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1 Introduction

The phase structure of Quantum Chromodynamics (QCD) at large, but not asymptotically

large, baryon densities is poorly understood. Many candidate phases have been discussed,

such as various color superconductors [1], suggested by perturbative results — which are

applicable at asymptotically large densities — and by phenomenological models. Another

candidate phase is quarkyonic matter, suggested by results for QCD at a large number of

colors Nc [2–5]. In this paper we investigate quarkyonic matter in a holographic top-down

approach (within a certain approximation). In particular, we determine the phase structure

of the model fully dynamically for all temperatures and baryon chemical potentials, i.e., we

compare the free energies of quarkyonic matter with those of pure baryonic matter, pure

quark matter, and the mesonic phase.

There are various ways of characterizing and defining quarkyonic matter, and differ-

ent studies in the literature focus, sometimes confusingly, on different, often hypothetical,

properties of this phase. Originally [2], it was pointed out that the pressure of “large-Nc

nuclear matter” scales linearly with Nc, suggesting a bulk contribution of quarks, while

confinement indicates that the fermionic excitations of the system are color singlets. Hence

the term quarkyonic, suggesting that the phase is partly quark-like, partly baryonic. It

was speculated that quarkyonic matter may be chirally symmetric, at least at sufficiently

large densities. Therefore, several model calculations identify confined, but chirally sym-

metric matter with the quarkyonic phase, even when baryonic degrees of freedom are not
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included, such as in the Polyakov-Nambu-Jona-Lasinio model [6–8]. It was also argued

that quarkyonic matter is spatially inhomogeneous due to the appearance of chiral density

waves [9, 10]. Recently, a simple model of (chirally broken) quarkyonic matter was pro-

posed [11], based on the picture of a Fermi sea filled by quarks surrounded by a baryon

layer. This model has been extended and applied to the physics of neutron stars [12–15].

In our holographic approach, we propose a very simple construction of the quarkyonic

phase, similar in spirit to the model of ref. [11]: we find a geometric configuration, uni-

form in position space, in which quark and baryon degrees of freedom coexist, such that

baryon density is generated by actual baryons and by fundamental quarks. Instead of a

construction in momentum space, our quarkyonic matter is constructed in the bulk of the

holographic model, with quarks and baryons affecting different domains of the holographic

direction, associated with different energy regimes. Here, baryons are restricted to the ul-

traviolet, while quarks dominate the infrared. Since we work at strong coupling, an exact

reproduction of the Fermi surface picture realized in the weak-coupling model of ref. [11]

is not expected. Besides this realization of a quarkyonic phase in the literal sense of the

word, our model also allows us to check dynamically whether quarkyonic matter is chirally

symmetric and in which regions of the phase diagram it is the preferred configuration.

We employ the Witten-Sakai-Sugimoto model [16–18], which is based on type-IIA

string theory, and we work in the so-called deconfined geometry and the decompactified

limit of the model. Baryons can be introduced as instanton configurations of the gauge

theory on the flavor branes in the bulk. For simplicity, we approximate these instantons

by delta peaks [19]. Our main point is that these pointlike baryons, whose location on the

branes is dynamically determined, can exist in geometries which already have a nonzero

quark number density. Here, the quark density is either created by string sources attached

to the tip of the connected flavor branes [19, 20] or by a nontrivial abelian gauge field on the

flavor branes reaching all the way to the horizon [19–22]. It is known how to go beyond the

pointlike approximation of baryonic matter, by allowing for nonzero instanton widths [23–

25], and including instanton interactions [26]. Our construction of the quarkyonic phase

can be improved in the future by implementing these features.

There exist previous studies regarding a holographic realization of the quarkyonic

phase. Within the Witten-Sakai-Sugimoto model it has been argued that quarkyonic matter

can be described within a purely baryonic approach, as soon as the baryons move towards

the holographic boundary [27, 28], and instabilities towards the creation of a quarkyonic

phase have been looked for at parametrically large baryon densities [29]. Our approach

goes beyond these studies by including quark degrees of freedom and by constructing the

quarkyonic phase explicitly. The quarkyonic phase has also been studied recently in a

bottom-up holographic model [30], where it is identified with a chirally symmetric but

confined phase, albeit without including baryons. In ref. [31], another holographic bottom-

up approach, working in the so-called Veneziano limit, was employed to construct a phase

where quarks and pointlike baryons coexist. It was argued, however, that this phase only

exists in a version of the model that is unfavored otherwise.

Some of our results are presented in the chiral limit, i.e., for a vanishing current quark

mass. This limit is sufficient to demonstrate the existence of the holographic quarkyonic
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phase, and it can be used to derive some analytical results. Moreover, the case of an

exact chiral symmetry is useful to identify and understand the chiral phase transition. We

generalize these results by allowing for a nonzero current quark mass, resulting in a nonzero

pion mass. Here we follow our recent work [20], in which the effect of a quark mass on

the phase structure of the Witten-Sakai-Sugimoto model was explored — however in the

absence of any baryonic degrees of freedom. Massive quarks are of particular interest in the

context of a possible quark-hadron continuity: in ref. [26] it was speculated that the model

allows for a continuous transition between nuclear and quark matter at zero temperature,

which is conceivable in QCD [32–35], although usually not predicted by phenomenological

models. Here we do find a realization of this continuity via the detour of quarkyonic matter:

at sufficiently large values of the pion mass, quarks start to appear continuously at a certain

chemical potential, while heating up the quarkyonic phase makes baryons melt, such that

a pure quark phase is reached continuously.

Our paper is organized as follows. After a brief summary of the main ingredients of

the model in section 2.1, we discuss the action in section 2.2 and the resulting equations

of motion in section 2.3. Section 2.4 introduces the possible candidate phases within our

approach, and in section 2.5 we prove analytically that holographic quarkyonic matter

is energetically preferred over quark matter in the chiral limit and at zero temperature.

In section 3 we present the numerical evaluation, most notably the phase structure in

section 3.1, while in sections 3.2, 3.3, and 3.4 we go into some details, including discussions

of the brane embeddings, the quark-hadron continuity, and the speed of sound.

2 Setup, candidate phases, and analytical results

2.1 Holographic model

In the Witten-Sakai-Sugimoto model, the pure glue physics of the field theory is described

in terms of the dual gravitational background. This background is given in terms of the

metric with curvature radius R, the dilaton and the Ramond-Ramond 4-form. It is sourced

by Nc D4-branes in type-IIA superstring theory. One of the extra dimensions, say X4, is

compactified on a circle of radius R4 and the theory is only effectively four-dimensional for

energies below the Kaluza-Klein scale MKK = R−14 . Moreover, the periodicity conditions

on the X4-circle are chosen such that supersymmetry is broken. The resulting low-energy

theory is believed to be in the same universality class as large-Nc pure Yang-Mills theory.

This background geometry undergoes a Hawking-Page transition as the temperature T is

increased. The corresponding critical temperature Tc = MKK/(2π) is usually identified

with the deconfinement temperature.

Fundamental matter is included by adding Nf pairs of D8- and D8-branes (“flavor

branes”), such that D4-D8 and D4-D8 strings are associated with left- and right-handed

fundamental fermions. At the lowest non-trivial order in Nf/Nc these extra D-branes

can be taken as probes in a fixed background. We shall work within this probe brane

approximation throughout the paper. Asymptotically, i.e., for large values of the radial

(holographic) direction U , branes and anti-branes are separated along the X4 direction by

a fixed distance L. This separation becomes dynamical in the bulk, and chiral symmetry
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breaking occurs when branes and anti-branes join at some U = Uc, providing a geometrical

realization of the spontaneous symmetry breaking pattern U(Nf )L × U(Nf )R → U(Nf ).

A quark chemical potential µq is introduced by turning on an asymptotic value for the

temporal component of the abelian gauge field on the D8-branes, Â0(∞) = µq. For large

chemical potentials, the results of the probe brane approximation have to be interpreted

with caution since effects on the background geometry can become sizable.

The free parameters of the model are MKK, L, and the (four-dimensional) ’t Hooft

coupling λ. The gravitational description is most accurate at λ � 1. In the original

version of the model [17, 18], the flavor branes were chosen to be located at antipodal

points of the X4-circle, i.e., the asymptotic separation was fixed at L = πM−1KK. In this case,

deconfinement and chiral restoration are locked together. In a more general setup, if the

flavor branes are non-antipodal, for T > Tc (i.e., in the “deconfined geometry”) it becomes

a dynamical question whether the flavor branes join in the bulk or not. For sufficiently

small values of L there is always a region in the T–µq plane where a deconfined but chirally

broken phase is favored [21, 22]. Moreover, the critical temperature for (approximate) chiral

symmetry restoration depends on the chemical potential, as expected in real-world QCD.

In this paper, following refs. [20, 25, 26, 36, 37], we assume the background to be in the

deconfined geometry for arbitrarily low T , which requires a small separation, L� πM−1KK,

and is referred to as the “decompactified limit”. (Apart from restricting ourselves to

the deconfined geometry, L � πM−1KK is never explicitly needed in our calculation.) In

this parameter regime, the gluons are effectively decoupled from the dynamics of chiral

symmetry breaking. Therefore, the field-theoretical dual is comparable to a Nambu-Jona-

Lasinio model [38, 39]. While it is true that by going to this regime we lose some control of

the original top-down construction (in particular, the Kaluza-Klein modes are potentially

relevant), we gain a much richer phase structure, likely to be closer to nature, at least with

respect to the chiral phase transition.

2.2 Building blocks of the action

Having stated the main ideas behind the model (for more details see the original works

or the review [40]), we now introduce the action. Since each term in the action has been

considered before in the literature, we will not elaborate on any derivations. Moreover,

from now on we work with dimensionless quantities, following the convention of ref. [24]:

we use the coordinates u = U/(R3M2
KK), x4 = X4MKK, the abelian gauge field â0 =

4πÂ0/(λMKK), and the asymptotic separation of the flavor branes ` = LMKK. As a

consequence, the thermodynamic quantities such as quark chemical potential µ, baryon

density n, and temperature t will also be used in their dimensionless version. For some

numerical estimates we will translate back to the dimensionful counterparts. This can be

done with the help of table 1 of ref. [20], see also table 1 of ref. [24].

We consider the action

S = SDBI + Sq + Sb + Sm , (2.1)

with the Dirac-Born-Infeld (DBI) term SDBI, the contribution of string sources Sq, the
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contribution of pointlike baryons Sb, and the quark mass contribution Sm. Their explicit

forms are as follows.

