψlq H(2)

l−n (Γ∞b)

π2Γ0 a0(a0 + d)
(︁
k0 + kz M∞

)︁2 Dn (kz, ω0)H(2)
n (Γ∞(a0 + d)) J′n (Γ0a0)

. (4.1)

For the sake of brevity, the value of ∆ will be presented for two possible singular points along
the kz-axis:
i) At kz = − k0

1+M0
, where Γ0 → 0 and Γ∞ = −iγ∞, where

γ∞ = k0
1+M0

√︁
(M∞ − M0)(2 + M0 − M∞) which is finite. This point is the transition point

from region I to region II.
ii) At kz = − k0

1+M∞
, where Γ∞ → 0 and Γ0 = k0

1+M∞

√︁
(M∞ − M0)(2 + M∞ − M0) which is real

and finite. This point is the transition point from region II to region III.
The other transition points are remarkably similar to the two cases presented here.

Indices l and n limΓ0→0 ∆(Γ0,−iγ∞)

l = n = 0 − a
γ2

∞
i2n−1 K0 (γ∞b) I1 (γ∞a)

2π(a0+d)K′
0 (γ∞(a0+d))

n > l > 0
γ∞aJl (κlqa)

κ2
lq+γ2

∞
i2n−1 I′l (γ∞a)Kn−l (γ∞b)

πan
0 (a0+d)Kn (γ∞(a0+d)) c1

n = l > 0
γ∞aJn (κlqa)

κ2
lq+γ2

∞
i2n−1 I′n (γ∞a)K0 (γ∞b)

πan
0 (a0+d)Kn (γ∞(a0+d)) c2

l > 0, n = −p, p > l
−γ∞aJl (κlqa)

κ2
lq+γ2

∞

(−1)1−p

i
I′l (γ∞a)Kl+p (γ∞b)

πap
0 (a0+d)Kp (γ∞(a0+d)) c3

TABLE 4.1: Evaluation of the limit of ∆(Γ0,−iγ∞), at kz = − k0
1+M0

.

Indices l and n limΓ∞→0 ∆(Γ0, Γ∞)

l = n = 0 − 1
2 a2 1

π2Γ0a0(a0+d) J′0 (Γ0a0)c4

ln(Γ∞b)
ln(Γ∞(a0+d))

n > l > 0
Jl (κlqa)

κ2
lq

(−1)n−l (n−l−1)!
(l−1)! (n−1)!

( 1
2 Γ∞)2l bl−nal

π2Γ0a0(a0+d)−n+1 J′n (Γ0a0)c5

n = l > 0
−2Jl (κlqa)

κ2
lq

an

((n−1)!)2
1

π2Γ0a0(a0+d)−n+1 J′n (Γ0a0)c6
( 1

2 Γ∞)2n ln(Γ∞b)

l > 0, n = −p, p > l
alJl (κlqa)

κ2
lq

(−1)p(l+p−1)!
(l−1)! (p−1)!

b−l−p

π2Γ0a0(a0+d)−p+1 J′p (Γ0a0)c7

TABLE 4.2: Evaluation of the limit of ∆(Γ0, Γ∞), at kz = − k0
1+M∞

.

The quantities c1 through c7 that appear on the tables are constant and are dependent only on
geometric and flow characteristics. The evaluation of these limits is performed using small
argument approximations for the Hankel and Bessel functions.
When Γ0 → 0 the integrand is finite, but when Γ∞ → 0 the limit of the integrand involves
logarithms which may cause problems during the numerical integration, despite the fact that
in all the cases where logarithms are involved the limit can be proven to be finite. To avoid
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possible infinite values being produced, the midpoint rule of integration is chosen. The
midpoint rule, unlike trapezoid or Simpson’s rules, integrates the integrand without taking
into account the edges of the domain. Thus, by splitting the domain as shown in Fig.(3.4) and
using the midpoint rule, the transition points and the “numerical singularity” points, where
zero over zero limiting behaviour occurs, will be excluded from the integration. It must also be
noted that the points where Ψlq becomes infinite also cause problems during the numerical
integration, that is why the compartmentalisation of the domain also takes that into account.

4.2 Small Argument Approximation for the Step-Function

Boundary Layer Far-Field

The numerical difficulties encountered in the case of the step-function boundary layer fuselage
surface pressure are also present in the far-field case. Specifically, eq.(3.121) presents a singular
point when ∆0 → 0. As will be shown, this singularity can be bridged since the limit of the
expression as ∆0 → 0 approaches a finite value which can be used instead of the general
expression given in eq.(3.121).

Unlike in the fuselage surface pressure case where both the “radial wavenumbers” would
alternate between real and imaginary values as shown in eqs.(3.77) and (3.78), as well as in
Fig.(3.4), in the far-field case only the value of ∆0 will alternate between real and imaginary
values. That is because in order to solve the integral using the method of stationery phase, the
regions I, II and VII are omitted as explained in appendix D. Notice that this does not happen
in the linear boundary layer case because there is no “internal” radial wavenumber, there is
only Γ∞ or ∆∞. However for the step-function boundary layer case, region VI remains, which
means that Γ0 = −iγ0 or ∆0 = −iδ0 in that region. Immediately, it follows from eq.(3.124) that,

δ0 =
k0

(1 − M2
∞ sin2 θ̄)1/2

√︂
C (θ̄)[C (θ̄)σ2

0 − 2M0(1 − M2
∞ sin2 θ̄)1/2]− (1 − M2

∞ sin2 θ̄). (4.2)

It is easy to calculate the polar angle θ0̄ in which the radicand of eq.(4.2) (or eq.(3.124))
becomes zero. At angles smaller than θ0̄, ∆0 is imaginary and is replaced by −iδ0. The
transitioning behaviour of ∆0 is shown in Fig. (4.1).
Around that point, the expression of eq.(3.121) produces extreme values that cannot be
computed. It is the terms involving ∆0 that are the issue here. The only term dependent on ∆0

in eq.(3.121) is the ratio Yn (∆0)
Dn (∆∞ ,∆0)

. This ratio is proven to have a finite limit dependent on θ̄

which can be used around the point where the ratio cannot be computed using its regular
expression. In order to evaluate the limit of the ratio small argument approximations for
Bessel and Hankel functions are used, found in Rienstra and Hirschberg (2004). Starting with
the limit of the bracket term from eq.(3.117),

lim
∆0→0

Yn (∆0) =

lim
∆0→0

[︃
i
π
(n − 1)! (

1
2

∆0(a0 + δSF))
−n −

( 1
2 ∆0(a0 + δSF))

n

n!
− i

2π n! ( 1
2 ∆0a0)

−n−1

( 1
2 ∆0a0)n−1

2(n−1)!

]︃
=

lim
∆0→0

i
π
(n − 1)! (

1
2

∆0)
−n[︁(a0 + δSF)

−n + (a0 + δSF)
na−2n

0
]︁
.

(4.3)
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FIGURE 4.1: Transition of ∆0 value along the θ̄-axis.

Accordingly, the limit of Dn (∆∞, ∆0) will be from eq.(3.123),

lim
∆0→0

Dn (∆∞, ∆0) =

lim
∆0→0

[︃
− i

2π
n! (

1
2

∆0(a0 + δSF))
−n−1 −

( 1
2 ∆0(a0 + δSF))

n−1

2(n − 1)!
− i

2π n! ( 1
2 ∆0a0)

−n−1

( 1
2 ∆0a0)n−1

2(n−1)!

]︃

× ∆0

k2
0
(︁
1 + C (θ̄) M0

(1−M2
∞ sin2 θ̄)1/2

)︁2

−
[︃

i
π
(n − 1)! (

1
2

∆0(a0 + δSF))
−n −

( 1
2 ∆0(a0 + δSF))

n

n!
− i

2π n! ( 1
2 ∆0a0)

−n−1

( 1
2 ∆0a0)n−1

2(n−1)!

]︃

× sin θ̄(1 − M2
∞ sin2 θ̄)1/2

k0 S2 (θ̄)

H(2)′
n (∆∞(a0 + δSF))

H(2)
n (∆∞(a0 + δSF))

,

(4.4)
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which finally becomes

lim
∆0→0

Dn (∆∞, ∆0) =

lim
∆0→0

i
π
(n − 1)! (

1
2

∆0)
−n

[︄[︁
(a0 + δSF)

n−1(a0)
−2n − (a0 + δSF)

−n−1]︁ n

k2
0
(︁
1 + C (θ̄) M0

(1−M2
∞ sin2 θ̄)1/2

)︁2

−
[︁
(a0 + δSF)

−n + (a0 + δSF)
na−2n

0
]︁ sin θ̄(1 − M2

∞ sin2 θ̄)1/2

k0 S2 (θ̄)

H(2)′
n (∆∞(a0 + δSF))

H(2)
n (∆∞(a0 + δSF))

]︄
.

(4.5)

By combining eqs. (4.3) and (4.5), the limit of the ratio can be found

lim
∆0→0

Yn (∆0)

Dn (∆∞, ∆0)
=

lim
∆0→0

i
π
(n − 1)! (

1
2

∆0)
−n[︁(a0 + δSF)

−n + (a0 + δSF)
na−2n

0
]︁
/

[︄
i
π
(n − 1)! (

1
2

∆0)
−n

×
[︄[︁

(a0 + δSF)
n−1(a0)

−2n − (a0 + δSF)
−n−1]︁ n

k2
0
(︁
1 + C (θ̄) M0

(1−M2
∞ sin2 θ̄)1/2

)︁2

−
[︁
(a0 + δSF)

−n + (a0 + δSF)
na−2n

0
]︁ sin θ̄(1 − M2

∞ sin2 θ̄)1/2

k0 S2 (θ̄)

H(2)′
n (∆∞(a0 + δSF))

H(2)
n (∆∞(a0 + δSF))

]︄]︄
,

(4.6)

which becomes

lim
∆0→0

Yn (∆0)

Dn (∆∞, ∆0)
=

[︁
(a0 + δSF)

−n + (a0 + δSF)
na−2n

0
]︁
/

[︄[︁
(a0 + δSF)

n−1(a0)
−2n − (a0 + δSF)

−n−1]︁ n

k2
0
(︁
1 + C (θ̄) M0

(1−M2
∞ sin2 θ̄)1/2

)︁2

−
[︁
(a0 + δSF)

−n + (a0 + δSF)
na−2n

0
]︁ sin θ̄(1 − M2

∞ sin2 θ̄)1/2

k0 S2 (θ̄)

H(2)′
n (∆∞(a0 + δSF))

H(2)
n (∆∞(a0 + δSF))

]︄
,

(4.7)

which is finite and dependent only on θ̄, since ∆∞ is also dependent only on θ̄. The evaluation
of the limit from the imaginary side, δ0 → 0, yields exactly the same result as in eq.(4.7).
Therefore, when the code does not produce a valid value for the ratio around θ0̄, eq.(4.7) can
be used instead.

4.3 Code Validation

4.3.1 Convergence

As it has been previously mentioned, the expressions for both the near and the far-field are in
terms of a Fourier series. The presence of the series means that the convergence must be
investigated both for the uniform flow case and the two boundary layer cases. A relative error
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is introduced that determines the contribution of every harmonic in the series.

ϵ =

⌜⃓⃓⃓
⎷⃓ 1

M

M
∑ |p′N′ − p′N |2

1
M

M
∑ |p′N |2

, (4.8)

where, p′N′ is the pressure calculated at the (N + 1)th harmonic and p′N is the pressure
calculated at the Nth harmonic, and M is the number of grid points. When this error becomes
sufficiently small, the series is considered to have converged. It is important to note that in the
convergence graphs shown below, the x-axis represents N as in number of harmonics and not
number of terms. This means that a series with N harmonics will include terms from −N to N,
i.e. 2N + 1 terms, or in other words the sums in eqs. (3.37), (3.67), (3.101), (3.121), (3.204) and
(3.213) have limits ∑N

n=−N .
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FIGURE 4.2: Relative error in logarithmic scale vs. number of harmonics in the series for far-
field polar directivity with fixed ϕ̄ = 3π/2 (eq.(3.213)) at a frequency of k0a = 20 and Mach

number 0.75.

As can be seen from Fig.(4.2), convergence is achieved including about 210 harmonics. Note
that in the relative error graphs the y-axis refers to the value of the error as shown in eq.(4.8)
and not the percentage. In order to obtain the percentage relative error, one can simply
multiply the vertical axis by 100. By inspecting eq.(3.67), convergence can actually be proven
analytically, by taking the limit as n → ∞ of the bracket term in eq.(3.67). The bracket term
consists of a Bessel function term Jn−l (∆zb) and the ratio term J′n (∆za0)

H(2)′
n (∆za0)

. In order to evaluate

the limits of these terms as n → ∞, large order asymptotic expansions for Bessel and Hankel
functions are used as presented in Rienstra and Hirschberg (2004). More specifically, these
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expansions are:

Jn (x) ≃ 1√
2πn

(︃
ex
2n

)︃n

⇒ J′n (x) ≃
√︃

n
2π

(︃
e

2n

)︃n

xn−1,

Yn (x) ≃ −
√︃

2
πn

(︃
ex
2n

)︃−n

⇒ Y′
n (x) ≃

√︃
2n
π

(︃
e

2n

)︃−n

x−n−1,

(4.9)

where prime denotes differentiation with respect to the function’s argument. Firstly, the Bessel
function term:

lim
n→∞

Jn (∆zb) = lim
n→∞

1√
2πn

(︃
e∆zb
2n

)︃n

= 0, (4.10)

because limn→∞

(︃
e∆zb
2n

)︃n

= limn→∞ exp
(︃

n ln
(︃

e∆zb
2n

)︃)︃
= 0.

On the other hand the ratio term is:

J′n (∆za0)

H(2)′
n (∆za0)

=
J′n (∆za0)

J′n (∆za0)− iY′
n (∆za0)

≃

√︂
n

2π

(︁ e
2n
)︁n
(∆za0)

n−1√︂
n

2π

(︁ e
2n
)︁n
(∆za0)n−1 − i

√︂
2n
π

(︁ e
2n
)︁−n

(∆za0)−n−1
,

(4.11)
which becomes

J′n (∆za0)

H(2)′
n (∆za0)

≃ 1

1 − 2i( 2n
e∆za0

)
2n . (4.12)

By multiplying with the complex conjugate, eq.(4.12) becomes

J′n (∆za0)

H(2)′
n (∆za0)

=
1

1 + 4( 2n
e∆za0

)
4n + i

2( 2n
e∆za0

)
2n

1 + 4( 2n
e∆za0

)
4n . (4.13)

Equation (4.13) is a complex number with a real and an imaginary part. The real part can be
easily shown to approach zero for large n. In the imaginary part, both the numerator and the
denominator tend to infinity as n → ∞. This is dealt with using L’ Hopital’s rule:

lim
n→∞

2( 2n
e∆za0

)
2n

1 + 4( 2n
e∆za0

)
4n = lim

n→∞

4( 2n
e∆za0

)
2n
(ln( 2n

e∆za0
) + 1)

16( 2n
e∆za0

)
4n
(ln( 2n

e∆za0
) + 1)

⇒ lim
n→∞

1

4( 2n
e∆za0

)
2n = 0. (4.14)

It is evident that both terms converge to zero at high harmonics. This is also demonstrated in
the following graphs. Figures (4.3) and (4.4) confirm what is analytically proven above. Both
the Bessel function term and the ratio term converge to zero at the higher harmonics. Note that
in Figures (4.3) and (4.4), n represents not only the order as it appears in the derived
expression, but also the harmonics required for convergence. It is clear that the dominant term
is the Bessel function term as it requires a larger value of n to converge, and thus determines
the convergence of the whole series. Furthermore, it is evident that the higher the frequency
the more harmonics it takes for the expression to converge, which is expected since it can be
analytically proven that the higher the argument of the Bessel function the larger n is required
to approach zero. Note that the Mach number has a similar effect on the argument of the
Bessel Function and therefore it is reasonable to expect that it will have a similar effect as the
frequency.
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FIGURE 4.3: Bessel function term vs. order in the series for uniform flow with fixed θ̄ and non-
dimensional frequencies, [(a)] k0a = 12, [(b)] k0a = 16, [(c)] k0a = 32.
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FIGURE 4.4: Absolute value of the derivatives term vs. order in the series for uniform flow with
fixed θ̄ and non-dimensional frequencies, [(a)] k0a = 12, [(b)] k0a = 16, [(c)] k0a = 32.

Similar behaviour is exhibited for the step-function and linear boundary layer case. In fact,
this is expected since by comparing eqs. (3.67), (3.121) and (3.213) one observes that the Bessel
function term remains the same in both equations. Having the same dominant term means
that the expressions will demonstrate similar behaviour in their convergence. By examining
Fig.(4.5), one can observe that the error is once again oscillatory (and very similar for the two
boundary layer cases) until it reaches convergence rapidly due to the Bessel function term
having reached its final value. Moreover, the frequency effect is once again demonstrated since
higher frequency leads to more harmonics required for convergence.
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FIGURE 4.5: Relative error in logarithmic scale vs. number of harmonics in the series for the
linear boundary layer far-field polar directivity pressure (eq.(3.213)) [left], and the step-function
boundary layer far-field polar directivity pressure (eq.(3.121)) [right]. Results are presented for
three different frequencies, k0a = 5 [no marker], k0a = 10 [⃝], k0a = 20 [×] for the linear
boundary layer case, and k0a = 16 [no marker], k0a = 32 [⃝], k0a = 48 [×] for the step-function

boundary layer case. The other parameters are (l, q) = (10, 1), M∞ = 0.5 and δ = 0.01a0.

The same behaviour is observed in the case of the near-field surface pressure. Here, the
convergence of the step-function and the linear boundary layer case is shown for three
frequencies. Once again, the higher the frequency the more harmonics it takes for the
expressions (in this case eqs.(3.101) and (3.204)) to converge. The results presented in Fig.(4.6)
are produced by setting a rectangular grid of points along the z̄ and ϕ̄ axes. This grid
represents a part of the fuselage surface as will be shown later. Note that the fuselage surface
expressions exhibit no oscillations in their convergence graphs. That is attributed to the main
difference between the far-field and the fuselage surface pressure expressions, which is the
numerical integration routine. The numerical integration tends to smooth out any instabilities.
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FIGURE 4.6: Relative error in logarithmic scale vs. number of harmonics in the series for the lin-
ear boundary layer fuselage surface pressure (eq.(3.204)) [left], and the step-function boundary
layer fuselage surface pressure (eq.(3.101)) [right]. Results are presented for three different fre-
quencies, k0a = 5 [no marker], k0a = 10 [⃝], k0a = 20 [×] for both cases. The other parameters

are (l, q) = (10, 1), M∞ = 0.5 and δ = 0.01a0.

4.3.2 Further Validation

Another form of code benchmarking would be to compare the results with the results of
another existing code. However, since the inclusion of the linear and step-function boundary
layer is new work, an existing in-house code that is available is the one that calculates the
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pressure on the surface of the cylindrical fuselage without the presence of a boundary layer
written by McAlpine et al. (2015). This is eq.(3.37) which is similar to eqs. (3.101) and (3.204)
with the fundamental difference being the inverse Fourier integral. Several comparisons were
conducted and are presented below. These include different modes and frequencies. The
following graphs show the Sound Pressure Level (SPL) on the fuselage surface from z̄ = −a0

to z̄ = 5a0, with the source plane at z̄ = 0 and its azimuthal position at β = 0o. The SPL is
measured in dB and is defined as:

SPL = 20 log
|p′|

pre f
√

2
. (4.15)

Furthermore, since the cylinder plots can be misleading since they inevitably hide certain
regions and make it more difficult interpreting the colour scales with a large dB range, more
attention is given to the unfurled absolute difference plots. These plots show the absolute
difference between the SPL of the code developed in this work and the existing code
developed previously, |SPLnew − SPLold|. These plots are unfurled cylinder plots meaning that
they represent the same area as the cylinder plot.
Firstly, Fig.(4.7) shows an illustrative plot of the results of the two codes. They are remarkably
similar apart from an instability apparent in the shadow zone (around ϕ̄ = 180o) using the old
code, which is attributed to the integration routine. The code developed here appears to
correct this instability. The shadow zone is expected there since this area is not in direct line of
sight of the source which is located on the other side of the cylinder, ϕ̄ = 0o. The absolute
difference plot for the same case that follows in Fig.(4.8) makes it clear that the only substantial
difference in the SPL occurs in certain localised areas of the shadow zone, which renders it
irrelevant since the shadow zone generally exhibits levels almost 100 dB lower than the
illuminated side which is of interest. Therefore, the differences in the shadow zone are
expected since those areas exhibit the extreme minima of the SPL spectrum.

Figure (4.9) shows the same features. The difference is close to zero for the whole cylinder
except in some localised areas in the shadow zone or in areas that exhibit very low levels, such
as the further upstream area in Fig, (4.9[right]). This upstream area represents a null zone for
that particular mode, which means that it will exhibit levels much lower than other areas,
effectively rendering it a shadow zone. Furthermore, one can observe a frequency effect,
meaning the higher the frequency the higher the discrepancies tend to be. Once again, this is
expected since at higher frequency, certain fluctuations are introduced that have to do with the
presence of shorter wavelengths. Also, numerically, higher frequencies tend to introduce more
complex patterns in the integrands in eqs. (3.37), (3.101) and (3.204) leading to more
discrepancies in the integration routines of the two codes. Apart from some minor
discrepancies, these figures confirm the validity of the code generated in this work since it can
be safely concluded that the two codes produce the same results.
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FIGURE 4.7: SPL on the fuselage surface for uniform flow (eq.(3.37)) for mode (l, q) = (5, 1) and
frequency k0a = 16 generated with [left] old code and [right] new code developed in this work.
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FIGURE 4.8: Absolute difference of the SPL on the fuselage surface for uniform flow (eq.(3.37))
for mode (l, q) = (5, 1), M∞ = 0.5 and frequencies [left] k0a = 8 and [right] k0a = 16. Note the

different scales on each plot.
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FIGURE 4.9: Absolute difference of the SPL on the fuselage surface for uniform flow (eq.(3.37))
for mode (l, q) = (10, 1) and frequency k0a = 16 [left], and mode (l, q) = (20, 1) and frequency

k0a = 24 [right]. Note the different scales on each plot.
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With the code for the uniform flow expressions validated, the next step is to validate the codes
for the linear boundary layer and step-function boundary layer. At this point, the way to
achieve this is by reducing the boundary layer expressions to the uniform flow ones by setting
M0 → M∞ in the case of the step-function boundary layer, or Mw → M∞ in the case of the
linear boundary layer. Bear in mind that comparisons with other existing codes that include a
boundary layer have been conducted and will be presented in later chapters. It has already
been analytically proven that the boundary layer expressions reduce to the equivalent
expressions for uniform flow when the two Mach numbers are equal. This must also be true
for the numerical code developed in this work. By equating the two Mach numbers, the coded
boundary layer expressions (eqs. (3.101), (3.121), (3.204) and (3.213)) should yield the same
results as the coded uniform flow expressions (eqs. (3.37) and (3.67)).

Once again, the predicted SPL will be used to compare the results both for the near-field and
the far-field. The far-field results will be presented in the form of a polar directivity plot, a grid
of varying polar angle θ̄ for a fixed azimuthal angle ϕ̄. For the near-field surface pressure the
absolute difference of the two SPLs is presented to show the convergence of the boundary
layer code to the uniform flow code. This plot will refer to the same fuselage area as in the
previous contour plots. Figure (4.10) confirms that the coded boundary layer expressions
successfully reduce to the uniform flow results. The difference exhibited in the figures is so
small to be virtually non-existent in the case of the step-function boundary layer case. On the
other hand, the linear boundary layer case presents some discrepancies in the shadow zone.
This is mainly because it is not possible to set Mw exactly equal to M∞ in the code since that
will create numerical singularities. Instead, the value of Mw is set very close to the value of
M∞. This small numerical discrepancy leads to some small differences in the results. However,
the differences are very small and only in the shadow zone where discrepancies are always
bound to appear. Figure (4.11) exhibits almost no discrepancy at all with the two results almost
coinciding with each other. This is indicative of the simplicity of the far-field expression that
lacks a numerical integration routine and therefore is less likely to produce instabilities.
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FIGURE 4.10: [left] Absolute difference of SPL generated from eq.(3.204) with Mw ≃ M∞ and
SPL generated from eq.(3.37). [right] Absolute difference of SPL generated from eq.(3.101) with
M0 = M∞ and SPL generated from eq.(3.37). The other parameters are M∞ = 0.5, (l, q) = (10, 1)

and k0a = 16. Note the different scales on each plot.
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FIGURE 4.11: Far-field polar directivity plot for uniform flow using eq.(3.67) [solid line] and
linear boundary layer using eq.(3.213) where Mw ≃ M∞ [dashed line]. The other parameters

are M∞ = 0.5, (l, q) = (10, 1) and k0a = 16.
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Chapter 5

Validation

Having successfully coded the derived expressions, the next step of the analysis is to validate
them. Therefore, the present chapter includes results that demonstrate the validity of the key
equations derived in chapter 3. Special focus is given to the ability of the novel theoretical
approach to quantify the refraction effect due to the presence of a boundary layer on the
surface of the fuselage. The installed field in uniform flow has already been investigated and
validated in McAlpine et al. (2015), therefore it is not in the scope of the work presented here
to demonstrate or validate results in the absence of a boundary layer on the fuselage. Instead,
the differences between predictions for the installed field with and without a boundary layer
are investigated, since they highlight the regions where the refraction effect due to the
boundary layer causes shielding. The metrics that are used are chosen because of their ability
to highlight those regions.

The two novel theoretical approaches presented in chapter 3 aim to provide a quicker
alternative to the use of high-fidelity numerical methods. However, they are subject to some
restrictions as seen in chapter 3. Therefore, the validation process aims to accomplish three
goals:

(i) Prove that the theoretical methods produce results that capture the refraction and shielding
effect due to the presence of the boundary layer.

(ii) Prove that the theoretical methods using simplified velocity profiles can approximate the
same effects as more complex and real-life profiles such as the 1/7th power-law profile
representative of a turbulent boundary layer profile.

(iii) Investigate the validity bounds of the theoretical methods in terms of the boundary-layer
thickness.

Through a series of examples, the theoretical methods are compared with already existing
results that have been generated using numerical methods. The numerical results are either
taken from the PhD thesis or papers by Gaffney (Gaffney and McAlpine (2017), Gaffney and
McAlpine (2018), Gaffney (2016)) or are recreated using the code developed by Gaffney and
McAlpine (2017), which involved the use of high-fidelity numerical methods, namely
Runge-Kutta routines, to accurately predict the boundary-layer effects of realistic profiles such
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as the quarter-sine or the 1/7th power-law. Thus, the two theoretical methods are tested both
for their ability to capture the boundary-layer effects but also for their ability to accurately
approximate the effects of representative complex profiles such as the 1/7th power-law profile.

5.1 Metrics

Since the validation process aims to prove the theoretical methods’ ability to quantify the
shielding effect due to the presence of boundary layer, appropriate metrics are used in order to
highlight the effect and the location on the fuselage that it is most prominent. There are two
metrics used to quantify the shielding on the fuselage surface: the difference ∆bl and the
shielding coefficient upstream S+.

The difference ∆bl is defined as before

∆bl = SPLbl − SPL, (5.1)

where SPLbl is the sound pressure level calculated with a boundary layer in the modeling,
while SPL is the sound pressure level calculated with uniform flow. A value of ∆bl close to
zero means little to no shielding since the predicted SPLs are similar with or without the
boundary layer. A more negative value of ∆bl means that the predicted SPL with a boundary
layer is much lower than the SPL with uniform flow, indicating that less sound energy finds its
way to the fuselage surface leading to more shielding.

The shielding coefficient upstream is defined as

S+ =
∑M p2

bl

∑M p2
(5.2)

where M is the number of grid points, p2
bl is the mean square pressure with a boundary layer,

and p2 is the mean square pressure without a boundary layer. The shielding coefficient gives
an estimate of the amount of sound energy that reaches the surface of the fuselage. A shielding
coefficient value close to zero means that very little energy reaches the surface and most of it is
refracted away. A shielding coefficient value closer to unity means that most of the energy
reaches the surface indicating little to no shielding.

Apart from these two metrics, predictions of the SPL also will be shown on the fuselage
surface. Figure (5.1) shows the locations on the fuselage surface where the metrics/results are
calculated. The grid extends from slightly downstream of the plane of the source (z̄/a0 = −1),
since the source is located at z̄/a0 = 0, up to z̄/a0 = 5 upstream. More focus is given on the
upstream region since the theoretical model developed in this work assumes that there is no
nacelle around the fan, and, therefore, ignores diffraction around the nacelle’s lip. Therefore,
results very close to the plane of the source (z̄/a0 = 0), or downstream of it (negative values of
z̄), should not be considered realistic.

