Price, J.H.V., Monro, T.M., Ebendorff-Heidepriem, H., Poletti, F., Horak, P., Finazzi, V., Leong, J.Y.Y., Petropoulos, P., Flanagan, J.C., Brambilla, G., Feng, X. and Richardson, D.J. (2007) Mid-IR supercontinuum generation from non-silica microstructured optical fibers. IEEE Journal of Selected Topics in Quantum Electronics, 13 (3), 738-749. (doi:10.1109/JSTQE.2007.896648).
Abstract
In this paper, the properties of nonsilica glasses and the related technology for microstructured fiber fabrication are reviewed. Numerical simulation results are shown using the properties of nonsilica microstructured fibers for mid-infrared (mid-IR) supercontinuum generation when seeding with near-IR, 200 fs pump pulses. In particular, bismuth glass small-core fibers that have two zero-dispersion wavelengths (ZDWs) are investigated, and efficient mid-IR generation is enabled by phase-matching of a 2.0 µm seed across the upper ZDW into the 3-4.5 µm wavelength range. Fiber lengths considered were 40 mm. Simulation results for a range of nonsilica large-mode fibers are also shown for comparison.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.