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Lattice QCD calculations of leptonic decay constants have now reached sub-percent precision so
that isospin-breaking corrections, including QED effects, must be included to fully exploit this pre-
cision in determining fundamental quantities, in particular the elements of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix, from experimental measurements. A number of collaborations have per-
formed, or are performing, such computations. In this paper we develop a new theoretical framework,
based on Infinite-Volume Reconstruction (IVR), for the computation of electromagnetic corrections
to leptonic decay widths. In this method, the hadronic correlation functions are first processed
theoretically in infinite volume, in such a way that the required matrix elements can be deter-
mined non-perturbatively from lattice QCD computations with finite-volume uncertainties which
are exponentially small in the volume. The cancellation of infrared divergences in this framework is
performed fully analytically. We also outline how this IVR treatment can be extended to determine
the QED effects in semi-leptonic kaon decays with a similar degree of accuracy.

I. INTRODUCTION

Lattice QCD results for a number of physical quantities have now reached the sub-percent level, e.g. the 2021
review by the Flavour Physics Lattice Averaging Group (FLAG2021) [1] quotes the following values for the leptonic
decay constants fπ and fK

1:

fπ = 130.2 (8)MeV, fK = 155.7 (3)MeV,
fK
fπ

= 1.1932(21) . (1)

The experimental results for the leptonic decay widths are even more precise. In order to fully exploit the level
of precision in Eq. (1) for tests of the Standard Model of particle physics and the determination of its parameters,
in particular the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, electromagnetic and strong isospin-
breaking corrections need to be included. The subject of this paper is the theoretical extension of the Infinite Volume
Reconstruction (IVR) method for the evaluation of leptonic decay widths of pseudoscalar mesons in lattice QCD
computations on a finite Euclidean volume in such a way that i) the cancellation of infrared divergences is explicit
and ii) the finite-volume corrections are exponentially small. The method is illustrated with the decay of a pion,
π+ → ℓ+νℓ(γ), where ℓ+ is a charged lepton, but applies equally well to the decays of heavier mesons (K,D,Ds, B
and Bc mesons).

Infinite volume reconstruction was first proposed in Ref. [2] to avoid power-like finite-volume uncertainties when
computing QED corrections to the hadronic spectrum in a finite volume. It has since been used in studies including:

1 The decay constant fπ is frequently used as part of the calibration, including the determination of the lattice spacing, and the value
in Eq. (1) is obtained from simulations with Nf = 2 + 1 light-quark flavours. The values of fK and fK/fπ are from NF = 2 + 1 + 1
computations.
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long distance contributions to neutrinoless double-β decay [3], rare kaon decays [4]; the width for the decay K →
ℓν(ℓ′+ℓ′ −), where ℓ and ℓ′ represent charged leptons [5]; the π+ -π0 mass splitting [6]; the two-photon exchange
contribution to the muonic-hydrogen Lamb shift [7] and the contribution from a light sterile neutrino to neutrinoless
double-β decay [8]. In these quantities there are no infrared divergences in intermediate stages of the calculation,
with the exception of the two-photon exchange contribution to the muonic-hydrogen Lamb shift where the infrared
divergence is regulated by the atomic binding energy [7]. By contract, for leptonic decays the divergences at O(αem)
are cancelled in Γ(π+ → ℓ+νℓ)+Γ(π+ → ℓ+νℓγ) [9] and an important element of this work is to demonstrate that the
width can be computed using IVR after the complete analytic removal of the infrared divergences.

Isospin breaking corrections to leptonic decay widths have been studied in detail in Refs. [10–13] in the context of
the QEDL treatment of the photon’s zero mode [14]. In particular it was shown in Ref. [11] that the finite-volume
dependence of Γ(π+ → ℓ+νℓ), the width for the decay π+ → ℓ+νℓ, takes the form

Γ(π+ → ℓ+νℓ) = c0(rℓ) + c̃0(rℓ) log[mπL] +
c1(rℓ)

mπL
+ · · · (2)

where rℓ = mℓ/mπ, mπ and mℓ are the masses of the pion and charged lepton respectively and the spatial volume
V = L3. The exhibited terms in Eq. (2) are universal, i.e. independent of the structure of the pion, and can therefore
be evaluated in perturbation theory treating the pion as an elementary meson. The coefficients c0, c̃0 and c1 were
calculated in Ref. [11], and the corresponding finite-volume effects subtracted from the non-perturbatively computed
width in the numerical studies of Ref. [12, 13]. The infrared divergence is manifest in the term containing log[mπL]

2,
so that L acts as the infrared regulator. In the QEDL formulation the leading finite-volume effects which depend on
the structure of the decaying pion are therefore of O(1/(mπL)

2) and, together with higher order terms, are represented
by the ellipsis in Eq. (2). The O(1/(mπL)

2) non-perturbative effects were recently estimated in Ref. [15], together with
a perturbative calculation of the terms of O(1/(mπL)

3) obtained by treating the meson as a point-like particle (see
also Ref. [16]). It was found that while the structure-dependent terms at O(1/(mπL)

2) are small, the O(1/(mπL)
3)

terms corresponding to a point-like pion are significant. The structure-dependent terms at O(1/(mπL)
3) are unknown

however, and difficult to estimate without repeating computations at different volumes at the same lattice spacings
and quark masses.

The primary aim of the present paper is to develop a framework, based on IVR, in which the finite-volume effects
decrease exponentially in the volume and in which the cancellation of infrared divergences is fully controlled. In this
approach, in contrast to other implementations of QCD+QED in lattice computations, the decay amplitude is not
fully computed in a finite volume. Instead, as will be discussed in detail below, the infinite-volume amplitude is
organised in such a way that effects related to the long-distance propagation of the photon are calculated analytically
and the only non-perturbative QCD input which is required is a non-local hadronic matrix element which is obtained
with exponentially small finite-volume corrections.

A number of issues which are necessary for the evaluation of leptonic decay widths are generic, and hence are
common to the QEDL and IVR frameworks. These were discussed in Refs. [10–13] and we do not add further to that
discussion here, beyond briefly recalling the main points. These include:

1. The Effective Lagrangian and determination of the Fermi Constant:

Lattice calculations are generally performed with an inverse lattice spacing of the order of a few GeV (e.g. a−1 ≃ 2 -
4GeV) and, even with techniques such as step-scaling, direct computations in the Standard Model, which contain
scales of O(MW ), are not possible at present. Instead, weak decay amplitudes are evaluated in an effective theory in
which the heavy degrees of freedom, and in particular the W and Z bosons are integrated out. The amplitudes are
therefore written in terms of the Fermi constant, GF , which is conventionally determined from the muon lifetime. At
O(αem) and neglecting higher order terms in m2

e/m
2
µ, the lifetime τµ is given by the expression [17, 18]:

1

τµ
=

G2
Fm

5
µ

192π3

[

1− 8m2
e

m2
µ

] [

1 +
αem

2π

(

25

4
− π2

)]

, (3)

leading to the value GF = 1.16634× 10−5GeV−2. (For an extension of Eq. (3) to O(α3) and the inclusion of higher
powers of ρ ≡ (me/mµ)

2 see Sec. 10.2.1 of the 2022 edition of the Particle Data Group’s review [19]. The authors

quote the corresponding value of the Fermi constant to be GF = 1.1663787(6)× 10−5GeV−2.)

2 We have chosen to write the infrared divergent term here as log[mπL]. It can, of course, be written instead as log[mℓL] together with
the corresponding redefinition of c0(rℓ).
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The evaluation of the amplitude for the process π+ → ℓνℓ up to O(αem) can be performed in the effective theory
with the effective Lagrangian [20, 21]

Leff =
GF√
2
V ∗
ud

(

1 +
αem

π
log

MZ

MW

)

(

d̄γµ(1− γ5)u
) (

ν̄ℓγµ(1− γ5)ℓ) (4)

and with the Feynman-gauge photon propagator in the W-regularisation [22], i.e with 1/k2 replaced by M2
W /k2(M2

W −
k2) where k is the four-momentum of the photon. Since αem/π log(MZ/MW ) ≃ 2.9× 10−4 we drop this term in the
remainder of this paper. It can readily be included if necessary.

2. Renormalisation of the lattice operator(s):

From the previous paragraphs we note that the matrix elements of bare lattice operator(s) determined in a lattice
computation need to be converted into the W-regularisation scheme. This is a short-distance issue and, given the
large scale MW , in practice this requires some perturbation theory. For the Wilson action for both the fermions
and gluons, the conversion was performed entirely in perturbation theory at O(αem) in Ref. [10] (see Eq. (10) of this
reference). (Note that the lack of chiral symmetry with Wilson fermions implies that the current-current operator in
Eq. (4) is a linear combination of 5 four-fermion lattice operators.) The precision of the calculation was subsequently
improved from O(αem αs(a)) to O(αem αs(MW )) in Ref. [23].

The discussion in this paper is independent of the choice of the lattice discretisation of QCD. Whichever choice
is made in the computation of the decay width, the bare lattice operators will need to be matched to those in the
W-regularisation, either using a combination of non-perturbative renormalisation and perturbation theory or entirely
in perturbation theory.