The shielding coefficient upstream S+ is a cumulative metric that includes every grid point
upstream, both axial and azimuthal. The same is the case when presenting results for the SPL
contours that are displayed for the whole range of grid points all over the fuselage surface
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FIGURE 5.1: Schematic of the locations where the sound pressure is calculated.

section shown in Fig. (5.1). Moreover, the difference ∆bl , is chosen to be displayed on the line
of azimuthal angle zero, ϕ̄ = 0o, which is the azimuthal position of the source as well. The
difference ∆bl on ϕ̄ = 0o, gives an insight into the refraction and shielding mechanisms due to
the presence of the boundary layer. Additionally, this location represents a region of high
interest since it is directly adjacent to the source which means that the highest pressure values
will occur there, in contrast to the shadow zone (the region which is not in direct line of sight
of the source) which is at around ϕ̄ = 180o.

5.2 Validation Model

Since the primary aim of this chapter is the validation of the theoretical methods through
comparison of their predictions with predictions produced by numerical schemes, a proper
configuration must be determined in order for the theoretical results to be comparable with
the numerical ones. The only other model that uses a fan noise source such as the one used in
this work is the previous work by Gaffney (Gaffney and McAlpine (2017), Gaffney and
McAlpine (2018), Gaffney (2016)). According to Gaffney, the dimensions of the following
model approximately resemble the dimensions of a twin-engine aircraft for medium haul
flights. The dimensions are shown in table 5.1, with all the lengths normalised with the
fuselage radius which will be chosen as unity, a0 = 1. All the following examples in this
chapter use these dimensions.

Parameter Value

a/a0 0.5
b/a0 3
β 0o

z̄/a0 [-1,5]

TABLE 5.1: Dimensions of validation model as used in Gaffney (2016).
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5.3 Velocity Profile Matching

As already mentioned, the aim of this work is to prove that a simplified boundary layer
velocity profile can successfully approximate a more complex profile. It is apparent that an
arbitrary linear velocity profile or step-function velocity profile will not produce results that
closely match those of a more complex profile such as the 1/7th power-law or a quarter-sine
profile. Physically speaking, it is clear that an equivalent linear velocity profile with no slip at
the wall with the same thickness as a 1/7th power-law boundary layer profile will not match
the power-law profile. It is therefore necessary that the equivalent simplified profiles that are
used in this work are prescribed in such a way that they at least physically resemble the
original profile that they are supposed to approximate. This is done by manipulating the
thickness of the equivalent profiles, δL for the linear or δSF for the step-function profile, and the
slip at the wall Mw for the linear profile, or the internal Mach number M0 for the step-function
velocity profile.

Some researchers (Hanson (1984) and Mariano (1971)) have suggested approaches that could
be used to create equivalent simplified profiles to match more complex ones. Hanson (1984)
suggested using the displacement thickness of the original profile as the thickness of an
equivalent step-function profile. Mariano (1971) suggested using an equivalent linear profile
with a thickness half that of the original 1/7th power-law profile and no slip at the wall.
However, such methods are largely empirical, and are applicable for numerical methods as
explained by Mariano (1971), who used the half-thickness rule when utilising a
finite-difference scheme. In this work a more robust and physically based approach is chosen
in order to create equivalent simplified profiles. More specifically, the concept of the matching
methods presented here is to create equivalent profiles that match the same physical
properties as the original more complex and realistic profile.

δ(x)

x

U

u(y)
y

x

FIGURE 5.2: Boundary layer growth over a flat plate.

The quantities or properties that physically define a boundary layer and are chosen to be
investigated here are the displacement thickness, δ∗, momentum thickness ϑ and the shape
factor H. The displacement thickness represents the mass flowrate that is lost due to the
presence of friction in the flow (which consequently forms the boundary layer):

δ∗ =
∫︂ δ

y=0

(︁
1 − u

U
)︁
dy. (5.3)
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The momentum thickness represents the momentum flowrate that is lost due to the presence
of friction in the flow:

ϑ =
∫︂ δ

y=0

u
U
(︁
1 − u

U
)︁
dy. (5.4)

The shape factor is their ratio, H = δ∗
ϑ which provides a more complete overview of the

physical properties of the boundary layer.

For any velocity profile, these integrals can be solved to produce expressions that relate the
boundary-layer thickness of the profile with the displacement and momentum thickness of the
profile. Also, in the case of the linear or step-function velocity profiles, the slip at the wall and
the internal Mach number also appear in the expressions. Thus, by equating two physical
properties of the original velocity profile with the same physical properties of the equivalent
profile (linear or step-function) one can obtain appropriate values for the rest of the necessary
characteristics in order to create the equivalent profile, namely the actual thickness and the slip
at the wall (in the linear profile case) or the actual thickness and the internal Mach number (in
the case of the step-function velocity profile).

Three matching methods have been investigated and their results are presented later on.

(i) Equal shape factor method: The equivalent profile is assumed to have the same ratio of
displacement and momentum thicknesses as the original profile (or in practice match both the
displacement and momentum thicknesses to equate the shape factor). This yields appropriate
values for the actual thickness of the equivalent profile (δL or δSF) and its slip on the wall Mw

(for the linear profile case) or its internal Mach number M0 (for the step-function profile case).

(ii) Equal actual and displacement thickness method: The equivalent profile is assumed to have the
same actual and displacement thickness as the original profile. This yields an appropriate
value for the equivalent profile’s slip on the wall Mw (for the linear profile case) or its internal
Mach number M0 (for the step-function profile case).

(iii) Equal actual and momentum thickness method: The equivalent profile is assumed to have the
same actual and momentum thickness as the original profile. This yields an appropriate value
for the equivalent profile’s slip on the wall Mw (for the linear profile case) or its internal Mach
number M0 (for the step-function profile case).

For instance, consider the example of creating an equivalent linear profile to match a 1/7th
power-law profile using the method of equal shape factor. There are two unknowns in the
problem, δL and Mw. By assuming an equal shape factor (or equal displacement and
momentum thicknesses) and a known power-law boundary-layer thickness δPL, there are two
equations that can be used to solve for the two unknown variables. The two equations are
δ∗L = δ∗PL and ϑL = ϑPL where the PL subscript denotes a 1/7th power-law property. From
eqs. (5.3) and (5.4), one can obtain, δ∗L = 1

2
(︁
1 − Mw

M∞

)︁
δL, ϑL = 1

6
(︁
1 − Mw

M∞

)︁(︁
1 + 2 Mw

M∞

)︁
δL,

δ∗PL = 1
8 δPL and ϑPL = 7

72 δPL. Therefore, one can solve for δL and Mw to obtain Mw = 2
3 M∞

and δL = 3
4 δPL.

The same procedure is carried out for each of the other two methods and for any profile.
Figure (5.3) shows the resulting equivalent linear profiles that match the 1/7th power-law
profile with each approach. In contrast to Mariano’s empirical method, the other
physically-based methods are a better visual approximation to the profile. As shown in
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FIGURE 5.3: 1/7th power-law profile [solid line] and the equivalent linear velocity profiles that
match it. Equal shape factor method [dashed line], equal actual and displacement thickness
method [dash-dotted line], equal actual and momentum thickness method [dotted line], empir-

ical method by Mariano (1971) [solid line-(⃝)].

Fig. (5.3), the power-law profile exhibits a sublinear region which is characterised by very high
Mach number very close to the surface. That is reflected in the matching equivalent linear
profiles by the fact that they exhibit very high Mach number at the wall. On the other hand,
Mariano’s matching does not succeed in resembling the original power-law, since the resulting
linear profile is much thinner and in combination with zero Mach at the wall, it leads to a
profile with a very steep gradient that is uncharacteristic of the original power-law profile. The
gradients of the other matching linear profiles are far more successful in approximating the
gradient of the original power-law profile.

An investigation has been carried out to determine which of these matching approaches
proves to be optimal in approximating the original profile. An example is given here in
Fig. (5.4) for a 1/7th power-law profile. This result can also be found in the published papers
by Rouvas and McAlpine (2022a) and Rouvas and McAlpine (2022b). It is observed that
Mariano’s matching method is not applicable in this kind of theoretical analysis. Even though
the prediction does capture the modal pattern for that frequency, it is clear that it grossly
overpredicts shielding (more negative values of ∆bl). On the other hand, the physically-based
methods are much more accurate both in depicting the modal pattern of the shielding and the
amplitude. It is quite clear that Mariano’s empirical rule is not suitable to apply in this work,
whereas the physically-based methods produce far more realistic predictions comparable with
numerical results for a power-law profile.

By examining how the three physically-based approaches differ from each other, one can see
that the most accurate prediction is that of the equal shape factor equivalent linear profile. Its
accuracy is retained for the whole range of calculations, with a slight underprediction of
shielding compared to the numerical result. By comparing Figs. (5.3) and (5.4) some useful



5.3. Velocity Profile Matching 99

-1012345
z/a0  [-]

-35

-30

-25

-20

-15

-10

-5

0

5

bl
  [

dB
]

FIGURE 5.4: ∆bl at ϕ̄ = 0o. Numerical prediction using 1/7th power-law profile recreated from
Gaffney (2016) [solid line]. Theoretical predictions using equivalent linear profiles to match the
power-law profile with equal shape factor method [dashed line], equal actual and displacement
thickness method [dash-dotted line], equal actual and momentum thickness method [dotted
line] and empirical method by Mariano (1971) [solid line-(⃝)]. The other parameters are: k0a =

20, M∞ = 0.75, δ = 0.01a0 and (l, q) = (4, 1).

conclusions can be drawn. Although the equal actual and displacement thickness method and
the equal actual and momentum thickness method produce equivalent profiles that are thicker
than the profile produced by the equal shape factor method, they predict less shielding. This is
somewhat unexpected and counter-intuitive. It is reasonable to expect that thicker layers
would produce more shielding since sound waves are more exposed to the refraction
properties of the layer. Yet, this is not the case here, where thicker layers appear to produce
less shielding. The reason that the equal shape factor method profile produces more shielding
even though it is thinner is because of its steeper gradient compared to the other two profiles.
This effect can also be observed by examining the two equivalent profiles produced by the
actual and displacement thickness method and the actual and momentum thickness method.
They both have the same thickness but the equal actual and displacement method profile has a
slightly steeper gradient, which leads to a prediction of slightly more shielding.

The equal shape factor equivalent profile proves to be the most representative way to simplify
a more complex profile. Its thickness and gradient are arranged in such a way that they
successfully approximate the same effect as a more complex profile. This is not unexpected
considering that of all the three equivalent profiles produced by each of the matching
approaches, the equal shape factor profile most closely physically resembles the original
profile. It displaces the same mass and momentum flowrate as the original profile, while the
other two equivalent profiles only match one of the physical properties of the original profile
they are based on. This effect makes the equal shape factor the optimal approach for matching
a complex velocity profile. Therefore the results that follow in this thesis use equivalent
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simplified profiles (linear or step-function) that have equal shape factor with the actual profile
they are approximating.

5.4 Boundary Layer Effect

This section is dedicated to the validation of the ability of the theoretical methods to
successfully quantify the boundary layer effect. This section’s main scope is comparison with
existing numerical results. As in Fig. (5.4), the theoretical predictions of shielding will be
compared with numerical predictions conducted by Gaffney (2016). Gaffney used a numerical
Runge-Kutta scheme to solve the problem of sound propagation through a shear layer. The fan
noise source he used was very similar to the one used in this work except that he also included
diffraction around the lip of the fan duct by using a Wiener-Hopf solution for a mode exiting a
circular duct (Gaffney and McAlpine (2018), Gaffney (2016)). According to his findings, the
only substantial differences between the two sources (disc source used here versus the
Wiener-Hopf source used in Gaffney and McAlpine (2018)) are manifested for polar angles
close to or over 90o. In axial coordinates, that means the differences will be at z̄ very close to
the source and downstream of the source (negative z̄).

The theoretical predictions are compared with the numerical results for a wide variety of
different examples. Different frequency, azimuthal order, free stream Mach number, velocity
profile and boundary-layer thickness examples are included in the comparisons. Thus, not
only the comparisons that demonstrate the validation of the theoretical methods are
presented, but also the important trends are identified along with the effects the source and
flow characteristics have on the shielding. The numerical predictions are either taken directly
from the results in Gaffney (Gaffney and McAlpine (2017), Gaffney and McAlpine (2018),
Gaffney (2016)), or results are recreated using the code developed by Gaffney.

For the majority of the results, the equivalent linear profile is primarily used for the
predictions, but several examples of the equivalent step-function profile prediction are also
shown. Towards the end of the chapter, a more comprehensive investigation into the
differences between the two theoretical methods is presented.

Firstly, the effects of the source characteristics on the shielding are investigated. After that, the
effects of the flow characteristics on the shielding are investigated. However, the
boundary-layer thickness effect, despite being a flow characteristic, is investigated separately
due to its importance on the shielding and its influence on the accuracy of the equivalent
linear profile theoretical method. Since the shielding effect is of utmost importance here, the
shielding metrics ∆bl and S+ are used to quantify it. Moreover, the SPL contours are shown on
the surface of the fuselage which also gives valuable insight into the shielding problem. Note
that when the SPL is shown it is normalised by taking the maximum value of the SPL to equal
0 dB.
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5.4.1 Source Characteristics

In this section the effect of the source characteristics on the shielding is investigated. The
source characteristics, frequency and azimuthal order of the mode, are varied whereas the rest
of the variables of the problem remain unchanged. The aim is to identify trends and the
sensitivity of shielding on varying the source characteristics. Comparisons with numerical
results are presented. The numerical results have been generated using a quarter-sine profile

M = M∞ sin
(︃

π

2δ
r̄
)︃

, (5.5)

thus the theoretical predictions will use equivalent profiles that match that quarter-sine profile.
The results will be presented for two boundary-layer thicknesses, thin (δ = 0.01a0) and thick
(δ = 0.1a0), and for uniform flow (δ = 0).

5.4.1.1 Frequency

Frequency is one of the key source characteristics, and in all the examples its non-dimensional
form is used, i.e. the Helmholtz number k0a. The calculations conducted are for k0a=[5, 10 and
20], which represents a fairly wide range of frequencies. As will be seen in later chapters,
k0a = 5 is a very low blade passing frequency during flight whereas k0a = 20 represents a
relatively high blade passing frequency often occurring during the climbing phase of flight
when the engine operates at high rpm. All other parameters are kept constant: flight Mach
number M∞ = 0.75 and incident mode (l, q) = (4, 1). This incident mode is chosen because it
is well cut-on and also it could represent a rotor-stator interaction mode.

Figures (5.5) and (5.6) show predictions of the SPL contours on the fuselage surface. The
difference in the frequency is clearly visible when observing the uniform flow results (i.e.
δ = 0). The lower frequency produces a much smoother and simpler pressure pattern than the
higher frequency that is characterised by a more complex lobed pattern, which is typical of
high frequency. Another expected difference between low and high frequency is the location
of the maximum SPL or the location of the principal lobe incident on the fuselage. That
difference is expected and common in fan noise directivity and propagation since higher
frequency leads to higher cut-off ratio. In turn, higher cut-off ratio means that the propagation
angle of the principal lobe will be closer to being parallel to the duct’s centerline. Therefore, it
will be incident on the fuselage further upstream as seen in Figs. (5.5[top]) and (5.6[top])
where the maximum SPL is further upstream in the higher frequency case.

The drastic effect of the boundary layer is clearly visible even for the thin boundary-layer case.
For both frequency cases the presence of a boundary layer causes the maximum SPL location
to move closer to the plane of the source indicating more refraction upstream. Sound
refraction upstream is more pronounced because the further upstream the sound propagates
the shallower the angle that it is incident on the boundary layer. That means that the sound
will enter the boundary layer at a more oblique fashion making it more susceptible to
refraction. Another way of looking at this phenomenon is that the shallower the angle of
incidence on the boundary layer the greater the distance inside the layer sound has to travel in
order to reach the fuselage, rendering the boundary layer effectively thicker. That increase in
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FIGURE 5.5: Total SPL on the surface of the fuselage for uniform flow and two boundary-layer
thickness cases with the quarter-sine profile. The other parameters are: k0a = 5, M∞ = 0.75 and

(l, q) = (4, 1).

the effective thickness upstream leads to more refraction and therefore shielding upstream. On
the other hand, closer to the plane of the source, sound is incident on the boundary layer at a
much steeper angle (almost perpendicular) leading to minimal refraction. At that location only
the significantly weaker effect of refraction at the azimuthal direction takes place since
convection effects become irrelevant.

The thickness effect is also very clear when comparing the two thickness cases for each of the
frequency cases. The thicker boundary-layer produces drastically more shielding than the
thinner boundary-layer case. Once again, that is because sound travels a greater distance
inside a thicker boundary layer than it does inside a thinner one. That makes it more
susceptible to refraction. Even for the thin boundary-layer case, the shadow zone is extended
compared to the uniform flow case. With the presence of a boundary layer that refracts sound
to the extent that the sound does not reach the surface, it is expected that less sound will
diffract around the cylindrical surface to reach the shadow zone. Furthermore, away from
ϕ̄ = 0o, sound will be incident on the boundary layer at shallower angles meaning more
refraction as explained before. That will inevitably enlarge the shadow zone. Some minor
instabilities in the pattern are observed at high frequency and with a thick boundary-layer,
which are expected because the theoretical method is less valid as the boundary-layer
thickness is increased. That is exacerbated by the fact that higher frequency means shorter
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FIGURE 5.6: Total SPL on the surface of the fuselage for uniform flow and two boundary-layer
thickness cases with the quarter-sine profile. The other parameters are: k0a = 20, M∞ = 0.75

and (l, q) = (4, 1).

wavelengths compared to the boundary-layer thickness resulting in effectively a larger
thickness.

Figures (5.5) and (5.6) give a good insight into how the presence of the boundary layer affects
the resulting pressure pattern on the fuselage surface. However, they are illustrative results.
Therefore, the following figures include comparisons with existing numerical results in order
to verify and validate the theoretical method to predict the realistic effect of the boundary
layer. Figure (5.7) shows the difference ∆bl which is the main shielding metric. The effect the
thickness has on the shielding stands out clearly. The thicker boundary-layer case produces up
to three times more shielding than the thin boundary-layer case.

Moreover, the effect the frequency has on the shielding cannot be ignored. Lower frequency
generally produces less shielding. This is expected due to the effective thickness phenomenon
explained before. Lower frequency sound has larger wavelengths, while higher frequency
sound has shorter wavelengths. When the wavelengths are significantly shorter compared to
the boundary-layer thickness, the refraction effect is more pronounced because effectively the
sound travels a greater distance inside the boundary layer. Therefore, the higher the frequency
the thicker the effective boundary layer leading to more refraction and shielding. This
frequency effect is found to be quite substantial by observing the thick boundary-layer case
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FIGURE 5.7: ∆bl at ϕ̄ = 0o for δ = 0.01a0 [top] and δ = 0.1a0 [bottom]. Numerical predictions
using a quarter-sine profile recreated from Gaffney (2016) [solid lines]. Theoretical predictions
using an equivalent linear profile to match the quarter-sine profile [dashed lines]. Theoretical
predictions using an equivalent step-function profile to match the quarter-sine profile [dash-
dotted line]. Results for frequencies k0a = 5 [no marker], k0a = 10 [×] and k0a = 20 [⃝]. The

other parameters are: M∞ = 0.75 and (l, q) = (4, 1).

where the high frequency upstream shielding reaches up to 90 dB, effectively reaching the
same levels as the shadow zone region. It is safe to conclude that the shielding is highly
sensitive to changes in the frequency.

It is also important to note, that the upstream effect on the shielding is also very significant. As
seen before in Figs. (5.5) and (5.6), the further upstream the sound travels the more likely it is
to be refracted away. This is reflected on the difference ∆bl as well, where it is observed that
the shielding is steadily increased with increasing z̄. Once again, an alternative way of
explaining this upstream effect is the effective thickness of the boundary layer. The further
upstream the sound travels the shallower the angle that it is incident on the layer. By entering
the layer at a more oblique fashion, the sound has to travel a greater distance inside the layer
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(effectively making the boundary layer thicker) and that makes it more susceptible to
refraction. By observing the higher frequency predictions one can notice that for further
upstream z̄, the shielding seems to stabilise at a constant value. That is because at these
upstream regions, total reflection is starting to occur. No matter how much further upstream
the sound travels, it is incident on the layer at such a shallow angle that it never reaches the
fuselage surface stabilising the quantifiable shielding.

Having identified the trends present, next the comparisons between the theoretical and
numerical predictions are examined. For the thin boundary-layer case, the two predictions are
remarkably close to each other across the range of frequencies. Nevertheless, their discrepancy
is smaller for the lower frequency. That is explained through the frequency-wavelength effect,
since higher frequency means effectively a thicker layer which leads to a deterioration in the
accuracy of the equivalent linear profile approach as seen in chapter 3. This deterioration in
accuracy due to increased boundary-layer thickness is clearly visible in Fig. (5.7[bottom]),
where for the thick boundary-layer case only the low frequency predictions agree with each
other. For the higher frequencies the equivalent linear profile prediction struggles to capture
the same level of shielding as the numerical prediction. Especially for the k0a = 20 case (the
effectively thickest boundary-layer case), the underprediction of the equivalent linear profile
approach is close to 40 dB. It is safe to conclude that the equivalent linear profile approach is
not valid for very thick boundary layers as the theory in chapter 3 is based on an asymptotic
expansion for a thin boundary-layer.

On the other hand, the illustrative prediction of the equivalent step-function profile displays
an unexpected result. Although for the thin boundary-layer case the predictions of the two
equivalent simplified profile approaches are very close to each other with the equivalent linear
profile prediction being a little better at approximating the numerical prediction, for the thick
boundary-layer case the equivalent step-function profile approach seems to retain similar
accuracy as in the thin boundary-layer case, and it is significantly better at approximating the
numerical prediction than the equivalent linear profile approach. This ability of the equivalent
step-function profile approach to retain its accuracy stems from the fact that during its
derivation there is no constraint or limitation imposed on the boundary-layer thickness as
opposed to the equivalent linear profile approach which is based on the boundary layer being
sufficiently small. Nevertheless, for the thicker boundary-layer case the discrepancy between
the equivalent step-function profile prediction and the numerical prediction slightly larger.
That is expected since the thinner the boundary layer, the easier it is for it to be asymptotically
similar to a simplified profile. A more robust comparison between the two theoretical
approaches will be conducted later on towards the end of this chapter.

Lastly, the frequency effect on the shielding is demonstrated in terms of the shielding
coefficient upstream S+ in Fig. (5.8). For the thick boundary-layer case the vast majority of the
incident energy is refracted away with only less than 1% of it reaching the fuselage surface.
Only for very low frequencies, when the effective thickness is somewhat smaller, is the
shielding coefficient above 1%. For the thin boundary-layer case, the same slight
underprediction in shielding as before is shown here. This slight discrepancy between the
theoretical and numerical prediction is also apparent for the thick boundary-layer case.
However, this discrepancy is not as large as it was in the ∆bl at ϕ̄ = 0o results. On the contrary
the two predictions almost coincide with each other. This is because the shielding coefficient
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FIGURE 5.8: Shielding coefficient upstream S+ vs. Helmholtz number. Numerical predictions
using a quarter-sine profile recreated from Gaffney (2016) [solid lines]. Theoretical predictions
using an equivalent linear profile to match the quarter-sine profile [dashed lines]. Results for
δ = 0.01a0 [×] and δ = 0.1a0 [no marker]. The other parameters are: M∞ = 0.75 and (l, q) =

(4, 1).

S+ is a cumulative metric taking into consideration the whole surface of the cylinder.
Therefore, the vast amounts of shielding in the shadow zones or close to the shadow zone
dominate the final value of the coefficient, making the discrepancies in Fig. (5.7[bottom])
which shows the shielding on the near side of the cylinder, irrelevant. The severe sensitivity of
shielding on the frequency is exhibited here until about k0a = 10. For higher frequencies this
sensitivity disappears because total reflection occurs at most of the cylinder area, leading to a
stabilisation of the shielding coefficient.

5.4.1.2 Azimuthal order

In this section, the effect of varying azimuthal order l is investigated. The numerical results
that are used for comparison use a quarter-sine profile, thus the equivalent profiles will match
that profile. The Mach number is constant at M∞ = 0.75 and the frequency at k0a = 20. The
azimuthal order varies to the value of 24 where the mode is barely cut-on. This allows an
investigation in a wide range of cut-off ratios.

Figure (5.9) shows the difference ∆bl for the thin boundary-layer case. For the more well cut-on
mode (16,1) the pattern exhibits fewer lobes and nulls than that of mode (4,1) shown in
Fig. (5.7), which is expected for a mode of lower cut-off ratio. Even simpler is the lobed pattern
of the just cut-on mode (24,1) for the same reason. By comparing the predictions of the two
modes one can surmise that the mode’s azimuthal order does not affect shielding. The
shielding levels for both modes follow the same general pattern with the same amplitude
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FIGURE 5.9: ∆bl at ϕ̄ = 0o for (l, q) = (16, 1) [top] and (l, q) = (24, 1) [bottom]. Numerical
predictions using a quarter-sine profile recreated from Gaffney (2016) [solid lines]. Theoretical
predictions using an equivalent linear profile to match the quarter-sine profile [dashed lines].
Theoretical predictions using an equivalent step-function profile to match the quarter-sine pro-

file [dash-dotted line]. The other parameters are: M∞ = 0.75, k0a = 20 and δ = 0.01a0.

more or less at -25 dB at z̄/a0 = 3 and -20 dB at z̄/a0 = 1.5. Further upstream than z̄/a0 = 3 the
predictions for the just cut-on mode (24,1) exhibit major instabilities in the shielding pattern.
These instabilities are attributed to numerical noise. The just cut-on mode (24,1) propagates in
a single principal lobe travelling at an almost perpendicular angle from the fan duct. This
makes the principal lobe incident on the fuselage very close to the plane of the source. Further
upstream the sound field is comprised of a null zone, which typically exhibits pressure levels
close to 100 dB lower than the lobe areas. Therefore the difference ∆bl at this region will
involve differences between very small values that reach the numerical noise floor making the
pattern very unstable.

The agreement between the theoretical predictions and the numerical prediction continues to



108 Chapter 5. Validation

be very good. Moreover, their discrepancy does not appear to be affected by the azimuthal
order. The only substantial difference between the two predictions is in the upstream region of
the (24,1) mode case. However, this region, as explained before, is effectively a shadow zone
characterised by very small values that reach the numerical noise floor. Therefore, the
discrepancies there stem from the differences in the two prediction methods and the way they
handle very small values. The equivalent step-function approach exhibits lower accuracy than
the equivalent linear approach for this thin boundary-layer thickness as in the previous case of
the more cut-on mode (4,1). It is safe to conclude that the predictions agree well with each
other, and the accuracy of the theoretical predictions does not depend on the azimuthal order
of the mode.
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FIGURE 5.10: Shielding coefficient upstream S+ vs. azimuthal order. Numerical prediction
using a quarter-sine profile recreated from Gaffney (2016) [solid line]. Theoretical prediction
using an equivalent linear profile to match the quarter-sine profile [dashed line]. The other

parameters are: M∞ = 0.75, k0a = 20 and δ = 0.01a0.

On the other hand, by observing Fig. (5.10) one can notice a sudden decrease in overall
shielding for less cut-on modes (higher azimuthal orders). As long as the modes are fairly well
cut-on, there is minimal change in the shielding coefficient. As soon as the modes become
closer to cut-off, the coefficient S+ exhibits an increase, indicating a decrease in shielding that
is dependent on the azimuthal order. This is attributed to the cut-off ratio of the modes. The
lower the cut-off ratio (higher azimuthal order for the same frequency) the steeper the
propagation angle of the mode. This means that the mode will be incident on the boundary
layer at a steeper angle, and therefore it will be subject to less shielding. The cut-off ratio effect
will be discussed in more depth in chapter 7.

This concludes the section dedicated to the source characteristics and how they affect the
shielding. Frequency tends to affect shielding in a more drastic way than the azimuthal order,
because shorter wavelengths lead to effectively thicker boundary layers. However, the
azimuthal order in certain circumstances can lead to significant changes to the shielding. The
boundary-layer thickness, effective or actual, proves to be the factor with the most influence
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on the shielding results. A thorough investigation into the dependence of shielding on the
boundary-layer thickness will be conducted later on. Another key finding is the apparent
ability of the equivalent step-function profile approach to retain its accuracy regardless of the
boundary-layer thickness. This finding will also be further investigated later on.

5.4.2 Flow Characteristics

In this section the effect of the flow characteristics on the shielding is investigated. The flow
characteristics, flow velocity and boundary-layer velocity profile, will be varied, whereas the
rest of the variables will remain unchanged. Note that another flow characteristic is the
boundary-layer thickness, but since its effect has been proven already to be substantial, it is
deemed necessary to be given its own section later on. As before, the aim is to identify trends
and the sensitivity of shielding to changes in the flow characteristics, and provide comparisons
with numerical results. The results will be presented for the two boundary-layer thicknesses,
thin (δ = 0.01a0) and thick (δ = 0.1a0), a constant relatively high frequency k0a = 20, which is
characteristic of the climbing phase of flight as will be seen in later chapters and explained in
the published paper by Rouvas and McAlpine (2022a). The mode will be kept constant at
(l, q) = (4, 1) which is well cut-on to avoid any cut-on/cut-off transition effects.

