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We propose a novel method to test CP-violation in the heavy (pseudo)scalar sector of an

extended Higgs model, in which we make simultaneous use of the HV V (V = W±, Z) and

Htt̄ interactions of a heavy Higgs state H. This is possible at the Compact Linear Collider

(CLIC) by exploiting H production from Vector-Boson Fusion (VBF) and decay to tt̄ pairs.

We analyze the distribution of the azimuthal angle between the leptons coming from top

and antitop quarks, that would allow one to disentangle the CP nature of such a heavy

Higgs state. We also show its implications for the 2-Higgs-Doublet Model (2HDM) with

CP-violation.

I. INTRODUCTION

CP-violation was first discovered in the long-lived K-meson rare decay channel KL → 2π in 1964

[1]. More CP-violation effects were also measured in the K-, D- and B-meson sectors in the past

several decades [2–4] (see [5] for a historical review). All these measured CP-violation effects are

consistent with the explanation given through the Kobayashi-Maskawa (KM) mechanism [6], which

represents another success of the Standard Model (SM) of particle physics. However, it is necessary

to search for CP-violation sources Beyond the SM (BSM). One important reason to do so is that

the amount of CP-violation contained in the SM is not enough to explain the matter-antimatter
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asymmetry in the Universe [7–9].

Theoretically, many BSM scenarios can accommodate additional CP-violation sources to remedy

such a flaw of the SM. However, the latter are strongly constrained by experiments. Specifically,

measurements of the Electric Dipole Moments (EDMs) of, e.g., electron and neutron [10–12] have

already set stringent limits on such new sources (or else could reveal their existence) [13–16], as the

sensitivities involved are far above the SM predictions [17–19]. However, the EDM measurements,

being very inclusive, are only an “indirect” probe of such new CP-violation sources, which means

that, even if we discovered herein CP-violation above the SM predictions, it is unlikely that we

could determine the actual interactions involved. Conversely, collider experiments, despite having

weaker sensitivities to CP-violation in comparison to EDM ones, can afford one, thanks to the vast

variety of exclusive observables that one can define herein, with a “direct” probe of CP-violation.

The case for the complementarity of these two experimental settings can easily be made for

BSM frameworks with extended Higgs sectors [20–24]. As an example, Ref. [25] studied both

EDM and collider effects in a 2-Higgs Doublet Model (2HDM) [23] with explicit CP-violation, in

which non-zero EDMs are expected to be the first signal of it with collider effects able to provide

additional information1.

After the discovery of the 125 GeV Higgs boson at the Large Hadron Collider (LHC) [43–45],

testing its CP properties is crucial to ascertain the structure of the underlying Higgs sector. On

the one hand, current measurements are consistent with the CP-even (or scalar) state of the SM.

On the other hand, an additional Higgs state, possibly mixing with it, may have different CP-

properties (e.g., being pseudoscalar or a mixture of the two). To stay with 2HDMs, in these BSM

scenarios, an effective method to test the CP-properties of the ensuing physical states is trying

to test CP-violation effects in the Yukawa interactions between such an additional (heavy) Higgs

boson and fermions via the Lagrangian term

L ⊃ −f̄
(
gS + igPγ

5
)
fH. (1)

Usually, f = t or τ , because a top quark or τ lepton decays quickly enough so that the CP-properties

and spin information of the decaying object is protected in its final state distributions. In fact, the

spin and CP quantum numbers correlate strongly in the Yukawa interaction. Phenomenologically,

there are a lot of works in literature trying to test CP-violation in Htt̄ [25, 37–39, 46–59] or Hτ+τ−

[27, 35, 40, 41, 60–66] interactions at colliders.

1 For this topic, see also other similar phenomenological studies in a variety of alternative BSM scenarios [26–42].
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Besides this, one can also probe CP-violation in the purely bosonic sector, through the

interactions between a Higgs state and the SM massive gauge bosons. To exploit this approach, we

again need such an additional Higgs state H (while the SM-like 125 GeV Higgs boson is denoted

as h). The general effective interactions among h, H and V = W,Z are (with θW being the weak

mixing angle) 2

L ⊃
(

2m2
W

v
W+,µW−µ +

m2
Z

v
ZµZµ

)
(chh+ cHH) +

chHg

2cθW
Zµ (h∂µH −H∂µh) . (2)

We already know that ch 6= 0 through current LHC measurements. If both cH and chH are non-

zero, we will confirm CP-violation in the Higgs sector because in such a case h and H cannot be

CP eigenstates at the same time, as was shown in [67–69].