The DBI action for the world-volume fields x4(u) and â0(u) is

SDBI = NNf
V

T

∫ ∞
uc

duLDBI , (2.2)

where V is the 3-volume of the flat spatial directions, and

N ≡
NcM

4
KKλ

3
0

6π2
, (2.3)

with λ0 = λ/(4π). We have introduced the DBI Lagrangian

LDBI = u5/2
√

1 + u3fT (u)x′24 (u)− â′20 (u) , (2.4)

where primes denote derivatives with respect to u, and fT (u) is the blackening factor of

the background metric,

fT (u) = 1−
u3T
u3

. (2.5)

Here, uT denotes the location of the horizon of the background geometry and is related to

the dimensionless temperature t by

t =
3

4π

√
uT . (2.6)

The DBI action is written for the case of flavor branes joining at u = uc, where uc has to

be determined dynamically. If the flavor branes reach all the way to the horizon, the lower

boundary of the integral has to be replaced by uT , which is fixed by the temperature. In

the chiral limit, these two different geometries correspond to chirally broken and chirally

restored phases, respectively. We stick to the formulation of joined branes at uc until we

need to discuss both cases separately in section 2.4. In either case, the prefactor N includes

a factor of 2 accounting for the two halves of the configuration. We shall write all terms

of the action such that NNf becomes a global prefactor. In particular, we only consider

flavor-symmetric systems, i.e., even when we consider nonzero quark masses we assume

them to be degenerate for all flavors.

The contribution Sq accounts for Ns strings stretching vertically from the horizon

at uT to the tip of the embedding of the D8-D8 pairs at uc, see left panel of figure 1.

They represent a source for the gauge field â0 and give rise to a nonzero baryon number

density nq. Since the strings carry color and flavor charges like fundamental quarks we

have added the subscript q and we will interpret nq as baryon number created by quarks.

This does not necessarily suggest a quasiparticle picture in the dual field theory, which,

due to the strong coupling limit, cannot be expected to be valid. We restrict ourselves to

non-negative chemical potentials, and thus assume all contributions to the baryon density

to be non-negative as well. In principle, one might allow for the strings to attach to the

flavor branes at more than a single point. And in fact, for the baryonic sources, we shall

exactly do so. We have checked, however, that a configuration with two sets of strings,
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Figure 1. Geometric configurations of holographic quarkyonic matter in the x4–u subspace. In

the low-temperature quarkyonic phase (LTQy), strings stretch from uc to the horizon at uT , while

baryons (assumed to be pointlike) are located at ub. In the high-temperature quarkyonic phase

(HTQy), the flavor branes extend down to the horizon (they are straight in the absence of a

current quark mass mq), and again baryons sit at some ub. The locations uc and ub and the

embedding of the D8- and D8-branes (which have cusps at ub and uc) are determined dynamically

for given temperature and chemical potential. Other candidate phases — previously discussed in

the literature — are obtained by removing string sources and/or baryons.

attached symmetrically to the two halves of the flavor branes is never favored energetically.

Therefore, we continue with strings attached only at u = uc. Also assuming the density

to be uniform in the flat directions, the Nambu-Goto term and the boundary contribution

yield [19, 20]

Sq = NNf
V

T

∫ ∞
uc

dunq [(u− uT )− â0(u)] δ(u− uc) , (2.7)

where we have defined the dimensionless baryon number density (per flavor) created by

string sources by

nq =
6π2

λ20M
3
KKNfNc

Ns

V
. (2.8)

Here, Ns/Nc is the baryon number from strings, and the prefactor arises because we have

pulled out a factor NNf . The energy of the strings is given by the Nambu-Goto term in

eq. (2.7), and thus we can define the dimensionless constituent quark mass by [20, 41, 42]

Mq = uc − uT . (2.9)

This mass is medium dependent, not only through the explicit temperature dependence,

but also through uc, which implicitly depends on temperature and chemical potential.

If the flavor branes reach u = uT , we need to impose the boundary condition â0(uT ) =

0, and Sq plays no role. Nevertheless, although the string sources are absent, this case

also allows for a nonzero quark density due to the nontrivial profile of â0. This scenario is

shown in the right panel of figure 1.

Next, Sb is the contribution from baryons. In the holographic description, baryons

are effectively described in terms of D4-branes wrapping the four-sphere S4 in the ten-

dimensional geometry [17, 43] (not to be confused with the Nc D4-branes of the background
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geometry). As there are Nc units of 4-form flux on this S4, the same amount of fundamental

strings are attached to the D4-branes. These strings can end on the flavor branes, and due

to their strong tension their length is minimized, forcing the baryon to live on the D8-D8

embedding [44]. From the point of view of the world-volume theory, they can be viewed

as non-abelian instantons in the four-dimensional space spanned by ~x and u, and baryon

charge is identified with the topological instanton number [43]. This is manifest in the

Chern-Simons (CS) term of the D8-brane action, which couples â0 with the topologically

non-trivial configuration of the non-abelian gauge fields. Here we work with the simplest

approximation, assuming the instantons to be pointlike and non-interacting [19] (which

does not imply that the baryons in the dual field theory are non-interacting). The action

receives contributions from the energy of the D4-branes and from the Chern-Simons term.

Again restricting ourselves to uniform distributions in the flat direction and assuming the

baryon density to be non-negative, this results in [19, 24, 45]

Sb = SD4 + SCS = NNf
V

T

∫ ∞
uc

dunb

[u
3

√
fT (u)− â0(u)

]
δ(u− ub) . (2.10)

We have denoted the location of the baryons in the holographic direction by ub, and the

number of pointlike instantons NI is related to the dimensionless baryon density by

nb =
6π2

λ20M
3
KKNf

NI

V
. (2.11)

Since the first term in eq. (2.10) corresponds to the energy of the D4-branes, we can define

the dimensionless baryon mass by

Mb =
ub
3

√
fT (ub) . (2.12)

Just like the constituent quark mass (2.9), this mass varies with chemical potential and

temperature, i.e., it is the mass of the baryon in the medium.

Originally [19], the instantons were assumed to be located at the tip of the connected

flavor branes, ub = uc. However, it has been realized that one has to allow for the instantons

to spread out in the holographic directions, i.e., more than one baryon layer may appear [25,

27, 28, 46]. In general, each layer has a location in the holographic direction ub and a

contribution to the baryon density nb and all locations and densities have to be determined

dynamically. Here, we restrict ourselves to the 1-layer case, ub = uc, and the 2-layer case,

where a single ub > uc is determined dynamically (there is one layer on each half of the

flavor branes at the same ub). We shall see that the 1-layer solution is never the state of

lowest free energy. The 2-layer solution, however, is crucial for our purposes: it allows us

to combine baryons from instantons with quarks from string sources (if the flavor branes

connect at uc) and also to place baryons into the geometry if the D8- and D8-branes reach

the horizon, giving rise to two geometric realizations of quarkyonic matter, see figure 1.

In principle, we would have to allow for a larger number of layers, which obviously

becomes tedious if they are treated in full generality. We have checked that higher numbers

of layers do become favored in the present approximation, as pointed out in ref. [27].
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However, our main conclusions (e.g., existence of and transition to the quarkyonic phase)

remain unaltered. Furthermore, it is not known if a higher number of layers is indeed

favored in less simplistic approximations. For instance, two approximations different from

ref. [27] and different from each other [25, 46] indicate that more than 2 layers are never

preferred. From now on we shall therefore ignore configurations with 3 or more instanton

layers.

The final term in eq. (2.1), Sm, accounts for a (small) current quark mass mq and is

taken from ref. [20], where more details about its derivation can be found. Introducing a

current quark mass in the Witten-Sakai-Sugimoto model is not straightforward (as opposed

to a constituent quark mass, which is dynamically generated by chiral symmetry breaking).

This is mainly due to the fact that there are no extra directions along which color and flavor

branes can be separated, as the usual geometrical version of the Higgs mechanism would

require. Here we employ the approximation based on a gauge-invariant, albeit non-local,

version of the quark bi-linear operator whose expectation value is related to the chiral

condensate 〈q̄q〉 [41, 47, 48]. This approach reproduces the pion mass term from chiral

perturbation theory in the low energy description, as well as the Gell-Mann-Oakes-Renner

relation. At strong coupling and from the holographic point of view, the expectation value

of this operator is computed in terms of the area swept by a string (more precisely, a world-

sheet instanton) stretched between the D8- and the D8-branes. The mass contribution to

the action has the form Sm ∼ mq〈q̄q〉, and, employing the notation of ref. [20], it can be

written as

Sm = −NNf
V

T

A

2λ0
, (2.13)

where

A ≡ 2α

λ20
exp

{
2λ0

[
φT (uc)x4(uc) +

∫ ∞
uc

duφT (u)x′4(u)

]}
. (2.14)

The exponent corresponds to the Nambu-Goto action of the string, which has already been

renormalized by subtracting the vacuum contribution, as explained in detail in ref. [20]. The

first term in the exponential vanishes if the flavor branes connect at uc, since x4(uc) = 0,

but it becomes non-trivial if they reach the horizon, in which case x4(uT ) ≥ 0. We have

abbreviated

φT (u) ≡
∫

du√
fT (u)

=
u√
fT (u)

{
1−

3u3T

4u3f
1/6
T (u)

2F1

[
1

6
,

2

3
,

5

3
,−

u3T
u3fT (u)

]}
, (2.15)

where 2F1 is the hypergeometric function, and the dimensionless “mass parameter” α is

α =
3π2f2πm

2
π

NcM4
KK

exp

(
−λ0
`
π tan

π

16

)
, (2.16)

with the pion mass mπ and the pion decay constant fπ. In order to translate the value

of α into a value of the pion mass it is useful to compute the pion decay constant within

our model. This is done by deriving an effective action for the pions from the Yang-Mills

approximation of the DBI action and identifying the prefactor of the kinetic term with
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the pion decay constant squared (divided by 4). Following refs. [17, 49], we find for the

deconfined geometry

f2π =
λNcM

2
KK

48π3

(∫ ∞
uc

du

√
1 + u3x′24
u5/2

)−1
, (2.17)

where x4(u) is the embedding function of the flavor branes in the vacuum, i.e., at zero tem-

perature and chemical potential. Employing the massless limit, we have (see for instance

appendix B of ref. [24])

x′24 (u) =
u8c0

u3(u8 − u8c0)
, uc0 =

16π

`2

(
Γ[9/16]

Γ[1/16]

)2

, (2.18)

which allows us to evaluate the integral analytically to obtain

f2π =
32λNcM

2
KK

3π2`3

(
Γ[9/16]

Γ[1/16]

)3 Γ[11/16]

Γ[3/16]
. (2.19)

The quark mass term (2.13) receives an additional contribution if there is a nonzero

radial component of the world-volume gauge field au. In principle, such a contribution is

relevant in our context because au is nonzero for instance in the usual Belavin-Polyakov-

Schwarz-Tyupkin instanton configuration [50]. This correction was used to compute the

baryon mass shift and the spectrum modifications induced by mq [51]. However, as can

be seen in eq. (2.18) of this reference, the correction is proportional to the cube of the

instanton width. Since we work with pointlike instantons throughout the paper, this term

vanishes in our approximation, and we may proceed with eq. (2.13).