5.4.2.1 Flow Velocity

Flow velocity is one of the major characteristics of the flow and it has been suggested in
chapter 4 that it has a similar effect as the frequency. The calculations that have been
conducted involve three different free stream Mach numbers, M∞ =[0.25, 0.5 and 0.75]. The
velocity profile is the quarter-sine profile.

Figure (5.11) demonstrates the importance of the Mach number effect. The Mach number
affects the shielding in a very similar way that the frequency does. A higher Mach number
leads to more shielding in quite a drastic way too. Whereas a low Mach number produces little
to no shielding, the more representative flight velocity M∞ = 0.75 produces almost 30 times
more shielding. This occurs because the convective effect of the flow effectively shortens the
wavelengths upstream of the source. Therefore, a higher free-stream Mach number results in
effectively shorter wavelengths, causing more shielding because of the effectively thicker
boundary layer compared to the wavelengths.

The comparison with the numerical prediction reveals similar behavior as before. The thin
boundary-layer case exhibits very small discrepancies across the range of the free-stream
Mach numbers. It is important to note that for the lower Mach numbers the agreement is even
better. That is expected because the lower Mach number means that the wavelengths are
effectively longer compared to the boundary-layer thickness, effectively leading to a thinner
boundary layer increasing the accuracy of the equivalent linear profile approach. An
interesting side effect of that is observed in the thick boundary-layer case in Fig. (5.11[bottom])
where the discrepancies between the numerical and the theoretical predictions are more
pronounced. Nonetheless, for the low Mach number case, M∞ = 0.25, the discrepancies are
uncharacteristic of such a thick boundary-layer case. The discrepancies are not as large as
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FIGURE 5.11: ∆bl at ϕ̄ = 0o for δ = 0.01a0 [top] and δ = 0.1a0 [bottom]. Numerical predictions
using a quarter-sine profile recreated from Gaffney (2016) [solid lines]. Theoretical predictions
using an equivalent linear profile to match the quarter-sine profile [dashed lines]. Results for
flow Mach numbers M∞ = 0.25 [no marker], M∞ = 0.5 [×] and M∞ = 0.75 [⃝]. The other

parameters are: k0a = 20 and (l, q) = (4, 1).

expected because the thickness effect is mediated by the Mach number effect. Namely, the low
Mach number means that the wavelengths are effectively relatively large compared to the
boundary-layer thickness. That results in an effectively thinner boundary-layer, thus
improving the accuracy of the equivalent linear profile approach.

The shielding coefficient results in Fig. (5.12) reveal once again very good agreement between
the numerical and theoretical predictions even for the thicker boundary-layer case. However,
the theoretical approach seems to be problematic for very low free-stream Mach numbers with
a thick boundary-layer. Normally, the behavior of the S+ should be as it is depicted in the thin
boundary-layer case, namely approaching the value of unity as the flow (and the boundary
layer with it) disappears. The theoretical approach involves expressions (eqs. (3.174)-(3.175),
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FIGURE 5.12: Shielding coefficient upstream S+ vs. varying flow Mach number. Numerical
predictions using a quarter-sine profile recreated from Gaffney (2016) [solid lines]. Theoretical
predictions using an equivalent linear profile to match the quarter-sine profile [dashed lines].
Results for δ = 0.01a0 [no marker] and δ = 0.1a0 [⃝]. The other parameters are: k0a = 20 and

(l, q) = (4, 1).

(3.191)-(3.192), (3.206)) with terms that become singular when M∞ = Mw. When M∞ → 0, it
follows that Mw → 0. Therefore, with dual limits tending to zero this is very difficult to handle
numerically. In the thin boundary-layer case these singular terms are multiplied with a
relatively small value of ε (see eqs. (3.191), (3.192) and (3.206)), mediating their effect in the
final value of the expression. On the other hand, when the boundary layer is thicker, these
singular terms are multiplied by a larger value of ε causing their contribution to dominate the
final value of the expression. Thus, the thick boundary-layer case is incorrect for very small
Mach numbers.

5.4.2.2 Profiles

In this section, the effect of different boundary-layer velocity profiles is investigated. So far, the
quarter-sine profile was being used to produce numerical results, and the theoretical results
used profiles that matched that quarter-sine profile. In this section, numerical results
generated using an original linear and a 1/7th power-law profile are compared with
theoretical results that are generated using equivalent profiles that match those original
profiles. The other parameters will be kept constant, k0a = 20, M∞ = 0.75 and (l, q) = (4, 1).

The theoretical results for a linear profile compare very well against the numerical results only
for the thin boundary-layer case in Fig. (5.13). The thick boundary-layer case exhibits very
poor agreement between the numerical and the theoretical results. This is consistent with the
findings so far that the thicker the boundary layer the worse the accuracy of the equivalent
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FIGURE 5.13: ∆bl at ϕ̄ = 0o for δ = 0.01a0 [no marker] and δ = 0.1a0 [⃝]. Numerical predictions
using a linear profile recreated from Gaffney (2016) [solid lines]. Theoretical predictions using
the same linear profile [dashed lines]. The other parameters are: M∞ = 0.75, k0a = 20 and

(l, q) = (4, 1).

linear profile approach. On the other hand, for the power-law results in Fig. (5.14) the
predictions are more accurate even for the thick boundary-layer case. For the thin power-law
boundary-layer case the two theoretical predictions (equivalent linear and step-function
profile approach) are very close to each other and the numerical prediction. For the thick
boundary-layer case, the equivalent step-function approach is noticeably closer to the
numerical prediction. This finding is once again consistent with previous findings that the
equivalent step-function profile approach retains its accuracy regardless of the thickness.

Nonetheless, the equivalent linear profile approach generally behaves better at thicker layers
in the case of the power-law profile. This can be seen by comparing Fig. (5.14[bottom]) (which
involves matching the power-law profile) against Figs. (5.7[bottom]) and (5.13) (which involve
the same examples but for matching a quarter-sine and a linear profile respectively). It can be
seen that the discrepancy between the theoretical prediction and the numerical prediction is
much smaller in the power-law case (Fig. (5.14[bottom])) than in the other profiles
(Figs. (5.7[bottom]) and (5.13)) for the same axial locations. This increased accuracy stems from
the fact that the power-law profile generally produces less shielding than the other two. The
numerical prediction for the power-law profile shielding is close to -60 dB, whereas for the
other two profiles it is -100 dB or more. More shielding implicitly suggests an effectively
thicker layer which, as has been seen, has an adverse effect on the accuracy of the equivalent
linear profile approach.

Another more quantifiable way of explaining this is by examining the thicknesses of the
equivalent linear profiles that attempt to match the more complex profiles. The three original
profiles in Figs. (5.7), (5.13) and (5.14) have equal thicknesses, δQS = δL,original = δPL = 0.1a0,
respectively. The equivalent linear profile to match these profiles will have thicknesses,
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FIGURE 5.14: ∆bl at ϕ̄ = 0o for δ = 0.01a0 [top] and δ = 0.1a0 [bottom]. Numerical predic-
tions using a 1/7th power-law profile recreated from Gaffney (2016) [solid lines]. Theoretical
predictions using an equivalent linear profile to match the power-law profile [dashed lines].
Theoretical predictions using an equivalent step-function profile to match the power-law pro-

file [dash-dotted line]. The other parameters are: M∞ = 0.75, k0a = 20 and (l, q) = (4, 1).

δL = 0.7768δQS, δL = δL,original and δL = 0.75δPL. The equivalent linear profile that matches the
power-law is the thinnest and therefore has the best accuracy. On the other hand, the
equivalent linear profile that matches the original linear profile has the largest thickness and
therefore the worst accuracy as is reflected in the prediction in Fig. (5.13).

This concludes this section on the flow characteristics and how they affect shielding. The Mach
number proves to be a very influential parameter with similar trend and behavior as the
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frequency. The boundary-layer profile also affects shielding, with the 1/7th power-law profile
producing less because of its shallower gradient and shape. The key finding here is the fact
that the equivalent linear profile approach is very capable of approximating the shielding
produced by a 1/7th power-law profile, which is the representative of a turbulent
boundary-layer on a fuselage during flight. Furthermore, the equivalent step-function profile
approach proves to be even better at approximating the same effect even at large thicknesses.
More attention to that fact will be given in the next section. The next section is dedicated to the
effect of the boundary-layer thickness on the shielding. Although the boundary-layer
thickness is a flow characteristic, it is decided that because of its drastic effect on the shielding
and on the accuracy of the theoretical methods, there should be a whole section dedicated to
its influence.

5.4.3 Thickness Effect

In this section the effect of boundary-layer thickness on the shielding is investigated.
Although its effect has already been demonstrated in previous results, it is important to iterate
how drastic it is. Furthermore, a major goal of this section is to more thoroughly investigate
the difference between the two theoretical methods (equivalent linear and equivalent
step-function profile), and demonstrate how the boundary-layer thickness affects their
accuracy in replicating the numerical predictions.

Apart from the boundary-layer thickness, all the other parameters are kept constant, k0a = 20,
M∞ = 0.75 and (l, q) = (4, 1). Since the 1/7th power-law profile is of major practical interest,
the results focus mainly on this profile. However, initially some results for the quarter-sine
profile are presented that facilitate comparison with previous numerical results.

Figures (5.15) and (5.16) present quarter-sine profile results. Firstly, the drastic effect of the
presence of the boundary layer is noted. Even a very thin boundary layer (δ = 0.0025a0) can
still produce up to almost 20 dB shielding. By ignoring the lobed pattern, it can be observed
that for the smaller boundary-layer thicknesses (Fig. (5.15)), the increase in shielding is almost
linear with increasing z̄. But for the thicker boundary-layers (Fig. (5.16)), the shielding takes
place abruptly at small z̄ and after that the rate of shielding stabilises. As explained before, this
is attributed to the phenomenon of total reflection upstream. For large enough boundary-layer
thicknesses, there will be a certain axial point beyond which the sound waves will be incident
on the layer at such a shallow angle that they will be reflected off it without reaching the wall.

Figures (5.15) and (5.16) show the deterioration of the equivalent linear profile approach’s
accuracy. On the other hand, the equivalent step-function profile approach shows its ability to
retain good agreement with the numerical results even for larger boundary-layer thicknesses.
Starting from the small boundary-layer thickness results in Fig. (5.15), for very thin boundary
layers the equivalent linear profile prediction is closer to the numerical prediction than the
equivalent step-function profile. However, as the boundary-layer thickness becomes larger
one can see that the equivalent step-function profile prediction is now closer to the numerical
one, while the equivalent linear profile approach starts to underpredict shielding. Eventually,
at large boundary-layer thicknesses (Fig. (5.16)), the equivalent linear profile approach
underpredicts shielding by almost 35 dB. On the other hand, the equivalent step-function
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FIGURE 5.15: ∆bl at ϕ̄ = 0o for δ = 0.0025a0 [no marker], δ = 0.01a0 [×] and δ = 0.025a0
[⃝]. Numerical predictions using a quarter-sine profile recreated from Gaffney (2016) [solid
lines]. Theoretical predictions using an equivalent linear profile to match the quarter-sine profile
[dashed lines]. Theoretical predictions using an equivalent step-function profile to match the
quarter-sine profile [dash-dotted line]. The other parameters are: M∞ = 0.75, k0a = 20 and

(l, q) = (4, 1).

profile prediction, despite never actually being able to capture the numerical value, is
remarkably close to it.

Turning now attention to the more representative 1/7th power-law profile and the results that
refer to its shielding in Fig. (5.17), the same consistent findings are manifested once again. With
growing boundary-layer thickness the shielding upstream is increased. Note that Fig. (5.17)
shows the difference ∆bl at an axial point far upstream, exacerbating any discrepancies
between the numerical and theoretical predictions. The comparison between the predictions
reveals the already shown deterioration of the accuracy of the equivalent linear profile
approach. Moreover, as before the equivalent step-function profile approach retains about the
same level of accuracy throughout this range of boundary-layer thickness. This is a surprising
finding that indicates that for thicker boundary layers it may not be necessary to solve the
Pridmore-Brown equation. The much simpler step-function analysis, based on only solving
the convected Helmholtz equation, appears to approximate the realistic shielding effect of a
power-law profile, typical of the boundary-layer velocity profile on a fuselage during flight.

In order to better understand this finding, and to gain a more inclusive perspective on the
problem, some contour maps are presented in Figs. (5.18) through (5.23). In these contour
maps the SPL contours on the fuselage surface is presented. The cylinders are unfurled in
order to uncover any obscure areas. The profile in question is the 1/7th power-law profile. For
all the contour maps the difference between the theoretical and the numerical predictions that
stands out is at the plane of the source and further downstream. The discrepancy there can be
ignored because it stems from the fact that the numerical model that generated these contour
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FIGURE 5.16: ∆bl at ϕ̄ = 0o for δ = 0.05a0 [box] and δ = 0.075a0 [diamond]. Numerical
predictions using a quarter-sine profile recreated from Gaffney (2016) [solid lines]. Theoretical
predictions using an equivalent linear profile to match the quarter-sine profile [dashed lines].
Theoretical predictions using an equivalent step-function profile to match the quarter-sine pro-

file [dash-dotted line]. The other parameters are: M∞ = 0.75, k0a = 20 and (l, q) = (4, 1).

maps includes diffraction around the lip of the fan duct (Gaffney and McAlpine (2018) and
Gaffney (2016)). Therefore, results close to the plane of the source and downstream of it will
exhibit discrepancies with the numerical results. Apart from that region, upstream the
discrepancies between the three predictions are minuscule for the thin boundary-layer cases,
up to δ = 0.03a0. For thicker boundary-layer cases, it is apparent that the equivalent linear
profile approach underpredicts the shielding upstream, with more noticeable differences in the
color maps. On the other hand, the equivalent step-function profile prediction is remarkably
close to the numerical prediction for the whole range of boundary-layer thicknesses. Even for
the extremely thick boundary-layer case of δ = 0.1a0 the contour maps are very similar to each
other, apart from some instabilities close to the plane of the source.

This concludes this section on the boundary-layer thickness effect, and how it affects the
shielding and the accuracy of the two theoretical methods. A major finding is that the
equivalent step-function profile approach can be used to approximate the effects of a complex
profile even for very thick boundary layers. For thinner and more realistic boundary-layer
thicknesses both theoretical methods could be used to approximate the effects of a complex
profile. This finding is highly significant because it implies that it may not be necessary to
solve the Pridmore-Brown equation in order to generate realistic results for sound refraction
by a boundary layer.
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FIGURE 5.17: ∆bl at ϕ̄ = 0o and z̄ = 5a0 for varying boundary-layer thickness. Numerical
predictions using a 1/7th power-law profile recreated from Gaffney and McAlpine (2017) [solid
lines]. Theoretical predictions using an equivalent linear profile to match the power-law profile
[dashed lines]. Theoretical predictions using an equivalent step-function profile to match the
power-law profile [dash-dotted line]. The other parameters are: M∞ = 0.75, k0a = 20 and

(l, q) = (4, 1).
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FIGURE 5.18: Total SPL on the surface of the fuselage for boundary-layer thickness δ = 0.01a0.
Numerical prediction using a 1/7th power-law profile recreated from Gaffney (2016) [bottom].
Theoretical prediction using an equivalent linear profile to match the power-law profile [top
left]. Theoretical prediction using an equivalent step-function profile to match the power-law

profile [top right]. The other parameters are: M∞ = 0.75, k0a = 20 and (l, q) = (4, 1).
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FIGURE 5.19: Total SPL on the surface of the fuselage for boundary-layer thickness δ = 0.02a0.
Numerical prediction using a 1/7th power-law profile recreated from Gaffney (2016) [bottom].
Theoretical prediction using an equivalent linear profile to match the power-law profile [top
left]. Theoretical prediction using an equivalent step-function profile to match the power-law

profile [top right]. The other parameters are: M∞ = 0.75, k0a = 20 and (l, q) = (4, 1).
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FIGURE 5.20: Total SPL on the surface of the fuselage for boundary-layer thickness δ = 0.03a0.
Numerical prediction using a 1/7th power-law profile recreated from Gaffney (2016) [bottom].
Theoretical prediction using an equivalent linear profile to match the power-law profile [top
left]. Theoretical prediction using an equivalent step-function profile to match the power-law

profile [top right]. The other parameters are: M∞ = 0.75, k0a = 20 and (l, q) = (4, 1).
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FIGURE 5.21: Total SPL on the surface of the fuselage for boundary-layer thickness δ = 0.04a0.
Numerical prediction using a 1/7th power-law profile recreated from Gaffney (2016) [bottom].
Theoretical prediction using an equivalent linear profile to match the power-law profile [top
left]. Theoretical prediction using an equivalent step-function profile to match the power-law

profile [top right]. The other parameters are: M∞ = 0.75, k0a = 20 and (l, q) = (4, 1).
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FIGURE 5.22: Total SPL on the surface of the fuselage for boundary-layer thickness δ = 0.05a0.
Numerical prediction using a 1/7th power-law profile recreated from Gaffney (2016) [bottom].
Theoretical prediction using an equivalent linear profile to match the power-law profile [top
left]. Theoretical prediction using an equivalent step-function profile to match the power-law

profile [top right]. The other parameters are: M∞ = 0.75, k0a = 20 and (l, q) = (4, 1).
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FIGURE 5.23: Total SPL on the surface of the fuselage for boundary-layer thickness δ = 0.1a0.
Numerical prediction using a 1/7th power-law profile recreated from Gaffney (2016) [bottom].
Theoretical prediction using an equivalent linear profile to match the power-law profile [top
left]. Theoretical prediction using an equivalent step-function profile to match the power-law

profile [top right]. The other parameters are: M∞ = 0.75, k0a = 20 and (l, q) = (4, 1).
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Chapter 6

Parametric Study

Having established that both the linear and the step-function equivalent velocity profile can
approximate the refraction effects of other boundary layer profiles, the next step is a further
investigation into the shielding and refraction effect of the boundary layer in a more realistic
or representative configuration. For that reason, a parametric study has been carried out to
demonstrate the refraction effect of the fuselage boundary layer for a range of different
parameters and flight conditions with a multimodal source. The reason for conducting this
study is to provide insight into the installation and shielding effects of an exemplar aircraft in
flight, and also to demonstrate the capability of the theoretical method to provide quick and
accurate trends for realistic situations.

The model to be used for this study will approximate the dimensions and configuration of a
typical wide-body aircraft such as the Airbus A330 or Airbus A350 or the Boeing 787. This
configuration is chosen since it is typically equipped with an ultra high by-pass ratio turbofan
engine such as the Trent 7000 or XWB. Engines in the future are projected to become even
larger with even higher by-pass ratios, such as the Rolls-Royce UltraFan (plc.), and that is why
the study will involve typical ultra high by-pass ratio engine dimensions and characteristics.
Another important parameter that will be examined is the modal output of the engine. In a
realistic flight situation, the acoustic energy of the engine is seldom distributed uniformly
among the modes. It is more likely, depending on the stage of flight, that a dominant
rotor-locked mode will occur which will dominate the acoustic pressure pattern. Therefore, an
important parameter will be the cut-off ratio of the rotor-locked mode since it also gives an
indication on the direction of propagation of the principal radiation lobe.

The flow and source characteristics are chosen to simulate an aircraft climbing up to cruise,
giving a wide range of values. An important parameter to be discussed is the flight Mach
number. Its values are selected to reflect a typical flight path culminating in a typical
maximum value during the cruising stage of flight. As will be shown, the flight Mach number
is a highly influential acoustic parameter. The same can be said about the frequency of the
acoustic output of the engine. The values of the BPF are chosen to realistically reflect the rpm
of the engine in the various stages of flight with higher rpm leading to higher frequencies.
Lastly, the parameter of the boundary-layer thickness is chosen to represent typical values
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along the fuselage during flight. Realistically, it is expected that a turbulent boundary layer
will develop on the fuselage, therefore a 1/7th power-law profile is applicable here.

6.1 Construction of the Model

The dimensions of a typical wide-body aircraft are used for the parametric study model. The
key dimensions are shown in table (6.1) and Fig. (6.1). The fan duct radius is typically around
half of the fuselage radius. The fan source will be placed next to the fuselage at 0o azimuthal
angle, i.e. β = 0o.

Parameter Value

a/a0 0.5
b/a0 3.5
β 0o

z̄ps/a0 0
z̄ec/a0 4

θ̄ f f [5o,175o]

ϕ̄ f f
3 π

2

TABLE 6.1: Dimensions of parametric study model.

The parameters z̄ps and z̄ec, are respectively the position of the plane of the source (the plane of
the fan inlet), and the position of the end of the nose cone. These parameters represent the
axial range of the calculations for the fuselage surface pressure results. This range of z̄
represents the entire section of the fuselage upstream of the source that can be approximated
by a cylinder with constant radius. Beyond z̄ec, the nose cone structure cannot be modeled by
the current theoretical formulation. The parameters θ̄ f f and ϕ̄ f f refer to the grid for the
far-field calculations. The expressions in sections 3.1.4.1, 3.2.6 and 3.3.5 can give the far-field
pressure at any point of a sphere with radius R̄ centered on the fuselage, (θ̄, ϕ̄). Nonetheless,
in the following sections, far-field results will be calculated for the hemisphere underneath the
fight path, ϕ̄ f f = 3 π

2 , since this directivity pattern will propagate towards the ground. Note
that the polar angle θ̄ should not approach extreme values of 0o or 180o as these introduce
numerical singularities when calculating the pressure.

As mentioned before, the study will include a range of operating conditions. This means that
the flight Mach number and altitude will vary, consequently changing the boundary layer
thickness on the fuselage. Furthermore, the theoretical approach used assumes a constant
boundary-layer thickness. Nonetheless, for every operating condition there are three values of
a constant boundary-layer thickness that can be defined, and used in order to give an accurate
estimate of the amount of shielding or refraction produced. These three constant values
represent the range of values of the growing boundary-layer thickness on the fuselage’s
surface that will be studied.

Therefore, the range of the z̄-grid points, from z̄ps to z̄ec, dictate the values used for the
boundary-layer thickness δ. The thinnest boundary layer that occurs in the range [z̄ec, z̄ps] is at
the end of nose cone. The boundary layer continues growing until it reaches its maximum
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FIGURE 6.1: Model configuration and dimensions.

thickness value which occurs at the plane of the source because this is the z̄ point which is
furthest downstream from the aircraft nose. The thinnest boundary layer that occurs at the end
of the nose cone is the first value to be investigated in the study, and will be referred to from
now on as the thin boundary layer. The thickest boundary layer that occurs at the plane of the
source is the second value to be investigated in the study, and will be referred to from now on
as the thick boundary layer. Finally, an average value for the thickness between those two is
obtained, referred to from now on as the average boundary layer. Note that the average
boundary-layer thickness is calculated by integrating the boundary-layer thickness over the
axial range, which gives a more realistic average than a simple arithmetic mean of the thin and
thick layers. Using these three constant thickness values, an estimate can be extrapolated that
can fairly accurately predict the effect of a growing boundary layer.

It is important at this point to clarify some assumptions concerning the boundary-layer
growth. First of all, in the present study it is assumed that the boundary layer that develops on
the fuselage is turbulent and follows a 1/7th power law velocity profile. Therefore, both the
equivalent linear and equivalent step-function profiles will be matched to the 1/7th
power-law profile. This profile is chosen as it is the most commonly used way to represent an
actual turbulent boundary-layer profile.

Secondly, the boundary-layer thickness growth along the cylindrical fuselage is assumed to be
the same as the growth over a flat plate. This is a valid assumption considering that the
boundary-layer thickness will not exceed the value of 10 % of the fuselage radius, rendering
the curvature of the geometry less important. By assuming flat plate theory the values for the
thickness of the thin boundary layer (at the end of nose cone) and the thick boundary layer (at
the plane of the source) can be found using the relationship δ(x) = 0.37x/Re1/5

x , where x is the
distance taken from the nose of the model aircraft and Re1/5

x is the Reynolds number at point x
as shown in Fig. (6.2). The distance x will be the distance of the end of the nose cone from the
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FIGURE 6.2: Boundary layer thickness growth over a flat plate.

nose for the thin boundary layer, while for the thick boundary layer it will be the distance of
the plane of the source from the nose.

6.2 Operating Conditions

The operating conditions of the model flight path presented here are dictated by the cut-off
ratio of the dominant rotor-locked mode ζ(20,1), flight altitude and flight Mach number. In this
model, the number of fan blades is taken to be B = 20 which is a typical value for a high
by-pass ratio engine used on a wide-body aircraft. Therefore, assuming there are no
instabilities in the inlet flow, the dominant rotor-locked cut-on mode will be (l, q) = (20, 1)
although a possibility of the second radial order mode, (l, q) = (20, 2) being cut-on will be
investigated later on too. The presence of a rotor-locked mode is very much expected at some
point in flight and is bound to affect significantly the installed acoustic field (Schwaller et al.
(1997), Schwaller et al. (2006), Achunche et al. (2009)). As seen in table (6.2) the rotor-locked
mode (20, 1) will be cut-off in the first two operating conditions (just cut-off in the second
operating condition). Then, at operating condition 3 it will be just cut-on, and will continue to
be more cut-on until the last condition 6. This range of cut-off ratio will provide an insight into
the directivity of the installed field since it includes cut-off, cut-on and transitioning
conditions.

As shown in Fig. (6.3) the six operating conditions simulate the later climbing stage and
cruising stage of the flight path. The flight Mach number and flight altitude values are chosen
in order to represent these stages. The aircraft will accelerate during the climb until it stabilises
at the cruising altitude, which is typically around 9000 m (or sometimes higher) at a typical
Mach number of 0.75. Furthermore, since the theoretical approach presented in this work does
not include a diffuser in front of the fan, which is typically the case, the range of flight Mach
number is chosen so that the diffuser normally would accelerate or decelerate the fan inlet
flow very little. Diffusers usually regulate the fan inlet Mach number to about 0.6-0.7.
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FIGURE 6.3: Operating conditions examined in the parametric study.

Operating Conditions 1 2 3 4 5 6

ζ(20,1) 0.9 1.0 1.1 1.2 1.3 1.4
Altitude (m) 9000 9000 8500 8000 7500 7000

M∞ 0.75 0.75 0.7 0.7 0.65 0.65
k0a (BPF) 13.22 14.69 17.45 19.04 21.95 23.64

Fan rpm (%) 49.3 54.8 65.5 72.0 83.6 90.6
δ/a0 at plane of source 0.0619 0.0619 0.0621 0.0614 0.0616 0.061

δ/a0 at end of nose cone 0.0326 0.0326 0.0327 0.0324 0.0325 0.0322

TABLE 6.2: Operating conditions examined in the parametric study.

By assuming that the frequency that corresponds to a specified cut-off ratio is the first blade
passing frequency (BPF), the rpm of the fan can be found as seen in table (6.2). The engine rpm
also reflects the flight stage of each operating condition, with high rpm in the climbing stage
which gradually decreases until stabilisation in the cruising stage at about 50 %. Finally, with
the operating conditions known the different boundary layer thickness values are calculated.
With the fuselage radius being represented here by its typical value for a wide-body aircraft
(that value is approximately a0 = 2.89 m), the boundary-layer thickness at the plane of the
source is around 0.18 m. The plane of the source in this representative model is roughly 20 m
from the nose of the aircraft. The value of the boundary-layer thickness at that point is not
unrealistic as shown by Dierke et al. (2013). Dierke et al. performed a CFD analysis on a model
aircraft and computed the boundary-layer growth up to 20 m from the aircraft nose and
concluded that the value of the boundary-layer thickness is between 0.1 to 0.2 m, making the
value chosen here representative of a real-life situation.
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6.3 Source Characteristics

As mentioned before it is in the scope of this parametric study to demonstrate the effectiveness
of the theoretical method and its reduced computational speed compared against high-fidelity
numerical methods. Multi-mode sources are used which for a numerical method to simulate
all the modes would be very time-consuming. For each operating condition, every cut-on
mode’s contribution is calculated, and then the contributions are summed incoherently.
However, the presence of a dominant rotor-locked mode means that an equal energy per mode
assumption is not realistic (Schwaller et al. (1997), Schwaller et al. (2006), Achunche et al.
(2009)). For that reason, a number of different sources are investigated that have different
power distribution among the cut-on modes.

Five different multi-mode sources are used in the present study. They all have the same total
power of unity, Wt = 1. Their differences lie in the distribution of the total power among the
cut-on modes.

1. Equal energy source Wee. The total power of unity is divided equally among the cut-on
modes. Thus, each mode has the same modal sound power Wlq = Wt/number of modes.

2. Rotor-locked source W10. The total power of unity is divided equally among the cut-on
modes apart from the rotor-locked mode (20,1), which has 10 times larger modal sound
power (or 10 dB higher in PWL terms).

3. Rotor-locked source W20. The total power of unity is divided equally among the cut-on
modes apart from the rotor-locked mode (20,1), which has 100 times larger modal sound
power (or 20 dB higher in PWL terms).