In the SM, as hinted above, the only CP-violation source is the complex phase in the Cabibbo-

Kobayashi-Maskawa (CKM) matrix [6], which means that, if there exists new CP-violation in Higgs

interactions, the Higgs sector of the SM must be extended. Consequently, it becomes attractive

to search for CP-violation through the dynamics of additional Higgs states, as done recently for

2HDMs, both fundamental and composite, in Refs. [38–41, 70], which indeed exploited either Htt̄

or HV V couplings.

In this paper, we propose a novel method to test CP-violation through such a heavy H state,

as we consider its interactions with both massive fermions and gauge bosons simultaneously. The

advantage of this approach is that the CP-even component in H is confirmed through HV V

(V = W±, Z) interactions while the CP-odd component in H is confirmed through Htt̄ interaction.

In order to do so, we consider a process in which the heavy Higgs state H is produced through

Vector Bosons Fusion (VBF), i.e., W+W−- or ZZ-fusion, and decays into top (anti)quark pairs

(tt̄). As collider setup, we choose an electron-positron one, in preference to a hadronic one, because

of the cleanliness of the described signature therein and, amongst the various future options for the

latter, we privilege the Compact Linear Collider (CLIC) design [71–77] because its
√
s can reach

O(TeV), hence, comparable to the LHC reach.

The paper is organized as follows. We describe our method in Sec. II using a model-independent

formulation. In Sec. III, as an illustration, we apply it to the 2HDM with CP-violation. Finally,

we conclude in Sec. IV.

2 In this paper, we use sθ ≡ sin θ, cθ ≡ cos θ, and tθ ≡ tan θ for any angle θ to simplify notation.
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II. MODEL-INDEPENDENT STUDIES

A. Method

Assuming a heavy scalar H is discovered, and in this paper we focus on the CP properties of

this particle. Its effective interactions with massive gauge bosons and fermions can be written in

general as

L ⊃ cVH
(

2m2
W

v
W+,µW−µ +

m2
Z

v
ZµZµ

)
−
∑
f

mf

v
Hf̄

[
Re (cf ) + iIm (cf ) γ5

]
f. (3)

We choose the VBF processes V V → H → tt̄ where V = W± or Z, and the Feynman diagrams

are shown in Fig. 1. If such processes can be measured, we have cV 6= 0 and thus the CP-even

FIG. 1: The Feynman diagrams for VBF processes V V → H → tt̄ where V = W±, Z.
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component of H will be confirmed. For the final state tt̄, if Im (ct) = 0 and Re (ct) 6= 0, meaning

it is a pure scalar, the tt̄ pair will form in a 3P0 state. Instead, if Re (ct) = 0 and Im (ct) 6= 0,

meaning it is a pure pseudoscalar, the tt̄ pair will form a 1S0 state. In the CP-violation scenario,

there will be both 3P0 and 1S0 types of tt̄ final states. Thus, the spin correlation behavior between

the top and antitop quarks is sensitive to the CP nature of Higgs states in Yukawa interactions.

We choose semi-leptonic decay channels t (t̄) → b`+ν
(
b̄`−ν̄

)
(` = e, µ) for both top and

antitop quarks. The azimuthal angle between `+ and `− (denoted as ∆φ) is a good observable

to measure the spin correlations between top and antitop quarks [78–83], hence, it is helpful to

probe CP-violation in the Yukawa sector 3. For example, we show the normalized distributions

3 A similar behavior appears in tt̄h associated production, in which ∆φ is one of the best observables to probe
CP-violation in htt̄ interaction [25, 38, 39, 81, 82].
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of the azimuthal angle ∆φ (denoted as 1
σ
dσ
d∆φ) between the charged leptons from tt̄ at CLIC with

√
s = 1.5 TeV in Fig. 2 for both the W+W−- and ZZ-fusion channels. It is clear to see that the

FIG. 2: Normalized distributions of the azimuthal angle ∆φ (denoted as 1
σ

dσ
d(∆φ/π) ) between the charged

leptons from tt̄ at CLIC with
√
s = 1.5 TeV for both the W+W−-fusion (the left plot) and ZZ-fusion (the

right plot) channels. The blue lines are for a CP-even Htt̄ coupling, while the red lines are for a CP-odd

Htt̄ coupling.
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∆φ distributions are different between the cases with CP-even and CP-odd Htt̄ couplings, for both

W+W−- and ZZ-fusion channels. As discussed above, VBF production implies the existence of the

CP-even component in H and, from the ∆φ distribution, if we can find the evidence of a non-zero

Im (ct) (or equivalently the 1S0 type tt̄ final state), we can confirm also the CP-odd component in

H, and hence the CP-violation effects. Such a method will prove to be more effective for a heavy

scalar H mainly containing the CP-odd component, as this is the most different one from the SM

background.