2.3 Equations of motion and free energy

Inserting the expressions (2.2), (2.7), (2.10), and (2.13) into eq. (2.1) gives the full action.

The equations of motion
δS

δx4(u)
=

δS

δâ0(u)
= 0 (2.20)

become

0 = ∂uπx4 + ∆πx4δ(u− ub) , (2.21a)

0 = ∂uπâ0 + (∆πâ0 + nb)δ(u− ub) + nqδ(u− uc) , (2.21b)

where the canonical momenta,

πx4(u) ≡ ∂LDBI

∂x′4
−AφT (u) , πâ0(u) ≡ ∂LDBI

∂â′0
, (2.22)

have been allowed to be discontinuous due to the baryon source at u = ub, and we have

abbreviated ∆π ≡ π(u+b )− π(u−b ). Integrating the equations of motion over [uc, u] yields

πx4(u) =
u11/2fT (u)x′4(u)√

1 + u3fT (u)x′24 (u)− â′20 (u)
−AφT (u) = k , (2.23a)

−πâ0(u) =
u5/2â′0(u)√

1 + u3fT (u)x′24 (u)− â′20 (u)
= nq + nbΘ(u− ub) , (2.23b)
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where k = πx4(uc) is an integration constant and Θ is the Heaviside step function. The

discontinuities in eqs. (2.21) have canceled since they are exactly reproduced with opposite

sign by the u-integration over ∂uπx4 and ∂uπâ0 . As a consequence, there is only a single

integration constant in eq. (2.23a), not two different ones depending on whether u < ub or

u > ub. In eq. (2.23b), the baryon density from baryons nb originates from the pointlike

instantons at u = ub, with the step function appearing due to the integral over δ(u− ub).
As a consequence, x4(u) and â0(u) do not depend on nb for u < ub. The baryon density

from quarks nq arises in the presence of string sources due to the integral over δ(u − uc).
In this case, no additional integration constant appears. This is best seen by repeating

the calculation with string sources at some uq > uc and at the end letting uq → uc.

Alternatively, if string sources are absent and the flavor branes reach the horizon at uT ,

there is an additional integration constant which is identified with the baryon density from

quarks, nq = −πâ0(uT ), such that we can use eq. (2.23b) for both cases.

We can solve eqs. (2.23) algebraically for x′4(u) and â′0(u),

x′4(u) =
AφT (u) + k

u11/2fT (u)
ζ(u) , (2.24a)

â′0(u) =
nq + nbΘ(u− ub)

u5/2
ζ(u) , (2.24b)

where we have abbreviated

ζ(u) ≡
√

1 + u3fT (u)x′24 (u)− â′20 (u)

=

{
1− [AφT (u) + k]2

u8fT (u)
+

[nq + nbΘ(u− ub)]2

u5

}−1/2
. (2.25)

The boundary conditions at the holographic boundary, x4(∞) = `/2 and â0(∞) = µ, are

written most conveniently in the form

`

2
=

∫ ∞
uc

dux′4(u) + x4(uc) , (2.26a)

µ =

∫ ∞
uc

du â′0(u) + â0(uc) =

∫ ∞
ub

du â′0(u) + â0(ub) . (2.26b)

These relations are only valid if x4(u) and â0(u) are continuous at u = ub. We shall require

continuity in all cases we consider. However, the derivatives x′4(u) and â′0(u) are necessarily

discontinuous in the presence of pointlike charges, inducing cusps in the embedding of the

flavor branes. If the flavor branes connect as in the left panel of figure 1, x4(uc) = 0,

and â0(uc) is nonzero and needs to be determined dynamically. If, on the other hand,

the branes reach the horizon, as in the right panel of figure 1, uc has to be replaced by

uT , x4(uT ) ≥ 0 has to be determined dynamically, and we have to impose the additional

boundary condition â0(uT ) = 0. From the behavior of â0(u) close to the holographic

boundary one reads off the density associated with the chemical potential µ, via the usual

AdS/CFT dictionary. Indeed, by expanding â′0(u) from eq. (2.24b) for large u we find that

the total baryon density is

n ≡ nq + nb . (2.27)
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It is useful to introduce the baryon fraction

xb ≡
nb
n
, (2.28)

such that 0 ≤ xb ≤ 1. In the numerical evaluation it turns out to be somewhat more

convenient to work with xb and n rather than with nb and nq.

The free energy of the system is given by the on-shell action. By re-inserting the

solutions (2.24) into the action (2.1), adding and subtracting k[`/2 − x4(uc)] − µn, and

rewriting ` and µ with the help of eqs. (2.26), we obtain the dimensionless free energy

density in the convenient form

Ω ≡
S
∣∣
on−shell

NNf
V
T

=

∫ ∞
uc

du

[
u5/2

ζ(u)
+AφT (u)x′4(u)

]
− A

2λ0

−µn+ nq(uc − uT ) + nb
ub
3

√
fT (ub) + k

[
`

2
− x4(uc)

]
. (2.29)

This expression is formally divergent, but it is straightforwardly renormalized by subtract-

ing the vacuum contribution, i.e., we regularize the integral by introducing an ultraviolet

cutoff Λ, subtract the vacuum free energy density Ωt=µ=0 = 2
7Λ7/2 and then take the

Λ → ∞ limit. (Recall that in our effective treatment of the mass correction the Nambu-

Goto action in the mass term (2.14) had to be renormalized separately.)

2.4 Stationarity equations and candidate phases

For fixed mass parameter α, temperature t, and chemical potential µ (and fixed model

parameters `, MKK, λ), the free energy density is a function of the variables k, uc, ub, nq,

nb if the flavor branes join at u = uc and the variables k, ub, nq, nb, x4(uT ) if the flavor

branes reach the horizon. We will now treat these two cases separately. Recall that A in

eq. (2.29) is an implicit function of all dynamical variables. (In the chiral limit, A = 0.)

We start with the case of connected flavor branes at uc > uT , i.e., x4(uc) = 0. Requiring

stationarity of Ω with respect to all dynamical variables yields

0 =
∂Ω

∂k
=
`

2
−
∫ ∞
uc

dux′4(u) , (2.30a)

0 =
∂Ω

∂nq
= uc − uT − â0(uc) , (2.30b)

0 =
∂Ω

∂nb
=
ub
3

√
fT (ub)− â0(ub) , (2.30c)

0 =
∂Ω

∂uc
= nq − u5/2c

√
1− [AφT (uc) + k]2

u8cfT (uc)
+
n2q
u5c
, (2.30d)

0 =
∂Ω

∂ub
=
nb
3

∆T (ub)

+u
5/2
b


√

1− [AφT (ub) + k]2

u8bfT (ub)
+
n2q
u5b
−

√
1− [AφT (ub) + k]2

u8bfT (ub)
+

(nq + nb)
2

u5b

 ,

(2.30e)
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where we have abbreviated

∆T (ub) ≡
∂

∂ub

[
ub
√
fT (ub)

]
=

1√
fT (ub)

(
1 +

u3T
2u3b

)
. (2.31)

We see that stationarity with respect to k (2.30a) is equivalent to the boundary condition

for x4(u) (2.26a). The conditions (2.30b) and (2.30c) determine the value of the gauge field

â0(u) at the location of the sources. As a consequence of these conditions, the source terms

Sq and Sb in (2.1) do not contribute explicitly to the free energy, only implicitly through

the equations of motion. Therefore, at the stationary point, the free energy density can be

computed from

Ω =

∫ ∞
uc

duu5/2ζ(u)− A

2λ0
, (2.32)

with ζ(u) from eq. (2.25). Stationarity with respect to uc (2.30d) and ub (2.30e) can be

interpreted as force balance conditions in the u direction at the points where the embedding

of the flavor branes develop a cusp, as discussed for pointlike baryons in ref. [19]. One can

check that the force balance in the x4 direction is trivially satisfied by construction.

Some of these equations can be brought into a more convenient form: we use the

boundary condition for â0(u) (2.26b) in eqs. (2.30b) and (2.30c) and rewrite the resulting

integral in eq. (2.30b) with the help of eq. (2.30c). Furthermore, we solve (2.30d) for k,

which gives a result independent of nq (using nq ≥ 0), and rewrite eq. (2.30e) in terms

of the total baryon density n and the baryon fraction xb, after which we can solve this

equation for n. Thus we arrive at the following set of coupled equations,

`

2
=

∫ ∞
uc

dux′4(u) , (2.33a)∫ ub

uc

du â′0(u) =
ub
3

√
fT (ub)− uc + uT , (2.33b)∫ ∞

ub

du â′0(u) = µ− ub
3

√
fT (ub) , (2.33c)

k = u4c
√
fT (uc)−AφT (uc) , (2.33d)

n =
6∆T (ub)

u
3/2
b

√
u8bfT (ub)− [AφT (ub) + k]2

fT (ub)[9−∆2
T (ub)][9(2− xb)2 − x2b∆2

T (ub)]
, (2.33e)

which have to be solved together with the implicit equation for A (2.14),

A =
2α

λ20
exp

[
2λ0

∫ ∞
uc

duφT (u)x′4(u)

]
. (2.34)

We can insert k and n from eqs. (2.33d) and (2.33e) into the other equations to be left

with (at most) 4 coupled equations to be solved numerically. The equations allow for

several distinct phases, obtained by setting both, one, or none of the contributions nq and

nb to the baryon density to zero. If nq and/or nb are zero, the corresponding stationarity

equations, i.e., (2.30b) and/or (2.30c) should be ignored. The reason is that we have
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restricted ourselves to nq, nb ≥ 0, and thus zero density corresponds to the boundary of

our multi-variable space. Therefore, zero density can correspond to a minimum of the free

energy even though the free energy behaves linearly as a function of the density at that

point. (Had we allowed for negative densities — as it was done for instance in ref. [45] for

pointlike baryons — the free energy would be ∧- or ∨-shaped at the zero-density point.)