4. Rotor-locked source W30. The total power of unity is divided equally among the cut-on
modes apart from the rotor-locked mode (20,1), which has 1000 times larger modal
sound power (or 30 dB higher in PWL terms).

5. Rotor-locked source W20,10. The total power of unity is divided equally among the cut-on
modes apart from the first radial order rotor-locked mode (20,1), which has 100 times
larger modal sound power (or 20 dB higher in PWL terms), and a second radial order
rotor-locked mode (20,2) which has 10 times larger modal sound power (or 10 dB higher
in PWL terms).

Having prescribed the modal sound power of the modes, each individual modal amplitude is
obtained with the following expression given in McAlpine et al. (2015),

|Plq|2 =
2ρ0c0Wlq

π
[︁
a2 −

(︁ l
κlq

)︁2]︁J2
l (κlqa)[(1 + M2

0)Re(ξlq)− M0(1 + |ξlq|2)]
. (6.1)

Thus the contribution of each mode is weighted by its modal amplitude before they are all
summed incoherently to obtain the total contribution of the source. Since the modes are
summed incoherently, only the square of the modal amplitude is required (given by eq.(6.1)),
not the phases of the individual modes. According to previous research (Schwaller et al.
(1997), Schwaller et al. (2006), Achunche et al. (2009)) the most realistic of these prescribed
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sources is likely to be the W20 source, since in previously reported experimental measurements
the dominant rotor-locked mode can exhibit an amplitude around 20 dB higher than the rest of
the cut-on modes, as shown in Fig. (6.4).
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FIGURE 6.4: Modal amplitude in SPL form for operating condition 6 and source W20. Only first
radial order modes shown.

Nonetheless, the equal energy source, Wee, is very useful in order to create a baseline. It is also
not uncommon for the rotor-locked mode to exhibit a level up to 30 dB higher, thus the source
W30 should give further insight into the distribution and propagation of sound power. It has
also been reported that a second radial order rotor-locked mode could develop, hence the
inclusion of source W20,10. Note that the second radial order mode (20,2) is not cut-on until
operating condition 5, therefore until condition 5, source W20,10 is identical to source W20.
Furthermore, since the dominant rotor-locked mode is not cut-on for the first two operating
conditions, every source is reduced to the Wee source for operating conditions 1 and 2.

6.4 Source Power Distribution

In this section, the differences between the different types of sources are highlighted. The
difference in power distribution leads to different pressure contour patterns on the fuselage
surface. The results that follow show the SPL contour on the surface of the fuselage. The SPL
is normalised so that the maximum value on the surface is at 0 dB (a convention that is used
for all the figures showing pressure levels on the surface of the fuselage). Another metric being
used in this section that highlights the distribution of power on the fuselage surface is the
difference ∆source, which is defined as

∆i
source = SPLi − SPLee, (6.2)
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where SPLee is the SPL calculated with the equal energy source Wee, whilst i denotes either 10,
20, 30 or 20,10 representing values calculated for the sources W10, W20, W30 or W20,10

respectively. This metric will pinpoint the difference between the power distributions of the
rotor-locked sources and the baseline source Wee, essentially demonstrating the location where
the rotor-locked mode’s principal radiation lobe is incident on the surface of the fuselage. For
the majority of the results that follow in this section, the boundary-layer thickness is assumed
to be average. The effect of different thicknesses will be investigated in later sections.
Moreover, the results shown in the following sections are generated using an equivalent linear
profile. The difference between linear and step-function results will be investigated in a later
chapter.

Figure (6.5) gives the SPL on the surface of the fuselage for operating conditions 1, 3 and 6
with the equal energy source. The pressure pattern is fairly smooth with no distinctive regions
for all operating conditions. That is expected with the Wee source used is the equal energy
source, which has no dominant mode, leading to all the modes’ lobed patterns to smooth out
each other. No particular pattern stands out because no particular mode stands out. They all
have the same sound power attributed to them. For all the conditions the characteristic
shadow zone is visible at the far side of the fuselage as expected. The difference between the
three operating conditions’ results is the location and spread of the maximum SPL area.
Operating condition 1 exhibits a much more concentrated maximum SPL area close to the
plane of the source. That is expected because further upstream of the source, sound waves
meet the boundary layer at a shallower angle making them more susceptible to refraction.
That is the case for all operating conditions. However the number of cut-on modes at
operating condition 1 are only 111, in contrast to operating condition 6 whose number of
cut-on modes are 258. That means that for higher operating conditions (going from 1 towards
6) more cut-on modes are added that are inevitably more spread out, since the already existing
modes become even more cut-on. That leads to a more extensive and less localised affected
area since the energy is more evenly spread out.

Figure (6.5) provides a good baseline result and also gives insight into the effect of ascending
ζ(20,1) (going from operating condition 1 towards 6). Figure (6.6) examines the effect of
different sources. Results are for the same operating condition 3, when the dominant
rotor-locked mode is just cut-on. When the mode is just cut-on, the mode angle is very steep
and that is the reason why in all source cases the maximum SPL area is very close to the plane
of the source. Furthermore, the more powerful the rotor-locked mode the more localised the
area of maximum SPL. Source W10 exhibits small difference compared to the equal energy
source. However, W20 starts to exhibit more shielding upstream making the maximum SPL
area more distinctive. The same is true for the W30 source in a more extreme manner. This
localisation of the affected area is expected, especially for operating condition 3. The
rotor-locked mode is just cut-on which means its principal lobe propagates at a steeper angle,
and so it meets the boundary layer at a steeper angle (close to perpendicular), minimising the
effect of refraction and therefore shielding. The rest of the cut-on modes propagate at
shallower angles further upstream, which means that sound waves travel a greater distance to
meet the fuselage after transmitted into the boundary layer. That effectively means a thicker
boundary layer or more shielding for these more cut-on modes that propagate further
upstream. Therefore, energy tends to be refracted away upstream, whereas the rotor-locked
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mode which carries the bulk of the sound power is not shielded so much because of its steeper
propagation angle, leading to a concentration of energy close to the plane of the source.

After examining the transitioning effect of operating condition 3, Fig. (6.7) presents results for
operating condition 5 when the rotor-locked mode is more cut-on. That is evident by
comparing Figs. (6.6) and (6.7) where the maximum SPL has moved further upstream for all
source types. That is expected since the bulk of sound power is carried by the dominant mode
(20,1) which has become more cut-on and travels in a shallower angle, therefore incident on
the fuselage further upstream. Note that at operating condition 5 the second radial order
rotor-locked mode (20,2) is just cut-on. However, mode (20,2) is much less powerful than
mode (20,1) (only 10 dB compared to 20 dB) meaning its effect is hardly visible downstream of
(20,1) mode’s principal lobe. That is not surprising, since W10 generally has a very weak effect
as shown in Figs. (6.6.a-b) and (6.7.a-b), leading to the conclusion that a rotor-locked mode
only 10 times more powerful does not affect significantly the total pressure field. It seems that
the vast number of the rest of the cut-on modes carry enough energy to offset the effect of the
rotor-locked mode. Even though at condition 5 the rotor-locked mode is more cut-on which
means it is more susceptible to refraction and shielding, because it meets the boundary layer at
a shallower angle, it still dominates the pressure pattern especially in the case of source W30.
For that source case, even the dominant mode’s secondary lobe starts to stand out in the
pattern downstream of the principal lobe. Even though the secondary lobe is less powerful
than the principal lobe, it is subject to less shielding because it travels at a steeper angle
towards the boundary layer.

The effect of ascending ζ(20,1) (going from operating condition 1 towards 6) is demonstrated in
Fig. (6.8). The difference ∆30

source highlights the areas where the W30 source differs from the
equal energy source. Figure (6.8) clearly shows how the rotor-locked mode becomes more and
more cut-on, with its principal lobe propagating at shallower angles, and incident with the
fuselage further and further upstream. There is always an excess of energy compared to source
Wee at the position of the principal lobe (positive values), but away from that position there is a
deficit of energy compared to source Wee (negative values) in order to compensate for the
excess around the principal lobe, since all the sources have the same total sound power.
Therefore, the rest of the cut-on modes of the W30 source, which are incident with the fuselage
away from the position of the dominant mode’s principal lobe, carry less energy than their Wee

counterparts. Note that as the rotor-locked mode becomes more cut-on, its secondary lobe
begins to develop downstream and become more dominant.

Figure (6.9) demonstrates the weak effect source W20,10 has on the results. Mode (20,2) is just
cut-on at operating condition 5, and that is evident from the excess of energy very close to the
plane of the source compared with the W20 source. However, that is a difference of 0.5 dB
which becomes smaller for the rest of the domain, which is expected because the rest of the
domain is unaffected by the newly cut-on mode (20,2) that travels at steep angles. It is safe to
conclude that an excess of 10 dB sound power attributed to one mode is not enough to affect
the pressure pattern formed by the superposition of all the remaining modes.

At this point this section is concluded with the key findings being the importance of the cut-off
ratio ζ(20,1), and the significance of the more powerful rotor-locked sources, W20 and W30. The
rotor-locked mode’s cut-off ratio is key in estimating the area in which the maximum SPL
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occurs. Moreover, this area becomes much more localised, and the acoustic energy is more
concentrated there when a more powerful rotor-locked mode is present, compared to the rest
of the cut-on modes.
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FIGURE 6.5: Total SPL on the surface of the fuselage for Wee source. Results for operating con-
ditions 1 [(a)], 3 [(b)] and 6 [(c)]. Average boundary-layer thickness is used for the calculations.
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FIGURE 6.6: Total SPL on the surface of the fuselage for operating condition 3. Results for
sources Wee [(a)], W10 [(b)], W20 [(c)], W30 [(d)]. Average boundary-layer thickness is used for

the calculations.
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FIGURE 6.7: Total SPL on the surface of the fuselage for operating condition 5. Results for
sources Wee [(a)], W10 [(b)], W20 [(c)], W30 [(d)], W20,10 [(e)]. Average boundary-layer thickness

is used for the calculations.
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FIGURE 6.8: ∆30
source on the fuselage surface at ϕ̄ = 0o. Results for operating conditions 3 [solid

line], 4 [dashed line], 5 [dotted line] and 6 [dashed-dotted line]. Average boundary-layer thick-
ness is used for the calculations.
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FIGURE 6.9: ∆source on the fuselage surface at ϕ̄ = 0o for operating condition 5. Results for W20
source [solid line] and W20,10 source [dashed line]. Average boundary-layer thickness is used

for the calculations.
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6.5 Source Effect on Shielding

Having established the effect the different sources and operating conditions have on the SPL
contour on the fuselage, the focus is now shifted onto the shielding. Specifically in this section,
the effect the different sources and conditions have on shielding is examined. The two metrics
used to quantify the shielding on the fuselage surface are, the difference ∆bl and the shielding
coefficient upstream S+, as they have been defined in chapter 5.

The boundary-layer thickness effect on shielding will be investigated in the next section,
therefore the results in this section are calculated using the average boundary-layer thickness.
Also, the difference between the equivalent linear and equivalent step-function profile will be
investigated in a later chapter, therefore the results in this section are generated using an
equivalent linear profile.

00.511.522.533.54
z/a0  [-]

-20

-15

-10

-5

0

bl
  [

dB
]

FIGURE 6.10: ∆bl at ϕ̄ = 0o for W20 source and all operating conditions. Operating condition
1 [no marker], operating condition 2 [×], operating condition 3 [⃝], operating condition 4 [∗],
operating condition 5 [box] and operating condition 6 [pentagram]. Average boundary-layer

thickness is used for the calculations.

Figure (6.10) illustrates the effect of ascending operating conditions on shielding. By
examining Fig. (6.10) and table (6.2) it is noticed that the operating conditions are paired off
with the flight Mach number. Conditions 1 and 2 have the same Mach number, and the same is
true for the pairs of conditions 3-4 and 5-6. That pairing is visible in Fig. (6.10) as well
indicating a very strong relationship involving the Mach number. The trend is also expected
from previous findings. It has been already established in previous chapters that Mach
number has a similar effect to frequency. A higher Mach number leads to more shielding,
whereas a lower Mach number leads to less shielding. That is because upstream the flow tends
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to shorten the wavelength, and with a shorter effective wavelength compared to the
boundary-layer thickness this means more refraction and shielding. That effect is reflected in
Fig. (6.10) where the higher the conditions the less shielding is observed, because higher
conditions (towards 6) have lower Mach number.

This dependency on Mach number seems to be stronger than the dependency on frequency.
The effect of frequency can be observed in the pairs of conditions. Within each pair that has
the same Mach number, the frequency is increased. That will lead to more shielding as
established in previous chapters. In each pair the second condition exhibits more shielding
than the first (condition 2 ∆bl is below 1, 4 below 3, 6 below 5). This apparent pairing
demonstrates that the Mach number effect is stronger than the frequency effect.
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FIGURE 6.11: ∆bl at ϕ̄ = 0o for operating condition 3. Results for source Wee [solid line], W10
[dotted line], W20 [dashed line], W30 [dash-dotted line]. Average boundary-layer thickness is

used for the calculations.

Figures (6.11),(6.12), (6.13) and (6.14) show the effect of different source types on ∆bl for
operating conditions 3, 4, 5 and 6 respectively. By examining the figures one can notice that the
presence of a dominant rotor-locked mode actually makes very little difference on the
shielding. The prediction for the rotor-locked sources are remarkably close to the equal energy
source. The only differences occur at the position of the dominant mode’s principal lobe,
where for condition 3 there is a slight decrease in shielding when the rotor-locked mode is
present. In the other instances there is a slight increase in shielding with the presence of a
rotor-locked mode.

This is possibly attributed to the fact that operating condition 3 represents a transitioning
situation where the dominant mode is just cut-on, which means that it will propagate towards
the boundary layer at a steeper angle which will make it less susceptible to shielding. When
the rotor-locked mode is more cut-on in later conditions (Figs. (6.12), (6.13) and (6.14)), it is
more readily refracted and therefore shielded, but its presence still only slightly affects the
overall shielding pattern.
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FIGURE 6.12: ∆bl at ϕ̄ = 0o for operating condition 4. Results for source Wee [solid line], W10
[dotted line], W20 [dashed line], W30 [dash-dotted line]. Average boundary-layer thickness is

used for the calculations.

The only impactful differences in the shielding of different rotor-locked sources occurs with
W30 when the rotor-locked mode is much more powerful than the rest of the cut-on modes. At
later conditions (5 and 6) the rotor-locked mode’s secondary lobe starts to become cut-on as
discussed in the previous section. Since the secondary lobe is very close to cut-off, at these
conditions it travels towards the boundary layer at a much steeper angle than the rest of the
cut-on modes, thus it is less shielded by the boundary layer, and consequently dominating the
shielding pattern. The same dominance is not observed for operating condition 3 and the
principal lobe. A possible explanation, is that operating condition 3 introduces newly cut-on
modes, the majority of which are very close to cut-off, having cut-off ratios even smaller than
the rotor-locked mode. The presence of all those unshielded modes close to the principal lobe
of the rotor-locked mode tends to keep the shielding pattern smooth. Operating conditions 5
or 6 do not introduce so many nearly cut-off modes, giving the opportunity to the dominant
mode’s secondary lobe to stand out.

Lastly in this section, the shielding coefficient is presented for all operating conditions.
Although previous figures showed that the presence of a rotor-locked mode did not make a
practical difference (in terms of dB) at the region adjacent to the source (at ϕ̄ = 0o), the
shielding coefficient result in Fig. (6.15) highlights the significant amount of energy that makes
its way to the surface of the fuselage when there is a dominant mode present. At operating
condition 3 (ζ(20,1) = 1.1), when the dominant mode is just cut-on and propagates at a steep
angle, the energy delivered on the surface is larger with the presence of the more powerful
rotor-locked mode. For the W20 source, roughly 8 % more of the total power finds its way to the
surface than in the Wee case for operating condition 3. For the W30 source that number is 20 %.

The decrease in shielding at condition 3 is reflected in Fig. (6.11) where there is a slight
decrease in shielding. However, Fig. (6.11) only shows results at ϕ̄ = 0o. It seems that this
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FIGURE 6.13: ∆bl at ϕ̄ = 0o for operating condition 5. Results for source Wee [solid line], W20
[dotted line], W20,10 [dashed line], W30 [dash-dotted line]. Average boundary-layer thickness is

used for the calculations.

decrease in shielding is accumulated when one considers the whole grid on the surface of the
cylindrical fuselage. The weakness of the W10 and W20,10 sources is once more pointed out, as
the W10 source results almost coincide with the Wee source results, and the W20,10 results
almost coincide with the W20 results for the conditions 5-6 where their difference lies. Note
that as expected, all sources reduce to the equal energy source for the first two conditions
because the rotor-locked mode is cut-off.

It is also noted that there is a trend of decreasing shielding for higher ζ(20,1). As was the case
with condition 3 where the addition of newly cut-on modes that were still close to cut-off led
to an overall decrease in shielding, the same seems to be happening for higher conditions. In
every new condition the newly added modes contain a lot of modes that are increasingly close
to cut-off, leading to a decrease in shielding due to their steep propagating angle. Note that
this is not the case for the W30 source because at higher conditions the dominant mode, which
carries a significant percentage of the overall power, becomes more cut-on and thus more
shielded. This means that for higher conditions for W30, most of the energy is refracted away
being carried by the dominant mode.

This result concludes this section with the key findings being that the more powerful the
dominant mode, the more energy reaches the fuselage surface. However, although true
physically, practically in terms of dB the shielding (∆bl) is only slightly affected by the
presence of a rotor-locked mode.
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FIGURE 6.14: ∆bl at ϕ̄ = 0o for operating condition 6. Results for source Wee [solid line], W20
[dotted line], W20,10 [dashed line], W30 [dash-dotted line]. Average boundary layer thickness is

used for the calculations.
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FIGURE 6.15: Shielding coefficient upstream S+ for all operating conditions. Results for source
Wee [blue], W10 [red], W20 [yellow], W20,10 [magenda], W30 [green]. Average boundary-layer

thickness is used for the calculations.
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6.6 Thickness Effect on Shielding

In this section, the effect of boundary-layer thickness on shielding is investigated. The source
will be kept constant as W20 and an equivalent linear profile is used. The difference between
equivalent linear and equivalent step-function will be investigated in the next chapter. The
focus is on operating conditions 3 and 6, since respectively they represent a transitioning case
and a well cut-on case, giving a comprehensive outlook of the problem.
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FIGURE 6.16: Total SPL on the surface of the fuselage for operating condition 3 and W20 source.
Results for uniform flow [(a)], thin boundary layer [(b)], average boundary layer [(c)], thick

boundary layer [(d)].

Figures (6.16) and (6.17) show the SPL on the fuselage surface for operating conditions 3 and 6
respectively. One can immediately notice the drastic shielding effect the presence of the
boundary layer has when compared with the uniform flow results. In both conditions the
shielding is very pronounced upstream concentrating the maximum SPL near the source
plane. That is expected since the further upstream sound waves propagate the shallower the
incident angle on the boundary layer increasing susceptibility to refraction. Furthermore, the
shallower the angle the greater the distance the sound wave needs to travel inside the
boundary layer effectively rendering the boundary layer effectively thicker leading to more
refraction and shielding.

It is worth noting the importance of the dominant mode’s secondary lobe in operating
condition 6. When the rotor-locked mode is well cut-on in the uniform flow result, it is clear
that the maximum SPL occurs at the position of the principal lobe, while downstream the
secondary lobe’s position also exhibits a high intensity area, although not as intense as the
principal lobe. However, with the addition of the boundary layer, the principal lobe is shielded
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FIGURE 6.17: Total SPL on the surface of the fuselage for operating condition 6 and W20 source.
Results for uniform flow [(a)], thin boundary layer [(b)], average boundary layer [(c)], thick

boundary layer [(d)].

much more than the secondary lobe because it is further upstream. As a result, for the thick or
even average boundary layer the maximum SPL area is dominated by the secondary lobe.

Figures (6.18), (6.19) and (6.20) show the ∆bl at the near side of the cylinder for the three
thickness cases in order to quantify the shielding. Generally, close to the plane of the source
the predictions for the three boundary-layer thicknesses are similar to each other because in
this area sound waves travel towards the boundary layer at a very steep angle thus
minimising the refraction effect rendering the thickness of the layer irrelevant. It should follow
that difference results at or very close to the plane of the source converge to zero. However,
since analysis in this work does not include diffraction around the fan duct lip, results very
close to the plane of the source should not be considered realistic. Further upstream, the effect
of thickness on shielding is drastic, and, as expected, the thicker the boundary layer the more
shielding is produced.

Finally, the thickness effect is demonstrated in Fig. (6.21) where almost consistently for the
range of operating conditions the difference in the shielding coefficient between thin and thick
case is over 15 %. This indicates that the thick boundary layer shields or refracts away 15 %
more of the total energy compared to the thin boundary layer case. The results shown in this
section confirm the strong dependence of shielding on boundary-layer thickness.



146 Chapter 6. Parametric Study

00.511.522.533.54
z/a0  [-]

-20

-15

-10

-5

0
bl

  [
dB

]

FIGURE 6.18: ∆bl at ϕ̄ = 0o for operating condition 1 and W20 source. Results for thin boundary
layer [solid line], average boundary layer [dashed line] and thick boundary layer [dash-dotted

line].
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FIGURE 6.19: ∆bl at ϕ̄ = 0o for operating condition 3 and W20 source. Results for thin boundary
layer [solid line], average boundary layer [dashed line] and thick boundary layer [dash-dotted

line].
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FIGURE 6.20: ∆bl at ϕ̄ = 0o for operating condition 6 and W20 source. Results for thin boundary
layer [solid line], average boundary layer [dashed line] and thick boundary layer [dash-dotted

line].
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FIGURE 6.21: Shielding coefficient upstream S+ for all operating conditions and W20 source.
Results for thin boundary layer [blue], average boundary layer [red], thick boundary layer [yel-

low].
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6.7 Far-Field

This section is dedicated to far-field results. These results aim to give a perspective on how the
far-field directivity can be influenced by the presence of a boundary layer on the fuselage. As
mentioned at the start of the chapter, results will be presented in the form of polar directivity.
This format is chosen because it has been established that the presence of a boundary layer
causes effects felt longitudinally because they are in essence convection effects and so the
direction of the flow is crucial. Therefore azimuthal directivity plots, albeit they can as easily
be generated, would not provide any useful insights. The polar directivity plots that follow
correspond to a hemisphere underneath the flight path. Therefore, the calculations were
conducted at ϕ̄ f f = 3 π

2 which corresponds to that region. Since the present work does not
include diffraction around the lip of the fan duct or the physical presence of any kind of
nacelle, results downstream are not to be considered realistic. For that reason, the polar
directivity plots that follow only show results for the upstream region, namely 0 < θ̄ < 90o.
All polar directivity plots are generated at R̄ equal to a hundred wavelengths away from the
fuselage to ensure the validity of the derived expressions used since they involve large
argument approximations.

This section follows the same structure as the results sections for the fuselage pressure, namely
the source effect on polar directivity will be shown first (keeping the boundary-layer thickness
constant at its average value), and then the boundary-layer thickness effect. All the results are
generated using an equivalent linear profile. In the next chapter, some results are presented
that have been generated using an equivalent step-function profile and are compared against
the corresponding results generated with an equivalent linear profile. The first three figures
demonstrate the effect of increasing operating conditions or ζ(20,1).
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FIGURE 6.22: Polar directivity upstream for W20 source and average boundary-layer thickness.
Results for operating condition 1 [solid line] and 2 [dashed line].
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FIGURE 6.23: Polar directivity upstream for W20 source and average boundary-layer thickness.
Results for operating condition 3 [solid line] and 4 [dashed line].

Figures (6.22), (6.23) and (6.24) show the directivity for each operating condition and source
W20. Similar to the fuselage pressure results, the pattern for the first two operating conditions
is fairly smooth because there is no dominant mode cut-on yet, and thus all modes’
contributions are the same. However, the presence of a rotor-locked mode in higher conditions
is clearly visible in the directivity plots in Figs. (6.23) and (6.24). The principal lobe of the
rotor-locked mode is distinctive as it exhibits a difference from the rest of the multi-mode
pattern up to 5 dB. Furthermore, the cut-off ratio effect can be observed very clearly as it did in
the surface pressure results. The more cut-on the dominant mode is the shallower its
propagation angle. Therefore, at condition 3 when the rotor-locked mode is barely cut-on, the
directivity plot exhibits a distinctive lobe very close to 90o. With each next condition as the
rotor-locked becomes more cut-on, this distinctive lobe moves upstream, or more correctly its
propagation angle approaches zero. Eventually, for condition 6 the lobe has moved to around
55o polar angle. For all these figures a pattern of alternating maxima and minima develops
which is characteristic of reflection and interference, which is expected with the cylinder being
adjacent to the source. Sound waves will propagate from the source and reflect off the fuselage
surface, or refract away from the surface, eventually arriving in the far-field.

6.7.1 Source Effect on Polar Directivity

This section deals with the source effect on polar directivity. All calculations were conducted
using the average boundary-layer thickness and an equivalent linear profile. As in the surface
pressure results, the focus is on the operating conditions 3 and 6 as they represent a
transitioning and a well cut-on case respectively.
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FIGURE 6.24: Polar directivity upstream for W20 source and average boundary-layer thickness.
Results for operating condition 5 [solid line] and 6 [dashed line].

Figures (6.25) and (6.26) illustrate the power distribution differences between the sources.
Once again, as in the surface pressure results, the weakness of the W10 and W20,10 sources is
demonstrated with the first one producing minor differences compared to the equal energy
source, namely a small increase of level at the position of the rotor-locked mode’s principal
lobe. On the other hand, source W20,10 produces a directivity almost identical to that of the W20

source. Only at the position of the principal lobe of the second radial order rotor-locked mode
(20,2) a small increase of level appears which is expected. The second radial order mode (20,2)
is less cut-on than the first order (20,1) which means it propagates at an angle closer to 90o.
This is observed in Fig. (6.26), where this increase of level is closer to 90o than the distinctive
lobe at 55o for which the first radial order rotor-locked mode (20,1) is responsible for.

As shown in the surface pressure results, this increase of level at certain regions will inevitably
lead to a deficit (i.e. lower level) at the remaining regions in order for all the sources to have an
equal power output. This is demonstrated in Figs. (6.25) and (6.26) where the more powerful
sources W20 and W30 exhibit an increase of level at the position of the rotor-locked mode’s
principal lobe, but away from that angle they exhibit lower levels than that of the equal energy
source. Finally, for source W30 the secondary lobe of the rotor-locked mode has become clearly
visible in operating condition 6 (Fig. (6.26)). Obviously, the secondary lobe propagates at an
angle closer to 90o compared to the principal lobe, and it does not have the same intensity as
the principal lobe, but it dominates the region around it nonetheless.

This concludes this section with the key finding the importance of the presence of the
rotor-locked mode. Similar to the conclusion reached in the surface pressure results, the
rotor-locked mode dominates the far-field directivity pattern as it concentrates the power.
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FIGURE 6.25: Polar directivity upstream for operating condition 3. Average boundary-layer
thickness is used for the calculations. Results for source Wee [solid line], W10 [dotted line], W20

[dashed line], W30 [dash-dotted line].

6.7.2 Thickness Effect on Polar Directivity

In this section the effect of the boundary-layer thickness on the polar directivity is investigated.
An equivalent linear profile is used to generate the results since the difference between the two
theoretical approaches’ far-field directivity prediction will be investigated in the next chapter.

Figures (6.27) and (6.28) show very similar behaviour. For both operating conditions the
presence of the boundary layer creates a phase shift in the directivity compared to the
directivity of the uniform flow. This phase shift, although still visible, is largely irrelevant at
polar angles away from the dominant mode’s propagation angle. However, around the
rotor-locked mode’s angle this phase shift becomes substantial. Furthermore, this phase shift
is observed between the directivities generated using different boundary-layer thicknesses,
illustrating the importance of the boundary layer effects in the far-field. When a rotor-locked
mode is involved in the engine’s acoustic output the boundary layer should be considered in
evaluating the far-field polar directivity. Note that the amplitude is unaffected by the thickness
of the boundary layer, since it is the distance from the source that controls the level in the
far-field (geometric spreading).
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FIGURE 6.26: Polar directivity upstream for operating condition 6. Average boundary-layer
thickness is used for the calculations. Results for source Wee [solid line], W20,10 [dotted line],

W20 [dashed line], W30 [dash-dotted line].
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FIGURE 6.27: Polar directivity upstream for operating condition 3 and source W20. Results for
uniform flow [solid line], thin boundary layer [dashed line] and thick boundary layer [dotted

line].
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FIGURE 6.28: Polar directivity upstream for operating condition 6 and source W20. Results for
uniform flow [solid line], thin boundary layer [dashed line] and thick boundary layer [dotted

line].
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Chapter 7

Discussion of the Results

In this chapter, attention is focused on a selection of key results that are either important or
somewhat counter-intuitive in the author’s opinion. The previous chapter presented the
results of the parametric study covering a variety of effects, namely source power distribution,
the effect the source has on shielding, the effect the boundary-layer thickness has on shielding,
and also the differences in the predictions of the two theoretical approaches. The results
revealed the importance of the Mach number and its relevance to the shielding. The results
also illustrated that the shielding tends not to be influenced by the type of source, at least not
in practical terms (on a dB scale), as presented in Rouvas and McAlpine (2022a) which is based
on the present work. As was expected the significant effect of the boundary-layer thickness
was demonstrated. However, there are certain physical effects that have not been discussed yet
in depth, and have already shown their impact in the results presented in the previous chapter.
Furthermore, since the capability of the equivalent step-function profile approach to simulate a
representative 1/7th power-law profile has already been shown in chapter 5, it is in the scope
of this chapter to present comparisons between the two theoretical approaches. Therefore, the
parametric study has been conducted using an equivalent step-function profile as well.