B. Simulation Studies at CLIC

We choose two cases: CLIC with
√
s = 1.5 TeV and 3 TeV separately. We further choose cV

not larger than 0.3, because the global-fit for the 125 GeV Higgs boson data implies cV . 0.3 4.

The direct LHC search for a heavy scalar H decaying to ZZ final states sets further limits on cV

4 Or else the couplings between the 125 GeV Higgs boson and massive gauge bosons will be too small to satisfy the
LHC data, see more detailed analysis in [25].
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if mH . 700 GeV [84], so that we choose the LHC-favored region with a benchmark point having

mH = 700 GeV.

In our simulation studies, we consider two VBF processes at CLIC: W+W− fusion (e+e− →
ννH) and ZZ fusion (e+e− → e+e−H), with the heavy Higgs H decaying to a tt̄ pair with top

quark and antiquark decaying semileptonically. We assume that the heavy Higgs H can decay via

only three channels: H → tt, W+W− and ZZ. The Branching Ratio (BR) for the H → tt̄ decay

channel 5

BRH→tt̄ ≡
ΓH→tt̄

ΓH→tt̄ + ΓH→W+W− + ΓH→ZZ
(4)

thus depends on the couplings cV and ct, where [23]

ΓH→tt̄ =
3mH

8π

(mt

v

)2
[

[Re(ct)]
2

(
1− 4m2

t

m2
H

) 3
2

+ [Im(ct)]
2

(
1− 4m2

t

m2
H

) 1
2

]
, (5)

ΓH→W+W− =
m3
Hc

2
V

16πv2

√
1− 4m2

W

m2
H

(
1− 4m2

W

m2
H

+
12m4

W

m4
H

)
, (6)

ΓH→ZZ =
m3
Hc

2
V

32πv2

√
1− 4m2

Z

m2
H

(
1− 4m2

Z

m2
H

+
12m4

Z

m4
H

)
. (7)

As we choose mH = 700 GeV in our simulation studies, the BRH→tt̄ has the following numerical

dependence on cV and ct:

BrH→tt̄ =
0.174 [Re(ct)]

2 + 0.229 [Im(ct)]
2

c2
V + 0.174 [Re(ct)]

2 + 0.229 [Im(ct)]
2 . (8)

In Eq. 5, the term proportional to [Re(ct)]
2 implies that the partial decay width to tt̄ pairs involves

a 3P0 state, while the term proportional to [Im(ct)]
2 implies that the partial decay width to tt̄ pairs

involves a 1S0 state. The branching ratio of the top quark semileptonic decay is chosen as 21.34%,

which is the sum of electron and muon channels, as shown in the Particle Data Group (PDG)

review [4]. In our simulation studies, we generate the signal and background events at the Leading

Order (LO) order using MadGraph5 [85]. We include bremsstrahlung/Initial State Radiation (ISR)

effects through the “isronlyll” option for Parton Distribution Function (PDFs) [86].

In the W+W−-fusion channel, the main background is the SM s-channel tt production because

of its large production rate (and the fact that the (anti)neutrinos in the final state of the signal

cannot be triggered on) while other background processes are numerically negligible. In the ZZ-

fusion channel, the main background is instead SM tte+e− production, which comes from both the

5 Here we do not consider the ZHh coupling for simplification.
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VBF production process of tt and the ttZ associated production process with the Z boson decaying

to an electron pair. To reduce the SM backgrounds, we apply the selection cuts in Table I.

TABLE I: Selection cuts for W+W−- and ZZ-fusion processes at CLIC with
√
s = 1.5 TeV (the upper two

entries) and
√
s = 3 TeV (the lower two entries).

Process Selection cuts

W+W−-fusion (
√
s = 1.5 TeV)

n` = 2, nb = 2, | η` |< 3, | ηb |< 5,

p`,bT > 10 GeV, pmiss
T < 300 GeV, ∆R``,b`,bb > 0.4,

mbb`` < 600 GeV, m`` < 350 GeV, minv > 850 GeV.