All phases except for the quarkyonic phase, where both nq and nb are nonzero, have been

discussed previously in the literature, at least in the chiral limit A = 0. For completeness,

and to show that they can be obtained from our more general setup, we list all relevant

phases, i.e., the phases that play a role in the phase diagram.

(a) Mesonic phase: nq = nb = 0.

In this case, the baryon density vanishes. As a consequence, the embedding of the flavor

branes x4(u) is smooth everywhere, â0(u) = µ is constant, and the free energy does not

depend on µ and ub. This phase is therefore evaluated by solving eqs. (2.33a), (2.33d),

and (2.34) (while eq. (2.30e) is automatically fulfilled for nb = 0). We can determine

the point of a continuous onset of baryon density from the mesonic geometry by taking

the zero-density limit of eqs. (2.30b) and (2.30c): strings can be inserted at the point

nq onset : µ = uc − uT , (2.35)

while pointlike instantons are inserted at ub = uc and

nb onset : µ =
uc
3

√
fT (uc) . (2.36)

These conditions simply mean that quarks (baryons) can be added to the system if the

chemical potential becomes equal or larger than the constituent quark mass (baryon

mass), see eqs. (2.9) and (2.12). In both conditions uc depends implicitly on the

temperature, and no simple analytic expression in terms of temperature only can be

obtained in general. It should also be emphasized that these chemical potentials do not

necessarily correspond to a physical phase transition because the continuous change

of geometry can occur in a metastable regime, i.e., there is another phase, or even

another branch of the same phase, which has lower free energy.

(b) Baryonic phase (with 2 layers): nq = 0, nb > 0.

Here, strings are absent, and pointlike instantons are located at ub ≥ uc. The embed-

ding is smooth at uc (unless ub = uc) but has a cusp at ub. The relevant equations

to be solved simultaneously are eqs. (2.33a), (2.33c), (2.33d), (2.33e), and (2.34). As

we see from eq. (2.24b), for nq = 0 the gauge field â0(u) is constant for all u < ub.

Using this observation together with eq. (2.33b), we see that quark number can be

continuously added at the point given implicitly by

nq onset :
ub
3

√
fT (ub) = uc − uT . (2.37)

For instance, at zero temperature, where uT = 0 and fT (u) ≡ 1, strings can be attached

at the tip of the connected flavor branes when the baryons sit at ub = 3uc. Since the
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right-hand side of eq. (2.37) is the constituent quark mass (2.9), and the left-hand side

is identical to â0(ub), we see that â0(ub) plays the role of an effective chemical potential

for the quarks. We will come back to this observation in section 3.3.

(c) Low-temperature quark phase (LTQ): nq > 0, nb = 0.

In this case, baryon number is only generated by quarks. This phase was introduced in

ref. [20] and termed LTQ phase because it turns out that it only exists at sufficiently

small temperatures. It has a high-temperature counterpart to be discussed below. (In

the chiral limit, the LTQ phase is never stable, only its counterpart is relevant and exists

for all temperatures.) The equations to be solved are eqs. (2.33a), (2.30b), (2.33d),

and (2.34). (As written, eq. (2.33b) cannot be used since it was derived using the

stationarity equation with respect to nb, hence we have to go back to eq. (2.30b),

into which we may insert the boundary condition (2.26b).) Also from this phase it

is possible to go continuously to the phase where both nq and nb are nonzero, i.e., in

the geometry where strings are attached to the flavor branes one can insert pointlike

baryons with infinitesimally small density at some ub > uc (for which there is no simple

analytical expression). This continuous transition is indeed realized for large current

quark masses and certain nonzero temperatures.

(d) Low-temperature quarkyonic phase (LTQy): nq, nb > 0.

This phase is characterized by the presence of both instantons and strings, i.e., both

nq and nb are non-zero. This phase is a combination of the baryonic and LTQ config-

urations, where embedding and location of the instantons are adjusted dynamically to

accommodate both kinds of baryon densities. All equations (2.33) and (2.34) need to

be taken into account here. Due to the presence of quark and baryonic contributions

to the thermodynamics of the system, this phase is quarkyonic in the literal sense of

the word.

Besides the four phases listed here, there is also the 1-layer baryonic phase. In this

case, the baryons are located at u = uc. Since this is the point at which the strings are

assumed to be attached in the above derivation, the relevant stationarity equations cannot

be straightforwardly extracted from eqs. (2.30). However, by repeating the derivation

without strings it is straightforward to derive the stationarity equations. This constitutes

the generalization of ref. [19] to nonzero current quark masses. For all values of the current

quark mass we consider, the 1-layer baryonic phase turns out to be never preferred in any

region of the phase diagram. In particular, we find that the onset of 1-layer baryonic matter

from the vacuum occurs at exactly the same point as the onset of 2-layer baryonic matter,

but 1-layer baryonic matter is energetically disfavored from this point on, although close to

the onset it is barely distinguishable from 2-layer baryonic matter. Therefore, and since we

ignore the multi-layer solutions for the reasons explained above, the 2-layer configuration

is the only way we add baryons to the system.

Next we need to discuss the phases where the flavor branes reach the horizon at u = uT .

In this case, instead of stationarity with respect to uc, we must require stationarity with
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respect to x4(uT ). Instead of eqs. (2.33) we derive

`

2
=

∫ ∞
uT

dux′4 + x4(uT ) , (2.38a)∫ ub

uT

du â′0 =
ub
3

√
fT (ub) , (2.38b)∫ ∞

ub

du â′0 = µ− ub
3

√
fT (ub) , (2.38c)

k = −AφT (uT ) , (2.38d)

n =
6∆T (ub)

u
3/2
b

√
u8bfT (ub)− [AφT (ub) + k]2

fT (ub)[9−∆2
T (ub)][9(2− xb)2 − x2b∆2

T (ub)]
, (2.38e)

plus the equation for A, which now takes the form

A =
2α

λ20
exp

[
2λ0

(
`

2
φT (uT ) +

∫ ∞
uT

du [φT (u)− φT (uT )]x′4(u)

)]
. (2.39)

This generalizes the phase introduced in ref. [20] by allowing pointlike instantons to sit

at ub > uT , see right panel of figure 1. As discussed in ref. [20], in the case of a nonzero

current quark mass the embedding of the flavor branes is non-straight, it approaches the

horizon tangentially, and the geometry only exists at nonzero temperatures. In the chiral

limit, the branes become straight, k = 0, and the geometry exists for all temperatures. As

for the above case with branes joining at uc, the source terms do not contribute explicitly

to the free energy at the stationary point, which, analogously to eq. (2.32), becomes,

Ω =

∫ ∞
uT

duu5/2ζ(u)− A

2λ0
. (2.40)

In this geometry, the quark density is always nonzero (unless µ = 0) and thus we have the

following two phases.

(e) High-temperature quark phase (HTQ): nq > 0, nb = 0.

In this case, the baryon density is purely generated by quarks, and the relevant

equations that need to be solved are (2.38a), (2.30b), (2.38d), and (2.39). (Again, as

discussed for the LTQ phase (c), we need to go back to the stationarity condition with

respect to nq (2.30b), since eq. (2.38b) only holds in the presence of baryons.) We can

add baryons to this phase continuously, but as for the low-temperature counterpart

there is in general no simple analytical expression for the critical chemical potential

of this transition. Such an expression can be derived, however, in the chiral limit, see

section 2.5.

(f) High-temperature quarkyonic phase (HTQy): nq, nb > 0.

This is the high-temperature counterpart of the LTQy phase (d), see right panel of

figure 1. In this case, we need to solve all equations (2.38) and (2.39) simultaneously.

As discussed in ref. [20], the existence of two distinct geometries for nonzero quark
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density may be due to a simplified description using strings rather than a more

complicated structure of the flavor branes. This is supported by the observation

that, in the massive case, where a transition between the LTQ and HTQ phases

takes place, this transition is “nearly” a crossover, with a very small discontinuity

in the speed of sound [20]. This is also true for the present generalization to the

quarkyonic phases, such that for the physical interpretation it is, for most purposes,

useful to think of the LTQy and HTQy geometries as describing the same physical

phase.

Our holographic quarkyonic phases, LTQy (d) and HTQy (e), are novel configurations,

never discussed before in the Witten-Sakai-Sugimoto model. As we shall see, they cover a

significant part of the phase diagram. Therefore, and independent of their interpretation,

one of our main results is to point out that they have to be taken into account in the

evaluation of the model at nonzero densities and chemical potentials. Before discussing

the phase structure in detail, let us comment on our interpretation of these phases, i.e.,

on why we term them “quarkyonic”. As explained in the introduction, the quarkyonic

phase of large-Nc QCD can be characterized by various properties. Our LTQy and HTQy

phases are a simple version of quarkyonic matter, and we do not claim to have constructed a

holographic equivalent that shares all characteristics with the quarkyonic phase of large-Nc

QCD or possibly of real-world QCD. Let us first recall the physical picture of the quarkyonic

phase in large-Nc QCD [2, 5, 11]: in momentum space (and at zero temperature), this

phase can be thought of as a Fermi sea of quarks on top of which there is a layer of

baryons. If the Fermi momentum is large compared to the width of the baryon layer, the

thermodynamics are dominated by quarks, although the excitations, relevant for instance

for transport properties, are baryonic. In this picture, the quarkyonic phase is not unlike

a fermionic system with Cooper pairing in the vicinity of the Fermi surface. Increasing

the baryon chemical potential, one expects to go from a baryonic phase (purely baryonic

Fermi sea) through a quarkyonic phase (in which a quark Fermi sea starts to grow) to a

quark phase (where the layer of baryons has disappeared). In particular, there are two

contributions to the baryon density, one from actual baryons, and one from quarks. This

picture has recently been translated into a simple phenomenological model for quarkyonic

matter [11]. At strong coupling, a sharp Fermi surface is not expected (although some

elements of Fermi liquid behavior have been observed in holographic calculations [52–

54]). Therefore, our holographic quarkyonic phase is perhaps best understood as a strong-

coupling version of the model introduced in ref. [11], not relying on the presence of any

Fermi surface. We also have contributions from quarks and baryons to the density, and

the Fermi sea construction is replaced by the geometries shown in figure 1. Since the

holographic coordinate u is interpreted as an energy scale we may assign different energy

regimes to quarks and baryons, reminiscent of the momentum-space picture. We shall

elaborate on our holographic picture of quarkyonic matter in section 3.3, where we show

how the geometry develops as temperature and chemical potentials are varied.