The importance and impact of the modes’ distribution and cut-off ratios has already been
implied in the previous chapter. In this chapter, a more in depth discussion is presented in
order to illustrate the cut-off ratio effect on the overall pressure on the fuselage surface.
Moreover, although for most configurations the shielding is largely unaffected by the presence
of a dominant rotor-locked mode (Rouvas and McAlpine (2022a)), there are instances where
the combination of source power and cut-off ratio may lead to the secondary lobe to be
dominant in the shielding and overall pressure pattern. The effect of the dominant mode on
the total SPL contour pattern on the fuselage surface has been demonstrated in the previous
chapter, and here a more comprehensive look into the physical mechanisms of the effect is
given. Furthermore, in this chapter an azimuthal effect created by the source’s directivity is
examined. Finally, comparisons between the two theoretical approaches (equivalent linear
profile vs. step-function profile) are presented. The previous chapter only presented results
generated with an equivalent linear profile.



156 Chapter 7. Discussion of the Results

7.1 Effect of Cut-off Ratio

This section examines the effect the cut-off ratio of the modes has on shielding. The cut-off
ratio as a parameter can provide a lot of insight into the physical problem since it is directly
related to the group velocity angle of the mode. This angle is defined as

ψz = cos−1
[︃

S
√︁

1 − M2
z√︁

1 − M2
z S2

]︃
, (7.1)

where S =
√︃

1 − 1
ζ2
(l,q)

and the mode’s cut-off ratio

ζ(l,q) =
k0

κlq
√︁

1 − M2
z

, (7.2)

as given in Rice et al. (1979). Therefore, as explained before, the closer to cut-off a mode is (as
ζ(l,q) approaches unity), the propagation angle approaches 90o relative to the duct axis,
meaning the waves propagate towards the fuselage surface at a steeper or more perpendicular
angle. The cut-off ratio can therefore be used as an indicator for the distribution of the modes
in terms of their incident angles on the fuselage surface. Furthermore, the cut-off ratio is an
expression that combines both the most important flow characteristic, Mach number Mz, and
the most important acoustic characteristic, frequency k0. This dependence on both Mz and k0

makes it useful when attempting to estimate a trend.

As shown in the previous chapter in Fig. (6.10), the dependency of shielding on the Mach
number is shown to be very strong. Also, the frequency dependence is observed as explained
in the previous chapter by examining the pairs of conditions. It is clear that for higher
conditions there is a tendency for less shielding dictated by the fact that higher conditions
have lower Mach number. Since flow has a shortening effect on the wavelengths upstream, the
higher the Mach number the shorter the effective wavelengths compared to the
boundary-layer thickness, which consequently leads to more shielding. Therefore, for higher
conditions that are characterised by lower Mach number the shielding is reduced. The
frequency, albeit having a far wider range of values across the operating conditions (k0a ranges
from 13 to 23 whereas Mach number only ranges from 0.75 to 0.65), appears to have a weaker
effect than the Mach number, which leads to the counter-intuitive effect of higher frequency
causing less refraction and therefore less shielding. Figure (6.10) is not the only instance where
this happens. The same pairing and trend across the operating conditions is observed in
Fig. (6.15). By observing the Wee source shielding coefficient in Fig. (6.15) one can notice the
same pairing between every two conditions, and a general upward trend in the shielding
coefficient indicating less and less shielding.

In order to better understand the mechanisms that lead to this upward trend in the shielding
coefficient, the contributions of the modes present in each of the operating conditions are split
into two subsets. For each condition there is a subset of modes that are already cut-on from the
previous operating condition. The rest of the cut-on modes represent the subset of modes that
are newly added and were cut-off in the previous condition. The shielding coefficient of the
Wee source shown in Fig. (6.15) is presented here again, but with the modes’ subsets
contributions split.
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FIGURE 7.1: Shielding coefficient upstream S+ for all operating conditions and Wee source.
Contribution of already cut-on modes [blue], contribution of newly added cut-on modes [red].

Average boundary-layer thickness is used for the calculations.

In Fig. (7.1) it is observed that there is substantial difference in shielding between the two
subsets of modes. The newly added modes are much closer to cut-off than the already cut-on
modes, which means that they propagate to the boundary layer at a steeper angle leading to
substantially less refraction and shielding. However, the already cut-on modes are a larger set
of modes than the newly added subset, which means that rarely the newly added modes
dominate the overall pressure pattern. This happens in operating conditions 2 and 3 where the
already cut-on modes are a relatively smaller subset compared to the newly added ones. In
higher conditions, it becomes clear that the already cut-on mode subset dictates the trend by
comparing Figs. (7.1) and (6.15). This is also demonstrated in table (7.1) where it is shown that
for each condition only about 20 to 30 newly cut-on modes are added for each change in
condition in comparison to the already existing modes that are over 150 for the higher
conditions.

Another crucial information in table (7.1) is the average cut-off ratio of the two subsets of
modes, which is found by simply taking the average of the cut-off ratios of the modes in each
subset. The average cut-off ratio may not be a vigorous metric but it is useful here to identify
the trends in the shielding. For both mode subsets the average cut-off ratio tends to decrease
with ascending operating condition. This implies that for higher conditions there will be a
general tendency for less shielding, since the modes that are added tend to make the overall
average of the group less cut-on. That consequently means that sound tends to propagate
towards the boundary layer at a steeper angle making it less susceptible to refraction and
shielding. This finding implies that the modal output of the fan could be used as a means for



158 Chapter 7. Discussion of the Results

Operating Con-
ditions 1 2 3 4 5 6

ζ(20,1) 0.9 1.0 1.1 1.2 1.3 1.4
Number of cut-
on modes 111 133 164 193 225 258

Average ζ of
already cut-on
modes subset

1.9806 2.2007 2.2106 2.1702 2.1657 2.1583

Average ζ of
newly added
modes subset

— 1.0545 1.0486 1.0386 1.0354 1.0351

TABLE 7.1: Mode subsets average cut-off ratios.

identifying trends in the shielding, since generally decreasing cut-off ratio effectively means
decreasing shielding.
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FIGURE 7.2: Shielding coefficient upstream S+ for frequency k0a = 20. Prediction for δ = 0.01a0
[solid line] and δ = 0.1a0 [dashed line]. Equivalent linear profile is used for the calculations.

By examining the values in table (7.1) one can immediately realise that although the cut-off
ratio is decreasing, it does so in very small increments. Despite these small increments, their
impact cannot be ignored in the overall shielding. Figure (6.15) for the equal energy source
shows an increase of 8 % more power reaching the fuselage surface at higher conditions. This
decrease in shielding is also demonstrated in Fig. (6.10) where the ∆bl exhibits a difference of
up to 4 dB between the first and higher conditions. This very sensitive relationship between
the cut-off ratio and the shielding coefficient is demonstrated in Figs. (7.2) and (7.3). These
figures are reproduced from chapter 5, namely Figs. (5.10) and (5.8). In this chapter, these
figures are presented again, but with their horizontal axis expressed as cut-off ratio. In the case
of Fig. (7.2), Fig. (5.10) has been modified so that the azimuthal order values on the horizontal
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FIGURE 7.3: Shielding coefficient upstream S+ for mode (l, q) = (4, 1). Prediction for δ = 0.01a0
[solid line] and δ = 0.1a0 [dashed line]. Equivalent linear profile is used for the calculations.

axis are now expressed as cut-off ratio values. The same for the case of Fig. (7.3), where
Fig. (5.8) has been modified so that the frequency values on the horizontal axis are expressed
as cut-off ratio values.

By examining Figs. (7.2) and (7.3) one can observe that for low cut-off ratios (lower than 2.5),
the shielding coefficient exhibits an extremely steep increase for decreasing cut-off ratio. On
the other hand, for higher cut-off ratios the shielding coefficient is remarkably stable, and does
not seem to be affected at all by increasing cut-off ratio. It is therefore expected that at lower
cut-off ratios, a further decrease in cut-off ratio can lead to a disproportionate increase in
shielding coefficient (or decrease in shielding). Table (7.1) exhibits average cut-off ratio values
well inside this lower cut-off ratio region. It is therefore fair to expect a somewhat
disproportionate decrease in shielding for higher conditions that exhibit slightly decreased
average cut-off ratios.

Figures (7.2) and (7.3) effectively demonstrate the total reflection phenomenon. The higher the
cut-off ratio (the more cut-on a mode is) the shallower the angle the sound is incident on the
boundary layer. At some point, the sound rays will propagate at an angle shallow enough that
they will be refracted away by the boundary layer totally without reaching the surface, what is
called total reflection. That is the reason why both Figs. (7.2) and (7.3) exhibit a plateau region
for higher cut-off ratios. Effectively, it is seen that above cut-off ratio of about 4, total reflection
is achieved meaning that further increases in the cut-off ratio will not make any difference
since no more sound will reach the surface of the cylinder.

Another explanation for the importance of the cut-off ratio and the mode propagation angle
can be provided by using Snell’s law. Although in acoustics Snell’s law is only applied to
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plane waves, it still represents a fundamental analogy that describes acoustic refraction due to
a shear layer in the flow. Figure (7.4) depicts plane waves incident on a boundary layer that is
characterised by no flow in the region of width δ adjacent to the surface. The plane waves
emanate from the source at an incident angle θi, the same way the principal lobe of a mode
emanates from the fan duct at angle ψz from the duct’s centreline as shown in eq.(7.1). Then
the plane wavefronts are incident on the layer’s edge and are transmitted through the layer at
a new propagation angle θt. There is also a reflected wave however it is omitted from this
analogy. Snell’s law for plane waves that originate from a uniform flow region with Mach
number M∞ transmitted through a layer with no flow velocity is given by Glegg and
Devenport (2017), eq.(10.2.7), page 236:

cos θt =
cos θi

1 − M∞ cos θi
(7.3)

δ

M∞

θi

θt

θi

θt

source

wavefronts

FIGURE 7.4: Interaction of a plane wave with a shear layer.

Equation (7.3) provides an excellent analogy for the problem investigated here. When the
incident angle θi is very large (close to 90o), in other words the waves travel almost
perpendicular to the centerline which translates to very small cut-off ratio, then from eq.(7.3) it
follows that cos θt ≃ cos θi or θt ≃ θi. That effectively means that for propagation angles close
to 90o the waves will hardly be refracted. They will continue to travel in the same direction
which means that shielding is minimal. This is observed in the results multiple times in
chapters 5 and 6, as well as in Figs. (7.2) and (7.3) where for small cut-off ratios (or propagation
angles close to 90o) there is a sharp decrease in shielding.

On the other hand, for smaller incident or propagation angles θi, it follows from eq.(7.3) that
cos θt > cos θi or θt < θi. It also follows that as the incident angle θi becomes smaller, the angle
θt becomes smaller at a higher rate. That effectively means the shallower the angle of incidence
on the layer the more refraction and therefore shielding is produced. This upstream effect has
been observed and discussed in chapters 5 and 6. Furthermore, from eq.(7.3) one can notice
that there will be a value of angle θi for which the value of angle θt is zero. From that point and
for θi values smaller than that, no waves propagate into the layer or reach the fuselage surface
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leading to a stabilisation of shielding at its maximum value. This is observed in Figs. (7.2) and
(7.3) where for large cut-off ratios, or in other words for small incident angles, the shielding
coefficient reaches its minimum value and stabilises to a fixed value.

7.1.1 Universal Parameter

At this point in the work, it has been shown that the cut-off ratio, either in its average form ζ

or its singular mode form ζ(l,q), is a good indicator of the acoustic behaviour of the
configuration. As explained in section 7.1, the cut-off ratio as a controlling non-dimensional
number has the advantage of combining the source characteristics (frequency k0, mode order l
and duct radius a) as well as the important flow characteristic, M∞, see eq. (7.2). As a result, it
gives a comprehensive insight into the physical mechanisms involved in the problem.
However, as shown in chapter 6, there is another flow characteristic or parameter not present
in the cut-off ratio expression in eq. (7.2). That parameter is the boundary-layer thickness, δ or
ε in its non-dimensional form.

Therefore, it would be beneficial to introduce a universal non-dimensional parameter that will
include all the source and flow characteristics, namely mode order l and intake duct radius a,
flight Mach number M∞, frequency k0 and the non-dimensional boundary-layer thickness ε,
which involves the physical δ thickness normalised with the fuselage radius a0 which is
another useful physical parameter. One such universal parameter that combines every
physical property involved in the problem can be defined as

ξ = ζ ε, (7.4)

where ζ is the cut-off ratio in its average form or its singular mode form ζ(l,q), referring to the
average cut-off ratio of all the modes or the cut-off ratio of just one mode (l, q) respectively. In
essence, parameter ξ is a metric that indicates shielding. Contrary to the shielding coefficient
S+, smaller values of ξ will indicate less shielding, while larger values will indicate more
shielding.

Let us consider the following examples. By assuming a constant non-dimensional
boundary-layer thickness ε, one can manipulate ξ by manipulating accordingly the cut-off
ratio ζ. Smaller values of ζ, which correspond to smaller values of ξ, will lead to less shielding
because the modes will propagate towards the boundary layer at a steeper angle and therefore
will be subject to less refraction as explained in section 7.1 and Fig. (7.4). On the other hand,
for a constant boundary-layer thickness ε, larger values of ζ, which correspond to larger values
of ξ, will lead to more shielding because the modes will propagate towards the boundary layer
in a shallower angle.

Now consider a constant cut-off ratio ζ. One can manipulate the ξ by manipulating
accordingly the boundary-layer thickness ε. As seen in chapters 5 and 6, smaller ε will lead to
less shielding, while larger values will inevitably lead to more shielding since the
boundary-layer thickness becomes significantly larger than the wavelength. Therefore, it is
evident that the universal parameter ξ can be used to give an estimate of the amount of
shielding that is expected for any given configuration, which includes frequency, flight Mach
number, mode order, intake duct radius, fuselage radius and boundary-layer thickness.
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7.2 Dominance of Rotor-Locked Secondary Lobe

In the previous chapter the effect of the presence of a dominant rotor-locked mode was
investigated. It was concluded that the presence of a rotor-locked mode did not make a
considerable difference in the shielding (see Figs. (6.11) through (6.14)) although it did make a
substantial impact on the overall pressure pattern on the fuselage surface, as seen in Figs. (6.6)
and (6.7). Furthermore, it has been demonstrated that the more powerful the dominant mode
compared to the rest of cut-on modes, the more substantial its influence on the overall
pressure pattern. The source W30 case also revealed an emerging dominance of the secondary
lobe of the rotor-locked mode in certain conditions.

According to previous research (Schwaller et al. (1997), Schwaller et al. (2006), Achunche et al.
(2009)), the blade passing frequency rotor-locked mode is routinely up to 20 dB higher than the
rest of the cut-on modes, thus the W20 source is representative of this scenario. However,
experimental measurements (Schwaller et al. (1997), Schwaller et al. (2006), Achunche et al.
(2009)) reveal plenty of deviation around this 20 dB value. It is therefore useful to evaluate the
impact of the more powerful source W30, as it can give more insight into the physical problem.
It has been observed in the previous chapter that for certain configurations and powerful
rotor-locked sources, the shielding pattern can be altered, albeit not dramatically. The more
substantial impact is observed in the overall SPL pattern on the fuselage surface. This section
aims to highlight the influence of the rotor-locked mode, and especially its secondary lobe, on
the shielding and overall pressure pattern.
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FIGURE 7.5: ∆bl at ϕ̄ = 0o for operating condition 5. Results for source W30 [solid line] and the
single rotor-locked mode only [dashed line]. Average boundary layer-thickness is used for the

calculations.
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FIGURE 7.6: ∆bl at ϕ̄ = 0o for operating condition 6. Results for source W30 [solid line], source
W20 [dashed line] and the single rotor-locked mode only [dash-dotted line]. Average boundary-

layer thickness is used for the calculations.

Figure (7.5) shows the difference ∆bl for operating condition 5. Both the contribution of the
rotor-locked mode only is shown, as well as the total contribution of all the cut-on modes
including the rotor-locked mode at 30 dB higher. At this operating condition, the secondary
lobe is just cut-on, as evidenced that it is located very close to the plane of the source. The
principal lobe is located further upstream at around z̄/a0 = 1.25. By examining the
rotor-locked mode plot, one can see that the principal lobe, which is further upstream, is
subject to more shielding, while the secondary lobe naturally is subject to less shielding as it is
located less upstream. However, the secondary lobe is barely developed, as it is just cut-on,
which means that although it is less shielded it does not yet surpass the contribution of the
more shielded principal lobe. Therefore, when the rest of the cut-on modes’ contributions are
added, the effect of the dominant secondary lobe is greatly diminished or rather offset by the
rest of the contributions. Despite that fact, the W30 shielding pattern still exhibits a small
decrease at the location of the rotor-locked secondary lobe, demonstrating the importance of a
powerful enough rotor-locked mode.

The impact of the rotor-locked secondary lobe is more pronounced in Fig. (7.6) where the
difference ∆bl for operating condition 6 is depicted. In this instance the secondary lobe is much
better developed which means that the difference in SPL between the principal and the
secondary lobe is smaller. That being said, the principal lobe is still subject to more shielding
than the secondary lobe, leading to the secondary lobe’s contribution to surpass the principal
lobe’s contribution. This difference in shielding is apparent not only in the rotor-locked mode,
but also in the W30 case, where differences up to 3 dB between the locations of the lobes is
observed. Moreover, the shielding pattern of the W30 case is dominated by the shielding
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pattern of the rotor-locked mode, highlighting the influence of the dominant mode. Even for
the W20 case, the lowest shielding location is dictated by the lowest shielding location of the
rotor-locked mode, which is at the location of the secondary lobe. Therefore, it is clear that
there can be configurations where the rotor-locked secondary lobe will be more relevant than
the principal lobe, at least in terms of shielding.
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FIGURE 7.7: SPL on the surface of the fuselage for operating condition 5. Results for the single
rotor-locked mode with uniform flow [(a)], single rotor-locked mode with average boundary-
layer thickness [(c)], source W30 with uniform flow [(b)], source W30 with average boundary-

layer thickness [(d)].

However, as illustrated in the previous chapter, it is important to also consider the overall
pressure pattern on the fuselage surface, and not only the shielding. Cylinder plots for
operating condition 5 in Fig. (7.7) show the weakness of the secondary lobe at this condition.
The area it affects is smaller and less intense than the principal lobe’s area which tends to
dominate both the uniform flow and the average boundary-layer pressure contour pattern.
This is expected because at this point, the secondary lobe is just cut-on, and therefore
underdeveloped compared to the principal lobe, as shown in Fig. (7.7(a)). Comparing the four
cylinder plots together, one can realise the importance of the presence of a rotor-locked mode.
The contour pattern that forms for the single rotor-locked mode heavily influences the
resulting total pattern, when all the other cut-on modes are added. The major difference
between the plots with the single rotor-locked mode, and the W30 plots, is the smoothing out
of the null zones present in the rotor-locked mode plots. That is expected and consistent with
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multi-mode analysis since the rest of the modes, having a wide range of propagation angles,
will ”fill in” the null zones, leading to a smoother pattern.
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FIGURE 7.8: SPL on the surface of the fuselage for operating condition 6. Results for the
single rotor-locked mode with uniform flow [(a)], single rotor-locked mode alone with average
boundary-layer thickness [(c)], source W30 with uniform flow [(b)], source W30 with average

boundary-layer thickness [(d)].

The same conclusion can be drawn by observing the operating condition 6 cylinder plots in
Fig. (7.8). However, in this case the presence of the secondary lobe cannot be ignored.
Comparing Figs. (7.7(a)) and (7.8(a)), one can notice that the secondary lobe in condition 6
occupies a much larger area and is more intense. Naturally, with no boundary layer to refract
upstream sound, the principal lobe dominates the pattern for both the single rotor-locked
mode and the W30 source cases. However, with the inclusion of the boundary layer, the further
upstream principal lobe area is shielded much more than the secondary lobe area. This results
in a secondary lobe area that extends to the same size as the principal lobe area, and has
pressure levels very similar to the principal lobe area. Therefore, the contribution of the
secondary lobe should not be ignored when designing the acoustic lagging of the fuselage.

7.3 Linear vs. Step-Function Approach Comparison

In this section, the two theoretical approaches are compared to each other. Theoretical
predictions generated using an equivalent linear profile are compared against predictions
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generated using an equivalent step-function velocity profile. All the parametric study results
presented in the previous chapter using an equivalent linear profile are reproduced using an
equivalent step-function profile and are compared against each other. In this section, some key
findings and comparisons are presented. The section follows the same structure as the sections
in chapter 6, i.e. firstly, an investigation will be presented to determine the differences the two
approaches have on the source-power effects, and, secondly, an investigation on their
differences on the boundary-layer thickness effects.

7.3.1 Source Effect

In the results that follow, the thickness used in the calculations is the average boundary-layer
thickness. Effect of varying thickness will be examined later. Varying source types and
operating conditions are examined here in order to determine the differences between the
equivalent linear profile approach and the equivalent step-function profile approach.

[dB]

FIGURE 7.9: SPL on the surface of the fuselage for W20 source and operating condition 3. Results
for equivalent step-function profile [left], equivalent linear profile [right]. Average boundary-

layer thickness is used for the calculations.
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FIGURE 7.10: SPL on the surface of the fuselage for W30 source and operating condition 3.
Results for equivalent step-function profile [left], equivalent linear profile [right]. Average

boundary-layer thickness is used for the calculations.
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Figures (7.9) and (7.10) show contour maps of the SPL on the surface of the cylinder for
condition 3 and sources W20 and W30. The two theoretical predictions agree well with each
other, especially close to the plane of the source. Further upstream, the equivalent
step-function profile results seem to predict slightly more shielding than the equivalent linear
profile results. Bearing in mind that the average boundary layer is about 4.5 % of the fuselage
radius, a reasonable underprediction in shielding from the equivalent linear profile approach
is to be expected for this thickness of boundary layer (see Fig. (5.17)).

Furthermore, it is expected that the difference between the two approaches will be more
noticeable further upstream, as exhibited in Figs. (7.9) and (7.10). As explained before, the
further upstream the sound waves propagate the larger the distance they travel inside the
boundary layer resulting in an effectively thicker layer. A thicker layer means deterioration in
the accuracy of the equivalent linear profile approach as discussed in previous chapters. This
deterioration in accuracy creates the discrepancy between the two approaches’ predictions (see
Fig. (5.17)) that can be seen more noticeably when z̄/a0 > 2. Closer to the plane of the source,
the sound waves enter the boundary layer at steeper angles, and therefore travel a smaller
distance inside it, resulting in effectively a thinner layer, which means better accuracy for the
equivalent linear approach, and consequently better agreement between the two theoretical
predictions.

Moreover, by examining Figs. (7.9) and (7.10) it is quite clear that the agreement of the two
approaches does not depend on the power of the dominant mode. For both source types the
comparison between the two approaches follows the same behaviour. That is rather expected,
as it has already been proven in previous chapters that the validity and accuracy of the
equivalent linear profile prediction depends heavily on the boundary-layer thickness.

[dB]

FIGURE 7.11: SPL on the surface of the fuselage for W20 source and operating condition 6.
Results for equivalent step-function profile [left], equivalent linear profile [right]. Average

boundary-layer thickness is used for the calculations.

Similar behaviour is observed for the results in operating condition 6 in Figs. (7.11) and (7.12).
However, there is a visible discrepancy between the predictions using the source W30 at the
plane of the source. As mentioned earlier, predictions very close to the plane of the source
should not be considered realistic as the present work does not include diffraction around the
lip of the nacelle. A possible explanation for the discrepancy there is an inability of the
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[dB]

FIGURE 7.12: SPL on the surface of the fuselage for W30 source and operating condition 6.
Results for equivalent step-function profile [left], equivalent linear profile [right]. Average

boundary-layer thickness is used for the calculations.

theoretical methods developed to model the phenomenon of refraction in the azimuthal
direction which becomes relevant only in the region very close to the plane of the source.
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FIGURE 7.13: ∆bl at ϕ̄ = 0o for operating condition 3 [left] and 6 [right]. W20 source and average
boundary-layer thickness used. Results using an equivalent linear profile [solid lines] and an

equivalent step-function profile [dashed lines].
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FIGURE 7.14: ∆bl at ϕ̄ = 0o for operating condition 3 [left] and 6 [right]. W30 source and average
boundary-layer thickness used. Results using an equivalent linear profile [solid lines] and an

equivalent step-function profile [dashed lines].

Figures (7.13) and (7.14) provide some more quantifiable information on the differences
between the shielding predictions of the two approaches. Ignoring the region of inaccuracy
very close to the plane of the source, in the rest of the domain the two approaches compare
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very well against each other, considering that the average boundary-layer thickness used is
thick enough to produce inaccuracies in the equivalent linear profile method (see Fig. (5.17)).
Apart from further upstream (z̄/a0 > 3), where the discrepancy is bound to be larger as
explained before due to the larger effective thickness, the discrepancy is smaller than 1 dB.
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FIGURE 7.15: Shielding coefficient upstream S+ for all operating conditions, average boundary-
layer thickness and sources W20 [blue], W30 [yellow]. Results using an equivalent linear profile

[no hash pattern] and an equivalent step-function profile [hash pattern].

Finally, the shielding coefficient distribution shown in Fig. (7.15) for the two types of sources
provides an interesting perspective regarding the distribution of modes on each operating
condition. The first two conditions are characterised by a smaller selection of modes that are
quite uniformly distributed mainly along the middle section of the cylinder and less so at the
extremes of the domain. As seen from Figs. (7.13) and (7.14), the two approaches exhibit the
smallest discrepancy at the middle section of the cylinder, while the largest discrepancies are
observed at the extremities. Therefore, the shielding coefficients for the two approaches agree
very well against each other for the first two conditions.

However, as explained before, with increasing ζ(20,1) more and more modes are added mainly
close to cut-off. This means that they will be incident on the cylinder closer to the plane of the
source as they will propagate at steeper mode angles. As observed from Figs. (7.13) and (7.14),
closer to the plane of the source the step-function profile approach tends to underpredict
shielding, and that is exactly reflected in Fig. (7.15) for the higher conditions. That is especially
the case for condition 3, when the dominant mode is just cut-on, which means that the
step-function profile method will predict that the bulk of the total energy will find its way to
the fuselage surface more readily.

That concludes this section of the comparison between the predictions of the two theoretical
approaches focused on varying conditions and sources. The key finding here is that the two
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approaches agree reasonably well with each other, especially in the middle section of the
cylindrical fuselage, say 1 < z̄/a0 < 3. Furthermore, the discrepancy in the predictions of the
two approaches does not seem to be affected by different sources or conditions in a practical
way (on a dB scale). Nonetheless, the cumulative effect demonstrated by the more physical
metric S+ seems to slightly exaggerate the discrepancy.

7.3.2 Thickness Effect

In the results that follow, the effect of the boundary-layer thickness on the discrepancy of the
predictions of the two theoretical approaches is investigated.

[dB]

FIGURE 7.16: SPL on the surface of the fuselage for W20 source and operating condition 6. Thin
boundary layer is used for the calculations. Results for equivalent step-function profile [left],

equivalent linear profile [right].

[dB]

FIGURE 7.17: SPL on the surface of the fuselage for W20 source and operating condition 6. Thick
boundary layer is used for the calculations. Results for equivalent step-function profile [left],

equivalent linear profile [right].

The contour maps in Figs. (7.16) and (7.17) once again illustrate the fact that the equivalent
linear profile approach loses accuracy with increasing boundary-layer thickness. Its tendency
to underpredict shielding upstream is seen clearly in the thick boundary-layer case presented
in Fig. (7.17). On the other hand, for the thin-boundary layer case the agreement between the
two approaches’ predictions is remarkably good, which is to be expected.
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FIGURE 7.18: ∆bl at ϕ̄ = 0o for operating condition 1 and W20 source for the three boundary-
layer thicknesses. Results using an equivalent linear profile [solid lines] and an equivalent step-
function profile [dashed lines]. Results are presented for thin boundary layer [no marker], av-

erage boundary layer [⃝] and thick boundary layer [×].