ZZ-fusion (
√
s = 1.5 TeV)

n` ≥ 3, ne ≥ 1, n`+ · n`− > 0, nb = 2,

| η` |< 3, | ηb |< 5, max(| η` |) > 2, ∆R``,b`,bb > 0.4,

p`,bT > 10 GeV, mbb`` > 350 GeV, minv < 400 GeV.

W+W−-fusion (
√
s = 3 TeV)

n` = 2, nb = 2, | η` |< 3, | ηb |< 5,

p`,bT > 10 GeV, pmiss
T < 150 GeV, p``T < 200 GeV, ∆R``,b`,bb > 0.4,

mbb`` < 700 GeV, m`` < 450 GeV, minv > 1900 GeV.

ZZ-fusion (
√
s = 3 TeV)

n` ≥ 3, ne ≥ 1, n`+ · n`− > 0, nb = 2,

| η` |< 3, | ηb |< 5, max(| η` |) > 2,

∆R``,b`,bb > 0.4, p`,bT > 10 GeV, mbb`` > 350 GeV.

After performing these selection cuts, we have the cross sections σi and the corresponding

selection efficiencies ε for the signal (denoted as the index “sig”) and background (denoted as

the index “bkg”) processes in Table II together with the discovery potential as a function of the

machine luminosity L. For the rates in the table, we know that the signal production cross sections

TABLE II: Cross sections after selection cuts, selection efficiencies and expected significance for W+W−-

and ZZ-fusion processes at CLIC with
√
s = 1.5 TeV (the upper two entries) and

√
s = 3 TeV (the lower

two entries). Here, Nsig = σsigL and Nbkg = σbkgL are separately the event rates for signal and background

after selection cuts, while L is the integrated luminosity.

Process σsig (fb) εsig σbkg (fb) εbkg Nsig/
√
Nbkg

W+W−-fusion (
√
s = 1.5 TeV) 0.94κ 64% 0.34 8.4% 1.6× 102κ

√
L/(10 ab−1)

ZZ-fusion (
√
s = 1.5 TeV) 0.088κ 61% 0.013 36% 78κ

√
L/(10 ab−1)

W+W−-fusion (
√
s = 3 TeV) 4.14κ 62% 0.041 3.6% 2.0× 103κ

√
L/(10 ab−1)

ZZ-fusion (
√
s = 3 TeV) 0.28κ 42% 0.019 21% 2.0× 102κ

√
L/(10 ab−1)
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are proportional to the parameter

κ ≡
c2
V

(
0.174 [Re(ct)]

2 + 0.229 [Im(ct)]
2
)

c2
V + 0.174 [Re(ct)]

2 + 0.229 [Im(ct)]
2 = c2

V BrH→tt̄. (9)

Since cV . 0.3 [25], if we fix |ct| = 1, the largest allowed number for this parameter should be

κ+
max = 0.059 for a CP-even Htt̄ coupling and κ−max = 0.065 a for CP-odd Htt̄ coupling. If we

choose as typical integrated luminosity L = 10 ab−1 and the largest allowed cV = 0.3, in all the

four cases, the signal V V → H → t(→ b`+ν)t̄(→ b̄`−ν̄) will be discovered with its significance

close to or larger than 5σ for both CP-even and CP-odd Htt̄ couplings quite promptly at CLIC, so

that we have the basis to further analyze the final state ∆φ distributions to probe the CP nature

of the H state.

C. Analysis and Results

For all the four cases (both W+W−- and ZZ-fusion, with
√
s = 1.5 TeV and 3 TeV), we show

the ∆φ distribution in Fig. 3, including both signal and background events. We also add the ∆φ

distribution for pure background events for comparison. The plots clearly show differences between

the two CP hypothese in the ∆φ distribution even after adding the background events.

We then define the forward-backward asymmetry as

A ≡
N∆φ>π/2 −N∆φ<π/2

N∆φ>π/2 +N∆φ<π/2
=
N+ −N−
N+ +N−

, (10)

which is sensitive to the CP nature of the Htt̄ coupling. Its uncertainty can be calculated through

σA =

√
4N+N−
N3

, (11)

whereN = N++N− is the total number of events. In our analysis, for all the cases, we must consider

the signal and background events together, since they become indistinguishable experimentally even

after our selection cuts. Thus, N± contains both signal and background events.