3. Quark and meson mass shifts:

Electromagnetic effects induce a shift in the masses of quarks and hadrons. Computations of hadron masses in the
full theory, i.e. including electromagnetic and strong isospin breaking effects, are now performed by a number of
groups [6, 24–32]. The hadron masses in the full QCD+QED theory are of course unambiguous and the computed
quantities reproduce their physical values, up to statistical and systematic uncertainties. On the other hand, at
O(αem) computed quantities in QCD (without QED) are convention dependent, i.e. they depend on the criteria used
to determine the input bare quark masses and lattice spacing. For a detailed discussion of this point, see section II in
Ref. [13], where a number of possible conventions for the definition of QCD are reviewed. In the present paper we will
not discuss strong isospin breaking, since it does not present significant conceptual difficulties, such as the cancellation
of infrared divergences and finite-volume effects which are not exponentially small. The presentation in this paper
does not depend on the convention chosen to define QCD and so we generically label the mass of the charged pion in
QCD by m0

π and that in the full theory by mπ = m0
π + δmπ. The mass shift δmπ is obtained from the time behaviour

of the correlation functions as explained in Sec. II B. Our focus instead, is on the determination of the decay width,
which is obtained from the correlation functions after the subtraction of the term proportional to the mass-shift.

While the non-pertubative QCD effects will necessarily be determined from hadronic correlations functions com-
puted on finite Euclidean volumes, the discussion in this paper is presented in an infinite four-dimensional volume.
We identify the non-pertubative hadronic elements which need to be calculated and define and process the correlation
functions from which they can be determined. We then organise the calculation in such a way that the hadronic
matrix elements contributing to the width can subsequently be determined from a finite-volume computation with
only exponentially small finite-volume corrections.

The correlation functions studied in Sec. II all include an interpolating operator to create the pion at rest at time
−tπ and the hadronic weak current which annihilates the meson at the four-dimensional origin. In an infinite space-
time volume tπ can be chosen to be arbitrarily large. In Euclidean space the Feynman-gauge photon propagator is
given in Eq. (A7):

Sµν
γ (x, y) =

δµν

4π2|x− y|2 , (5)

where x and y are the positions of the two electromagnetic currents in diagrams A, B and C (see Fig. 1). In the
absence of infrared divergences, one can therefore, at arbitrarily large temporal separations, e.g. |x4− y4| & tπ , factor
the amplitude, writing it as the product of source, sink and propagation contributions.. Infrared divergences are
present however, and without an additional infrared cut-off it is tπ which acts as the cut-off, with terms proportional
to log[mπtπ] present. Instead, we organise the discussion by implicitly introducing a separate cut-off, e.g. a mass for
the photon mγ , with tπmγ ≫ 1, so that contributions from |x4 − y4| & tπ, where the photon propagator joins the
source and sink factors, can now legitimately be neglected. The cancellation of the infrared divergences, which are now
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FIG. 1: Diagram D0 contributes to the amplitude for the decay π+ → ℓ+νℓ in the absence of electromagnetism. The
remaining 5 connected diagrams contribute to the O(αem) electromagnetic corrections to the width of the leptonic
decay of a pion. Diagrams A-C correspond to the decay π+ → ℓ+νℓ and diagrams D and E to the decay
π+ → ℓ+νℓγ. As explained in Sec. II, each of the five diagrams should be viewed as representing a class of diagrams
at the quark and lepton level, without regard for the time ordering suggested by the representatives shown.

proportional to log(mπ/mγ), will be handled analytically and IVR will be applied to the finite terms to ensure that
the finite-volume corrections are exponentially small. Whilst the logic of the discussion requires us to take the limits
in the order limmγ→0 limtπ → ∞, this limit is taken before the lattice calculations, which are therefore independent
of mγ and free of infrared divergences.

We stress that the cancellation of infrared divergences is performed fully analytically, with no lattice uncertainties.
This is different for example, from the computations in QEDL in which an analytic expression containing the infrared
divergence, which is of the form log[mπL], is subtracted from the amplitude computed numerically.

In the following sections we present the implementation of the IVR method in leptonic decays in detail, but we now
introduce the main ideas. The introduction of radiative corrections, with a photon which can propagate over large
distances, results in the presence of both infrared divergences and finite-volume corrections which potentially only
decrease slowly with the volume (as inverse powers of L, the spacial extent of the volume). The fundamental idea of
the IVR method is that there is a time interval ts . L such that the only hadronic state which contributes significantly
to correlation functions when propagating over times greater than ts is the pion; contributions from states with larger
masses are exponentially suppressed. To illustrate the method, consider the hadronic matrix element

H(~x,−t) ≡ 〈f |T [O2(0)O1(~x,−t)] |π(~0)〉 , (6)

where O1,2 are local operators, T represents time-ordering and the initial state |π(~0)〉 is a pion at rest, (i.e. with three-

momentum ~0). For our specific study of leptonic decays we show in Fig. 1 the diagram without electromagnetism and
the five diagrams which include electromagnetism and contribute to the π+ → ℓ+νℓ(γ) decay amplitude (we include
electromagnetic corrections up to O(αem) in the decay width). For diagrams B and D, the final state |f〉 = |0〉 and
O1 and O2 are electromagnetic and weak currents respectively. For diagram A, both O1 and O2 are electromagnetic
currents and if −t < 0 and the time at which the weak current is inserted, tW , is sufficiently large and positive so the
propagation of states other than the pion between O2(0) and the weak current at tW is suppressed, then |f〉 = |π(~0 )〉.
In the evaluation of the diagrams, H(~x,−t) is a factor in the integrand of integrals of the genetic form

∫

d 4x H(x) f(x) , (7)
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where f(x) encodes non-hadronic x-dependent elements such as the photon and lepton propagators. We now demon-
strate that for t > ts, H(~x,−t) can be determined analytically in terms of H(~x,−ts). It is therefore unnecessary to
perform non-pertubative computations of H(~x,−t) for t > ts. By the assumption that only pion intermediate states
propagate between (~x,−ts) and the origin we have

H(~x,−ts) =

∫

d 3p

(2π)3
1

2Eπ(~p )
〈f |O2(0)|π(~p )〉〈π(~p )|O1(~x,−ts)|π(~0 )〉

=

∫

d 3p

(2π)3
1

2Eπ(~p )
〈f |O2(0)|π(~p )〉〈π(~p )|O1(0)|π(~0 )〉e−(Eπ(~p )−mπ)tse−i~p·~x , (8)

where Eπ(~p ) =
√

|~p |2 +m2
π . Performing the inverse Fourier transform we obtain

1

2Eπ(~p )
〈f |O2(0)|π(~p )〉〈π(~p )|O1(0)|π(~0 )〉 =

∫

d 3xH(~x,−ts)e
(Eπ(~p )−mπ)tsei~p·~x . (9)

For values of t > ts following the same steps as in Eq. ( 8) we have

H(~x,−t)|t>ts =

∫

d 3p

(2π)3
1

2Eπ(~p )
〈f |O2(0)|π(~p )〉〈π(~p )|O1(0)|π(~0 )〉e−(Eπ(~p )−mπ)te−i~p·~x (10)

=

∫

d 3p

(2π)3

∫

d 3x′ H(~x ′,−ts) e
−(Eπ(~p )−mπ)(t−ts)e−i~p·(~x−~x ′) . (11)

We see therefore that H(~x,−t)|t>ts can be determined from the knowledge of H(~x,−ts), which is now the non-
perturbative input into the evaluation of the decay amplitude. The discussion here is infinite volume, but we envisage
that the non-perturbative determination ofH(~x,−ts) will ultimately be performed in a finite-volume lattice QCD com-

putation. The long-distance behaviour of the correlation function in Eq. (10) is of the form exp
[

−mπ(
√

|~x|2 + t2 − t)
]

with prefactors which include negative powers of
√

|~x|2 + t2. Thus, in the region of large t, increasing |~x | has little
effect until |~x |2mπ becomes of the order of t. Furthermore, contributions from regions of large t >> |~x |2mπ are only
suppressed by powers of t. Consequently, in a finite-volume lattice calculation, the omission of the large |~x | region at
large t from the integral in Eq. (7), where f(x) contains the photon propagator, results in power law, finite-volume
errors. However, as is shown in Eq. (11), IVR allows the contribution from this troublesome region of large t to be de-
termined analytically in infinite volume from the calculation of hadronic matrix elements at, for example, a fixed value
of t = ts. The exponential decrease for large |~x | at fixed ts ensures exponentially vanishing corrections as the volume
used in the lattice calculation grows. Moreover, no finite-volume effects are introduced by the momentum integration
on the right-hand side of Eq. (11), since this is always performed in infinite-volume. In the following sections we
exploit the IVR technique illustrated above to develop a complete procedure for the computation of electromagnetic
corrections to the leptonic decay widths of pseudoscalar mesons.

In the previous paragraph, in order to illustrate the method, we demonstrated that performing the computations
on lattices of increasing volumes with a fixed value of ts led to exponentially small finite-volume effects. There also
exist other possibilities to achieve this, although the rate of decrease of the exponentially falling finite volume effects
will be different in each case. For example, we can increase ts as the volume increases while keeping the ratio ts/L
fixed, with ts . L . Increasing ts in this way, enables us to combine the reduction of finite-volume effects with a
decrease of any possible contamination from contributions of excited states at t = ts.

The plan for the remainder of the paper is as follows. In the next section we discuss the evaluation of the diagrams.
The terms containing the infrared divergences are separated from the finite terms. The analytic cancellation of the
infrared divergences in the width between diagrams with a virtual photon (diagrams A,B and C) and those with a
real photon (diagrams D and E) is demonstrated in Sec. III. We collect all the terms contributing to the final result
for the decay width in Sec. IV and in Sec. V we present a brief summary and our conclusions.

There are three appendices: in Appendix A we present the conventions we use in Minkowski and Euclidean space.
In the main body of the paper we identify the terms which lead to infrared divergences in the widths. While the
cancellation of infrared divergences is manifest, finite terms remain after the addition of the individually divergent
terms. These residual finite terms are derived in AppendixB and only require knowledge of the decay constant and
the matrix element of the interpolating operator of the pion. Finally, in Appendix C we sketch how IVR can be
implemented in Kℓ3 decays.