The ∆bl plots in Figs. (7.18), (7.19) and (7.20) demonstrate the same trend, showing increasing
discrepancy with increasing boundary-layer thickness (see Fig. (5.17)) in all operating
conditions. Ignoring the region very close to the plane of the source, say z̄/a0 < 0.5, the thin
boundary-layer case exhibits remarkable agreement between the two approaches even for
regions further upstream, with the difference being less than 1 dB for all operating conditions.
As for the average boundary-layer case, the agreement is very good (up to 1 dB) in the middle
section of the cylindrical fuselage, up to z̄/a0 < 3 for operating condition 6 and a little further
downstream for lower conditions. Furthermore, apart from further upstream, even the thick
boundary-layer case presents regions where the two predictions are very close to each other.
Of course these regions are fairly close to the plane of the source, say z̄/a0 < 2, as for upstream
regions the effective thickness will be larger, and the discrepancy between the predictions is
larger as seen in Figs. (7.18), (7.19) and (7.20).

That layout is advantageous when one tries to estimate the shielding produced by a growing
boundary layer rather than a constant thickness layer. As observed in Figs. (7.18), (7.19) and
(7.20), for all conditions the thin boundary-layer gives good agreement for the entire domain
even at the most upstream region, where the boundary layer will be thinner during flight. The
average boundary-layer also gives good agreement in the middle section of the cylinder,
where this thickness is most representative during flight, whereas the thick boundary-layer
tends to exhibit good agreement between the two predictions further downstream towards the
plane of the source, again where the boundary layer will be thicker during flight.

Finally, Fig. (7.21) once again exhibits the loss of accuracy of the equivalent linear profile
approach with increasing boundary-layer thickness. The thin boundary-layer case exhibits
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FIGURE 7.19: ∆bl at ϕ̄ = 0o for operating condition 3 and W20 source for the three boundary-
layer thicknesses. Results using an equivalent linear profile [solid lines] and an equivalent step-
function profile [dashed lines]. Results are presented for thin boundary layer [no marker], av-

erage boundary layer [⃝] and thick boundary layer [×].

shielding coefficient predictions that are remarkably close to each other. On the other hand,
the thick boundary-layer case exhibits a discrepancy five times larger across the range of
operating conditions.

This concludes this section on the comparison between the two theoretical approaches. The
key result here is that with a larger boundary-layer thickness, it will inevitably cause a loss of
accuracy for the equivalent linear profile approach, which leads to a discrepancy between the
predictions of the two approaches as the step-function profile approach tends to retain the
same accuracy regardless the boundary-layer thickness (see Fig. (5.17)). Nonetheless, for the
entire section of the fuselage that has been considered the two approaches agree well with
each other.

7.3.3 Differences in the Far-field

This section contains results generated once again using both theoretical approaches.
However, in this section, their differences are examined on the far-field and not on the fuselage
surface. The polar directivity prediction using an equivalent linear profile is compared to the
polar directivity prediction using a step-function profile. The thick boundary layer is used in
the calculations to exaggerate any differences between the two approaches, since the thicker
boundary layer causes a drop in the accuracy of the equivalent linear profile method.

By observing Figs. (7.22) and (7.23) it can immediately be seen that the two predictions almost
coincide with each other for both conditions. The discrepancy between them is so small that it
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FIGURE 7.20: ∆bl at ϕ̄ = 0o for operating condition 6 and W20 source for the three boundary-
layer thicknesses. Results using an equivalent linear profile [solid lines] and an equivalent step-
function profile [dashed lines]. Results are presented for thin boundary layer [no marker], av-

erage boundary layer [⃝] and thick boundary layer [×].

can be practically ignored. Bear in mind that this is for a thick boundary layer which has been
proven to lead to significant differences between the two approaches’ predictions, at least for
the surface pressure results. It is safe to conclude that in the far-field, the profile used to model
the boundary layer does not matter, which is expected as such nuances are bound to be less
relevant in the far-field. This conclusion has also been reached by Belyaev (2012). However, it
is important to remember that the boundary-layer thickness does play an important role in the
far-field, since it is very influential in the shaping of the directivity pattern around the polar
angle of the rotor-locked mode, as shown in the previous chapter.
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FIGURE 7.21: Shielding coefficient upstream S+ for all operating conditions and source W20
for thin boundary layer [blue] and thick boundary layer [yellow]. Results using an equivalent

linear profile [no hash pattern] and an equivalent step-function profile [hash pattern].
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FIGURE 7.22: Polar directivity upstream for operating condition 3 and source W20. The thick
boundary layer is used for the calculations. Results using an equivalent linear profile [solid line]

and an equivalent step-function profile [dashed line].
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FIGURE 7.23: Polar directivity upstream for operating condition 6 and source W20. The thick
boundary layer is used for the calculations. Results using an equivalent linear profile [solid line]

and an equivalent step-function profile [dashed line].
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7.4 Source Orientation

This section aims to provide some insight into the source orientation. The results presented in
this and the previous chapter mainly concerned the shielding. As such, the metrics were
usually ∆bl and S+ which highlight the difference in level owing to the presence of the
boundary layer. On the other hand, the difference ∆source is a metric that highlights the
differences between the sources, since it is the difference between the SPL of the rotor-locked
source minus the equal energy source. By doing so, any boundary-layer effects are normalised
since both sources are subject to the same boundary-layer effects. This allows certain purely
azimuthal or orientation effects to come to light that would normally pass unnoticed. ∆source

plots have already been shown in the previous chapter (see Figs. (6.8) and (6.9)). Those plots
only showed the difference at ϕ̄ = 0o. As has already been established in the last two chapters,
it is always beneficial to examine the effects on the entirety of the fuselage surface to make sure
whether there are any cumulative or azimuthal effects. This is the scope of this section, and
thus the figures that follow show the difference ∆source all over the fuselage surface.

[dB]

FIGURE 7.24: ∆20
source on the fuselage surface for operating condition 3. Cylinder plot [top], same

plot unfurled [bottom]. Average boundary-layer thickness is used for the calculations.

Figures (7.24) and (7.25) show the difference ∆20
source plotted all over the fuselage surface, not

only on ϕ̄ = 0o. The difference between operating condition 3 and 6 is clearly visible with
condition 6 exhibiting excess of power further upstream than condition 3 since the dominant
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mode is more cut-on at that condition. Once again, the secondary lobe is visible behind the
principal lobe in condition 6. A more interesting result in these plots is the fact that the
maximum SPL is to the side of the cylinder, and not at ϕ̄ = 0o directly adjacent to the source.
Specifically the maximum ∆20

source is in the region around ϕ̄ = 90o to 125o. This implies that the
dominant rotor-locked mode affects the pressure levels on the cylinder in a lopsided fashion.
This is a purely azimuthal or rather a source orientation effect, and it is attributed to the fact
that the source is a simulation of a spinning mode. Sure enough, by repeating the results, but
with the dominant rotor-locked mode equal to (-20,1) instead of (20,1), the plots are the same
but flipped around the ϕ̄ = 0o axis.

[dB]

FIGURE 7.25: ∆20
source on the fuselage surface for operating condition 6. Cylinder plot [top], same

plot unfurled [bottom]. Average boundary-layer thickness is used for the calculations.

This effect can be explained by revisiting the way the spinning modes propagate. As explained
in McAlpine et al. (2015), a propagating spinning mode has an azimuthal and an axial
component. That means that wavefronts propagate both in the azimuthal and the axial
direction. Therefore, the sound wavefronts travel in a corkscrew-like manner as they exit the
fan duct. They both propagate forwards along the positive direction of the z-axis and rotate
around the z-axis at the same time. According to the convention used in the present work and
in McAlpine et al. (2015), the spinning modes rotate counterclockwise. That means that the
wavefronts tend to rotate towards the right side of the fuselage (positive ϕ̄) while on the left
side of the fuselage (negative ϕ̄) the wavefronts ”spin” away from the cylinder. This
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asymmetry is demonstrated in Fig. (7.26). Note that in the figure, only the azimuthal direction
of propagation is sketched. Consider an observer located on the right side of the fuselage,
around ϕ̄ = 90o. This observer will see the wavefronts coming towards them. On the other
hand, if an observer is located on the opposite side of the cylinder, left side, at around
ϕ̄ = −90o, they will see wavefronts travelling away from them. This effect explains why the
dominant mode’s energy is not symmetric about ϕ̄ = 0o.
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FIGURE 7.26: Schematic showing the orientation and general direction of the wavefronts. Side
view [left] and front view [right].

It is important to note that this asymmetry is not only present in these difference ∆source

contour maps. By reexamining the contour maps in Figs. (7.11), (7.12), (7.16) and (7.17), one
can now discern certain asymmetries in the SPL contour pattern. More specifically, on the
right side of the cylinder (positive ϕ̄) the lobes and nulls are better defined than on the left
side. The dominant mode there stands out more easily, namely its pattern is dominating the
overall pattern in a more robust way there. That is a sign that on this location, the dominant
mode is at the highest level compared to the rest of the cut-on modes. On the left side its level
is slightly closer to the rest of the cut-on modes therefore the pattern tends to be smoother.
This effect is even more pronounced in Fig. (7.12) where it is becoming clear that the right side
of the lobe is more extended than the left indicating an excess of power. This effect adds
nuance to the problem, and introduces new challenges in the fuselage lagging manufacturing
process, since different areas will require different acoustic insulation, depending on the
rotation direction of the fan.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The main goal of this thesis was the development of theoretical methods that can rapidly
predict the fuselage acoustic installation effects of aero-engine fan tones. This goal was
achieved by including the most representative theoretical model for a fan tone noise source
and attempting to solve the problem of sound propagation through a shear layer analytically.

In chapter 3 analytic solutions were derived for the acoustic near-field and far-field as a result
of a fan tone noise source being installed adjacent to the fuselage which has a boundary layer
of constant thickness running down the length of it. The analytic solutions assume simpler
boundary-layer velocity profiles, step-function and linear, and model the refraction caused by
the velocity gradient using Fourier methods coupled with an asymptotic power series solution.

As shown in chapter 5, the theoretical model despite using simplified boundary-layer profiles,
proved to be able to predict the same pressure field as that predicted by numerical methods for
a representative 1/7th power-law profile. An appropriate method of matching the equivalent
simpler profiles to the more complex ones is investigated. These analytic solutions provide
alternatives to high-fidelity numerical methods since there is no need to solve numerically the
Pridmore-Brown equation, and in the case of the step-function profile there is no need to solve
the Pridmore-Brown equation altogether. The theoretical approaches were able to capture the
amplitude and phase of the shielding quite accurately especially for thinner boundary-layers.
Even for very thick boundary-layers, the step-function correctly captures the shielding trend
and can be used as a quick prediction method.

The speed of these theoretical methods facilitates the execution of a multi-mode parametric
study presented in chapter 6, which uses realistic flight parameters to model the shielding and
refraction in various flight stages. The parametric study revealed trends that are very useful
and should be taken into account during the fuselage lagging manufacturing process, but also
during the evaluation of community noise in the far-field. The engine noise source directivity
and modal output plays a vital role in the near- and far-field pressure pattern. Frequency and
flight Mach number also play a major role in the shielding and refraction caused by the
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boundary layer. However, both in the near- and far-field the boundary-layer thickness is the
most influential factor as far as refraction is concerned.

The discussion in chapter 7 drew attention to a factor that can be used to predict trends in the
shielding on the fuselage surface. The cut-off ratio, and consequently the mode propagation
angle, plays a vital role in the amount of acoustic energy that reaches the fuselage. Both
theoretical approaches agree well with each other for the range of parameters examined and
since this range represents realistic situations, the linear profile’s loss of accuracy is mediated.

The work in this thesis aims to provide a theoretical prediction method that can be used as a
faster alternative to more traditional high-fidelity numerical methods. The analytical solution
to the Pridmore-Brown equation eliminates the need to use Runge-Kutta routines which tend
to have high computational cost especially for thicker boundary-layers. The theoretical
approaches developed here not only eliminate this need for high-fidelity numerical methods,
but also prove that it is not even necessary to solve the Pridmore-Brown equation to produce
useful predictions. It is the view of the author that such theoretical tools should be used to
quickly identify accurate trends in a multi-parameter problem. These theoretical tools provide
quick preliminary estimates that are crucial in any analysis since they identify the areas where
more accuracy, in the form of a high-fidelity numerical result, is needed. Thus, costly studies
that are unnecessary are avoided.

The main original contribution to knowledge in this thesis is:

• The development of a theoretical method that can predict the installation effects of a
realistic fan engine noise source that is mounted adjacent to a cylindrical fuselage which
has a representative boundary-layer velocity profile running down its length based on
an analytical formulation. The model can predict the acoustic pressure both in the
near-field, more specifically the SPL on the surface of the fuselage which is used to
determine the amount of acoustic lagging to be installed, and in the far-field, more
specifically the sound directivity that will propagate to the ground which is essential in
determining the noise the community experiences.

The objectives that have been accomplished in this thesis have already been mentioned in
chapter 1. Here the major findings are listed:

• The optimal method for approximating a more complex profile using simpler profiles
has been investigated.

– Matching the physical properties of the profiles leads to the best results.

• The two theoretical approaches have been compared to each other in terms of their
accuracy.

– The linear profile gives accurate results for thinner boundary-layers, about 3 %-4 %
of the fuselage radius.

– For thicker boundary-layers, the step-function profile is more accurate while its
accuracy does not deteriorate with increasing boundary-layer thickness.
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• The refraction and shielding effect has been quantified in the near-field (fuselage
surface):

– Smaller wavelengths are more susceptible to refract sound away from the fuselage
surface upstream of the source.

– Increasing frequency or increasing Mach number will increase shielding with Mach
number having a more drastic effect.

• The refraction effect has been quantified in the far-field and proven to cause phase shifts
that should not be ignored, while the shape of the boundary-layer profile is not
influential at all in the far-field.

• Multi-modal study reveals the significance of the cut-off ratio and the mode propagation
angle.

– Close to cut-off, the principal lobe is less shielded because it will be incident on the
boundary layer at a more perpendicular angle.

– Higher cut-off ratios cause the principal lobe to be refracted away in such an extent
that the secondary lobe starts to become dominant.

• The power distribution of the modal output of the engine does not affect shielding in a
practical way, however it is very influential on the pressure pattern on the fuselage
surface and in the far-field.

• Cruising conditions are characterised by more shielding due to higher Mach numbers
and cut-off ratios.

• The spinning nature of the fan tones leads to a slightly asymmetric SPL contour on the
fuselage surface.

The derivation and validation of the linear profile theory is published in Rouvas and
McAlpine (2021). The investigation on the optimal matching method between the simple and
more complex profiles is published in Rouvas and McAlpine (2022b) and Rouvas and
McAlpine (2022a). Furthermore, in Rouvas and McAlpine (2022a) part of the parametric study
is also presented. Another paper is planned to present the findings of the multi-mode
parametric study in full and interpret the results physically.

8.2 Future Work

The work presented in this thesis could be extended in the future. Some recommendations are
presented by the author that might augment our knowledge on the subject.

Analytic solution for 1/7th power-law profile or quarter-sine. The asymptotic method used to solve
the Pridmore-Brown equation for a linear boundary layer is in theory applicable to more
complex profiles. The same solution applied to more complex profiles may lead to increased
accuracy for a given boundary-layer thickness. The challenge that manifests here is the
complexity of the solution. Implementing the same power series expansion for a more
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complex profile may lead to integrals that cannot be solved analytically which would defeat
the purpose of the work.

Inclusion of Critical Layer. Previous work on the significance of the critical layer in the
Pridmore-Brown equation has revealed that the critical layer is not that important in the
accuracy of the solution, at least in the parameter range of interest here. That is the main
reason that it is not included in this thesis. However, the derivation of the solution including
this critical layer has been conducted by the author but not yet coded and validated. Although
the critical layer is unlikely to have a drastic effect on the near- or far-field SPL predictions, it is
worth investigating to gain insight into the mathematical problem.

Haystacking. The phenomenon of haystacking or broadening of the fan tones due to the
turbulence inside the boundary layer has been investigated numerically (see chapter 2). Of
course, it is highly unlikely that an analytical model can be developed that will accurately
predict the sound-turbulence interaction inside the boundary layer. However, once again
asymptotic methods could be used to simplify the problem and provide solutions that are
valid subject to restrictions.

Growing Boundary Layer. This thesis assumes a constant boundary-layer thickness, which is not
realistic since the boundary layer grows axially. The problem of the growing boundary-layer is
a particularly difficult one since it restricts the use of Fourier methods. Nevertheless, progress
may be possible for a slowly growing boundary layer. For example, Rienstra’s work on slowly
varying ducts (Rienstra (1998), Rienstra (2003)) does not include a boundary layer but it does
provide solutions for the mean flow and acoustic field that vary in the axial direction.
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Appendix A

Incident Field Derivation

As outlined by McAlpine and Kingan (2012), the governing equation that describes the
incident field due to the presence of a rotating monopole source q in uniform flow is the
inhomogeneous convected wave equation,(︃

∇2 − 1
c2

0

D2

Dt2

)︃
p′ = −ρ0

Dq
Dt

, (A.1)

which written in full in cylindrical polar coordinates is,
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A single-frequency, rotating, monopole point source is considered with volume velocity

q(r, ϕ, z, t) = Q0eiω0t δ(r − a)
r

(︃ ∞

∑
n=−∞

δ(ϕ − Ωt − 2πn)
)︃

δ(z), (A.3)

The three-dimensional delta function is used to describe the rotating monopole’s radial and
axial position (taken to be the duct’s exit plane) and its periodicity around the source’s
centreline (or the duct’s centreline). The monopole rotates around the centreline with angular
velocity Ω. By taking the Fourier transform of eq. (A.2) the resulting equation can be solved
using the method of variation of parameters. The full details of the solution are omitted for the
sake of brevity. These details can be found in Ref. McAlpine and Kingan (2012). The Fourier
transform involves Fourier transforms in z and t and the Fourier series in ϕ as follows:
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This transforms the derivatives as follows:
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∂
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→ iω. (A.6)
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The Fourier transformed eq. (A.2) is
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where
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is the Fourier transformed right hand side of the equation with the radial wavenumber

Γ2
z = (k + kz Mz)

2 − k2
z. (A.9)

The method of variation of parameters requires the solution to the homogeneous version of
eq. (A.7) which is Bessel’s differential equation. Since a radiation condition as r → ∞ will be
applied, it is more convenient to select Jm (Γzr) and H(2)

m (Γzr) as the linearly independent
solutions of Bessel’s equation. Then, using the method of variation of parameters, the solution
to eq. (A.7) is
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(A.10)

Owing to the term δ(r−a)
r in Qm (A.8), the solution is split into two domains, r < a and r > a.

The constants in eq. (A.10) can be found by applying the finiteness and radiation conditions.
The Hankel function is singular as r → 0, therefore it immediately follows from eq. (A.10) that
Bm = 0. Furthermore, in order to have only outward propagating waves as r → ∞, it can be
shown that
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π

2
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∞
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With Am and Bm known, taking the inverse Fourier time-transform gives

p′im(r, kz, t) =
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m (Γzmr>)Jm (Γzmr<)ei(ω0+mΩ)t, (A.12)
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z.



185

Appendix B

Disc Source Derivation

This section briefly outlines the method used by McAlpine et al. (2015). For more details see
Ref. McAlpine et al. (2015). The final incident field p′i is the resulting field after integrating a
distribution of monopoles over the cross section of the duct’s termination. As outlined in
Ref. McAlpine et al. (2015) and shown in Fig. (B.1), consider an annular ring source with N
monopoles distributed around a circle of radius η. Monopole s is located at
(r, ϕ, z) = (η, s∆ψ, 0) where ∆ψ = 2π/N and s = 0, 1, 2, . . . , N − 1.
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Ν-3
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FIGURE B.1: Sketch of ring source. Taken from McAlpine et al. (2015).

Equation (A.12) is the Fourier-transformed pressure field of a rotating monopole source
derived by McAlpine and Kingan (2012). Therefore, by setting Ω = 0 in eq. (A.12), and
performing an inverse Fourier z-transform, the field owing to stationary monopole source
s = 0 is recovered

p′(0)i (r, ϕ, z, t) =
1

(2π)2

∞

∑
m=−∞
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−∞
p′(0)im (r, kz, t)e−ikzzdkz

)︃
e−imϕ, (B.1)
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where from eq. (A.12)
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and the variables are now defined as
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It is important to note the radial wavenumber’s behaviour. With Ω = 0, the wavenumber is
defined as

Γ2
z = (k0 + kz Mz)

2 − k2
z. (B.5)

In order to ensure only outward propagating waves as r → ∞, appropriate handling of Γz is
required. In the range

−k0

1 + Mz
< kz <

k0

1 − Mz
(B.6)

Γz is real and positive, whereas outside this range it will be imaginary Γ0 = −iγz where
γ2

z = k2
z − (k0 + kz Mz)2 > 0.

> 0zΓ
Γ=-iγ Γ=-iγ

=0Γ =0Γ

k0

1+Mz
kz= Mz

k0
1kz=

kz

0
z

z
z

z
z z

FIGURE B.2: Values of Γz along the kz-axis. Taken from McAlpine et al. (2015).

As outlined in McAlpine et al. (2015), the new angular coordinate ˜︁ϕ is introduced such that
monopole s is located at ˜︁ϕ = 0. This means that

˜︁ϕ = ϕ − s∆ψ. (B.7)

For every point source s on the ring, eqs. (B.1) and (B.2) apply, i.e.

p′(s)i (r, ϕ, z, t) =
1

(2π)2

∞

∑
m=−∞

(︃∫︂ ∞

−∞
p′(s)im (r, kz, t)e−ikzzdkz

)︃
e−im˜︁ϕ, (B.8)
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or

p′(s)i (r, ϕ, z, t) =
Q(s)ρ0c0

8π

∞

∑
m=−∞

(︃∫︂ ∞

−∞
(k0 + kz Mz)H

(2)
m (Γzr>)Jm (Γzr<)e−ikzzdkz

)︃
e−im(ϕ−s∆ψ)eiω0t.

(B.9)

In McAlpine et al. (2015) each point source’s strength Q(s) is calculated by using the axial
particle velocity of the spinning mode (l, q) at position (η, s∆ψ, 0),

Q(s) =
ξlqPlq

ρ0c0
Jl (κlqη)e−ils∆ψδA, (B.10)

where the elementary surface of the point source δA = ηδηδψ. The total incident field is

p′i(r, ϕ, z, t) =
N−1

∑
s=0

p′(s)i (r, ϕ, z, t), (B.11)

which, by combining eqs. (B.1) and (B.10), and using the standard formula for a geometric
progression, becomes

p′i(r, ϕ, z, t) =N
ξlqPlq

8π

∞

∑
n=−∞

(︃∫︂ ∞

−∞
(k0 + kz Mz)H

(2)
l−nN (Γzr>)Jl−nN (Γzr<)Jl (κlqη)e−ikzzdkz

)︃
× einNϕe−ilϕeiω0tηδηδψ.

(B.12)

The full details of the derivation of eq. (B.12) are in Ref. McAlpine et al. (2015).

The distributed source is formed by taking the limit as the number of sources in the ring
N → ∞. This also means that Nδψ → 2π, and only the n = 0 term is required. By integrating
from η = 0 to a, the pressure for field points outside the duct r > a is recovered:

p′i(r, ϕ, z, t) =
ξlqPlq

4

∫︂ ∞

−∞
(k0 + kz Mz)ΨlqH(2)

l (Γzr)e−ikzzdkze−ilϕeiω0t, (B.13)

where the function
Ψlq =

∫︂ a

η=0
Jl (Γzη)Jl (κlqη)ηdη, (B.14)

can be evaluated exactly. For non-plane-wave excitation

Ψlq =
Γza

κ2
lq − Γ2

z
Jl(κlqa)J′l(Γza), Γz ̸= κlq, (B.15)

Ψlq =
1
2

(︃
a2 − l2

κ2
lq

)︃
J2
l (κlqa), Γz = κlq. (B.16)
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Appendix C

Far-Field Validation

In order for the validity of the analytic solution (eq.(3.67)) to be verified, it must be compared
to another known analytic solution. Currently there are no other analytic solutions that
describe the far-field induced by a fan-disc source scattering by an adjacent cylinder. In order
for the validity of the solution to be tested, the disc source is reduced to a single monopole
source located at the centre of the former disc source. By doing so, an expression for a
monopole source scattering by an adjacent cylinder is obtained. That expression can now be
compared to the known benchmark stationary monopole solution by Bowman et al. (1969).
This reference solution has no mean flow, so it is also required to set Mz = 0.

The disc source is reduced to a stationary monopole by setting
l → 0, q → 1, Mz → 0, a → 0, β → ϕ0, b → r0. Consequently
σ → 1, S(θ̄) → 1, ∆z → k0 sin θ̄, ξ01 → 1. The new geometric parameters r0 and ϕ0 are shown
in Fig.(C.1).

y

x

z

φ

y

x

z
φ

0a

Cylindrical fuselage

monopole

r0

0

FIGURE C.1: Reduction of disc source to a monopole.
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Also it is shown that Ψ01 = 1
2 a2 and P01

ρ0c0
(πa2) = Q0 or P01 = Q0ρ0c0

πa2 . These relations are
proven in McAlpine et al. (2015). So eq.(3.67) becomes

p′t (R̄, θ̄, ϕ̄, t) =
iξ01P01k0

2R̄
Ψ01

∞

∑
n=−∞

einϕ0 e
1
2 nπi eiω0t e−ik0R̄ e−inϕ̄×

[︃
Jn (k0 sin θ̄r0)H

(2)′
n (k0 sin θ̄a0)− H(2)

n (k0 sin θ̄r0) J′n (k0 sin θ̄a0)

H(2)′
n (k0 sin θ̄a0)

]︃
,

(C.1)

or

p′t (R̄, θ̄, ϕ̄, t) =
iQ0ρ0c0k0

4πR̄
e−ik0R̄ eiω0t

∞

∑
n=−∞

e
1
2 nπi e−in(ϕ̄−ϕ0)×[︃

Jn (k0r0 sin θ̄)− J′n (k0a0 sin θ̄)

H(2)′
n (k0a0 sin θ̄)

H(2)
n (k0r0 sin θ̄)

]︃
.

(C.2)

By splitting the summation into two parts and replacing n with −n in the first part, the
following is obtained

p′t (R̄, θ̄, ϕ̄, t) =
iQ0ρ0c0k0

4πR̄
e−ik0R̄ eiω0t

(︃ ∞

∑
n=0

ein(ϕ̄−ϕ0) e−
1
2 nπi×

[︃
(−1)nJn (k0r0 sin θ̄) (−1)nH(2)′

n (k0a0 sin θ̄) − (−1)nH(2)
n (k0r0 sin θ̄) (−1)nJ′n (k0a0 sin θ̄)

(−1)nH(2)′
n (k0a0 sin θ̄)

]︃
+

∞

∑
n=1

e−in(ϕ̄−ϕ0) e
1
2 nπi

[︃
Jn (k0r0 sin θ̄) H(2)′

n (k0a0 sin θ̄) − H(2)
n (k0r0 sin θ̄) J′n (k0a0 sin θ̄)

H(2)′
n (k0a0 sin θ̄)

]︃)︃
.

(C.3)

Taking into consideration that e−
1
2 nπi = (−i)n and e

1
2 nπi = in

p′t (R̄, θ̄, ϕ̄, t) =
iQ0ρ0c0k0

4πR̄
e−ik0R̄ eiω0t

(︃ ∞

∑
n=0

(−i)nein(ϕ̄−ϕ0)(−1)n×

[︃
Jn (k0r0 sin θ̄) H(2)′

n (k0a0 sin θ̄) − H(2)
n (k0r0 sin θ̄) J′n (k0a0 sin θ̄)

H(2)′
n (k0a0 sin θ̄)

]︃
+

∞

∑
n=1

in e−in(ϕ̄−ϕ0)×

[︃
Jn (k0r0 sin θ̄) H(2)′

n (k0a0 sin θ̄) − H(2)
n (k0r0 sin θ̄) J′n (k0a0 sin θ̄)

H(2)′
n (k0a0 sin θ̄)

]︃)︃
.

(C.4)

The following relations are used

cos n(ϕ̄ − ϕ0) =
ein(ϕ̄−ϕ0) + e−in(ϕ̄−ϕ0)

2
⇒ ein(ϕ̄−ϕ0) = 2 cos n(ϕ̄ − ϕ0)− e−in(ϕ̄−ϕ0), (C.5)

(−i)n(−1)n = in, (C.6)
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to rewrite eq.(C.4)

p′t (R̄, θ̄, ϕ̄, t) =
iQ0ρ0c0k0

4πR̄
e−ik0R̄ eiω0t

(︃ ∞

∑
n=0

(−i)n (−1)n 2 cos n(ϕ̄ − ϕ0)×[︃
Jn (k0r0 sin θ̄) H(2)′

n (k0a0 sin θ̄) − H(2)
n (k0r0 sin θ̄) J′n (k0a0 sin θ̄)

H(2)′
n (k0a0 sin θ̄)

]︃
−

∞

∑
n=0

(−i)n (−1)n e−in(ϕ̄−ϕ0)×

[︃
Jn (k0r0 sin θ̄) H(2)′

n (k0a0 sin θ̄) − H(2)
n (k0r0 sin θ̄) J′n (k0a0 sin θ̄)

H(2)′
n (k0a0 sin θ̄)

]︃
+

∞

∑
n=1

(−i)n (−1)n e−in(ϕ̄−ϕ0)×

[︃
Jn (k0r0 sin θ̄) H(2)′

n (k0a0 sin θ̄) − H(2)
n (k0r0 sin θ̄) J′n (k0a0 sin θ̄)

H(2)′
n (k0a0 sin θ̄)

]︃)︃
,

(C.7)

or, since only the zeroth term will remain from the subtraction

p′t (R̄, θ̄, ϕ̄, t) =
iQ0ρ0c0k0

4πR̄
e−ik0R̄ eiω0t

(︃ ∞

∑
n=0

(−i)n (−1)n 2 cos n(ϕ̄ − ϕ0)×[︃
Jn (k0r0 sin θ̄) H(2)′

n (k0a0 sin θ̄) − H(2)
n (k0r0 sin θ̄) J′n (k0a0 sin θ̄)

H(2)′
n (k0a0 sin θ̄)

]︃
−

(−i)0 (−1)0 e0×[︃
J0 (k0r0 sin θ̄) H(2)′

0 (k0a0 sin θ̄) − H(2)
0 (k0r0 sin θ̄) J′0 (k0a0 sin θ̄)

H(2)′
0 (k0a0 sin θ̄)

]︃)︃
.