We calculate such a forward-backward asymmetry for each process (denoted through the sub-

indices W+W− and ZZ in the plots) for both pure CP-even (+) and pure CP-odd (−) Htt̄

couplings, hence, we use A± (in the forthcoming text), together with their ±1σ uncertainties

σA± assuming as integrated luminosity L = 10 ab−1, and show the results in Fig. 4. In the

calculation, we always fix [Re(ct)]
2 +1.32[Re(ct)]

2 = 1 as a benchmark point, so that the parameter

κ defined in Eq. 9 becomes κ = 0.174c2
V /(c

2
V +0.174) and the total cross sections do not depend on

arg(ct) = arctan[Im(ct)/Re(ct)]. For the case with CP-mixing Htt̄ coupling, the forward-backward
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FIG. 3: Differential cross sections in the azimuthal angle ∆φ [denoted as dσ
d(∆φ/π) ] between the charged

leptons from tt̄ at CLIC including both signal and background events: the upper plots are for the case

with
√
s = 1.5 TeV and the lower plots are for the case with

√
s = 3 TeV while the left plots are for the

W+W−-fusion process and the right plots are for the ZZ-fusion process. The blue lines are for a CP-even

Htt̄ coupling together with background events while the red lines are for a CP-odd Htt̄ coupling together

with background events while we also show the distribution for pure background events as black lines.
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asymmetry will be located between blue and red lines. In our method, a non-zero Im(ct) is enough

to probe CP-violation, thus we choose a pure CP-odd Htt̄ coupling to find the largest deviation

from the CP-conserving case (CP-even). For given experimental conditions and model parameters,

the number of standard deviation

s0 =
|A−A+|
σA+

(12)
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FIG. 4: Forward-backward asymmetries A including both signal and background events: the upper plots

are for the case with
√
s = 1.5 TeV and the lower plots are for the case with

√
s = 3 TeV while the

left plots are for the W+W−-fusion process and the right plots are for the ZZ-fusion process. We fix

[Re(ct)]
2 + 1.32[Re(ct)]

2 = 1 for all processes. The blue lines are for A+ including background events while

the red lines are for A− including background events. The solid lines are the central values A± while

the dashed lines are A± ± σA± , where σA± are the 1σ uncertainties for A± for the integrated luminosity

L = 10 ab−1.
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away from the CP-conserving case measures the significance to discover CP-violation, so that, for

a pure CP-odd Htt̄ coupling, we have A = A−, which will give us the largest significance for

CP-violation.

From the right plots in Fig. 4, it is clear that in the ZZ-fusion channel, it is difficult to

distinguish between a CP-even and CP-odd Htt̄ coupling. Even for the largest allowed value
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cV = 0.3, we still have s0 less than or close to 1, meaning that A− is quite close to A+. That is

mainly because of the small cross section and hence event number of the ZZ-fusion process, in turn

affecting adversely the error. Thus, for ZZ-fusion, we do not need further analysis. For W+W−-

fusion with
√
s = 1.5 TeV and upon choosing the largest allowed cV = 0.3, s0 ' 2.1 meaning a

slight deviation can be found but still not an evidence strong enough to discover CP-violation.

That is because at the
√
s = 1.5 TeV CLIC, there is still large tt̄ background which cannot be

reduced effectively, i.e., σbkg � σsig. The large background erases the difference between A+ and

A− and thus only a 2.1σ deviation is left even for cV = 0.3. We do not analyze this case further

then. For W+W−-fusion with
√
s = 3 TeV, from the lower-left plot in Fig. 4, if cV & 0.1, we have

s0 & 3 meaning that A− and A+ are significantly different in this case.

Therefore, we discuss the W+W−-fusion process further at CLIC with
√
s = 3 TeV.

Experimentally, the two useful observables are the total cross section σtot = σsig + σbkg and the

forward-backward asymmetry A in the ∆φ distribution. Notice that σtot depends only on the

parameter κ while A depends on both κ and ξ ≡ arg(ct). Numerically, we have

σtot = σsig + σbkg = (4.14κ+ 0.041) fb, (13)

A =
1

σtot

(
Abkgσbkg +A+σsig

c2
ξ

c2
ξ + 1.32s2

ξ

+A−σsig

1.32s2
ξ

c2
ξ + 1.32s2

ξ

)

=
1

κ+ 9.8× 10−3

(
5.1× 10−3 +

0.68c2
ξ + 0.65s2

ξ

c2
ξ + 1.32s2

ξ

κ

)
. (14)