6

II. EVALUATION OF THE DIAGRAMS

The five diagrams which contribute to the π+ → ℓ+νℓ(γ) decay amplitudes are illustrated in Fig. 1. They indicate
whether the photon is attached to the hadronic or leptonic components of the electromagnetic current(s) (see Eq. (17)
below). Thus, for example, in diagram A the photon is emitted and absorbed on quark propagators, whereas in
diagram B it is emitted from a quark propagator and absorbed by the charged lepton. We stress that the diagrams are
a representation of QCD+QED, and that their evaluation in lattice computations is to be performed in a discretisation
of QCD at the quark and gluon level. The diagrams are not to be interpreted as corresponding to some effective
theory. “Disconnected” diagrams, i.e. those in which the photon is emitted and/or absorbed from a closed quark
loop which is connected to the remainder of the diagram only by gluons, are implicitly included in the diagrams of
Fig. 1. While it is generally more difficult to compute such disconnected diagrams numerically, they are included in
the framework presented in this paper. At O(αem) there are no diagrams in which a photon is attached to a closed
lepton loop.

Below we discuss the evaluation of the diagrams of Fig. 1 which contribute to the π+ → ℓ+νℓ(γ) decay amplitudes.
More precisely, we define the correlation functions corresponding to each of the diagrams and organise them so the
hadronic matrix elements which contribute to the amplitudes can ultimately be computed on a finite Euclidean lattice
with only exponentially small finite-volume effects. Infrared divergent contributions are identified and the cancellation
of the divergences is performed analytically, so that the matrix elements which need to be computed are all individually
infrared finite. The numerical evaluation of the matrix elements is postponed to a future study.

We start by defining the fundamental ingredients in the computation of the amplitude, and in particular the
hadronic matrix elements and leptonic factors. Since the energy-momentum exchanges in this decay are much smaller
than the mass of the W -boson, the weak vertex is rewritten as a local four-fermion interaction as in Eq. (4)

Leff =
GF√
2
V ∗
ud gµν J

µ
W (x)

[

ν̄ℓ(x)γ
ν(1 − γ5)ℓ(x)

]

, (12)

where the weak hadronic current Jµ
W = d̄γµ(1 − γ5)u.

Throughout this paper, we take the initial pion to be at rest, denoting the corresponding QCD eigenstate by |π(~0)〉,
and define the hadronic matrix elements as follows:

Hµ
0 = 〈0|Jµ

W (0)|π(~0)〉 (13)

Hµν
1 (x) = 〈0|T

[

Jν
em(x)J

µ
W (0)

]

|π(~0)〉 (14)

Hµνρ
2 (x, y) = 〈0|T

[

Jν
em(x)J

ρ
em(y)Jµ

W (0)
]

|π(~0)〉 (15)

Hνρ
2s (z) = 〈π(~0)|T

[

Jν
em(0)J

ρ
em(z)

]

|π(~0)〉 . (16)

We use the normalization conventions 〈π(~p )|π(~p ′)〉 = (2π)32Eπδ(~p− ~p ′) for the state |π(~p )〉. In the above equations
Jµ
W is the weak hadronic current and Jν

em is the electromagnetic current

Jν
em =

∑

f

Qf q̄fγ
νqf −

∑

ℓ

ℓ̄γνℓ , (17)

where the charges Qf = + 2
3 for up-like quarks, − 1

3 for down-like ones and −1 for the leptons ℓ. The appearance of
H0 in diagrams D0, C and E, H1 in diagrams B and D and H2 in diagram A can be readily understood. We will
explain the appearance of H2s when discussing the evaluation of diagram A.

Diagrams A-C contain the propagator of a photon which, in position space with the photon propagating between x
and y, we denote by Sγ

µν(x, y) where µ, ν are Lorentz indices. We denote the four-momenta of the final state charged

lepton and neutrino by pℓ = (Eℓ, ~pℓ) and pν = (|~pν |, ~pν), and for this two-body π+ → ℓ+νℓ decay Eℓ and |~pℓ| are
fixed by the masses of the pion and lepton. Diagrams D and E have a real photon in the final state and we denote
its polarisation vector by ǫνλ(k), where k is the momentum of the photon and λ labels its polarisation. We denote
the four-momenta of the final state charged lepton, neutrino and photon in diagrams D and E by pℓ = (Eℓ, ~pℓ),

pν = (|~pν |, ~pν) and k = (|~k |, ~k ) respectively. In all the diagrams, the energy of the final state lepton is given by

Eℓ =
√

|~pℓ|2 +m2
ℓ .

The hadronic matrix elements in Eqs. (13) - (16) are combined with the photon propagator Sγ
µν or polarisation
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vectors ǫνλ and the corresponding leptonic factors

Lµ
0 = ū(pνℓ)γ

µ(1− γ5)v(pℓ) (18)

Lµν
1 (x) = ū(pνℓ)γ

µ(1− γ5)Sℓ(0, x)γ
νv(pℓ)e

−ipℓ·x (19)

Lµνρ
2 (x) = ū(pνℓ)γ

µ(1− γ5)Sℓ(0, x)γ
νSℓ(x, y)γ

ρv(pℓ)e
−ipℓ·y (20)

and subsequently integrated over x and y as appropriate.

In the following we start by writing down the contribution from each diagram to the decay amplitude with all
quantities, and in particular the γ-matrices and photon’s polarisation vector, in Minkowski space as presented in
Appendix A1. The earlier expressions in this section, from Eq. (12) to Eq. (20) were all written in terms of these
Minkowski-space quantities. Since the hadronic matrix elements are eventually to be evaluated in lattice computations
in a finite Euclidean volume we rewrite and process these contributions in terms of Euclidean quantities as defined
in AppendixA2. We stress however, that the expressions in both cases are exactly equivalent. An important point
to recall is that the discussion in this section is in infinite volume (both temporal and spatial). We will identify the
hadronic elements which need to be calculated and organise them in such a way that they can be computed on a finite
lattice with only exponentially small finite-volume corrections.

A. The amplitude in QCD without QED

The amplitude for the leptonic decay π+ → ℓ+νℓ in pure QCD, i.e. neglecting electromagnetism, is represented by
diagram D0 in Fig. 1 and is simply given by

M0 =
GF√
2
V ∗
ud Hµ

0 L
ν
0 gµν = −GF√

2
V ∗
ud H0

0L
0
0 , (21)

where we recall that we are using the metric gµν = diag(−1, 1, 1, 1) and that we take the meson in the initial state
to be at rest so that only the time component of Hµ

0 is not zero. Rewriting this expression in terms of Euclidean
γ-matrices as defined in Sec. A 2 we have

M0 = −GF√
2
V ∗
ud H4

0EL
4
0E , (22)

where the subscript E is included to indicate that the γ-matrices are in Euclidean space, distinguishing the expression
from Eq. (21) where they are in Minkowski space. Nevertheless the two expressions are identical of course.

The matrix element H4
0E is obtained from the following lowest order QCD (without QED) correlation functions

with quark masses corresponding to a π+ meson with mass m0
π:

C0
φφ(tπ) =

∫

d 3x 〈0|φ(0)φ†(−tπ, ~x ) |0〉 = |Z0|2
e−m0

πtπ

2m0
π

+ · · · (23)

C0
JWφ(tπ) =

∫

d 3x 〈0|J4
W (0)φ†(−tπ, ~x ) |0〉 = H4

0E Z0
e−m0

πtπ

2m0
π

+ · · · , (24)

where tπ > 0, φ† is an interpolating operator which can create the pion from the vacuum and the QCD matrix element
Z0 is defined as Z0 = 〈π(~0)|φ†(0)|0〉 evaluated in QCD without QED 3. The superscript 0 on m0

π indicates that this
is the pion mass evaluated in QCD, before the shift in quark masses induced by electromagnetic interactions. It is
assumed that tπ is sufficiently large that the correlation functions are dominated by the propagation of a single pion
at rest and the ellipsis represent the contributions from the excited states. These will be assumed to be negligible
and in the following presentation we drop the ellipsis. The hadronic matrix element H4

0E is obtained by combining
Eqs. (23) and (24):

H4
0E = [2m0

π]
1

2

C0
JWφ(tπ)

[C0
φφ(tπ)e

−m0
πtπ ]

1

2

. (25)

3 Note that our definition of Z0 differs from the convention
√
Z0 = 〈π(~0 )|φ†(0)|0〉 frequently used in the normalisation of quantum fields.
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Since throughout the discussion below the initial pion is at rest, in the following we will use the shorthand notation
for φ†(−tπ) (i.e. φ

† with a single variable):

φ†(−tπ) ≡
∫

d 3x φ†(−tπ, ~x ) . (26)

The correlation functions from which the contributions to the decay amplitudes from each of the diagrams in Fig. 1
are determined are defined in the following sections.

The contribution to the decay width in the absence of QED is given by

Γ0(π
+ → ℓ+νℓ) =

G2
F |Vud|2f2

π

8π
mπ m

2
ℓ

(

1− m2
ℓ

m2
π

)2

, (27)

where the leptonic decay constant fπ is obtained from |H4
0E |2 = m2

π f
2
π .