(C.8)

By taking out the zeroth term of the remaining summation and since cos 0 = e0 = 1,

p′t (R̄, θ̄, ϕ̄, t) =
iQ0ρ0c0k0

4πR̄
e−ik0R̄ eiω0t

(︃ ∞

∑
n=1

(−i)n (−1)n 2 cos n(ϕ̄ − ϕ0)×[︃
Jn (k0r0 sin θ̄) H(2)′

n (k0a0 sin θ̄) − H(2)
n (k0r0 sin θ̄) J′n (k0a0 sin θ̄)

H(2)′
n (k0a0 sin θ̄)

]︃
+

(−i)0 (−1)0×[︃
J0 (k0r0 sin θ̄) H(2)′

0 (k0a0 sin θ̄) − H(2)
0 (k0r0 sin θ̄) J′0 (k0a0 sin θ̄)

H(2)′
0 (k0a0 sin θ̄)

]︃)︃
,

(C.9)

which can be rewritten

p′t (R̄, θ̄, ϕ̄, t) =
iQ0ρ0c0k0

4πR̄
e−ik0R̄ eiω0t

(︃ ∞

∑
n=1

(−i)n (−1)n 2 cos n(ϕ̄ − ϕ0)×[︃
Jn (k0r0 sin θ̄) H(2)′

n (k0a0 sin θ̄) − H(2)
n (k0r0 sin θ̄) J′n (k0a0 sin θ̄)

H(2)′
n (k0a0 sin θ̄)

]︃
+

(−i)0 (−1)0 cos(0(ϕ̄ − ϕ0))×[︃
J0 (k0r0 sin θ̄) H(2)′

0 (k0a0 sin θ̄) − H(2)
0 (k0r0 sin θ̄) J′0 (k0a0 sin θ̄)

H(2)′
0 (k0a0 sin θ̄)

]︃)︃
,

(C.10)
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since cos 0 = 1. Notice that the last term is actually the zeroth term of the summation but with
1 instead of 2 in front of the cosine. Thus, by introducing the Neumann’s symbol
ϵn = 2 for n = 1, 2, 3, ... and ϵ0 = 1, the following is obtained

p′t (R̄, θ̄, ϕ̄, t) =
iQ0ρ0c0k0

4πR̄
e−ik0R̄ eiω0t

∞

∑
n=0

ϵn (−i)n (−1)n cos n(ϕ̄ − ϕ0)×[︃
Jn (k0r0 sin θ̄)− J′n (k0a0 sin θ̄)

H(2)′
n (k0a0 sin θ̄)

H(2)
n (k0r0 sin θ̄)

]︃
.

(C.11)

By manipulating algebraically even further

p′t (R̄, θ̄, ϕ̄, t) =
iQ0ρ0c0k0

4πR̄
e−ik0R̄ eiω0t×[︃ ∞

∑
n=0

ϵn (−i)n (−1)n cos n(ϕ̄ − ϕ0) Jn (k0r0 sin θ̄)−

∞

∑
n=0

ϵn (−i)n (−1)n cos n(ϕ̄ − ϕ0)
J′n (k0a0 sin θ̄)

H(2)′
n (k0a0 sin θ̄)

H(2)
n (k0r0 sin θ̄)

]︃
.

(C.12)

By breaking the zeroth term from the first summation and with
ϵ0 = 1, cos 0 = 0, ϵn = 2 for n = 1, 2, 3, ..., (−i)n(−1)n = in, eq.(C.12) becomes

p′t (R̄, θ̄, ϕ̄, t) =
iQ0ρ0c0k0

4πR̄
e−ik0R̄ eiω0t

[︃
J0 (k0r0 sin θ̄)+

∞

∑
n=1

2 in cos n(ϕ̄ − ϕ0) Jn (k0r0 sin θ̄)−

∞

∑
n=0

ϵn (−i)n (−1)n cos n(ϕ̄ − ϕ0)
J′n (k0a0 sin θ̄)

H(2)′
n (k0a0 sin θ̄)

H(2)
n (k0r0 sin θ̄)

]︃
.

(C.13)

The relation WA 401(1) found in page 933 of Ref. Gradshteyn and Ryzhik (2007)

exp(iz cos ϕ) = J0 (z) + 2
∞

∑
n=1

in cos nϕ Jn (z) (C.14)

is used to rewrite eq.(C.13)

p′t (R̄, θ̄, ϕ̄, t) =
iQ0ρ0c0k0

4πR̄
e−ik0R̄ eiω0t

[︃
exp{ik0r0 sin θ̄ cos(ϕ̄ − ϕ0)}−

∞

∑
n=0

ϵn (−i)n (−1)n cos n(ϕ̄ − ϕ0)
J′n (k0a0 sin θ̄)

H(2)′
n (k0a0 sin θ̄)

H(2)
n (k0r0 sin θ̄)

]︃
.

(C.15)

The convention in Bowman et al. (1969) has reversed signs for the monopole source. The
convention in this work is changed as well by setting k0 → −k0 and ω0 → −ω0. By doing so
the current convention becomes the same as Bowman’s (eq.(2.146) from Bowman et al. (1969)).
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Eq.(C.15) becomes

p′t (R̄, θ̄, ϕ̄, t) = − iQ0ρ0c0k0

4πR̄
eik0R̄ e−iω0t

[︃
exp{−ik0r0 sin θ̄ cos(ϕ̄ − ϕ0)}−

∞

∑
n=0

ϵn (−i)n (−1)n cos n(ϕ̄ − ϕ0)
J′n (−k0a0 sin θ̄)

H(2)′
n (−k0a0 sin θ̄)

H(2)
n (−k0r0 sin θ̄)

]︃
.

(C.16)

The negative arguments of the Bessel and Hankel functions can be converted by using the
following relations found in Gradshteyn and Ryzhik (2007), page 927 , eqs. (1) and (9) and
differentiate with respect to the positive argument

Jn (−x) = (−1)n Jn (x) ⇒ dJn (−x)
dx

= (−1)n J′n (x) ⇒

− J′n (−x) = (−1)n J′n (x) ⇒ J′n (−x) = −(−1)n J′n (x),
(C.17)

since prime denotes differentiation with respect to the function’s argument. Same applies to
the relation for the Hankel functions

H(2)
n (−x) = −(−1)n H(1)

n (x) ⇒ dH(2)
n (−x)
dx

= −(−1)n H(1)′
n (x) ⇒

− H(2)′
n (−x) = −(−1)n H(1)′

n (x) ⇒ H(2)′
n (−x) = (−1)n H(1)′

n (x).
(C.18)

By applying eq.(C.17) and (C.18) into eq.(C.16) the following is obtained

p′t (R̄, θ̄, ϕ̄, t) = − iQ0ρ0c0k0

4πR̄
eik0R̄ e−iω0t

[︃
exp{−ik0r0 sin θ̄ cos(ϕ̄ − ϕ0)}−

∞

∑
n=0

ϵn (−i)n (−1)n cos n(ϕ̄ − ϕ0)
−(−1)n J′n (k0a0 sin θ̄)

(−1)n H(1)′
n (k0a0 sin θ̄)

×

(︁
−(−1)n H(1)

n (k0r0 sin θ̄)
)︁]︃

.

(C.19)

Finally, the following expression for a stationary monopole point source is obtained

p′t (R̄, θ̄, ϕ̄, t) = − iQ0ρ0c0k0

4πR̄
eik0R̄ e−iω0t

[︃
exp{−ik0r0 sin θ̄ cos(ϕ̄ − ϕ0)}−

∞

∑
n=0

ϵn (−i)n cos n(ϕ̄ − ϕ0)
J′n (k0a0 sin θ̄)

H(1)′
n (k0a0 sin θ̄)

H(1)
n (k0r0 sin θ̄)

]︃
,

(C.20)

which is exactly the same as Bowman’s expression (page 127, eq.(2.149) from Bowman et al.
(1969)). Therefore we can conclude that the expression developed here is verified, since it is
reduced successfully to a known benchmark solution.





195

Appendix D

Asymptotic Evaluation of the
Integral using the Method of
Stationary Phase for the
Step-Function Boundary Layer Case

The integral in eq.(3.120) is in a suitable form to be solved using the method of stationary
phase following the same procedure as in the case of uniform flow, which was presented in
section 3.1.4.1. More specifically, the integral

In =
1

2π

∫︂ ∞

−∞
p′tn f f

(r̄, kz) e−ikz z̄ dkz. (D.1)

is in the appropriate form to be evaluated by the method of stationary phase as presented in
McAlpine and Kingan (2012). Define I(x) such that

I(x) =
∫︂ b

a
f (t)eixϕ(t)dt, as x → ∞. (D.2)

Then, according to the method of stationery phase, if there is a single point a ≤ c ≤ b such that
ϕ′(c) = 0, provided that ϕ′′(c) ̸= 0, then

I(x) ∼ f (c)
(︃

2π

x|ϕ′′(c)|

)︃1/2

eixϕ(c)±iπ/4, as x → ∞. (D.3)

As is usually the case for far-field analysis, spherical polar coordinates (R̄, θ̄, ϕ̄) are utilized
and the integral is solved in the limit as R̄ → ∞. First substitute

r̄ = R̄ sin θ̄ and z̄ = R̄ cos θ̄. (D.4)
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the Step-Function Boundary Layer Case

Then the dependence of the function p′t∞n
(r̄, kz) on r̄ is via the Hankel function

H(2)
n (Γ∞ r̄) = H(2)

n (Γ∞R̄ sin θ̄) ∼

√︄
2

πΓ∞R̄ sin θ̄
e

1
2 nπi e

1
4 πi e−iΓ∞ R̄ sin θ̄ as R̄ → ∞. (D.5)

Also, exp(−ikz z̄) → exp(−ikzR̄ cos θ̄) so the integral in eq.(D.1) can be expressed in the form

In ∼ 1
2π

∫︂ ∞

−∞
fn (kz, R̄, θ̄) e−iR̄(Γ∞ sin θ̄+kz cos θ̄) dkz as R̄ → ∞, (D.6)

where

fn (kz, R̄, θ̄) =Fn (kz, ω0)

[︄
Jn−l (Γ∞b)

+

[︃
2i Yn (Γ0)

π(a0 + δSF)H(2)
n (Γ∞(a0 + δSF))

(︁
k0 + kz M∞

)︁2 Dn (kz, ω0)

− Jn (Γ∞(a0 + δSF))

]︃ H(2)
n−l (Γ∞b)

H(2)
n (Γ∞(a0 + δSF))

]︄√︄
2

πΓ∞R̄ sin θ̄
e

1
2 nπi e

1
4 πi.

(D.7)

Introduce the similarity variables following Chapman (2000)

(x̄, ȳ, z̄) =

(︃
R̂ sin θ̂ cos ϕ̄, R̂ sin θ̂ sin ϕ̄, R̂σ∞ cos θ̂

)︃
, (D.8)

where
σ2

∞ = 1 − M2
∞, (D.9)

R̂ =
R̄

σ∞
(1 − M2

∞ sin2 θ̄)1/2, (D.10)

cos θ̂ =
cos θ̄

(1 − M2
∞ sin2 θ̄)1/2

, (D.11)

sin θ̂ =
σ∞ sin θ̄

(1 − M2
∞ sin2 θ̄)1/2

, (D.12)

And following Rienstra and Hirschberg (2004), introduce the variable τ

τ = σ2
∞

kz

k0
− M∞, (D.13)

which means that
Γ∞ =

k0

σ∞
(1 − τ2)1/2, (D.14)

kz =
k0

σ2
∞
(τ + M∞), (D.15)

dkz =
k0

σ2
∞

dτ. (D.16)

Note that all those similarity variables are based on the free stream Mach number M∞.
However, in the case of the step-function boundary layer, unlike the case of the uniform flow,
there is one more term that needs to be rewritten in terms of those free stream similarity
variables. This term is Γ0 which is the only one dependent on the Mach number inside the
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boundary layer M0. By introducing the following term for brevity purposes,

σ2
0 = 1 − M2

0, (D.17)

Γ0 can be rewritten in terms of the free stream similarity variables by using eq.(D.15),

Γ0 =
k0

σ∞

√︄
σ2

∞ + (τ + M∞)
[︁
2M0 − (τ + M∞)

σ2
0

σ2
∞

]︁
. (D.18)

By introducing these similarity variables, the integral can be rewritten

In ∼ 1
2π

∫︂ ∞

−∞
gn (τ, R̂, θ̂) eiR̂ϕ̂(τ) dτ (D.19)

where

gn (τ, R̂, θ̂) =
k0

σ2
∞

Fn (τ, ω0)

[︄
Jn−l (Γ∞b)

+

[︃
2i Yn (Γ0)

π(a0 + δSF)H(2)
n (Γ∞(a0 + δSF)) k2

0
(︁
1 + (τ+M∞)M∞

σ2
∞

)︁2 Dn (τ, ω0)

− Jn (Γ∞(a0 + δSF))

]︃ H(2)
n−l (Γ∞b)

H(2)
n (Γ∞(a0 + δSF))

]︄√︄
2

π k0
σ∞

(1 − τ2)1/2R̂ sin θ̂
e

1
2 nπi e

1
4 πi,

(D.20)

ϕ̂(τ) = − k0

σ∞
(1 − τ2)1/2 sin θ̂ − k0

σ∞
(τ + M∞) cos θ̂, (D.21)

Fn (τ, ω0) = π2ξlqPlq e−i(l−n)β k0
(︁
1 +

(τ + M∞)M∞

σ2
∞

)︁
Ψlq(Γ∞), (D.22)

and

Dn (τ, ω0) =

[︃
H(2)′

n (Γ0(a0 + δSF))− J′n (Γ0(a0 + δSF))
H(2)′

n (Γ0a0)

J′n (Γ0a0)

]︃

×
k0
σ∞

√︃
σ2

∞ + (τ + M∞)
[︁
2M0 − (τ + M∞)

σ2
0

σ2
∞

]︁
(︁
k0 +

k0
σ2

∞
(τ + M∞)M0

)︁2

−
[︃

H(2)
n (Γ0(a0 + δSF))− Jn (Γ0(a0 + δSF))

H(2)′
n (Γ0a0)

J′n (Γ0a0)

]︃

×
k0
σ∞

(1 − τ2)1/2(︁
k0 +

k0
σ2

∞
(τ + M∞)M∞

)︁2
H(2)′

n (Γ∞(a0 + δSF))

H(2)
n (Γ∞(a0 + δSF))

,

(D.23)

with Γ∞ and Γ0 substituted with the expressions from eqs. (E.14) and (E.18) respectively.

The limits of the integral can be replaced by (−1, 1) since the integrand will be exponentially
small in the region |τ| > 1 as R̄ → ∞. This happens because when |τ| > 1, Γ∞ becomes
imaginary and so the dependence on r̄ is now through a modified Hankel function. This is
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demonstrated by using the following expressions from Rienstra and Hirschberg (2004),

Kn (z) =
π(−i)n+1

2
H(2)

n (−iz), (D.24)

and the asymptotic behaviour for large argument,

Kn (z) ∼
√︃

π

2z
e−z as z → ∞. (D.25)

Therefore when |τ| > 1,

H(2)
n (Γ∞R̄ sin θ̄) = H(2)

n (−iγ∞R̄ sin θ̄) =
2

π(−i)n+1 Kn (γ∞R̄ sin θ̄) ≃

≃ 2
π(−i)n+1

√︃
π

2γ∞R̄ sin θ̄
e−γ∞ R̄ sin θ̄ → 0, as R̄ → ∞,

(D.26)

since sin θ̄, γ∞ > 0 by default.
After this change of variables, the point where ϕ̂

′
(c) = 0 can easily be found by using

eq.(D.21),
ϕ̂
′
(c) = 0 ⇒ c = cos θ̂. (D.27)

The quantity ϕ̂
′′
(c) is also required and can easily be evaluated as

ϕ̂
′′
(c) =

k0

σ∞ sin2 θ̂
> 0. (D.28)

With all these quantities known, the integral from eq.(D.19) can be replaced using eq.(D.3),

In ∼ 1
2π

gn (c)
(︃

2π

R̂|ϕ̂′′
(c)|

)︃1/2

eiR̂ϕ̂(c)+iπ/4, as R̂ → ∞ (D.29)

where,

gn (c) =
k0

σ2
∞

Fn (c, ω0)

[︄
Jn−l (Γ∞cb)

+

[︃
2i Yn (Γ0c)

π(a0 + δSF)H(2)
n (Γ∞c(a0 + δSF)) k2

0
(︁
1 + (cos θ̂+M∞)M∞

σ2
∞

)︁2 Dn (c, ω0)

− Jn (Γ∞c(a0 + δSF))

]︃ H(2)
n−l (Γ∞cb)

H(2)
n (Γ∞c(a0 + δSF))

]︄√︄
2

π k0
σ∞

sin2 θ̂R̂
e

1
2 nπi e

1
4 πi,

(D.30)

and
ϕ̂(c) = − k0

σ∞
sin2 θ̂ − k0

σ∞
cos2 θ̂ − k0

σ∞
M∞ cos θ̂ = − k0

σ∞
(1 + M∞ cos θ̂). (D.31)

Also the terms Γ∞c and Γ0c are the Γ∞ and Γ0 respectively, but evaluated using τ = c = cos θ̂,

Γ∞c =
k0

σ∞
sin θ̂, (D.32)

and

Γ0c =
k0

σ∞

√︄
σ2

∞ + (cos θ̂ + M∞)
[︁
2M0 − (cos θ̂ + M∞)

σ2
0

σ2
∞

]︁
, (D.33)
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whereas the terms Fn (c, ω0) and Dn (c, ω0) are respectively,

Fn (c, ω0) = π2ξlqPlq e−i(l−n)β k0
(︁
1 +

(cos θ̂ + M∞)M∞

σ2
∞

)︁
Ψlq(Γ∞c), (D.34)

and

Dn (c, ω0) =

[︃
H(2)′

n (Γ0c(a0 + δSF))− J′n (Γ0c(a0 + δSF))
H(2)′

n (Γ0ca0)

J′n (Γ0ca0)

]︃

×

√︃
σ2

∞ + (cos θ̂ + M∞)
[︁
2M0 − (cos θ̂ + M∞)

σ2
0

σ2
∞

]︁
k0σ∞

(︁
1 + (cos θ̂+M∞)M0

σ2
∞

)︁2

−
[︃

H(2)
n (Γ0c(a0 + δSF))− Jn (Γ0c(a0 + δSF))

H(2)′
n (Γ0ca0)

J′n (Γ0ca0)

]︃
× sin θ̂

k0σ∞
(︁
1 + (cos θ̂+M∞)M∞

σ2
∞

)︁2

H(2)′
n (Γ∞c(a0 + δSF))

H(2)
n (Γ∞c(a0 + δSF))

.

(D.35)

Finally, considering that e
1
4 πi e

1
4 πi = e

1
2 πi = i, eq.(D.29) can be written

In =
i Fn (c, ω0)

π R̂ k0

k0

σ∞

[︄
Jn−l (Γ∞cb)

+

[︃
2i Yn (Γ0c)

π(a0 + δSF)H(2)
n (Γ∞c(a0 + δSF)) k2

0
(︁
1 + (cos θ̂+M∞)M∞

σ2
∞

)︁2 Dn (c, ω0)

− Jn (Γ∞c(a0 + δSF))

]︃ H(2)
n−l (Γ∞cb)

H(2)
n (Γ∞c(a0 + δSF))

]︄
e

1
2 nπie−iR̂ k0

σ∞ (1+M∞ cos θ̂).

(D.36)

Now rewrite the expressions in the original coordinates,

∆∞ = Γ∞c =
k0

σ∞
sin θ̂ =

k0

σ∞

σ∞ sin θ̄

(1 − M2
∞ sin2 θ̄)1/2

=
k0 sin θ̄

(1 − M2
∞ sin2 θ̄)1/2

, (D.37)

and by setting C (θ̄) = cos θ̄+(1−M2
∞ sin2 θ̄)1/2 M∞
σ2

∞
, the following is obtained

∆0 = Γ0c =
k0

(1 − M2
∞ sin2 θ̄)1/2

√︂
(1 − M2

∞ sin2 θ̄) + C (θ̄)[2M0(1 − M2
∞ sin2 θ̄)1/2 − C (θ̄)σ2

0 ].

(D.38)
Also by setting S (θ̄) = (1−M2

∞ sin2 θ̄)1/2+M∞ cos θ̄

σ2
∞

, the following is obtained

Fn (c, ω0)

k0
= π2ξlqPlq e−i(l−n)β S (θ̄)

(1 − M2
∞ sin2 θ̄)1/2

Ψlq(∆∞). (D.39)
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Accordingly,

i Fn (c, ω0)

π R̂ k0

k0

σ∞
=iπ2ξlqPlq e−i(l−n)β S (θ̄)

π R̄
σ∞

(1 − M2
∞ sin2 θ̄)1/2(1 − M2

∞ sin2 θ̄)1/2
Ψlq(∆∞)

k0

σ∞
=

=iπξlqPlq k0 e−i(l−n)β S (θ̄)

R̄(1 − M2
∞ sin2 θ̄)

Ψlq(∆∞).

(D.40)

Another term from eq.(D.36) that can take its final form is

e−iR̂ k0
σ∞ (1+M∞ cos θ̂) = e

−i R̄
σ∞ (1−M2

∞ sin2 θ̄)1/2 k0
σ∞ (1+ M∞ cos θ̄

(1−M2
∞ sin2 θ̄)1/2 ) =

e
−iR̄k0

((1−M2
∞ sin2 θ̄)1/2+M∞ cos θ̄)

σ2
∞ = e−ik0R̄S (θ̄).

(D.41)

Finally, the large bracket term from eq.(D.36) will become[︄
Jn−l (Γ∞cb)

+

[︃
2i Yn (Γ0c)

π(a0 + δSF)H(2)
n (Γ∞c(a0 + δSF)) k2

0
(︁
1 + (cos θ̂+M∞)M∞

σ2
∞

)︁2 Dn (c, ω0)

− Jn (Γ∞c(a0 + δSF))

]︃ H(2)
n−l (Γ∞cb)

H(2)
n (Γ∞c(a0 + δSF))

]︄
=

=

[︄
Jn−l (∆∞b)

+

[︃
2i (1 − M2

∞ sin2 θ̄)Yn (∆0)

π(a0 + δSF)H(2)
n (∆∞(a0 + δSF)) k2

0 S2 (θ̄) Dn (∆∞, ∆0)

− Jn (∆∞(a0 + δSF))

]︃ H(2)
n−l (∆∞b)

H(2)
n (∆∞(a0 + δSF))

]︄
,

(D.42)

where

Dn (∆∞, ∆0) =

[︃
H(2)′

n (∆0(a0 + δSF))− J′n (∆0(a0 + δSF))
H(2)′

n (∆0a0)

J′n (∆0a0)

]︃
× ∆0

k2
0
(︁
1 + C (θ̄) M0

(1−M2
∞ sin2 θ̄)1/2

)︁2

−
[︃

H(2)
n (∆0(a0 + δSF))− Jn (∆0(a0 + δSF))

H(2)′
n (∆0a0)

J′n (∆0a0)

]︃
× sin θ̄(1 − M2

∞ sin2 θ̄)1/2

k0 S2 (θ̄)

H(2)′
n (∆∞(a0 + δSF))

H(2)
n (∆∞(a0 + δSF))

.

(D.43)

By inserting eqs. (D.40)-(D.43) into eq.(D.36) and since

p′t f f
(R̄, ϕ̄, θ̄, t) =

1
2π

∞

∑
n=−∞

Ine−inϕ̄ eiω0t, (D.44)
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from eqs. (3.120) and (D.1), the total field in real space can finally be written

p′t f f
(R̄, ϕ̄, θ̄, t) =

iξlqPlq k0 Ψlq(∆∞)

2R̄
S (θ̄)

(1 − M2
∞ sin2 θ̄)

e−ik0R̄S(θ̄)
∞

∑
n=−∞

[︄
Jn−l (∆∞b)

+

[︃
2i (1 − M2

∞ sin2 θ̄)Yn (∆0)

π(a0 + d)H(2)
n (∆∞(a0 + d)) k2

0 S2 (θ̄) Dn (∆∞, ∆0)

− Jn (∆∞(a0 + d))
]︃ H(2)

n−l (∆∞b)

H(2)
n (∆∞(a0 + d))

]︄
× e

1
2 nπi ei(n−l)β e−inϕ̄ eiω0t,

(D.45)

Equation (D.45) is the essential conclusion of this section. It describes the acoustic pressure in
the far-field around the fuselage using spherical polar coordinates centered on the cylindrical
fuselage.
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Appendix E

Asymptotic Evaluation of the
Integral using the Method of
Steepest Descent for the
Step-Function Boundary Layer Case

The integral in eq.(3.120) can also be evaluated using the method of steepest descent as in
Gabard (2008). The method of steepest descent is more mathematically robust than the
method of stationary phase since it incorporates the deformation of the integration path onto
the complex plane avoiding the branch points (points along the kz-axis where Γ∞ = 0, see
Fig. (3.4)). In contrast, in the stationary phase method the integration takes place along the real
kz-axis.

The steepest descent analysis presented here follows the procedure proposed by Gabard
(2008). Firstly, the integral in question

In =
1

2π

∫︂ ∞

−∞
p′tn f f

(r̄, kz) e−ikz z̄ dkz, (E.1)

can be rewritten as
In =

1
2π

∫︂ ∞

−∞
Λ(kz)H(2)

n (Γ∞ r̄) e−ikz z̄ dkz, (E.2)

by using eq.(3.119) and setting

Λ(kz) =Fn (kz, ω0)

[︄
Jn−l (Γ∞b)

+

[︃
2i Yn (Γ0)

π(a0 + δSF)H(2)
n (Γ∞(a0 + δSF))

(︁
k0 + kz M∞

)︁2 Dn (kz, ω0)

− Jn (Γ∞(a0 + δSF))

]︃ H(2)
n−l (Γ∞b)

H(2)
n (Γ∞(a0 + δSF))

]︄
.