To avoid any confusion, we emphasize that the holographic quarkyonic phase (just like

the large-Nc QCD version) is not a “mixed” phase of quarks and baryons. In a mixed

phase, according to the usual terminology, two phases are spatially separated or possibly
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form a homogeneous mixture if they interpenetrate each other, like a mixture of two gases.

In the weak-coupling picture, this would correspond to two separate Fermi surfaces for

quarks and baryons. In our model we could construct such a mixed phase by assigning

different volume fractions (to be determined dynamically) to the pure quark phase and the

pure baryonic phase. It is conceivable that such a phase is preferred in a certain region

of the phase diagram, in particular close to a first-order phase transition between the two

pure phases, as discussed routinely in the context of dense matter in neutron stars [55–57].

In this work we ignore such a mixed phase, but emphasize that the quarkyonic phase is

qualitatively different.

Since in the usual picture of the quarkyonic phase excitations at the Fermi surface are

color singlets, the quarkyonic phase is usually argued to be confined. It is tempting to

make the connection to our holographic version by viewing our quarkyonic (and baryonic)

phases as being confined. However, as explained in section 2.1, we work in the “decon-

fined geometry”, and thus have to be careful with this interpretation. One might argue

that the deconfined geometry only refers to deconfined gluons, which are described by the

background geometry and which we have decoupled from our description, and that quarks

can nevertheless be “confined” in baryons. We do not attempt to make these arguments

regarding confinement more precise. What we can do in a precise sense is to observe

spontaneous chiral symmetry breaking (or absence thereof) within the quarkyonic phase,

at least in the limit of a vanishing current quark mass, where chiral symmetry is exact.

We have constructed two realizations of quarkyonic matter which, in the massless limit,

correspond to chirally restored quarkyonic matter (HTQy, flavor branes disconnected) and

chirally broken quarkyonic matter (LTQy, flavor branes connected). The system will choose

the preferred configuration dynamically, and we will discuss the result in section 3.

Finally, we should mention that in large-Nc QCD quarkyonic matter has first been

identified by power counting in Nc. It was realized that there is a phase at large densities

and sufficiently low temperature whose pressure scales as Nc — suggesting quark degrees

of freedom to be dominant — although the phase is confined. This is in contrast to the

pressure of the mesonic and the purely baryonic phases, which are expected to scale as

N0
c , and the deconfined quark-gluon plasma, which scales as N2

c because it is dominated

by gluons. Our model in its present form does not allow us to reproduce these scalings.

Firstly, since we work in the deconfined geometry, the gluonic background always gives an

N2
c contribution, such that strictly speaking the pressure of all our phases is dominated by

gluons. Of course, in the spirit of the decompactified limit, we ignore this contribution and

may still ask whether our phases scale differently with Nc. However, taking for instance

eq. (2.29) together with the definition of N (2.3) we see that the pressure (which is the

negative of the free energy density) always scales like NfNc. The same observation has

been made in a D3/D7 model, see ref. [58] for a discussion of the scaling properties in a

probe brane setup at strong coupling. Thus we cannot use naive power counting in Nc in

the present approach to distinguish between our phases.

We now turn to the evaluation of the stationarity equations and the corresponding free

energies. In general, this has to be done numerically. In the chiral limit some analytical

results can be derived, as we now explain.
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2.5 Chiral limit

In the chiral limit, it turns out that the LTQy phase is metastable at best, just like the LTQ

phase in the absence of baryon sources [20]. We can therefore focus on the HTQy phase

and thus on eqs. (2.38), where we can set A = 0. It follows immediately from eq. (2.38d)

that k = 0 and thus with eq. (2.24a) that the flavor branes are straight, x′4(u) = 0, for

all u. In the remaining equations all integrals can be performed, and eqs. (2.38b), (2.38c),

and (2.38e) read√
fT (ub)

3
= 2F1

[
1

5
,
1

2
,
6

5
,−

u5b
n2(1− xb)2

]
− uT
ub

2F1

[
1

5
,
1

2
,
6

5
,−

u5T
n2(1− xb)2

]
, (2.41a)

µ = ub

{√
fT (ub)

3
− 2F1

[
1

5
,

1

2
,

6

5
,−

u5b
n2

]}
+ n2/5

Γ[3/10]Γ[6/5]√
π

, (2.41b)

n =
6u

5/2
b ∆T (ub)√

[9−∆2
T (ub)][9(2− xb)2 − x2b∆2

T (ub)]
. (2.41c)

Given µ and t, these are three coupled equations for n, ub, and xb. The dimensionless

free energy density can be computed from eq. (2.40), which, after subtracting the vacuum

contribution and using eqs. (2.41a) and (2.41b), can be written as

ΩHTQy
mq=0 (µ, t) = −2

7

{
nµ+ uT

√
n2(1− xb)2 + u5T

−ub
[√

n2(1− xb)2 + u5b −
√
n2 + u5b +

nxb
3

√
fT (ub)

]}
. (2.42)

For comparison, in the pure quark phase in the chiral limit, the only nontrivial equation is

µ =

∫ ∞
uT

du â′0 = −uT 2F1

[
1

5
,

1

2
,

6

5
,−

u5T
n2

]
+
n2/5Γ[3/10]Γ[6/5]√

π
, (2.43)

and the free energy density can be written as

ΩHTQ
mq=0(µ, t) = −2

7

(
nµ+ uT

√
n2 + u5T

)
. (2.44)

By taking the limit xb → 0 in eqs. (2.41) we obtain the onset of quarkyonic matter from

pure quark matter. We find

ub = c1uT , µ = c2uT , n = c3u
5/2
T , (2.45)

where c1 ' 1.92863 satisfies
√
c3 − 1

3c1/2
= c 2F1

[
1

5
,
1

2
,

6

5
,−g(c)

]
− 2F1

[
1

5
,

1

2
,
6

5
,−g(c)

c5

]
, (2.46)

with g(c) ≡ (32c6 − 40c3 − 1)/(1 + 2c3)2, and

c2 = − 2F1

[
1

5
,

1

2
,

6

5
,−g(c1)

c51

]
+

c1

g1/5(c1)

Γ[3/10]Γ[6/5]√
π

' 1.12171 , (2.47a)

c3 =
c
5/2
1

g1/2(c1)
' 2.15067 . (2.47b)
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With the help of eq. (2.6), the second relation in eq. (2.45) gives the following curve in the

t–µ plane,

t =
3

4π

√
µ

c2
. (2.48)

In the full numerical evaluation (including all other candidate phases) we shall see that this

onset is realized in the phase diagram for sufficiently large temperatures. The relation (2.48)

shows that the critical temperature of the quark-quarkyonic transition increases with µ.

This is perhaps surprising, given that this transition is constant in µ for Nc =∞ QCD, i.e.,

given by a horizontal line in the t–µ plane, which is usually believed to bend downwards,

not upwards, as Nc is decreased [2].

At zero temperature, we can further simplify the result. In this case, uT = 0, fT (u) = 1,

and ∆T (ub) = 1. Therefore, inserting eq. (2.41c) into eq. (2.41a) yields an equation for

xb only,

2F1

[
1

5
,
1

2
,
6

5
,−

2[9(2− xb)2 − x2b ]
9(1− xb)2

]
=

1

3
, (2.49)

with the (only relevant) numerical solution

xb ' 0.966471 . (2.50)

Strikingly, the baryon fraction is very close to 1, i.e., in terms of density contributions our

holographic quarkyonic phase is almost purely baryonic at zero temperature, at least in the

chiral limit. The suppression of the quark contribution is in accordance with the model of

ref. [11], where the quark density in the quarkyonic phase is suppressed parametrically by

1/N3
c compared to the density from baryons.1 It is also interesting, and perhaps surprising,

that the baryon fraction is constant, i.e., it does not depend on µ. In particular, we can

already conclude that in the chiral limit and at zero temperature there cannot be any

continuous transition from the quarkyonic phase to either the pure quark phase (where

xb = 0) or the pure baryonic phase (where xb = 1).

The remaining equations (2.41b) and (2.41c) give

n = X2µ
5/2 , ub = X

1/5
1 X

2/5
2 µ , (2.51)

with

X1 ≡
2[9(2− xb)2 − x2b ]

9
, (2.52a)

X2 ≡
{

Γ[3/10]Γ[6/5]√
π

+X
1/5
1

(
1

3
− 2F1

[
1

5
,

1

2
,

6

5
,−X1

])}−5/2
. (2.52b)

Inserting all this into the free energy density (2.42) yields

ΩHTQy
mq=0 (µ, t = 0) = −2

7
X2µ

7/2 ' −0.371413µ7/2 . (2.53)

1Amusingly, if this suppression is taken literally, i.e., without any additional numerical factors, the result

for Nc = 3 is very close to the value we found, 1 − 1/33 ' 0.962963.
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This is to be compared to the free energy density (2.44) of the pure quark phase, which

becomes

ΩHTQ
mq=0(µ, t = 0) = −2

7

(
Γ[3/10]Γ[6/5]√

π

)−5/2
µ7/2 ' −0.0955687µ7/2 . (2.54)

We observe, first of all, that both quark and quarkyonic phases exhibit the same µ7/2

behavior. This is remarkable because we have just seen that the density of the quarkyonic

phase is utterly dominated by baryons, and yet it seems to behave in some sense like quark

matter. For instance, as a consequence, the zero-temperature speed of sound of quarkyonic

matter and quark matter in the chiral limit are exactly the same, see discussion at the

end of section 3.4. Furthermore, eqs. (2.53) and (2.54) show that the quarkyonic phase is

preferred over the pure quark phase for all µ. (At small µ, as expected and as we shall

see, the mesonic and purely baryonic phases become favored over both phases.) Therefore,

the quarkyonic configuration must be included in the phase structure of the model. And

we conclude that, in contrast to QCD, pure quark matter does not become the ground

state at asymptotically large µ. This is not too surprising since our present model is not

asymptotically free, such that comparisons with QCD become meaningless at ultra-high

chemical potentials and/or temperatures. Moreover, at large chemical potentials, our probe

brane approximation cannot be expected to be reliable, and backreactions should be taken

into account. It is then conceivable that pure quark matter does become favored at large

chemical potentials, as seen for instance in ref. [31].