B. Contribution to the amplitude from Diagram A

Diagram A contributes at O(αem) to both the mass of the pion and to the decay amplitude; the latter through
the wave function renormalisation of the pion and a correction to the weak interaction vertex. The leptonic factor
L4
0E is common to both M0 and the contribution from diagram A and we define the Euclidean correlation function

corresponding to diagram A as:

CA
JWφ(tπ) = −e2

2

∫

d 4x

∫

d 4y 〈0|T
[

J4
W (0)Jµ

em(x)J
ν
em(y)φ

†(−tπ)
]

|0〉Sµν
γ (x, y) , (28)

where the 1
2 is the standard combinatorial factor and the superscript A indicates the contribution of diagram A. As

the discussion in this subsection is presented entirely in Euclidean space, we do not include an explicit subscript E to
denote Euclidean. Combining CA

JWφ with C0
JWφ (defined in Eq. (24)) gives

C0
JWφ(tπ) + CA

JWφ(tπ) =
H4

fullZfull

2(m0
π + δmπ)

e−(m0

π+δmπ)tπ , (29)

where H4
full ≡ 〈0|J4

W (0)|π(~0 )〉full, Zfull = 〈π(~0)|φ†(0)|0〉full and the label full implies that the matrix element is defined

in QED+QCD up to O(αem). At this order we can write

C0
JWφ(tπ) + CA

JWφ(tπ) = (−δmπtπ)
H4

0 Z0

2m0
π

e−m0

πtπ +
H4

fullZfull

2(m0
π + δmπ)

e−m0

πtπ , (30)

so that the mass-shift δmπ can be obtained from a study of the tπ behaviour of the correlation function.

Similarly, defining

CA
φφ(tπ) ≡ −e2

2

∫

d 4x

∫

d 4y 〈0|T
[

φ(0)Jµ
em(x)J

ν
em(y)φ†(−tπ)

]

|0〉Sµν
γ (x, y) , (31)

and following the same steps we obtain

C0
φφ(tπ) + CA

φφ(tπ) =
|Zfull|2

2(m0
π + δmπ)

e−(m0

π+δmπ)tπ

= (−δmπtπ)
Z2
0

2m0
π

e−m0

πtπ +
|Zfull|2

2(m0
π + δmπ)

e−m0

πtπ . (32)

The mass-shift δmπ is obtained from the coefficient of tπ in Eqs. (30) and (32). In order to simplify the notation in
the later discussion we define

C̃A
JWφ(tπ) = CA

JWφ(tπ)− (−δmπtπ) C
0
JWφ(tπ) (33)

C̃A
φφ(tπ) = CA

φφ(tπ)− (−δmπtπ) C
0
φφ(tπ) , (34)
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so that C̃A
JWφ(tπ) and C̃A

φφ(tπ) are the contributions to the correlation functions after the subtraction of the linear term
in tπ which is proportional to the mass-shift. It is from these subtracted correlation functions that the contribution to
the decay amplitude is obtained. Thus by studying the tπ dependence of C0

JWφ(tπ)+CA
JWφ(tπ) and C0

φφ(tπ)+CA
φφ(tπ),

the matrix element H4
full ≡ 〈0|J4

W (0)|π(~0)〉full can be determined:

H4
full = 2(m0

π + δmπ)

(

C0
JWφ(tπ) + C̃A

JWφ(tπ)
)

em
0

πtπ

Zfull

=
[

2(m0
π + δmπ)

]
1

2

C0
JWφ(tπ) + C̃A

JWφ(tπ)
[

(

C0
φφ(tπ) + C̃A

φφ(tπ)
)

e−m0
πtπ

]
1

2

≃
[

2m0
π

]
1

2

[

(

1 +
δmπ

2m0
π

)

C0
JWφ(tπ)

[C0
φφ(tπ) e

−m0
πtπ ]

1

2

+
C̃A

JWφ(tπ)

[C0
φφ(tπ) e

−m0
πtπ ]

1

2

− 1

2

C̃A
φφ(tπ)

[C0
φφ(tπ) e

−m0
πtπ ]

1

2

H4
0

Z0

]

(35)

≡ H4
0 +H4

A , (36)

where H4
0 is given in Eq. (25) .

The corresponding contribution to the amplitude is the extension of Eq. (22) to O(αem):

MA = −GF√
2
V ∗
ud H4

AL
4
0 . (37)

In the evaluation of the correlation functions CA
JWφ(tπ) and CA

φφ(tπ) we exploit the symmetry under x ↔ y and
consider only the contribution from the region x4 > y4 and introduce a factor of 2. We also divide the time integrations
into 4 regions Ri, i = 1 - 4,

R1: x4 > −ts, y4 > −tπ + ts

R2: x4 < −ts, y4 > −tπ + ts

R3: x4 < −ts, y4 < −tπ + ts (38)

R4: x4 > −ts, y4 < −tπ + ts ,

where ts > 0 is sufficiently large that the propagation of excited hadronic states can be neglected for time intervals
greater than ts. In principle, the limits on y4 defining the four regions in Eq. (38) could be −tπ + t′s, with t′s 6= ts but
still sufficiently large for the contribution of excited states to be negligible for time intervals greater than t′s. For the
remainder of this paper however, we simply set t′s = ts as in Eq. (38).

In region R4 the photon propagates for a time interval of at least tπ − 2ts. In an infinite volume with infinite time
extent, the situation being considered in the current discussion, tπ can be set to be arbitrarily large and hence the
contribution to the correlation functions from this region can be made arbitrarily small. This term can therefore be
neglected.

We now write the expressions for the correlation function CA
JWφ(tπ) and CA

φφ(tπ) in each of the three remaining
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regions in a way which will be useful for the discussion below:

CA
JWφ;R1

(tπ) = −e2
∫ ∞

−ts

dx4

∫ x4

−tπ+ts

dy4

∫

d 3x

∫

d 3y 〈0|T
[

J4
W (0)Jµ

em(x)J
ν
em(y)

]

φ†(−tπ)|0〉Sµν
γ (x, y)

= −e2
Z0

2m0
π

e−m0

πtπ

∫ ∞

−ts

dx4

∫ x4

−tπ+ts

dy4

∫

d 3x

∫

d 3y 〈0|T
[

J4
W (0)Jµ

em(x)J
ν
em(y)

]

|π(~0 )〉Sµν
γ (x, y) (39)

CA
JWφ;R2

(tπ) = −e2
∫ −ts

−tπ+ts

dx4

∫ x4

−tπ+ts

dy4

∫

d 3x

∫

d 3y 〈0|J4
W (0)Jµ

em(x)J
ν
em(y)φ

†(−tπ)|0〉Sµν
γ (x, y)

= −e2
Z0H

4
0

(2m0
π)

2
e−m0

πtπ

∫ −ts

−tπ+ts

dx4

∫ x4

−tπ+ts

dy4

∫

d 3z 〈π(~0 )|Jµ
em(x4,~0)J

ν
em(y4, ~z )|π(~0)〉Sµν

γ

(

(x4,~0), (y4, ~z )
)

(40)

CA
JWφ;R3

(tπ) = −e2
∫ −tπ+ts

−∞

dy4

∫ −ts

y4

dx4

∫

d 3x

∫

d 3y 〈0|J4
W (0)T

[

Jµ
em(x)J

ν
em(y)φ

†(−tπ)
]

|0〉Sµν
γ (x, y)

= −e2
H4

0

2m0
π

∫ −tπ+ts

−∞

dy4

∫ −ts

y4

dx4

∫

d 3z 〈π(~0)|T
[

Jµ
em(x4,~0)J

ν
em(y4, ~z )φ

†(−tπ)
]

|0〉Sµν
γ

(

(x4,~0), (y4, ~z )
)

. (41)

The corresponding expressions for the CA
φφ;Ri

(tπ), i = 1, 2, 3, are obtained from those in Eqs.(39) - (41) by replacing

H4
0 by Z0 and J4

W (0) by φ(0).

Note that the integrals in Eqs. (40) and (41) are common to both CA
JWφ;Ri

(tπ) and the corresponding CA
φφ;Ri

(tπ)

(i = 2, 3) so that

C̃A
JWφ;Ri

(tπ) = C̃A
φφ;Ri

(tπ)
H4

0

Z0
(i = 2, 3) (42)

which leads to a partial cancellation in Eq. (35). We shall show in the following subsections that Eq. (42) together
with the observation that CA

φφ:R1
(tπ) = CA

φφ:R3
(tπ), leads to considerable simplifications, specifically that to obtain

H4
A it is sufficient to compute the O(αem) correlation functions C̃JWφ;R1

(tπ) and C̃JWφ;R2
(tπ) (see Eq. (75) below).

The infrared divergent terms in CA
JWφ(tπ) and CA

φφ(tπ), as well as the shift in the pion mass, come from region R2

defined in Eq. (38). We therefore start the discussion of these correlation functions by considering the contributions
from region R2 in Sec.II B 1. Although the contributions from regions R1 and R3 are infrared finite, they do allow
for the propagation of a single pion over large (i.e. > ts) time intervals which in a finite-volume would lead to large,
non-exponential, finite-volume effects. These are eliminated by the use of IVR as explained in Secs. II B 2 and II B 3.

1. Contribution from Region R2

The infrared divergences, as well as terms which would potentially lead to non-exponential finite-volume effects in
a finite-volume computation of the correlation functions, come from the propagation of a single pion together with
the photon over large time separations x4 − y4. We therefore rewrite CA

JWφ;R2
(tπ) as the sum of two terms

CA
JWφ;R2

(tπ) = CAL
JWφ;R2

(tπ) + CA S
JWφ;R2

(tπ) , (43)

where the indices L and S represent Long and Short temporal separations between the insertions of the two currents
respectively. Specifically, we define regions L and S as corresponding to x4 − y4 ≥ ts and x4 − y4 < ts respectively
and take ts to be the same as in the definition of the four regions in Eq. (38). This is a convenient choice but not a
necessary one; all that is required is that the only significant contribution in region L corresponds to a single pion
and photon propagating between the two currents. The infrared divergence is contained in CAL

JWφ;R2
(tπ) whereas

CA S
JWφ;R2

(tπ) is infrared finite. We now consider these in turn, starting with the contribution from the short temporal

separation, CA S
JWφ;R2

(tπ).
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The infrared-convergent contribution CA S
JWφ;R2

(tπ) is given by:

CA S
JWφ;R2

(tπ) = −e2
Z0H

4
0

(2m0
π)

2
e−m0

πtπ

∫ −ts

−tπ+ts

dx4

∫ x4

max(x4−ts,−tπ+ts)

dy4

∫

d 3z 〈π(~0)|Jµ
em(x4,~0)J

ν
em(y4, ~z )|π(~0 )〉 ×

Sµν
γ

(

(x4,~0), (y4, ~z )
)

. (44)

It can be evaluated in lattice computations with exponentially small finite-volume corrections. The term proportional
to tπ contributes to the mass shift and is subtracted as in Eq. (33) and the difference is denoted by C̃AS

JWφ;R2
(tπ).