(E.3)



204
Chapter E. Asymptotic Evaluation of the Integral using the Method of Steepest Descent for

the Step-Function Boundary Layer Case

As is usually the case for far-field analysis, spherical polar coordinates (R̄, θ̄, ϕ̄) are utilized
and the integral is solved in the limit as R̄ → ∞. First substitute

r̄ = R̄ sin θ̄ and z̄ = R̄ cos θ̄. (E.4)

Then the dependence of the function p′tn f f
(r̄, kz) on r̄ is via the Hankel function

H(2)
n (Γ∞ r̄) = H(2)

n (Γ∞R̄ sin θ̄) ∼

√︄
2

πΓ∞R̄ sin θ̄
e

1
2 nπi e

1
4 πi e−iΓ∞ R̄ sin θ̄ as R̄ → ∞. (E.5)

Also, exp(−ikz z̄) → exp(−ikzR̄ cos θ̄) so the integral in eq.(E.2) can be expressed in the form

In ∼ 1
2π

∫︂ ∞

−∞
Λ(kz)

√︄
2

πΓ∞R̄ sin θ̄
e

1
2 nπi e

1
4 πi e−iΓ∞ R̄ sin θ̄ e−ikz R̄ cos θ̄dkz as R̄ → ∞. (E.6)

Introduce the similarity variables following Chapman (2000)

(x̄, ȳ, z̄) =

(︃
R̂ sin θ̂ cos ϕ̄, R̂ sin θ̂ sin ϕ̄, R̂σ∞ cos θ̂

)︃
, (E.7)

where
σ2

∞ = 1 − M2
∞, (E.8)

Θ = 1 − M2
∞ sin2 θ̄, (E.9)

R̂ =
R̄

σ∞
Θ1/2, (E.10)

cos θ̂ =
cos θ̄

Θ1/2 , (E.11)

sin θ̂ =
σ∞ sin θ̄

Θ1/2 . (E.12)

Also following Rienstra and Hirschberg (2004), introduce the variable τ

τ = σ2
∞

kz

k0
− M∞, (E.13)

which means that
Γ∞ =

k0

σ∞
(1 − τ2)1/2, (E.14)

kz =
k0

σ2
∞
(τ + M∞), (E.15)

dkz =
k0

σ2
∞

dτ. (E.16)

Note that all the similarity variables are based on the free stream Mach number M∞. However,
in the case of the step-function boundary layer, unlike the case of uniform flow, there is one
more term that needs to be rewritten in terms of the free stream similarity variables. This term
is Γ0 which is the only term that is dependent on the Mach number inside the boundary layer
M0. By introducing the following term for brevity purposes,

σ2
0 = 1 − M2

0, (E.17)
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Γ0 can be rewritten in terms of the free stream similarity variables by using eq.(E.15),

Γ0 =
k0

σ∞

√︄
σ2

∞ + (τ + M∞)

[︃
2M0 − (τ + M∞)

σ2
0

σ2
∞

]︃
. (E.18)

By introducing these similarity variables, the integral can be rewritten

In ∼
√︄

k0

2π3R̂ sin θ̂σ3
∞

e
1
2 nπi e

1
4 πie−i k0 R̂

σ∞ M∞ cos θ̂
∫︂ ∞

−∞

Λ(kz(τ))

(1 − τ2)1/4 e
k0 R̂
σ∞ q(τ)dτ, (E.19)

where
q(τ) = −i(1 − τ2)1/2 sin θ̂ − iτ cos θ̂. (E.20)

When k0R̂
σ∞

→ ∞, then the integral can be approximated using the method of steepest descent
(see Chapter 4 of Felsen and Marcuvitz (1994)). As in Gabard (2008), the function q is analytic
except for the branch cuts of the square root term (1 − τ2)1/2 which correspond to to the
branch cuts of Γ∞ (see Fig. (3.4) and Fig. (E.1)) and go from ±1 to ±1 ∓ i∞ in the τ complex
plane.

-1 0 1

Γ  =0∞

Γ  =0∞

branch cut

br
an

ch
 c

ut

FIGURE E.1: Location of branch cuts in the complex τ plane. The thick solid line represents the
deformed integration contour of steepest descent path (SDP). Note how the deformed contour

avoids the branch points at τ = ±1.

As in the case by Gabard (2008), the first order saddle point τs is found by setting

q′(τs) = 0 ⇒ τs = cos θ̂. (E.21)
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This gives q(τs) = −i and

q′′(τs) = i(1 − cos2 θ̂)−3/2 cos θ̂ cos θ̂ sin θ̂ + i(1 − cos2 θ̂)−1/2 sin θ̂ =
i

sin2 θ̂
. (E.22)

Using that saddle point, a path of steepest descent is defined by q(τ) = q(τs)− s2, where s is a
real parameter as proposed by Gabard (2008). Solving for τ one can obtain the following
parameterisation of the steepest descent path

q(τ) = q(τs)− s2 ⇒ −i(1 − τ2)1/2 sin θ̂ − iτ cos θ̂ = −i − s2 ⇒

τ2 − 2(1 − is2)τ cos θ̂ + (1 − is2)2 − sin2 θ̂ = 0.
(E.23)

This quadratic equation yields a discriminant of 4 sin2 θ̂(1 − (1 − is2)2). This means that

τ =
2 cos θ̂(1 − is2)±

√︂
4 sin2 θ̂(1 − (1 − is2)2)

2
= cos θ̂(1 − is2)± sin θ̂

√︂
(1 − (1 − is2)2) ⇒

τ = cos(θ̂ ∓ cos−1(1 − is2))

(E.24)

As explained in Chapter 4 of Felsen and Marcuvitz (1994), on the path of steepest descent the
integrand decays exponentially away from the saddle point, and thus only the contribution on
that point is considered. Note that the saddle point coincides with the point of stationary
phase. Therefore, the integral in eq.(E.19) can be evaluated as

∫︂
SDP

Λ(kz(τ))

(1 − τ2)1/4 e
k0 R̂
σ∞ q(τ)dτ ∼

⌜⃓⃓⎷ −2π
k0R̂
σ∞

q′′(τs)

Λ(kz(τs))

(1 − τ2
s )

1/4 e
k0 R̂
σ∞ q(τs). (E.25)

One must choose the argument of the square root as arg(dτ)τs , where dτ denotes an element
at τs along the steepest descent path (see p. 382 of Felsen and Marcuvitz (1994)). Also,
Λ(kz(τs)) is the term Λ(kz) evaluated at the saddle point. Thus, eq.(E.19) becomes,

In ∼
√︄

k0

2π3R̂ sin θ̂σ3
∞

e
1
2 nπi e

1
4 πie−i k0 R̂

σ∞ M∞ cos θ̂

⌜⃓⃓⎷ −2π
k0R̂
σ∞

i
sin2 θ̂

Λ(kz(τs))√
sin θ̂

e−i k0 R̂
σ∞ , (E.26)

or

In ∼ in+1

πR̂σ∞
Λ(kz(τs)) e−i k0 R̂

σ∞ (1+M∞ cos θ̂). (E.27)

By shifting back to the original coordinates

In ∼ in+1

πR̄Θ1/2 Λ(kz(τs)) e−i
k0

R̄
σ∞ Θ1/2

σ∞ (1+M∞
cos θ̄

Θ1/2 ) =
in+1

πR̄Θ1/2 Λ(kz(τs)) e
−ik0R̄( Θ1/2+M∞ cos θ̄

σ2
∞

)
. (E.28)

And by setting S(θ̄) = Θ1/2+M∞ cos θ̄
σ2

∞
,

In ∼ in+1

πR̄Θ1/2 Λ(kz(τs)) e−ik0R̄S(θ̄). (E.29)
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Next the term Λ(kz(τs)) is evaluated,

Λ(kz(τs)) =Fn(τs)

[︄
Jn−l (

k0

σ∞

√︂
1 − τ2

s b)

+

[︃
2i Yn (Γ0(τs))

π(a0 + δSF)H(2)
n ( k0

σ∞

√︁
1 − τ2

s (a0 + δSF))
(︁
k0 +

k0
σ2

∞
(τs + M∞)M∞

)︁2 Dn(τs)

− Jn (
k0

σ∞

√︂
1 − τ2

s (a0 + δSF))

]︃ H(2)
n−l (

k0
σ∞

√︁
1 − τ2

s b)

H(2)
n ( k0

σ∞

√︁
1 − τ2

s (a0 + δSF))

]︄
.

(E.30)

The smaller terms become, by shifting back to original coordinates,

Γ∞(τs) =
k0

σ∞

√︂
1 − τ2

s =
k0

σ∞
sin θ̂ =

k0 sin θ̄

Θ1/2 = ∆∞, (E.31)

and,

Fn(τs) = π2ξlqPlq e−i(l−n)β (k0 +
k0

σ2
∞
(τs + M∞)M∞)Ψlq(Γ∞(τs)) ⇒

Fn(τs) = π2ξlqPlq e−i(l−n)βk0
S(θ̄)
Θ1/2 Ψlq(∆∞)

(E.32)

The radial wavenumber Γ0(τs),

Γ0(τs) =
k0

σ∞

√︄
σ2

∞ + (τs + M∞)

[︃
2M0 − (τs + M∞)

σ2
0

σ2
∞

]︃
⇒

Γ0(τs) = k0

√︄
1 +

cos θ̄ + M∞Θ1/2

σ2
∞Θ1/2

[︃
2M0 −

cos θ̄ + M∞Θ1/2

σ2
∞Θ1/2 σ2

0

]︃
.

(E.33)

By setting C(θ̄) = cos θ̄+Θ1/2 M∞
σ2

∞
,

Γ0(τs) = k0

√︄
1 +

C(θ̄)
Θ1/2

[︃
2M0 −

C(θ̄)
Θ1/2 σ2

0

]︃
⇒

Γ0(τs) =
k0

Θ1/2

√︂
Θ + C(θ̄)

[︁
2M0Θ1/2 − C(θ̄)σ2

0
]︁
= ∆0.

(E.34)

The term Yn (Γ0(τs)) is only dependent on Γ0(τs) which means Yn (Γ0(τs)) = Yn (∆0). Another
term that needs evaluating is the following

(︃
k0 +

k0

σ2
∞
(τs + M∞)M∞

)︃2

=

(︃
k0 +

k0

σ2
∞

(︁ cos θ̄

Θ1/2 + M∞
)︁

M∞

)︃2

= k2
0

S2(θ̄)

Θ
. (E.35)
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The term Dn(τs) becomes

Dn (∆∞, ∆0) =

[︃
H(2)′

n (∆0(a0 + δSF))− J′n (∆0(a0 + δSF))
H(2)′

n (∆0a0)

J′n (∆0a0)

]︃
∆0

k2
0
(︁
1 + C(θ̄)

Θ1/2 M0
)︁2

−
[︃

H(2)
n (∆0(a0 + δSF))− Jn (∆0(a0 + δSF))

H(2)′
n (∆0a0)

J′n (∆0a0)

]︃
× sin θ̄ Θ1/2

k0S2(θ̄)

H(2)′
n (∆∞(a0 + δSF))

H(2)
n (∆∞(a0 + δSF))

.

(E.36)

Therefore, by substituting eqs. (E.31)-(E.36) into eq.(E.30), Λ(kz(τs)) becomes

Λ(kz(τs)) =π2ξlqPlq e−i(l−n)βk0
S(θ̄)
Θ1/2 Ψlq(∆∞)

[︄
Jn−l (∆∞b)

+

[︃
2i Yn (∆0)Θ

π(a0 + δSF)H(2)
n (∆∞(a0 + δSF)) k2

0 S2(θ̄) Dn(∆∞, ∆0)

− Jn (∆∞(a0 + δSF))

]︃ H(2)
n−l (∆∞b)

H(2)
n (∆∞(a0 + δSF))

]︄
.

(E.37)

Substituting eq.(E.37) into eq.(E.29)

In ∼ in+1

πR̄Θ1/2 π2ξlqPlq e−i(l−n)βk0
S(θ̄)
Θ1/2 Ψlq(∆∞)

[︄
Jn−l (∆∞b)

+

[︃
2i Yn (∆0)Θ

π(a0 + δSF)H(2)
n (∆∞(a0 + δSF)) k2

0 S2(θ̄) Dn(∆∞, ∆0)

− Jn (∆∞(a0 + δSF))

]︃ H(2)
n−l (∆∞b)

H(2)
n (∆∞(a0 + δSF))

]︄
e−ik0R̄S(θ̄),

(E.38)

or

In ∼
in+1πξlqPlqk0

R̄
S(θ̄)

Θ
Ψlq(∆∞)Dn(θ̄)e−ik0R̄S(θ̄)e−i(l−n)β, (E.39)

where

Dn(θ̄) =

[︄
Jn−l (∆∞b)

+

[︃
2i Yn (∆0)Θ

π(a0 + δSF)H(2)
n (∆∞(a0 + δSF)) k2

0 S2(θ̄) Dn(∆∞, ∆0)

− Jn (∆∞(a0 + δSF))

]︃ H(2)
n−l (∆∞b)

H(2)
n (∆∞(a0 + δSF))

]︄
.

(E.40)

And since

p′t f f
(R̄, ϕ̄, θ̄, t) =

1
2π

∞

∑
n=−∞

In e−inϕ̄ eiω0t, (E.41)
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then

p′t f f
(R̄, ϕ̄, θ̄, t) =

1
2π

∞

∑
n=−∞

in+1πξlqPlqk0

R̄
S(θ̄)

Θ
Ψlq(∆∞)Dn(θ̄)e−ik0R̄S(θ̄)e−i(l−n)β e−inϕ̄ eiω0t,

(E.42)
which becomes

p′t f f
(R̄, ϕ̄, θ̄, t) =

iξlqPlqk0

2R̄
S(θ̄)

Θ
Ψlq(∆∞) e−ik0R̄S(θ̄)

∞

∑
n=−∞

Dn(θ̄)ine−i(l−n)β e−inϕ̄ eiω0t. (E.43)

However in = (ei π
2 )n = e

1
2 nπi, which means that eq.(E.43) can finally be rewritten as

p′t f f
(R̄, ϕ̄, θ̄, t) =

iξlqPlqk0

2R̄
S(θ̄)

Θ
Ψlq(∆∞) e−ik0R̄S(θ̄)

∞

∑
n=−∞

Dn(θ̄)e
1
2 nπie−i(l−n)βe−inϕ̄ eiω0t. (E.44)

It is important to note that this expression is exactly the same as the final expression derived
using the stationary phase method in appendix D.
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Appendix F

Asymptotic Evaluation of the
Integral using the Method of
Stationary Phase for the Linear
Boundary Layer Case

The integral in eq.(3.211) is in a suitable form to be solved using the method of stationery
phase following the same procedure as in the case of uniform flow, which was presented in
section 3.1.4.1. More specifically, the integral

In =
1

2π

∫︂ ∞

−∞
p′tn f f

(r̄, kz) e−ikz z̄ dkz. (F.1)

is in the appropriate form to be evaluated by the method of stationary phase as presented in
McAlpine and Kingan (2012). Define I(x) such that

I(x) =
∫︂ b

a
f (t)eixϕ(t)dt, as x → ∞. (F.2)

Then, according to the method of stationery phase, if there is a single point a ≤ c ≤ b such that
ϕ′(c) = 0, provided that ϕ′′(c) ̸= 0, then

I(x) ∼ f (c)
(︃

2π

x|ϕ′′(c)|

)︃1/2

eixϕ(c)±iπ/4, as x → ∞. (F.3)

As is usually the case for far-field analysis, spherical polar coordinates (R̄, θ̄, ϕ̄) are utilized
and the integral is solved in the limit as R̄ → ∞. First substitute

r̄ = R̄ sin θ̄ and z̄ = R̄ cos θ̄ (F.4)
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Then the dependence of the function p′tn f f
(r̄, kz) on r̄ is through the Hankel function

H(2)
n (Γ∞ r̄) = H(2)

n (Γ∞R̄ sin θ̄) ∼

√︄
2

πΓ∞R̄ sin θ̄
e

1
2 nπi e

1
4 πi e−iΓ∞ R̄ sin θ̄ as R̄ → ∞. (F.5)

Also, exp(−ikz z̄) → exp(−ikzR̄ cos θ̄) so the integral in eq.(F.1) can be expressed in the form

In ∼ 1
2π

∫︂ ∞

−∞
fn (kz, R̄, θ̄) e−iR̄(Γ∞ sin θ̄+kz cos θ̄) dkz as R̄ → ∞, (F.6)

where

fn (kz, R̄, θ̄) = Fn(kz, ω0)

[︄
Jn−l (Γ∞b)

+ H(2)
n−l (Γ∞b)

×

[︂
J′n (Γ∞(a0 + δL))− R

G
ε

Γ∞a0
(1 + KM∞)2Jn (Γ∞(a0 + δL))

]︂
[︂

R
G

ε
Γ∞a0

(1 + KM∞)2H(2)
n (Γ∞(a0 + δL))− H(2)′

n (Γ∞(a0 + δL))
]︂]︄

×

√︄
2

πΓ∞R̄ sin θ̄
e

1
2 nπi e

1
4 πi.

(F.7)

Introduce the similarity variables following Chapman (2000)

(x̄, ȳ, z̄) =

(︃
R̂ sin θ̂ cos ϕ̄, R̂ sin θ̂ sin ϕ̄, R̂σ0 cos θ̂

)︃
, (F.8)

where
σ2

∞ = 1 − M2
∞, (F.9)

R̂ =
R̄

σ∞
(1 − M2

∞ sin2 θ̄)1/2 =
R̄

σ∞
Θ1/2, (F.10)

cos θ̂ =
cos θ̄

(1 − M2
∞ sin2 θ̄)1/2

=
cos θ̄

Θ1/2 , (F.11)

sin θ̂ =
σ∞ sin θ̄

(1 − M2
∞ sin2 θ̄)1/2

=
σ∞ sin θ̄

Θ1/2 , (F.12)

And following Rienstra and Hirschberg (2004), introduce the variable τ

τ = σ2
∞

kz

k0
− M∞, (F.13)

which means that
Γ∞ =

k0

σ∞
(1 − τ2)1/2, (F.14)

kz =
k0

σ2
∞
(τ + M∞), (F.15)

dkz =
k0

σ2
∞

dτ. (F.16)
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The next step is to substitute these variables into the integrand. This process will be presented
term by term to facilitate legibility. Firstly, the Fn(kz, ω0) term,

Fn(τ, ω0) = π2ξlqPlq k0

(︃
1 +

(τ + M∞)M∞

σ2
∞

)︃
Ψlq e−i(l−n)β. (F.17)

Then
K(τ) =

τ + M∞

σ2
∞

, (F.18)

µ(τ) = ν
(︂τ + M∞

σ2
∞

)︂2
+ n2, (F.19)

s(τ) =
(τ + M∞)

σ2
∞

(M∞ − Mw), (F.20)

and

g(τ) =
(︂ (τ + M∞)

σ2
∞

)︂2
(M∞ − Mw)

(︂ σ2
∞

τ + M∞
+ Mw

)︂
. (F.21)

Now the large bracketed terms. Firstly, the R term,

R(τ) =

{︄
µ(τ)

(︂ 1
g(τ)

− 1
(s2(τ) + g(τ))

)︂
− ν

− ε

[︄
(2n2 − µ(τ))

s2(τ)
ln
(︃

s2(τ)

g(τ)
+ 1
)︃
− 2n2

s2(τ) + g(τ)
+

µ(τ)

g(τ)
− ν

2

]︄}︄
,

(F.22)

which finally becomes

R(τ) =

{︄
ν

[︄
1[︂

σ2
∞

τ+M∞
+ Mw

]︂[︂
M∞ + σ2

∞
(τ+M∞)

]︂ − 1

]︄

+
n2[︂

1 + (τ+M∞)

σ2
∞

Mw

]︂[︂
(τ+M∞)

σ2
∞

M∞ + 1
]︂

− ε

[︄
n2(︂

(τ+M∞)

σ2
∞

)︂2
(M∞ − Mw)

[︂ 1[︂
σ2

∞
τ+M∞

+ Mw

]︂ − 2[︂
M∞ + σ2

∞
(τ+M∞)

]︂

+
1

(M∞ − Mw)
ln
(︃(︂ σ2

0
τ+M∞

+ M∞

)︂
(︂

σ2
∞

τ+M∞
+ Mw

)︂)︃]︂

+
ν

(M∞ − Mw)

[︂ 1(︂
σ2

∞
τ+M∞

+ Mw

)︂ − (M∞ − Mw)

2
− 1

(M∞ − Mw)
ln
(︃(︂ σ2

∞
τ+M∞

+ M∞

)︂
(︂

σ2
∞

τ+M∞
+ Mw

)︂)︃]︂]︄}︄.

(F.23)

Similarly, the other bracketed term

G(τ) =

{︄
1 + ε2

[︄
µ(τ)

(︂ s2(τ)

3g(τ)
+

1
2

)︂
− ν
(︂ s2(τ)

4
+

2
3

g(τ) +
1
2

g2(τ)

s2(τ)

)︂]︄}︄
, (F.24)
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which eventually becomes

G(τ) =

{︄
1 + ε2

[︄
n2
[︂ M∞ − Mw

3
(︂

σ2
∞

τ+M∞
+ Mw

)︂ +
1
2

]︂
+ ν
(︂τ + M∞

σ2
∞

)︂2[︂ M∞ − Mw

3
(︂

σ2
∞

τ+M∞
+ Mw

)︂ +
1
2

− (M∞ − Mw)2

4
− 2

3
(M∞ − Mw)

(︂ σ2
∞

τ + M∞
+ Mw

)︂
− 1

2

(︂ σ2
∞

τ + M∞
+ Mw

)︂2]︂]︄}︄
.

(F.25)

Also, another term that needs evaluating is

ε

Γ∞(τ)a0
(1 + K(τ)M∞)2 =

ε
k0
σ∞

(1 − τ2)1/2a0

(︂τ + M∞

σ2
∞

)︂2(︂ σ2
∞

τ + M∞
+ M∞

)︂2
. (F.26)

By introducing these similarity variables and taking into account that

R̄ sin θ̄ = R̂
σ∞

(1 − M2
∞ sin2 θ̄)1/2

sin θ̂
(1 − M2

∞ sin2 θ̄)1/2

σ∞
= R̂ sin θ̂, (F.27)

and
R̄ cos θ̄ = R̂

σ∞

(1 − M2
∞ sin2 θ̄)1/2

cos θ̂ (1 − M2
∞ sin2 θ̄)1/2 = R̂σ∞ cos θ̂, (F.28)

the integral can be rewritten

In ∼ 1
2π

∫︂ ∞

−∞
gn (τ, R̂, θ̂) eiR̂ϕ̂(τ) dτ (F.29)

where

gn (τ, R̂, θ̂) =
k0

σ2
∞

Fn (τ, ω0)

[︄
Jn−l (Γ∞(τ)b)

+ H(2)
n−l (Γ∞(τ)b)

×

[︂
J′n (Γ0(τ)(a0 + δL))− R(τ)

G(τ)
ε

k0
σ∞ (1−τ2)1/2a0

(︂
τ+M∞

σ2
∞

)︂2(︂
σ2

∞
τ+M∞

+ M∞

)︂2
Jn (Γ∞(τ)(a0 + δL))

]︂
[︂

R(τ)
G(τ)

ε
k0
σ∞ (1−τ2)1/2a0

(︂
τ+M∞

σ2
∞

)︂2(︂
σ2

∞
τ+M∞

+ M∞

)︂2
H(2)

n (Γ∞(τ)(a0 + δL))− H(2)′
n (Γ∞(τ)(a0 + δL))

]︂
]︄

×
√︄

2

π k0
σ∞

(1 − τ2)1/2R̂ sin θ̂
e

1
2 nπi e

1
4 πi,

(F.30)

and
ϕ̂(τ) = − k0

σ∞
(1 − τ2)1/2 sin θ̂ − k0

σ∞
(τ + M∞) cos θ̂. (F.31)

The limits of the integral can be replaced by (−1, 1) since the integrand will be exponentially
small in the region |τ| > 1 as R̄ → ∞, as explained in appendix D.

After this change of variables, the point where ϕ̂
′
(c) = 0 can easily be found by using eq.(F.31),

ϕ̂
′
(c) = 0 ⇒ k0

σ∞
(1 − c2)−1/2c sin θ̂ − k0

σ∞
cos θ̂ = 0 ⇒ c = cos θ̂. (F.32)
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The quantity ϕ̂
′′
(c) is also required and can easily be evaluated,

ϕ̂
′′
(τ) =

k0

σ∞
(1 − τ2)−3/2τ2 sin θ̂ +

k0

σ∞
(1 − τ2)−1/2 sin θ̂ →

ϕ̂
′′
(c) =

k0

σ∞
sin−3 θ̂ cos2 θ̂ sin θ̂ +

k0

σ∞
=

k0

σ∞

(︁cos2 θ̂

sin2 θ̂
+ 1
)︁
=

k0

σ∞ sin2 θ̂
.

(F.33)

With all these quantities known, the integral from eq.(F.29) can be replaced using eq.(F.3),

In ∼ 1
2π

gn (c)
(︃

2π

R̂|ϕ̂′′
(c)|

)︃1/2

eiR̂ϕ̂(c)+iπ/4, as R̂ → ∞ (F.34)

or

In =
1

2π

k0

σ2
∞

Fn (c, ω0)

[︄
Jn−l (Γ∞(c)b)

+ H(2)
n−l (Γ∞(c)b)

×

[︂
J′n (Γ∞(c)(a0 + δL))− R(c)

G(c)
ε

k0
σ∞ sin θ̂ a0

(︂
c+M∞

σ2
∞

)︂2(︂
σ2

∞
c+M∞

+ M∞

)︂2
Jn (Γ∞(c)(a0 + δL))

]︂
[︂

R(c)
G(c)

ε
k0
σ∞ sin θ̂ a0

(︂
c+M∞

σ2
∞

)︂2(︂
σ2

∞
c+M∞

+ M∞

)︂2
H(2)

n (Γ∞(c)(a0 + δL))− H(2)′
n (Γ∞(c)(a0 + δL))

]︂
]︄

×
√︄

2

π k0
σ∞

sin2 θ̂ R̂
e

1
2 nπi e

1
4 πi

⌜⃓⃓⎷ 2π

R̂ k0
σ∞ sin2 θ̂

× e
iR̂
(︂
− k0

σ∞ sin2 θ̂− k0
σ∞ cos2 θ̂− k0

σ∞ M∞ cos θ̂

)︂
eiπ/4.

(F.35)

Bearing in mind that,

Γ0(c) =
k0

σ∞
sin θ̂, (F.36)

also
eiπ/4e

1
4 πi = e

1
2 πi = cos

π

2
+ i sin

π

2
= i, (F.37)

Fn(c, ω0) = π2ξlqPlq k0

(︃
1 + M∞ cos θ̂

σ2
∞

)︃
Ψlq(Γ∞(c)e−i(l−n)β. (F.38)

Also, for the sake of brevity the large bracketed term is replaced with

L(c) =

[︄
Jn−l (Γ∞(c)b)

+ H(2)
n−l (Γ∞(c)b)

×

[︂
J′n (Γ∞(c)(a0 + δL))− R(c)

G(c)
ε

k0
σ∞ sin θ̂ a0

(︂
c+M∞

σ2
∞

)︂2(︂
σ2

∞
c+M∞

+ M∞

)︂2
Jn (Γ∞(c)(a0 + δL))

]︂
[︂

R(c)
G(c)

ε
k0
σ∞ sin θ̂ a0

(︂
c+M∞

σ2
∞

)︂2(︂
σ2

∞
c+M∞

+ M∞

)︂2
H(2)

n (Γ∞(c)(a0 + δL))− H(2)′
n (Γ∞(c)(a0 + δL))

]︂
]︄

.

(F.39)
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So eq.(F.35) becomes

In =
iFn (c, ω0)

πσ∞R̂
L(c)e−iR̂ k0

σ∞ (1+M∞ cos θ̂)e
1
2 nπi. (F.40)

Going back now to the original coordinates,

∆∞ = Γ∞(c) =
k0

σ∞
sin θ̂ =

k0 sin θ̄

Θ1/2 . (F.41)

Also,
iFn (c, ω0)

πσ∞R̂
=

iπξlqPlqk0e−i(l−n)β

R̄

(︁
Θ1/2 + M∞ cos θ̄

)︁
σ2

∞Θ
Ψlq(∆∞) (F.42)

and with

S(θ̄) =

(︁
Θ1/2 + M∞ cos θ̄

)︁
σ2

∞
, (F.43)

eq.(F.42) becomes
iFn (c, ω0)

πσ∞R̂
=

iπξlqPlqk0e−i(l−n)β

R̄
S(θ̄)

Θ
Ψlq(∆∞). (F.44)

The exponent term will become

e−iR̂ k0
σ∞ (1+M∞ cos θ̂) = e−i R̄

σ∞ Θ1/2 k0
σ∞ (1+M∞

cos θ̄

Θ1/2 ) = e
−iR̄k0(

Θ1/2+M∞ cos θ̄

σ2
∞

)
= e−ik0R̄S(θ̄). (F.45)

Finally the bracketed term must be evaluated. Firstly, the terms inside the bracket are
considered. The R term

R(c) =
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(F.46)

The most common term involving c will become

σ2
∞

c + M∞
=

σ2
∞

cos θ̂ + M∞
=

σ2
∞

cos θ̄
Θ1/2 + M∞

=
σ2

∞Θ1/2

cos θ̄ + M∞Θ1/2 , (F.47)

and by setting

C(θ̄) =

(︁
cos θ̄ + M∞Θ1/2)︁

σ2
∞

, (F.48)
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the common term will become
σ2

∞
c + M∞

=
Θ1/2

C(θ̄)
. (F.49)

This means that the logarithm’s argument will be(︂
σ2

∞
c+M∞

+ M∞

)︂
(︂
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. (F.50)

With these terms known, the R(c) term will become

R(θ̄) =
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As for the G(c) term,

G(c) =
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or

G(θ̄) =
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Finally the last term inside the bracket L that needs evaluating
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(F.54)
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Chapter F. Asymptotic Evaluation of the Integral using the Method of Stationary Phase for

the Linear Boundary Layer Case

So, finally substituting all those terms into eq.(F.40),

In =
iπξlqPlqk0e−i(l−n)β
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S(θ̄)
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where

L(θ̄) =
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(F.56)

with R(θ̄) and G(θ̄) given in eqs. (F.51) and (F.53).

Finally, the far-field pressure in real space is given by eq.(3.211)
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or
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or from eq.(F.1)

p′t f f
(r̄, ϕ̄, z̄, t) =
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(2π)
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In e−inϕ̄ eiω0t, (F.59)

and inserting eq.(F.55)

p′t f f
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Equation (F.60) is the essential conclusion of this section. It describes the acoustic pressure in
the far-field around the fuselage using spherical polar coordinates centered on the cylindrical
fuselage.
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