3 Numerical results and discussion

In this section we present the numerical results, obtained by solving the coupled system of

algebraic equations (containing numerical integrals) presented in the previous section, i.e.,

eqs. (2.33) and (2.34) for the phases (a), (b), (c), (d), and eqs. (2.38) and (2.39) for the

phases (e), (f). The solutions are then inserted back into the free energy density (2.32)

and (2.40), respectively, to determine the favored phase for all temperatures and chemical

potentials.

We can eliminate the asymptotic separation of the flavor branes ` from our equations

by rescaling all dynamical and thermodynamic variables by appropriate powers of `. In all

figures the results will therefore be presented in terms of these rescaled (and dimensionless)

quantities. The relevant rescaled thermodynamic quantities are t̃ = t`, µ̃ = µ`2, ñ = n`5,

Ω̃ = Ω`7, while the baryon fraction xb obviously does not get rescaled. We shall also plot

the embedding of the flavor branes and the abelian gauge field, for which we need ũ = u`2,

x̃4 = x4/`, and ã0 = â0`
2. This leaves us with only two parameters which we have to specify

for the calculation, the rescaled ’t Hooft coupling λ̃ = λ/` and the rescaled mass parameter

α̃ = α`4. (If α̃ = 0, then λ̃ does not appear explicitly in the calculation.) We shall work

with the fixed value λ̃ = 15. This value is motivated by a fit to properties of nuclear matter

at saturation, obtained from a more refined, non-pointlike, instanton approximation [26]. It

is also comparable to the value obtained by fitting the model parameters to the pion decay

constant and the rho meson mass in the original version of the model [18] if we assume
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Figure 2. Phase diagrams in the plane of dimensionless temperature and quark chemical potential

for ’t Hooft coupling λ̃ = 15 and quark mass parameters α̃ = 0 (chiral limit, left panel) and α̃ = 0.2

(large pion mass, right panel). Solid lines are discontinuous phase transitions while transitions

across dashed lines are continuous. In the right panel, the continuous transition between the two

different versions of pure quark matter (HTQ and LTQ) and the two versions of quarkyonic matter

(HTQy and LTQy) is marked by a dotted line.

` ∼ 1, corresponding to asymptotically separating the flavor branes by about a third of

the antipodal separation. For a systematic study of how the ’t Hooft coupling changes

the phase structure in the current setup — but without baryons — see ref. [20]. We will

consider different values of the mass parameter α̃ in order to study the effect of a nonzero

pion mass. Here we have to keep in mind that going to large values of the pion mass is

an extrapolation because we have neglected higher-order terms in the current quark mass

from the beginning.

We start with a discussion of the t̃–µ̃ phase diagram and then elaborate on certain

aspects of this diagram related to quarkyonic matter.

3.1 Quarkyonic matter in the phase diagram

In figure 2 we present the phase diagram in the chiral limit (left panel, α̃ = 0) and for a

nonzero quark mass parameter (right panel, α̃ = 0.2). Our observations are as follows.

• At low temperature, by increasing the chemical potential we move from the vacuum

through baryonic matter to the quarkyonic phase. As already observed from the

analytical results in section 2.5, there is no high-density transition to pure quark

matter at low temperatures. Baryons in the quarkyonic phase do, however, melt as

the temperature is increased, and pure quark matter is reached through a continuous

transition. This is discussed in more detail in section 3.2.

• In the quarkyonic phase, chiral symmetry is restored. In the massless scenario of the

left panel, the flavor branes are straight and disconnected in the quarkyonic phase

(HTQy), and thus chiral symmetry is intact. A chirally broken branch (LTQy) does

exist even in the chiral limit as a stationary point of the free energy but is never

preferred. As a consequence, allowing for quarkyonic matter has introduced a zero-

temperature chiral phase transition into the phase diagram, which otherwise would
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be absent in the approximation of pointlike baryons [19]. For a small explicit chiral

symmetry breaking, the quarkyonic phase is “almost” chirally symmetric, because

the stable branches of both HTQy and LTQy configurations have nearly straight

branes.

• For large values of the pion mass, the low-temperature transition from baryonic to

quarkyonic matter becomes continuous. By taking a suitable path in the phase di-

agram we can even connect all possible phases continuously. Here, by continuously

we mean via phase transitions where the first derivatives of the thermodynamic po-

tential (i.e., density and entropy) are continuous, although higher derivatives may be

discontinuous. We will comment on this continuity in more detail in section 3.4.

• At nonzero pion mass, the quark and quarkyonic phases each have a low-temperature

and a high-temperature version. We have denoted the transitions between them

with dotted lines, suggesting that we do not interpret them as physically distinct

phases (which is also suggested by the shading of the phases). It is conceivable that

this transition becomes a true crossover in a more refined approximation, as already

discussed in ref. [20].

• While in QCD at infinite Nc mesonic, quarkyonic, and quark phases are expected to

meet in a triple point [2], this structure is more complicated in our model already

in the chiral limit. The reason is the presence of the pure baryonic phase, which

we know exists in real-world QCD, and we observe two triple points. At large pion

masses, there are still two triple points, but an additional discontinuous transition

within the quark phase has occurred, which was already observed in ref. [20].

• The baryon onset (i.e., the transition from the mesonic to the baryonic phase) is con-

tinuous, and thus there is no first-order liquid-gas transition as in real-world QCD.

This is a known unphysical feature of the pointlike approximation, already observed

for 1-layer baryonic matter in the chiral limit [19]. This problem can be cured by

allowing for instantons with nonzero widths [25, 26] or by using a different approxima-

tion for the non-abelian gauge fields that is not directly based on instantons [24, 59].

Let us support these qualitative observations with some quantitative estimates. To this

end, we need to connect our dimensionless variables to physical units. We use eqs. (2.16)

and (2.19) to write pion mass and pion decay constant as

m2
π ' 109.2

α̃

λ̃L2
e
λ̃
4
tan π

16 , f2π ' 3.093× 10−4
Ncλ̃

L2
. (3.1)

With Nc = 3, λ̃ = 15, and fπ ' 93 MeV this yields L ' (790 MeV)−1 ' 0.25 fm. Conse-

quently, we find that α̃ ' 2.05×10−3 corresponds to the physical pion mass mπ ' 140 MeV,

while α̃ = 0.2, chosen for the right panel of figure 2, corresponds to an unphysically large

pion mass mπ ' 1.38 GeV. (This somewhat improves the similar estimate of ref. [20], where

fπ was not fitted separately and an arbitrary value for L was assumed, leading to a slightly

smaller α̃ at the physical point.) There are two main reasons why we vary the pion mass

far beyond its physical value. Firstly, in doing so we explore the parameter space to look
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for qualitatively different scenarios. Although they might be associated to unphysically

heavy quarks in the given model, it cannot be excluded that they are realized in nature.

Secondly, studying “heavy holographic QCD” with baryonic and quarkyonic matter is in-

teresting in view of comparisons to lattice calculations at nonzero baryon densities, which

can be performed with the help of an expansion about large quark masses [5].

We may also use the numerical value of L to give an estimate of the important transition

points in the phase diagrams. To this end, we employ the relations of table 1 in ref. [20]

to compute the temperature, t̃/L, and the quark chemical potential, λ̃µ̃/(4πL), from the

dimensionless, rescaled variables. For instance, from the left panel of figure 2 we find that

in the chiral limit the zero-density chiral transition is at Tc ' 120 MeV, and the zero-

temperature onset of baryonic matter is at µ0 ' 165 MeV. These numbers change only

very slightly if evaluated at the physical point α̃ ' 2.05× 10−3, see for instance figure 6 of

ref. [20] for the effect of α̃ = 10−3 on the chiral phase transition in the absence of baryons.

In real-world QCD, the baryon onset is at µ0 ' 308 MeV, slightly less than the baryon mass

divided by Nc due to the binding energy of nuclear matter. Of course, within our pointlike

approximation we do not expect to reproduce realistic nuclear matter (and we have already

seen that this approximation predicts an unrealistic second-order baryon onset). Moreover,

we have set λ̃ = 15 by hand and could in principle include µ0 into our fitting procedure

to adjust λ̃. Nevertheless, since the value we have used is motivated by the more realistic

approximation of ref. [26], where the fit did include nuclear matter properties, but fπ was

not used, our estimates suggest that there is some tension in the model between reproducing

vacuum properties such as the pion decay constant and properties of nuclear matter.

With these caveats in mind, the most interesting estimate for our present purposes

concerns the transition to quarkyonic matter. We find that at zero temperature it occurs

at a quark chemical potential µc ' 970 MeV in the chiral limit and at µc ' 2.3 GeV for

mπ ' 1.38 GeV (the corresponding baryon chemical potentials are Ncµc). Therefore, even

in the chiral limit the chiral phase transition, i.e., the transition from baryonic to quarky-

onic matter, occurs at a very large chemical potential compared to the interior of neutron

stars, where we expect quark chemical potentials of up to about 500 MeV. At nonzero

temperatures, however, we see that the quarkyonic transition occurs at smaller chemical

potentials. For instance, we read off that at a quark chemical potential of 500 MeV the tran-

sition occurs at about Tc ' 80 MeV. This temperature is possibly reached in neutron star

mergers [60]. Therefore, in a merger the appearance of quarkyonic matter seems possible,

but in isolated neutron stars, where the temperature is essentially zero on the scale shown

here, we would expect the core to be purely baryonic. It is likely, however, that this conclu-

sion is altered by a more realistic approximation of baryons. The reason is that if nuclear

matter is described by instantons with nonzero width and quarkyonic matter is ignored,

there is a zero-temperature chiral transition to quark matter [24, 26], which is completely

absent in the pointlike approximation [19]. This suggests that more realistic baryons are

less favored compared to chirally symmetric matter than pointlike baryons. Hence it would

be interesting to see whether in such a more realistic treatment the baryonic-quarkyonic

transition moves to lower chemical potentials and whether a subsequent quarkyonic-quark

transition is introduced at low temperatures.
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Figure 3. Density fraction from baryons xb in quarkyonic matter in the chiral limit, α̃ = 0,

corresponding to the phase diagram in the left panel of figure 2, for three different temperatures

as a function of chemical potential (left) and for two different chemical potentials as a function of

temperature (right). Solid lines correspond to the stable phases, including discontinuous transitions

from the purely baryonic phase (xb = 1). All stable segments are in the HTQy configuration.

Dashed curves correspond to unstable quarkyonic branches in the HTQy (red) and LTQy (blue)

configurations.

3.2 Baryon fraction in the quarkyonic phase

To understand the properties of the holographic quarkyonic phase, let us first consider

the baryon fraction xb (2.28), which is 0 in the quark phase, 1 in the baryonic phase, and

0 < xb < 1 in the quarkyonic phase. We present xb as a function of chemical potential

and temperature in figures 3 and 4. Figure 3 shows the baryon fraction in the chiral limit.