It is instructive to consider CA S
JWφ;R2

(tπ) in a little more detail. Note that the integrand in Eq. (44) is only a function
of the difference z4 ≡ x4 − y4 and ~z. Thus one time integration can be eliminated:

∫ −ts

−tπ+ts

dx4

∫ x4

max(x4−ts,−tπ+ts)

dy4

∫

d 3z 〈π(~0)|Jµ
em(x4,~0)J

ν
em(y4, ~z )|π(~0)〉Sµν

γ

(

(x4,~0), (y4, ~z )
)

= (tπ − 2ts)

∫ ts

0

dz4

∫

d 3z 〈π(~0)|Jµ
em(z)J

ν
em(0)|π(~0)〉Sµν

γ

(

z, 0
)

−
∫ ts

0

dz4

∫

d 3z z4〈π(~0)|Jµ
em(z)J

ν
em(0)|π(~0)〉Sµν

γ

(

z, 0
)

, (45)

where z = (z4, ~z ) and we have used translation invariance. The factor of tπ − 2ts in front of the first term on the
right-hand side is a reflection of the fact that the temporal range in region R2 for y4 = x4 is tπ − 2ts. From this
region therefore, we would expect a factor of δmπ(tπ − 2ts). Regions R1 and R3 both have temporal extent ts and
hence contributions which cancel the term proportional to −2ts in the first term on the right-hand side of Eq. (45).
We therefore only subtract the term proportional to tπ as in Eq. (33) so that

C̃AS
JWφ;R2

(tπ) = e2
Z0H

4
0

(2m0
π)

2
e−m0

πtπ

{

2ts

∫ ts

0

dz4

∫

d 3z 〈π(~0)|Jµ
em(z)J

ν
em(0)|π(~0)〉Sµν

γ

(

z, 0
)

+

∫ ts

0

dz4

∫

d 3z z4〈π(~0)|Jµ
em(z)J

ν
em(0)|π(~0)〉Sµν

γ

(

z, 0
)

}

. (46)

When the contribution from regions R1, R2 and R3 are combined the ts dependence is eliminated leaving both δmπ

and the contribution to the amplitude independent of ts.

We now consider the contribution CAL
JWφ;R2

(tπ) which contains the infrared divergence:

CAL
JWφ;R2

(tπ) = −e2
Z0H

4
0

(2m0
π)

2
e−m0

πtπ

∫ −ts

−tπ+2ts

dx4

∫ x4−ts

−tπ+ts

dy4

∫

d 3z 〈π(~0)|Jµ
em(x4,~0)J

ν
em(y4, ~z )|π(~0 )〉 ×

Sµν
γ

(

(x4,~0), (y4, ~z )
)

. (47)

In order to organise the cancellation of infrared divergences we further manipulate CAL
JWφ;R2

(tπ):

CAL
JWφ;R2

(tπ) = −e2
Z0H

4
0

(2m0
π)

2
e−m0

πtπ

∫ −ts

−tπ+2ts

dx4

∫ x4−ts

−tπ+ts

dy4

∫

d 3z

∫

d3p

(2π)3
1

2Eπ(~p )

∫

d3k

(2π)3
1

2Eγ

×

〈π(~0 )|Jµ
em(x4,~0)|π(~p )〉〈π(~p )|Jµ

em(y4, ~z )|π(~0 )〉 e−Eγ(x4−y4)ei
~k·~z

= −e2
Z0H

4
0

(2m0
π)

2
e−m0

πtπ

∫ −ts

−tπ+2ts

dx4

∫ x4−ts

−tπ+ts

dy4

∫

d3k

(2π)3
1

(2Eγ) (2Eπ(~k ))
×

〈π(~0 )|Jµ
em(0)|π(~k )〉〈π(~k )|Jµ

em(0)|π(~0)〉 e−(Eπ(~k )+Eγ−m0

π)(x4−y4), (48)
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where for three momentum ~q, Eπ(~q ) =
√

~q 2 + (m0
π)

2 and Eγ = |~k| 4. Performing the time integrations we obtain

CAL
JWφ;R2

(tπ) = −e2
Z0H

4
0

(2m0
π)

2
e−m0

πtπ

∫

d3k

(2π)3
1

2Eγ 2Eπ(~k )
〈π(~0 )|Jµ

em(0)|π(~k )〉〈π(~k )|Jµ
em(0)|π(~0)〉 ×

{

e−(Eπ(~k )+Eγ−m0

π)ts

Eπ(~k ) + Eγ −m0
π

(tπ − 3ts)−
e−(Eπ(~k )+Eγ−m0

π)ts − e−(Eπ(~k )+Eγ−m0

π)(tπ−2ts)

(Eπ(~k ) + Eγ −m0
π)

2

}

. (49)

In Eq. (49) the term in braces which is proportional to tπ corresponds to a contribution to the pion’s electromagnetic
mass shift and the remaining terms to a contribution to the amplitude. The ts dependence in the terms proportional
to tπ in Eq. (49) and (45) cancel leaving δmπ independent of ts. The second contribution in braces can readily be seen

to be infrared divergent by noting that for small |~k|, Eπ(~k ) +Eγ −m0
π = O(|~k|) and so the (tπ-independent) term in

the integrand is O(1/|~k|3). Note that, as explained in the Introduction, we assume that an infra-red cut-off, such as

a mass for the photon, has been introduced so that e−(Eπ(~k )+Eγ−m0

π) tπ → 0 as tπ → ∞ and the term containing this
factor in the integrand does not contribute to the amplitude.

Using Eq. (9) with f = |π(~0)〉 and with electromagnetic currents for the two operators O1,2, i.e.

1

2Eπ(~p )
〈π(~0)|Jµ

em(0)|π(~p )〉 〈π(~p )|Jν
em(0)|π(~0)〉 =

∫

d 3xHµν
2s (~x,−ts) e

(Eπ(~p )−mπ)ts ei~p·~x , (50)

the term contributing to the amplitude in Eq. (49) can be rewritten in the form

C̃AL
JWφ;R2

(tπ) = e2
Z0H

4
0

(2m0
π)

2
e−m0

πtπ

∫

d3k

(2π)3
1

2Eγ

∫

d 3z Hµµ
2s (~z,−ts) e

i~k·~z ×
{

3ts
e−Eγts

Eπ(~k ) + Eγ −m0
π

+
e−Eγts

(Eπ(~k ) + Eγ −m0
π)

2

}

. (51)

The tilde on the left-hand side of Eq. (51) indicates that the term proportional to tπ has been subtracted as explained
in the discussion around Eq. (33).

In order to organise the cancellation of the infrared divergences it is convenient to separate C̃AL
JWφ;R2

(tπ) into a
divergent and convergent contribution

C̃AL
JWφ;R2

(tπ) = C̃AL div
JWφ;R2

(tπ) + C̃AL con
JWφ;R2

(tπ) , (52)

where

C̃AL div
JWφ;R2

(tπ) = e2Z0H
4
0 e

−m0

πtπ

∫

d3k

(2π)3
1

2Eγ

e−Eγts

(Eπ(~k ) + Eγ −m0
π)

2
(53)

C̃AL con
JWφ;R2

(tπ) = e2
Z0H

4
0

(2m0
π)

2
e−m0

πtπ

∫

d3k

(2π)3
1

2Eγ

∫

d 3z Hµµ
2s (~z,−ts)×

{

3ts e
i~k·~z e−Eγts

Eπ(~k ) + Eγ −m0
π

+ (ei
~k·~z − 1)

e−Eγts

(Eπ(~k ) + Eγ −m0
π)

2

}

. (54)

Collecting up all the terms we have

C̃A
JWφ;R2

(tπ) = C̃ALdiv
JWφ;R2

(tπ) + C̃AL con
JWφ;R2

(tπ) + C̃AS
JWφ;R2

(tπ) , (55)

where C̃AL div
JWφ;R2

(tπ) is given in Eq. (53), C̃AL con
JWφ;R2

(tπ) in Eq. (54) and C̃AS
JWφ;R2

(tπ) in Eq. (44) after subtraction of the
term linear in tπ.

4 We write Eγ because when regulating the infrared divergences below we could envisage introducing a photon mass mγ so that Eγ =
√

|~k |2 +m2
γ .
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From Eq. (40) we see that the expression for the correlation function CA
φφ;R2

(tπ) is simply obtained from CA
JWφ;R2

(tπ)

with the replacement ofH4
0 by Z0. Therefore, recalling the expression in Eq. (35), the contribution to H4

full from region
R2 is

[

2m0
π

]
1

2

[

C̃A
JWφ;R2

(tπ)

[C0
φφ(tπ) e

−m0
πt]

1

2

− 1

2

C̃A
φφ;R2

(tπ)

C0
φφ(tπ)

C0
JWφ(tπ)

[C0
φφ(tπ) e

−m0
πt]

1

2

]

=
1

2

[

2m0
π

]
1

2

C̃A
JWφ;R2

(tπ)

[C0
φφ(tπ) e

−m0
πt]

1

2

. (56)

The divergent contribution to H4
full from diagram A is therefore

H4 div
A = e2

H4
0

2

∫

d3k

(2π)3
1

2Eγ

e−Eγts

(Eπ(~k ) + Eγ −m0
π)

2
. (57)

and for later use we define

Mdiv
A = −GF√

2
V ∗
ud H4 div

A L4
0 . (58)

The factor e−Eγts in the integrand ensures that H4 div
A is ultra-violet convergent.