With a luminosity L = 10 ab−1, the relative uncertainty of σtot is determined by δσtot/σtot =

1/
√
Nsig +Nbkg ∼ O(10−2) 6, which is ignorable compared with the relative uncertainty of A. In

Fig. 5, we show the correlation between asymmetry A and total cross section σtot for different ξ

in the left plot, together with the standard deviation away from the CP-conserving case (denoted

as s0 = |A − A+|/σA+ , meaning the discovery potential for CP-violation) for different observed

asymmetry A and total cross section σtot values in the right plot. If σtot & 0.08 fb (corresponding

to κ & 0.009 or cV & 0.1 if |ct| ' 1), a pure CP-odd Htt̄ coupling is expected to be evidenced at

the 3σ level; while σtot & 0.11 fb (corresponding to κ & 0.017 or cV & 0.14 if |ct| ' 1), a pure

CP-odd Htt̄ coupling is expected to be discovered at 5σ level. For the largest allowed cV ' 0.3

(corresponding to κ ' 0.06 or σtot ' 0.3 fb if |ct| ' 1), a pure CP-odd Htt̄ coupling corresponding

to ξ = π/2 is expected to be discovered at the 11.5σ level, while the 3(5)σ evidence (discovery)

boundary corresponds to ξ ' 0.15π(0.21π).

6 This estimation comes only from our signal process WW → H → t(→ b`+ν)t̄(→ b̄`−ν̄). With the help of other
decay channels of H and t(t̄), we will obtain a better estimation on the uncertainty of σtot.
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FIG. 5: In the left plot: we show the expected correlation between the asymmetry A and total cross section

σtot for different ξ ≡ arg(ct): the blue line with ξ = 0 means pure CP-even Htt̄ coupling corresponding to

the CP-conserving case (together with its ±1σ uncertainty) while the three red lines with ξ = π/6, π/3, π/2

correspond to CP-violation cases. In the right plot: we show the standard deviation away from the CP-

conserving case (denoted as s0 = |A − A+|/σA+ , meaning the discovery potential for CP-violation) in the

A − σtot plane, together with the 3σ (dashed black line) and 5σ (solid black line) evidence and discovery

boundaries, respectively.
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III. IMPLICATION FOR THE 2HDM WITH CP-VIOLATION

A. Model Set-up

We choose the 2HDM with CP-violation [23] as a test model in this section. Mainly following

the conventions in [25, 87], the Lagrangian in the scalar sector is

L ⊃
∑
i=1,2

(Dµφi)
† (Dµφi)− V (φ1, φ2) , (15)

where φ1 =
(
ϕ+

1 ,
1√
2
(v1 + η1 + iχ1)

)T
and φ2 =

(
ϕ+

2 ,
1√
2
(v2 + η2 + iχ2)

)T
are two SU(2) doublets.

The Vacuum Expected Values (VEVs) v1,2 satisfy the relation v =
√
|v1|2 + |v2|2 = 246 GeV. We

also define tβ ≡ |v2/v1| as usual. The scalar potential is given by

V (φ1, φ2) = −1

2

[
m2

1φ
†
1φ1 +m2

2φ
†
2φ2 +

(
m2

12φ
†
1φ2 + H.c.

)]
+

1

2

[
λ1

(
φ†1φ1

)2
+ λ2

(
φ†2φ2

)2
]

+λ3

(
φ†1φ1

)(
φ†2φ2

)
+ λ4

(
φ†1φ2

)(
φ†2φ1

)
+

[
λ5

2

(
φ†1φ2

)2
+ H.c.

]
, (16)
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where we assumed a softly broken Z2 symmetry 7 to avoid the possible tree-level Flavour Changing

Neutral Current (FCNC) interactions. Here, m2
12, λ5, and v2/v1 can be complex parameters and

we can always perform a field rotation to make at least one of them real. We choose v2/v1 to be

real 8 and thus the vacuum conditions lead us to the relation [25, 87]

Im
(
m2

12

)
= v1v2Im (λ5) . (17)

If both sides in the equation above are non-zero, there will be CP-violation in the scalar sector.