In the left panel we confirm the analytical result from section 2.5: at zero temperature,

baryons account for a constant fraction of about 97% of the baryon density in the quarky-

onic phase. For larger temperatures, this fraction is approached from below as the chemical

potential is increased. The plot also indicates the discontinuous baryonic-quarkyonic tran-

sition and, at sufficiently large temperatures, the continuous quark-quarkyonic transition.

Stable quarkyonic matter in the chiral limit is always in the HTQy configuration (red curves

in the figure). We have added the LTQy branch where it exists. This configuration is never

stable in the chiral limit and even ceases to exist for large temperatures. The right panel

of figure 3 shows the melting of baryons within the quarkyonic phase as the temperature

is increased. As we have seen in the phase diagrams of figure 2, the transition from the

quarkyonic to the pure quark phase is always continuous. This is confirmed in this plot,

which shows that the baryon fraction goes to zero continuously.

The conclusions from figure 4 are similar, but now, at nonzero pion mass, the LTQy

configuration plays a prominent role. For instance, at zero temperature, the baryon fraction

decreases continuously from 1 to its asymptotic value, all within the LTQy configuration.

For any nonzero, but not too large, temperature, there is a transition from the LTQy to

the HTQy configuration at some chemical potential. At sufficiently large temperatures, the

quarkyonic phase appears through a continuous transition into the HTQy configuration,

as already seen in the chiral limit. Both panels of figure 4 show regions where xb is a

two-valued function of either temperature or chemical potential. In these cases, there is a
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Figure 4. As figure 3, but for mass parameter α̃ = 0.2, corresponding to the phase diagram

in the right panel of figure 2. (Blue) segments to the left of the dots correspond to the LTQy

phase, while (red) segments to the right of the dots correspond to the HTQy phase. Discontinuous

phase transitions occur in the regions where the functions are two-valued (the exact location of the

transitions is not indicated here). Left panel : xb as a function of chemical potential for temperatures

t̃ = 0, 0.15, 0.19, 0.21, 0.25. Right panel : xb as a function of temperature for chemical potentials

µ̃ = 0.8, 1, 1.5, 2, 2.5.

jump in the baryon fraction, whose precise location cannot be read off of these curves. The

determination of the critical point requires the calculation of the free energy, which we have

done for the phase diagrams in figure 2, but we have not indicated the phase transition in

figure 4 in order to keep the plots simple.

3.3 Holographic picture of quarkyonic matter

We further illustrate our results, and make the connection to the geometry of the model, by

computing the embedding of the flavor branes x4(u) and the abelian gauge field â0(u). The

results are shown in figure 5 for zero temperature, t̃ = 0, and various chemical potentials

(upper two rows) and for a fixed chemical potential, µ̃ = 2, and various temperatures

(lower two rows). We have chosen to present the results for the “heavy” case α̃ = 0.2, and

the figure only shows the energetically preferred configuration for any given t̃ and µ̃.

It is instructive to walk through the plots step by step. Let us begin with the first two

rows, i.e., zero temperature. We start from the mesonic phase, where the embedding

does not depend on µ, and the gauge field is constant. As we increase the chemical

potential, pointlike instantons appear at the tip of the connected flavor branes. This

occurs at the point given by the condition (2.36), with infinitesimally small density. Then,

immediately two baryon layers move up in the holographic direction. Due to the flatness

of the embedding around its tip, the location ub stays almost constant for small densities

although the baryon layers visibly increase their distance. As the baryons move in the

holographic direction towards larger values of u the density increases. At some point, here

at µ̃ ' 2.45, given by the condition (2.37), it becomes favorable to add strings. For the

given parameters, the onset of strings is continuous, i.e., the quark contribution to the

baryon density is infinitesimally small at that point. We have indicated the strings by a

(blue) line from the horizon to the tip of the connected branes. The fact that we start off
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Figure 5. Embedding of the flavor branes in the subspace spanned by the holographic coordinate

ũ and the compactified direction x̃4 together with the corresponding abelian gauge field ã0(ũ) on

(one half of) the branes for zero temperature and various chemical potentials (upper two rows) and

a fixed chemical potential µ̃ = 2 and various temperatures (lower two rows). For all panels, the

mass parameter is α̃ = 0.2, as in the right panel of figure 2. The (red) dots indicate the location of

the pointlike instantons ũb, the (blue) straight lines indicate strings from the horizon ũT to the tip

of the connected branes ũc. The region ũ < ũT is shaded to indicate the location of the horizon. In

the plots of ã0, the thin vertical lines mark ũc, and the horizontal dashed lines indicate µ̃, to which

the gauge field asymptotes. Phases where instantons and strings coexist or where instantons exist

together with branes that reach the horizon are quarkyonic.

with infinitesimally small quark density is also reflected by the shape of the embedding at

the tip, which is smooth and only for larger chemical potentials develops a cusp that is

clearly visible in the figure. The embedding also has a cusp at the location of the baryon

layers, but this cusp only becomes visible by naked eye on a smaller scale. In contrast, the

cusp of the gauge field at the location of the instantons is clearly visible. The profile of

the gauge field changes qualitatively when strings are added: while the profile is constant

for u < ub in the purely baryonic phase, it develops a gradient in this domain due to the

string sources. Once the quarkyonic phase has become favored, the baryons keep moving
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towards the holographic boundary while the branes themselves move towards the horizon,

approaching the scenario of straight branes for asymptotically large chemical potentials.

In the lower two rows of the figure we walk, at a given, rather large, chemical potential

from the baryonic phase at zero temperature to the pure quark phase at large temperatures

via the quarkyonic phase in between. Again, we show the continuous onset of quarkyonic

matter, in this case at t̃ ' 0.1, indicated by the strings and a smooth embedding. Now,

with increasing temperature, the horizon “catches up” with the branes, such that the

system transitions from the LTQy phase into the HTQy phase. The plots confirm our

earlier observation that in the case of a nonzero pion mass the branes reach the horizon

tangentially. This allows for the branes to connect smoothly along the horizon, which we

have indicated by a dashed line. Along the dashed line, the gauge field vanishes, due to

the boundary condition â0(uT ) = 0, and this segment is irrelevant for calculation of the

free energy. As we keep increasing the temperature, the location of the baryons ub keeps

increasing slightly, although the distance to the horizon ub−uT decreases. Eventually, the

baryon fraction in the quarkyonic phase goes to zero. At t̃ ' 0.32, there is a continuous

transition to the pure quark phase, i.e., the system decides to remove all instantons from

the flavor branes. In the profiles of the gauge fields this is manifest in a less pronounced

cusp which eventually is smoothed out completely. Again, as for large chemical potentials,

the embedding of the flavor branes becomes straight for asymptotically large temperatures.

With the help of this figure we may further refine our holographic picture of quarkyonic

matter. As the solutions of the equations of motion (2.23) show, the embedding of the flavor

branes and the behavior of the abelian gauge field for u < ub is not affected by the presence

of the baryons. Therefore, in the infrared regime, up to the (red) dots in the figure, the

physics of the quarkyonic phase is entirely determined by quarks. (It can be expected

that for nonzero-width instantons this separation of regimes is less sharp.) Interestingly,

we observe that â0(u) becomes flat as it approaches ub, i.e., the gauge field behaves in

the infrared as if there was a second chemical potential â0(ub) to which â0 asymptotes as

we approach the location of the instantons, just like â0 asymptotes to the actual chemical

potential as u → ∞. This is reminiscent of the layered structure in momentum space in

the weak-coupling picture of the quarkyonic phase. And just like a Fermi momentum, ub
moves towards higher energies as the chemical potential is increased, while increasing the

temperature at fixed chemical potential only leads to a very small change in the location of

the baryons. A similar relation between the baryon distribution in the bulk and the Fermi

surface was already suggested in the literature, albeit in the absence of quark sources [46,

59]. The ultraviolet regime, u > ub, however, is affected by both quarks and baryons. This

goes beyond the simple weak-coupling picture of a purely baryonic layer in momentum

space on top of the quark Fermi sea.

3.4 Quark-hadron continuity

As we have seen in the discussion of the phase diagrams in figure 2, by tuning the value

of the pion mass we find a regime where we can go continuously from baryonic matter

via quarkyonic matter to pure quark matter. This continuity requires us to go to nonzero

temperature, while at zero temperature we have a baryonic-quarkyonic continuity, with
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Figure 6. Zero-temperature baryon fraction xb in the quarkyonic LTQy configuration as a function

of the chemical potential for different values of the mass parameter α̃. For nonzero and not too

large α̃ there is a discontinuous transition from the baryonic phase (where xb = 1) to the quarkyonic

LTQy phase, indicated by the two-valuedness of the curves. This transition becomes continuous

at around α̃ ' 0.1. In the chiral limit, α̃ = 0, the entire LTQy branch is unstable, and there is a

discontinuous transition from baryonic matter to HTQy quarkyonic matter, which has a constant

baryon fraction xb ' 0.966471, shown by the (red) horizontal line.

pure quark matter never being realized in the given approximation. Also, the continuity is

not a completely smooth crossover, it rather involves second-order transitions, due to our

approximations and presumably also due to the large-Nc regime to which the evaluation of

our holographic model is constrained. Nevertheless, this feature of the model is remarkable

since it may help to shed some light on the question of whether there is a zero-temperature

quark-hadron continuity in QCD, or whether there is (at least) one discontinuous transition,

as predicted by many phenomenological models, which however usually contain either quark

or nucleon degrees of freedom, but not both (for phenomenological models where quarks

and nucleons are put together see for instance refs. [61–63]). Our picture of a possible

continuity is of course simplified due to the lack of Cooper pairing. Superfluidity and

superconductivity may induce further, possibly discontinuous, phase transitions, although

it has been argued that even in the presence of color superconductivity, quarkyonic matter

may enable a continuous transition from nuclear to quark matter [64].

In this section, we will restrict ourselves to zero temperature, i.e., we actually focus on

the baryonic-quarkyonic continuity. To this end, we first come back to the baryon fraction

xb, which is plotted in figure 6 as a function of the chemical potential for different values

of the quark mass parameter. This plot shows how the discontinuous transition at small

α̃ turns into a continuous transition at around α̃ ' 0.1. Using the fit discussed below

eq. (3.1), this corresponds to a pion mass of about mπ ' 980 MeV.