2. Contribution from Region R1

The contributions to MA from region R1 is infrared convergent and in this subsection we present the corresponding
expression. We start with a discussion of the correlation function in region R1 presented in Eq. (39) which we rewrite
here for convenience:

CA
JWφ;R1

(tπ) = −e2
Z0

2m0
π

e−m0

πtπ

∫ ∞

−ts

dx4

∫ x4

−tπ+ts

dy4

∫

d 3x

∫

d 3y 〈0|T
[

J4
W (0)Jµ

em(x)J
ν
em(y)

]

|π(~0)〉Sµν
γ (x, y) . (59)

We now subdivide R1, where x4 > −ts and y4 > −tπ + ts, into subregions in which either the contributions to
CA

JWφ;R1
(tπ) can be computed directly or the IVR procedure is implemented:

R1a: x4 < 0, x4 − y4 ≥ ts
R1b: x4 > 0, y4 ≤ −ts
R1c: x4 < 0, x4 − y4 < ts
R1d: x4 > 0, y4 > −ts

and in each case it is to be implicitly understood that x4 > −ts and y4 > −tπ+ ts with x4 > y4, which is the definition
of region R1. In region R1a the temporal separation between the two electromagnetic currents is greater than ts and
hence the correlation function is dominated by the propagation between these currents of states which consist of a
single pion and a photon. Similarly in region R1b the temporal separation between the electromagnetic current at
y and the weak current is greater than ts and again the correlation function is dominated by the propagation of a
single pion and photon between these currents. We envisage that when lattice computations are performed of the
contributions from both these regions, IVR will be implemented to avoid finite-volume corrections which are not
exponentially small. In regions R1c and R1d there are no contributions corresponding to the propagation of a single
pion and photon over distances greater than ts and hence the finite-volume effects are exponentially small. The
contributions from these two regions can therefore be computed directly in a finite volume.

We start by considering the contribution from region R1a:

CA
JWφ;R1a

(tπ) = −e2
Z0

2m0
π

e−m0

πtπ

∫ 0

−ts

dx4

∫ x4−ts

−tπ+ts

dy4

∫

d 3x

∫

d 3y 〈0|J4
W (0)Jµ

em(x)J
ν
em(y)|π(~0)〉Sµν

γ (x, y)

= −e2
Z0

2m0
π

e−m0

πtπ

∫ 0

−ts

dx4

∫ x4−ts

−tπ+ts

dy4

∫

d 3z

∫

d 3y 〈0|J4
W (0)Jµ

em(x4, ~z + ~y )Jν
em(y4, ~y )|π(~0)〉Sµν

γ

(

(x4 − y4, ~z ), 0
)

). (60)
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In the second line of Eq. (60) we have noted that for any (x, y) the photon propagator only depends on x− y so that
Sµν
γ (x, y) = Sµν

γ (x− y, 0). It is now convenient to consider the hadronic component separately and to define

HR1a
(x4, y4, ~z ) ≡

∫

d 3y 〈0|J4
W (0)Jµ

em(x4, ~z + ~y )Jν
em(y4, ~y )|π(~0 )〉 (61)

=

∫

d 3y

∫

d 3p

(2π)3
1

2Eπ(~p )
〈0|J4

W (0)Jµ
em(x4, ~y )|π(~p )〉 〈π(~p )|Jν

em(y4, ~y − ~z )|π(~0 )〉

=

∫

d 3y

∫

d 3p

(2π)3
1

2Eπ(~p )
ei~p·~z e−(Eπ(~p )−m0

π)(x4−y4−ts) 〈0|J4
W (0)Jµ

em(x4, ~y )|π(~p )〉 〈π(~p )|Jν
em(x4 − ts, ~y )|π(~0 )〉 , (62)

where we recall that Eπ(~p ) =
√

|~p |2 + (m0
π)

2. Taking the inverse Fourier transform at y4 = x4 − ts we obtain

∫

d 3z′HR1a
(x4, x4 − ts, ~z

′) e−i~p·~z ′

=
1

2Eπ(~p )

∫

d 3y 〈0|J4
W (0)Jµ

em(x4, ~y )|π(~p )〉 〈π(~p )|Jν
em(x4 − ts, ~y )|π(~0)〉 . (63)

Inserting Eq. (63) into Eq. (62) gives

HR1a
(x4, y4, ~z ) =

∫

d 3z′ HR1a
(x4, x4 − ts, ~z

′)

∫

d 3p

(2π)3
ei~p·(~z−~z ′) e−(Eπ(~p )−m0

π)(x4−y4−ts) . (64)

Thus for sufficiently large ts it is enough to compute HR1a
(x4, y4, ~z ) at x4 − y4 = ts and to use Eq. (64) to obtain

HR1a
(x4, y4, ~z ) at values of x4 − y4 > ts. It is not necessary to compute HR1a

(x4, y4, ~z ) directly in a finite volume for
x4 − y4 > ts.

The calculation in region R1b follows a similar procedure with only a single pion and photon propagating between
Jν
em(y) and the weak current. The hadronic matrix element is now

HR1b
(x4, y4, ~z ) ≡

∫

d 3y 〈0|Jµ
em(x4, ~z + ~y )J4

W (0)Jν
em(y4, ~y )|π(~0)〉 (65)

=

∫

d 3z′ HR1b
(x4,−ts, ~z

′)

∫

d 3p

(2π)3
ei~p·(~z−~z ′) e(Eπ(~p )−m0

π)(y4+ts) . (66)

We see that also in this case we don’t have to compute directly in a finite volume the matrix element for −tπ + ts <
y4 < −ts.

The contributions from regions R1c and R1d do not have on-shell single-pion states propagating over long time
separations and hence do not have non-exponential finite-volume corrections. Collecting up the terms from the four
subregions, the correlation function in region R1 can be written as:

CA
JWφ;R1

(tπ) = CA
JWφ;R1a

(tπ) + CA
JWφ;R1b

(tπ) + CA
JWφ;R1c

(tπ) + CA
JWφ;R1d

(tπ) , (67)

where

CA
JWφ;R1a

(tπ) = −e2
Z0

2m0
π

e−m0

πtπ

∫ 0

−ts

dx4

∫ x4−ts

−tπ+ts

dy4

∫

d 3z

∫

d 3z′HR1a
(x4, x4 − ts, ~z

′)

×
∫

d 3p

(2π)3
ei~p·(~z−~z ′) e−(Eπ(~p )−m0

π)(x4−y4−ts)Sµν
γ (x4 − y4, ~z ) (68)

CA
JWφ;R1b

(tπ) = −e2
Z0

2m0
π

e−m0

πtπ

∫ ∞

0

dx4

∫ −ts

−tπ+ts

dy4

∫

d 3z

∫

d 3z′HR1b
(x4,−ts, ~z

′)

×
∫

d 3p

(2π)3
ei~p·(~z−~z ′) e(Eπ(~p )−m0

π)(y4+ts)Sµν
γ (x4 − y4, ~z ) (69)

CA
JWφ;R1c

(tπ) = −e2
Z0

2m0
π

e−m0

πtπ

∫ 0

−ts

dx4

∫ x4

x4−ts

dy4

∫

d 3x

∫

d 3y 〈0|J4
W (0)Jµ

em(x)J
ν
em(y)|π(~0)〉Sµν

γ (x, y) (70)

CA
JWφ;R1d

(tπ) = −e2
Z0

2m0
π

e−m0

πtπ

∫ ∞

0

dx4

∫ x4

−ts

dy4

∫

d 3x

∫

d 3y 〈0|Jµ
em(x)T [J

4
W (0)Jν

em(y)]|π(~0 )〉Sµν
γ (x, y) . (71)
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The derivation and results for the correlation function CA
φφ;R1

(tπ) follows in precisely the same way with the weak

current J4
W replaced by the annihilation operator φ. However, as we shall see in the following subsection CA

φφ;R1
(tπ)

can be combined with CA
φφ;R3

(tπ) to cancel the contribution of CA
JWφ;R3

(tπ). The latter therefore does not have to be
computed.

3. Contribution from Region R3

The contribution to the correlation function from region R3 is presented in Eq. (41) and we rewrite it here for
convenience:

CA
JWφ;R3

(tπ) = −e2
H4

0

2m0
π

∫ −tπ+ts

−∞

dy4

∫ −ts

y4

dx4

∫

d 3z 〈π(~0)|T
[

Jµ
em(x4,~0)J

ν
em(y4, ~z )φ

†(−tπ)
]

|0〉Sµν
γ

(

(x4 − y4,−~z ), 0
)

.