The Goldstone modes G+ and G0 can be recovered through a diagonalization procedure as G+

H+

 =

 cβ sβ

−sβ cβ

 ϕ+
1

ϕ+
2

 , and

 G0

A0

 =

 cβ sβ

−sβ cβ

 χ1

χ2

 . (18)

If there is no CP-violation, A0 should be a pure pseudoscalar while, in the CP-violation scenario,

A0 must further mix with η1,2 to obtain the neutral mass eigenstates as
H1

H2

H3

 = R


η1

η2

A0

 . (19)

The mixing matrix R is parameterized following the convention in [25] as

R =


1

cα3 sα3

−sα3 cα3




cα2 sα2

1

−sα2 cα2




cβ+α1 sβ+α1

−sβ+α1 cβ+α1

1

 . (20)

With this convention, if α1,2 → 0, H1 becomes the SM Higgs boson. Here, α2 is an important

parameter because it measures the CP-violation mixing corresponding to the SM-like Higgs boson

H1. In the Yukawa sector, a fermion bilinear can couple to only one scalar doublet due to the Z2

symmetry. Denoting QL ≡ (u, d)TL and LL ≡ (ν, `)TL, we always assume that Q̄LuR couples to φ2,

and thus the four types of Yukawa interactions are

L ⊃



−YU Q̄Lφ̃2UR − YDQ̄Lφ2DR − Y`L̄Lφ2`R + H.c., (Type I),

−YU Q̄Lφ̃2UR − YDQ̄Lφ1DR − Y`L̄Lφ1`R + H.c., (Type II),

−YU Q̄Lφ̃2UR − YDQ̄Lφ2DR − Y`L̄Lφ1`R + H.c., (Type III),

−YU Q̄Lφ̃2UR − YDQ̄Lφ1DR − Y`L̄Lφ2`R + H.c., (Type IV).

(21)

7 Under the Z2 transformation, φ1 → φ1 and φ2 → −φ2 and in Eq. 16 only the m2
12-term breaks this symmetry.

8 Indeed we can then make sure both v1 and v2 are real through gauge transformations.
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Following our analysis in [25], the Type I and IV models are facing very stringent electron EDM

constraints and thus the CP-violation mixings are limited to O
(
10−3

)
. However, in Type II and

III models, a possible cancellation between different contributions to the electron EDM leads to

a much weaker constraint on the CP-violation mixing α2 [25, 29, 32–34, 42, 88–94]. As shown

in [25], in the Type II model |α2| . 0.1 mainly due to the neutron EDM constraint while in the

Type III model |α2| . 0.3 mainly due to the global-fit on LHC Higgs data9. The cancellation

appears around tβ ' 1, depending weakly on m2,3 and α2. Thus, we choose the Type III model

as an example. We consider the case for which H2,3 have a large mass splitting and H = H2 is

dominated by the pseudoscalar component, thus α3 ∼ π/2 and we have the relation

tα3 =

(
m2

3 −m2
2

)
+
√(

m2
3 −m2

2

)2
s2

2β+α1
− 4

(
m2

3 −m2
1

) (
m2

2 −m2
1

)
s2
α2
c2

2β+α1

2
(
m2

2 −m2
1

)
sα2c2β+α1

. (22)

In the Type III 2HDM, when α1 ' 0, α3 ' π/2 and tβ ' 1, the coefficients in Eq. 3 are reduced to

cV ' −sα2 , and ct ' −sα2 − icα2 = −ei(π/2−α2). (23)

Thus α2 is a key parameter measuring CP-violation in the (pseudo)scalar sector.

B. Implications of CP-violation in the 2HDM

If we choose a scenario with the aforementioned cancellations in the electron EDM which allows

larger CP-violation angle α2, we have the expected correlation between the asymmetry A and the

total cross section σtot, as discussed in Sec. II C. Both A and σtot depends only on the parameter

α2 for a given mH (and hence the electron EDM cancellation condition will fix tβ ' 1). In

this scenario, the Htt̄ coupling is dominated by the CP-odd component and thus the expected

asymmetry A should be close to the case with pure CP-odd Htt̄ coupling. The H → Zh decay

channel is negligible here.