The continuity is illustrated further in figure 7. This figure is similar to figure 3 in

ref. [26], where it was already conjectured that a quark-hadron continuity is conceivable

in the Witten-Sakai-Sugimoto model at nonzero current quark mass. Here we have found

a realization of the continuity by allowing for quarkyonic matter, albeit for unrealistically

large pion masses. It remains to be seen whether and how this conclusion is changed using

the more realistic baryons of ref. [26]. Our figure 7 schematically shows the free energy
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Figure 7. Schematic plots of the free energy density Ω at its local extrema as a function of the

chemical potential µ for zero (upper right), intermediate (lower left) and large (lower right) pion

mass. The figure illustrates the appearance of a continuity between baryonic and quarkyonic matter

as the pion mass is increased, and shows that this continuity can already be anticipated from the

upper right plot due to the existence of the unstable LTQy branch.

density as a function of chemical potential for zero (upper right), intermediate (lower left)

and large (lower right) pion mass, together with the corresponding brane embeddings. We

have chosen a schematic representation for clarity. Had we plotted the actual results for

the free energies, their differences would have been very difficult to resolve, although of

course figure 7 is in qualitative agreement with our numerical results. Besides the stable

states, the figure includes local extrema of the free energy density which are not global

minima. In particular, some of the branches are local maxima at the boundary of our

multi-parameter space, which are not stationary: as discussed below eq. (2.34), mesonic

and baryonic phases have branches where switching on a density contribution immediately

lowers the free energy, corresponding to a ∧-shaped local maximum if negative densities

are taken into account. In the figure, this concerns the (black) mesonic branch on the

right-hand side of the baryon onset and the (green) baryonic branch on the right-hand side

of the quarkyonic onset.
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In the upper right plot, which shows the chiral limit, at first sight, the (green) baryonic

and (red) quarkyonic curves appear unrelated. However, they turn out to be continuously

connected upon including the (blue) LTQy configuration (the points on this curve corre-

spond to local maxima as well, but stationary). This is very similar to ref. [26], where the

connection between pure baryonic and pure quark phases was pointed out. As the current

quark mass is set to zero, quarks may in principle appear at arbitrarily small chemical

potentials, although this possibility is of course energetically disfavored. Moreover, since

the dimensionless baryon mass is ub/3 at zero temperature, see eq. (2.12), baryons can also

become arbitrarily light. Therefore, the (red) quarkyonic branch — given by eq. (2.53) —

reaches all the way back to zero chemical potential, and the connection between baryonic

and quarkyonic phases can only be made through the origin of the diagram.

As expected, and as anticipated in ref. [26], the branches move away from the origin

as the current quark mass is switched on. In this case, the straight brane solution ceases

to exist, hence the absence of a (red) HTQy curve. Instead, the quarkyonic LTQy solution

turns around before reaching the origin and becomes favored after crossing the pure bary-

onic line. Now, for sufficiently large masses (α̃ & 0.1, as figure 6 has shown), the quarkyonic

solution becomes single-valued, resulting in a transition where the free energy and its first

derivative are continuous. We have thus obtained a concrete holographic realization of

a zero-temperature baryonic-quarkyonic continuity. Interestingly, as our phase diagram

shows, this continuous transition turns into a discontinuous one at larger temperatures,

giving rise to a high-density critical point, not unlike the one predicted in ref. [33].

By computing the speed of sound cs we can further analyze the nature of the transition

because the calculation involves second derivatives of the free energy. Since in this section

we are only interested in zero temperature, we may use the definition

c2s =
n

µ

(
∂n

∂µ

)−1
. (3.2)

(The mesonic phase has zero baryon density, and thus eq. (3.2) cannot be used, and we have

to compute the zero-temperature limit following appendix A of ref. [20].) We plot the result

of the stable phases for the two different mass parameters α̃ = 0 and α̃ = 0.2 as a function

of the chemical potential in figure 8. Although less relevant for our present purpose, we

see that there is a large jump at the second-order baryon onset. More importantly, we

observe a relatively large discontinuity in the speed of sound in the “heavy” scenario at

the baryonic-quarkyonic transition. This discontinuity also exists in the chiral limit at the

transition point, but it is too small to be seen on the given scale. Therefore, somewhat

surprisingly, the jump in the speed of sound is smaller in the case of a first-order transition

(where the density jumps) than in the case of a second-order transition (where the density

does not jump). Mathematically, this is easily understood: it simply means that in one

case we have a discontinuous function, namely the density, whose derivatives on both sides

of the discontinuity are almost identical, while in the other case we have a continuous

function with a (relatively strong) cusp.

We also see that the speed of sound is non-monotonic in the baryonic phase. This

was already observed in the same model with more realistic baryons, where this non-
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Figure 8. Speed of sound squared at zero temperature as a function of the chemical potential for

two different values of the mass parameter α̃. Both curves have a discontinuity at the transition

from mesonic to baryonic matter at small µ̃ and at the transition from baryonic to quarkyonic

matter at large µ̃ (the latter discontinuity in the chiral limit α̃ = 0 occurs at µ̃ ' 1.03 and is too

small to be visible here).

monotonicity was even more pronounced, with a larger maximum of the speed of sound [26].

In the quarkyonic phase, the zero-temperature speed of sound is constant in the chiral limit,

c2s = 2/5. This follows from the free energy density (2.53) and the definition (3.2). The same

result holds for the pure quark phase [26, 53], which is only metastable at zero temperature,

as already mentioned below eq. (2.54). In contrast, at a nonzero pion mass we see that the

speed of sound in the quarkyonic phase increases monotonically and approaches c2s = 2/5 at

large chemical potentials. This is different from QCD, where the speed of sound approaches

the conformal limit c2s = 1/3 asymptotically. The behavior of the speed of sound is also

interesting in comparison to the model for quarkyonic matter of ref. [11]. In that model,

the speed of sound is non-monotonic in the quarkyonic phase. This feature was highlighted

since astrophysical observations, most notably the masses of the heaviest neutron stars,

together with asymptotic freedom of QCD, suggests that the speed of sound in QCD is

indeed non-monotonic. Our results suggest that the quarkyonic speed of sound does not

necessarily have this feature, and instead ordinary baryonic matter may account for the

non-monotonicity.

4 Summary and outlook

We have discussed new configurations in the holographic Witten-Sakai-Sugimoto model and

pointed out their significance for the phase diagram. Working in the deconfined geometry

and the decompactified limit of the model, we have found that baryons can be added to

the previously discussed low-temperature quark (LTQ) and high-temperature quark (HTQ)

configurations. We have interpreted these new configurations as holographic realizations

of quarkyonic matter, a low-temperature version (LTQy), containing strings stretching

from the horizon to the tip of the connected flavor branes, and a high-temperature version

(HTQy), where the flavor branes reach the horizon. In both cases, two layers of pointlike

instantons are placed at dynamically determined points on the flavor branes. In a way,
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these geometries can be viewed as a strong-coupling version of the weak-coupling picture of

quarkyonic matter based on a quark Fermi sea enclosed by a baryonic layer in momentum

space.

We have shown that holographic quarkyonic matter covers a significant part of the

phase diagram. For low temperatures, as the density is increased, there is a discontinuous

phase transition from purely baryonic matter to quarkyonic matter. This phase transition

coincides with the chiral phase transition, i.e., our model predicts quarkyonic matter to

be (approximately) chirally symmetric. At zero temperature, we have found that baryons

contribute a large fraction to the total baryon density in the quarkyonic phase, 97% in the

chiral limit. At the same time, the quarkyonic phase can behave in a quark-like manner,

as we demonstrated with the speed of sound. In the approximation used here, quarkyonic

matter does not transition to pure quark matter at ultra-high densities. However, baryons

in the quarkyonic phase do melt as the temperature is increased, resulting in a continuous

high-temperature phase transition to pure quark matter.

Furthermore, we have explored the changes in the phase diagram under variation of the

pion mass. Most notably, we found that for unrealistically large pion masses, mπ & 1 GeV,

the baryonic-quarkyonic transition becomes continuous for low temperatures, resulting in

a high-density critical point in the phase diagram.

We have made use of various approximations that can be improved in the future. Most

importantly, our baryons are delta-peaks rather than instantons with nonzero widths. We

have resorted to this approximation to simplify the study of the quarkyonic configurations,

and we have largely ignored the possibility of a multi-layer structure of the baryons. More

sophisticated approximations of holographic baryonic matter exist in the literature [23–26],

and it would be interesting to implement these improvements in the study of holographic

quarkyonic matter. We have ignored any form of superconductivity, which is expected in

high-density QCD [1] and for which simple holographic realizations exist [65]. We have also

ignored any inhomogeneous structures such as chiral spirals, which are predicted to occur

in quarkyonic matter [9, 10] and which have been discussed in the presence of a magnetic

field in the Witten-Sakai-Sugimoto model [66, 67]. Our approach has been restricted to

the deconfined geometry of the model and we have ignored the confined geometry, which is

preferred at small temperatures. Finding a solution that describes quarkyonic matter in the

confined geometry would be desirable, but is probably challenging since our construction

cannot be straightforwardly implemented in the absence of a horizon. Finally, we have

restricted ourselves to the quenched Nf � Nc regime. It would be interesting to explore

the consequences of including the backreaction of the flavor branes on the background

geometry, possibly along the lines of refs. [68, 69].

Since our quarkyonic matter is chirally symmetric, a calculation of the hadron spectrum

within this phase would be interesting. As in different approaches dealing with chiral

symmetry restoration in a confined phase [70–72] we would expect chiral multiplets, in

contrast to non-degenerate spectra in the chirally broken purely baryonic phase. It would

also be interesting to use and extend our present results for phenomenological applications.

For instance, one might ask whether quarkyonic matter exists in the interior of neutron

stars or whether it might be created in a neutron star merger. This question can be
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addressed by computing the equation of state and the resulting mass-radius relations and

tidal deformability, as recently done within the same model, but without any form of

quark matter [73], and in other holographic approaches [74–78]. We have pointed out

that in the given approximation the zero-temperature transition to quarkyonic matter

occurs at densities probably too large to be reached in neutron stars, although at nonzero

temperatures the transition density becomes smaller and is possibly reached in a merger

process. In any case, improving the approximation is likely to lead to quantitative changes,

and previous studies suggest that a more refined treatment of the instantons moves the

chiral transition towards lower densities [24]. For a discussion of realistic neutron star

matter it would also be important to include a nonzero isospin chemical potential into the

calculation and allow for non-degenerate quark masses.
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