(72)
The evaluation of the correlation function CA

JWφ;R3
(tπ) follows in a similar way to that from region R1. However

CA
JWφ;R3

(tπ) is not needed to obtain the result for H4
A as we now explain. The expression for CA

φφ;R3
(tπ) is the same

as for CA
JWφ;R3

(tπ) in Eq. (72) with H4
0 replaced by Z0. We see from Eqs. (35) and (36) that the contribution to H4

A

contains a term proportional to

1

[C0
φφ(tπ)e

−m0
πtπ ]

1

2

{

C̃A
JWφ;R3

(tπ)−
1

2
C̃A

φφ;R3
(tπ)

C0
JWφ(tπ)

C0
φφ(tπ)

}

=
1

[C0
φφ(tπ)e

−m0
πtπ ]

1

2

1

2
C̃A

JWφ;R3
(tπ) , (73)

i.e. the second term in braces on the left-hand side cancels half of the first term. This can readily be understood as
in both cases the electromagnetic currents are well separated in time (by at least ts) from the pion creation operator.
Moreover, note also that CA

φφ;R1
(tπ) = CA

φφ;R3
(tπ) so that

1

[C0
φφ(tπ)e

−m0
πtπ ]

1

2

{

C̃A
JWφ;R3

(tπ)−
1

2

(

C̃A
φφ;R1

(tπ) + C̃A
φφ;R3

(tπ)
) C0

JWφ(tπ)

C0
φφ(tπ)

}

= 0 . (74)

It is therefore not necessary to compute C̃A
JWφ;R3

and C̃A
φφ;R1

= C̃A
φφ;R3

.

4. Summary of the contribution to the amplitude from Diagram A

Since the discussion in this subsection has been lengthy we collect here all the different contributions:

H4
A =

δmπ

2m0
π

H4
0 +

(

2m0
π

Z0e−m0
πtπ

) (

C̃A
JWφ;R1

(tπ) +
1

2
C̃A

JWφ;R2
(tπ)

)

, (75)

where C̃A
JWφ;R1

(tπ) = CA
JWφ;R1

(tπ) (since C
A
JWφ;R1

(tπ) does not contain terms proportional to tπ) is given in Eqs. (67) -

(71) and C̃A
JWφ;R2

(tπ) is presented in Eq. (55) together with Eqs.(44), (53) and 54) after taking care to subtract the
term proportional to tπ.

C. Contribution to the amplitude from Diagram B

The contribution to the amplitude for the decay π+ → ℓ+νℓ from diagram B is

MB = e2
GF√
2
V ∗
ud gµµ′

∫

d 4x Hµν
1 (x)

∫

d 4y Lµ′ν′

1 (y)Sγ
νν′(x, y) , (76)

where all quantities are in Minkowski space as in AppendixA1. Rewriting MB in terms of Euclidean quantities
defined in Appendix A2 (including the lepton propagator in L1E) we obtain

MB = −e2
GF√
2
V ∗
ud

∫

d 4x Hµν
1E(x)

∫

d 4y Lµν′

1E (y)Sγ
νν′E(x, y) , (77)
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where the subscript E denotes Euclidean. Since the entire discussion in the remainder of this subsection is presented
in terms of Euclidean space quantities, in order to simplify the notation we now drop the subscript E.

As anticipated in the Introduction we divide the integration over x4 into two regions, labelled L for Long, i.e.
x4 ≤ −ts, and S for Short, i.e. x4 > −ts. The hadronic matrix element Hµν

1 (x) in region S can be computed directly
using lattice methods with only exponentially suppressed finite-volume corrections

MS
B = −e2

GF√
2
V ∗
ud

∫ ∞

−ts

dx4

∫

d 3x Hµν
1 (x)

∫

d 4y Lµν′

1 (y)Sγ
νν′(x, y) . (78)

For the long-distance contribution we exploit Eq. (11) in order to avoid computing Hµν
1 (x) directly at large time

separations between the weak and electromagnetic currents and hence introducing finite-volume corrections which
decrease only as inverse powers of the volume,

ML
B = −e2

GF√
2
V ∗
ud

∫ −ts

−∞

dx4

∫

d 3x Hµν
1 (x)

∫

d 4y Lµν′

1 (y)Sγ
νν′(x, y)

= −e2
GF√
2
V ∗
ud

∫ −ts

−∞

dx4

∫

d 3x

∫

d 3p

(2π)3

∫

d 3x′ Hµν
1 (~x ′,−ts) e

(Eπ(~p )−m0

π)(x4+ts)e−i~p·(~x−~x ′)

∫

d 4y Lµν′

1 (y)Sγ
νν′(x, y)

= −e2
GF√
2
V ∗
ud

∫ −ts

−∞

dx4

∫

d 4y Lµν
1 (y)

∫

d 3xHµν
1 (~x,−ts)

∫

d 3k

(2π)3
1

2Eγ

e(Eπ(~k )−m0

π)(x4+ts) e−Eγ |y4−x4| e−i~k·(~x−~y) , (79)

where we recall that, up to an infrared cut-off, Eγ = |~k | and Eπ(~q ) =
√

|~q |2 +m0 2
π for any three-momentum ~q. We

have used Eq. (A7) for the photon propagator in Euclidean space.

For notational convenience we rewrite ML
B in the form

ML
B = −e2

GF√
2
V ∗
ud

[

ū(pνℓ)γ
µ(1− γ5)

]

α
Nµν

αβ

[

γνv(pℓ)
]

β
, (80)

where α, β are spinor indices and

Nµν
αβ =

∫ −ts

−∞

dx4

∫

d 4y

∫

d 4p

(2π)4
S̃ℓ αβ(p) e

−i(p+pℓ)·y

∫

d 3xHµν
1 (~x,−ts)×

∫

d 3k

(2π)3
1

2Eγ

e(Eπ(~k )−m0

π)(x4+ts) e−Eγ |y4−x4| e−i~k·(~x−~y)

=

∫ −ts

−∞

dx4

∫

d 3k

(2π)3
1

2Eγ

∫

dy4

∫

dp4
2π

S̃ℓ αβ(p4,−(~pℓ − ~k)) e−ip4y4 eEℓy4

∫

d 3xHµν
1 (~x,−ts)×

e(Eπ(~k )−m0

π)(x4+ts) e−Eγ |y4−x4| e−i~k·~x , (81)

where ~pℓ is the momentum of the final-state lepton and Eℓ =
√

~p 2
ℓ +m2

ℓ . The infrared divergence arises from the
region in which y4 > 0 and so we start by considering this region:

Nµν
αβ

∣

∣

y4>0
=

∫ −ts

−∞

dx4

∫

d 3k

(2π)3
eEγx4

2Eγ

∫ ∞

0

dy4

(
∫

dp4
(2π)

S̃ℓ αβ(p4,−(~pℓ − ~k)) e−ip4y4

)

e(Eℓ−Eγ)y4

∫

d 3xHµν
1 (~x,−ts)

×e(Eπ(~k )−m0

π)(x4+ts) e−i~k·~x

=

∫ −ts

−∞

dx4

∫

d 3k

(2π)3
eEγx4

2Eγ

∫ ∞

0

dy4
(−E′

ℓ(−~k )γ4 + i(~pℓ − ~k) · ~γ +mℓ)αβ

2E′
ℓ(−~k )

e−(E′

ℓ(−
~k )+Eγ−Eℓ)y4

×
∫

d 3xHµν
1 (~x,−ts)e

(Eπ(~k )−m0

π)(x4+ts) e−i~k·~x

=

∫ −ts

−∞

dx4

∫

d 3k

(2π)3
eEγx4

2Eγ

(−E′
ℓ(−~k )γ4 + i(~pℓ − ~k) · ~γ +mℓ)αβ

2E′
ℓ(−~k )

1

E′
ℓ(−~k ) + Eγ − Eℓ

×
∫

d 3xHµν
1 (~x,−ts)e

(Eπ(~k )−m0

π)(x4+ts) e−i~k·~x ,

=

∫

d 3k

(2π)3
e−Eγts

2Eγ

(−E′
ℓ(−~k )γ4 + i(~pℓ − ~k) · ~γ +mℓ)αβ

2E′
ℓ(−~k ) (E′

ℓ(−~k ) + Eγ − Eℓ)(Eπ(~k ) + Eγ −m0
π)

∫

d 3xHµν
1 (~x,−ts) e

−i~k·~x , (82)
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where E′
ℓ(−~k ) =

√

(~pℓ − ~k )2 +m2
ℓ . As expected the right-hand side of Eq. (82) is infrared divergent; each of the

factors Eγ , E
′
ℓ(−~k ) + Eγ − Eℓ and Eπ(~k ) + Eγ −m0

π in the denominator of the integrand is O(|~k |) at small ~k. In
order to obtain an expression for the inclusive decay rate which is free from infrared divergences it is convenient to

rewrite the factor e−i~k·~x as 1 + (e−i~k·~x − 1) and to separate ML
B into divergent and convergent contributions:

ML
B = MLdiv

B +ML con
B , (83)

where

ML div
B = −GF√

2
V ∗
ud H

4
0

∫

d 3k

(2π)3
e−Eγts

{

ū(pνℓ)γ
4(1 − γ5)(−E′

ℓ(−~k )γ4 + i(~pℓ − ~k) · ~γ +mℓ)γ
4v(pℓ)

4EγE′
ℓ(−~k )(E′

ℓ(−~k ) + Eγ − Eℓ)(Eπ(~k ) + Eγ −m0
π)

}

(84)

and

ML con
B = −GF√

2
V ∗
ud

∫

d 3k

(2π)3
e−Eγts

{

ū(pνℓ)γ
µ(1− γ5)(−E′

ℓ(−~k )γ4 + i(~pℓ − ~k) · ~γ +mℓ)γ
νv(pℓ)

4EγE′
ℓ(−~k )(E′

ℓ(−~k ) + Eγ − Eℓ)(Eπ(~k ) + Eγ −m0
π)

}

×
∫

d 3xHµν
1 (~x,−ts)

(

e−i~k·~x − 1
)

−GF√
2
V ∗
ud

∫ −ts

−∞

dx4

∫

d 3k

(2π)3
1

4EγE′
ℓ(−~k )

∫ 0

−∞

dy4 e
(Eℓ+E′

ℓ(−
~k ))y4

{

ū(pνℓ)γ
µ(1− γ5)(E′

ℓ(−~k )γ4 + i(~pℓ − ~k) · ~γ +mℓ)γ
νv(pℓ)

}

×
∫

d 3xHµν
1 (~x,−ts)e

(Eπ(~k )−m0

π)(x4+ts) e−Eγ |y4−x4| e−i~k·~x . (85)

1. Summary of the contribution to the amplitude from Diagram B

In summary, the contribution to the amplitude from diagram B is

MB = MS
B +MLdiv

B +ML con
B , (86)

where MS
B, M

Ldiv
B and ML con

B are given in Eqs. (78), (84) and (85) respectively.