In this section, we choose the W+W−-fusion channel, at CLIC with
√
s = 3 TeV and 10 ab−1

luminosity, as above. In the left plot of Fig. 6, we show the predicted asymmetry A depending on

the total cross section σtot in this scenario of a 2HDM with ±1σ,±2σ,±3σ uncertainties, together

with the prediction from the CP-conserving case for comparison. In the right plot of Fig. 6,

we show the discovery potential of CP-violation depending on the total cross section σtot if an

asymmetry A equalling the 2HDM prediction is observed. For the left plot, if an observed (σtot, A)

9 As shown in [25], the difference comes from the neutron EDM calculation. An accidental partial cancellation in
the Type III model makes the constraints from the neutron EDM much weaker than in the Type II model.
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FIG. 6: In the left plot: we show the predicted asymmetry A versus the total cross section σtot in the

chosen 2HDM with ±1σ (green), ±2σ (yellow) and ±3σ (blue) uncertainties. The thick black line shows

the central value of the 2HDM prediction. We also show the CP-conserving prediction as the thick blue line

as a comparison. In the right plot: we show the discovery potential of CP-violation versus the total cross

section σtot if an asymmetry A equal to the 2HDM prediction is observed.
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point is located outside the yellow (blue) boundaries, it will mean that the 2HDM scenario we

discuss here is excluded at 95%(99.7%) Confidence Level (C.L.) and thus this 2HDM scenario is

disfavored. And, if an asymmetry A equal to the prediction by this 2HDM scenario is observed,

meaning this 2HDM scenario is favored, we show the discovery potential of CP-violation in the

right plot. We can discover CP-violation at 3(5)σ level if σtot & 0.08(0.11) fb, corresponding to

|α2| & 0.096(0.14). Finally, for the largest allowed |α2| ' 0.3, corresponding to σtot ' 0.3 fb, we

can discover CP-violation at the 10.7σ level.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we propose a novel method to test CP-violation in a (pseudo)scalar sector

characterized by a heavy scalar boson H with couplings to the heavy gauge bosons and a complex

coupling to the top quark. We have studied the physics potential of an electron-positron collider at
√
s = 1.5 and 3 TeV, such as CLIC. At such high energies, the production of a heavy scalar boson

is dominated by W+W−- and ZZ-fusion. We choose the process in which the heavy scalar H is

produced through VBF channel, and decays to tt̄ pair. In our method, the CP-even component of H

is confirmed through the HV V coupling, while the CP-odd component of H should be confirmed

through the CP-odd Htt̄ coupling. The CP nature of Htt̄ coupling is tested through the spin
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correlation between t and t̄, which is sensitive to the distribution of the azimuthal angle between

the leptons decaying from t and t̄ quarks.

In our study, we found that the ZZ-fusion channel suffers from the SM background and cannot

provide large enough significance to see the effect of CP-violation even under the most favorable

scenario of CP-violation at
√
s = 1.5 or 3 TeV. In contrast, the W+W−-fusion channel provides

a reasonable separation of pure CP-even and CP-odd Htt̄ coupling at
√
s = 1.5 TeV and the

significant difference (more than 5σ) between the CP-even and CP-odd Htt̄ coupling can be seen

at
√
s = 3 TeV CLIC with 10 ab−1 luminosity, under a favorable scenario of CP-violation. The

physics potential is summarized in Fig. 5, in which one can see that a pure CP-odd Htt̄ coupling

can be discovered at 5σ level for σtot ' 0.11 fb (corresponding to cV ' 0.14 if assuming |ct| = 1),

and it can be stretched to 11.5σ for σtot ' 0.3 fb (corresponding to the largest allowed cV ' 0.3 if

assuming |ct| = 1).

Implications for the 2HDM with CP-violation in the Higgs sector were also studied. Type

III model affords a fairly large CP-violating angle α2, such that this scenario can be analyzed

similarly to what we did for the model-independent approach. The results are summarized in

Fig. 6. Eventually, we showed that at
√
s = 3 TeV CLIC with 10 ab−1 luminosity, the 2HDM

Type III with a favorable CP-violating set-up can be discovered at 5σ level when σtot ' 0.11 fb

(corresponding to |α2| ' 0.14), and it can be stretched to 10.7σ when σtot ' 0.3 fb (corresponding

to the largest allowed |α2| ' 0.3).

In short, an electron-positron collider operating in the multi-TeV energy range, such as CLIC,

is a useful apparatus to study CP-violation effects in the (pseudo)scalar Higgs sector by using VBF

production (through the charged current channel) of a heavy Higgs state decaying into a tt̄ pair, in

turn yielding two (prompt) leptons. We have come to this conclusion by performing a sophisticated

Monte Carlo (MC) analysis, albeit limited to the parton level, however, we are confident that our

results can be replicated at the full detector level, given that they are driven by inclusive and

exclusive observables solely exploiting electron and muon kinematics.
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