D. Contribution to the amplitude from Diagram C

The hadronic element in the contribution of diagram C to the amplitude is simply H4
0 and the wavefunction

renormalisation of the final state electron can be calculated in QED perturbation theory. In evaluating the width it
is natural to combine the result from the interference of diagrams C and D0 with that of diagram E with itself. The
result of this perturbative calculation is reported in Sec. III C below [10].

E. Contribution to the amplitude from Diagram D

The contribution to the amplitude for the decay π+ → ℓ+νℓγ from diagram D, written in terms of Minkowski space
quantities is

MD = ie
GF√
2
V ∗
ud gµµ′gνν′ ǫνλ(k)L

µ
0

∫

d 4x Hµ′ν′

1 (x) e−ik·x , (87)

where k is the momentum of the final state photon and λ its polarisation with polarisation vector ǫνλ(k). The charge
e is that of the positron. Rewriting the right-hand side in terms of Euclidean space quantities we have

MD = −ie
GF√
2
V ∗
ud ǫ

ν
λE(k)L

µ
0E

∫

dx4

∫

d 3x Hµν
1E(x) e

Eγx4e−i~k·~x , (88)
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where again the subscript E reminds us that all γ-matrices and ǫλ are in Euclidean space as defined in Appendix A2.
Again, since the reminder of this subsection is presented in Euclidean space, for notational convenience we now drop
the label E.

The corresponding Euclidean hadronic correlation function from which Hµν
1 (x) is determined is

Cµν
H1

(tπ , x) = 〈0|T
[

Jµ
W (0)Jν

em(x)φ
†(−tπ)

]

|0〉 (89)

and with the assumption that tπ is sufficiently large

Cµν
H1

(tπ, x) =
Z0

2m0
π

Hµν
1 (x) e−m0

πtπ . (90)

Thus a computation of Cµν
H1

(tπ, x) together with the values of m0
π and Z0 obtained from C0

φφ(tπ) in Eq. (23) allows us

to determine Hµν
1 (x). As in the previous subsections, we divide the integration over x4 in Eq. (88) into two regions,

labelled L for Long, i.e. x4 ≤ −ts, and S for Short, i.e. x4 > −ts.

The hadronic matrix element Hµν
1 (x) in region S is obtained directly from the correlation function Cµν

H1
(tπ, x),

which can be computed in finite volume with only exponentially suppressed finite volume errors, so that

MS
D = −ie

GF√
2
V ∗
ud ǫ

ν
λ(k)L

µ
0

∫ ∞

−ts

dx4

∫

d 3x Hµν
1 (x) eEγx4e−i~k·~x (91)

is evaluated directly using the computed values of Hµν
1 (x). In region L on the other hand we use IVR to write

∫ −ts

−∞

dx4

∫

d 3x Hµν
1 (x) eEγx4e−i~k·~x =

∫ −ts

−∞

dx4

∫

d 3x

∫

d 3p

(2π)3

∫

d 3x′ Hµν
1 (~x ′,−ts)×

e(Eπ(~p )−m0

π)(x4+ts) e−i~p·(~x−~x′)eEγx4e−i~k·~x

= e(Eπ(~k )−m0

π)ts

∫ −ts

−∞

dx4

∫

d 3x Hµν
1 (~x,−ts) e

(Eπ(~k )+Eγ−m0

π)x4 e−i~k·~x

=
e−Eγts

(Eπ(~k ) + Eγ −m0
π)

∫

d 3x Hµν
1 (~x,−ts) e

−i~k·~x . (92)

We now write e−i~k·~x = 1+ (e−i~k·~x − 1) and separate the term which leads to the infrared divergence in the rate from
the convergent term

ML
D = MLdiv

D +ML con
D , (93)

where

MLdiv
D = −ie

GF√
2
V ∗
ud ǫ

4
λ(k)L

4
0 H

4
0

e−Eγts

(Eπ(~k ) + Eγ −m0
π)

(94)

and

ML con
D = ie

GF√
2
V ∗
ud ǫ

ν
λ(k)L

µ
0

e−Eγts

(Eπ(~k ) + Eγ −m0
π)

∫

d 3x Hµν
1 (~x,−ts)

(

1− e−i~k·~x
)

. (95)

Collecting up the three contributions in Eqs. (94), (95) and (91), the result for this diagram is

MD = MLdiv
D +ML con

D +MS
D . (96)

F. Contribution to the amplitude from Diagram E

The contribution to the amplitude for the decay π+ → ℓ+νℓγ from diagram E is

ME = −ie
GF√
2
V ∗
ud gµµ′ gνν′ ǫνλ(k)H

µ
0

∫

d 4x Lµ′ν′

1 (x) e−ik·x .

= −ie
GF√
2
V ∗
ud gµµ′ gνν′ ǫνλ(k)H

µ
0

{

ū(pνℓ)γ
µ′

(1− γ5)
}

α

∫

d 4xSαβ(0, x)e
−i(k+pℓ)·x

{

γν′

v(pℓ)
}

β
, (97)
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where k and pℓ are the four-momenta of the final state photon and lepton respectively and E′
ℓ(
~k) =

√

(~pℓ + ~k )2 +m2
ℓ .

Note that the subscript E denotes diagram E and not Euclidean. We start by presenting the discussion in Minkowski
space. The x integration can be performed as follows,

∫

d 4xSαβ(0, x) e
−i(k+pℓ)·x = i

∫

d 4x

∫

d 4p

(2π)4
(p0γ0 − ~p · ~γ +mℓ)αβ
p20 − ~p 2 −m2

ℓ + iǫ
e−i(p+k+pℓ)·x

= i

∫

dx0

∫

dp0
2π

(p0γ0 + (~pℓ + ~k) · ~γ +mℓ)αβ

p20 − E′
ℓ(
~k )2 + iǫ

ei(p0+Eγ+Eℓ)x0

= −i
1

2E′
ℓ(
~k )

{

(

− E′
ℓ(
~k )γ0 + (~pℓ + ~k) · ~γ +mℓ

)

αβ

E′
ℓ(
~k )− Eγ − Eℓ

+

(

E′
ℓ(
~k )γ0 + (~pℓ + ~k) · ~γ +mℓ

)

αβ

E′
ℓ(
~k ) + Eγ + Eℓ

}

. (98)

Note that from the second line of Eq. (98) one could have performed the x0 integration, obtaining δ(p0 + Eℓ + k)
so that

∫

d 4xSαβ(0, x) e
−i(k+pℓ)·x = i

(−(Eℓ + Eγ)γ0 + (~pℓ + ~k) · ~γ +mℓ)αβ

(Eℓ + Eγ)2 − E′
ℓ(
~k )2

, (99)

which is equal to the expression in the third line of Eq. (98). However, as will become apparent in Sec. III, for the
implementation of the IVR framework, it is convenient to write the result in the form of the third line in Eq. (98).
The first term in braces is the result from the integration over positive values of x0 and the denominator vanishes in

the limit of the photon’s momentum ~k → ~0. This leads to an infrared divergence in the π+ → ℓ+νℓγ decay rate. The
second term is the contribution from the integration over x0 < 0 and does not lead to an infrared divergence. The
two terms will therefore be treated separately.

Until now the discussion has been presented entirely in Minkowski space. Since the evaluation of the hadronic
matrix elements is necessarily performed in Euclidean space, we now rewrite ME in terms of Euclidean γ-matrices
and polarisation vectors (see Eq. (A9)):

ME = Mdiv
E +M con

E (100)

where

Mdiv
E = ie

1

2E′
ℓ(
~k )

GF√
2
V ∗
ud ǫ

ν
λ(k)H

4
0

ū(pνℓ)γ
4(1 − γ5)

(

− E′
ℓ(
~k )γ4 + i(~pℓ + ~k) · ~γ +mℓ

)

γνv(pℓ)

E′
ℓ(
~k )− Eγ − Eℓ

(101)

M con
E = ie

1

2E′
ℓ(
~k )

GF√
2
V ∗
ud ǫ

ν
λ(k)H

4
0

ū(pνℓ)γ
4(1 − γ5)

(

E′
ℓ(
~k )γ4 + i(~pℓ + ~k) · ~γ +mℓ

)

γνv(pℓ)

E′
ℓ(
~k ) + Eγ + Eℓ

. (102)

In order not to over-complicate the notation we have not included labels to denote explicitly that the γ-matrices and
polarisation vector in Eqs. (101) and (102) are the Euclidean ones as defined in Sec. A 2.

III. CANCELLATION OF INFRARED DIVERGENCES

In Sec. II we have presented expressions for the contributions from each of the diagrams in Fig. 1 to the amplitude
for the process π+ → ℓ+νℓ(γ) in terms of the hadronic matrix elements Hi, the leptonic factors Li (in both cases
i=0,1,2) and the photon propagator Sγ . In this section we demonstrate how to handle the well-known problem of the
cancellation of infrared divergences. At O(αem) these divergences cancel between the rate for the decay π+ → ℓ+νℓ
with the propagator of a virtual photon and that for the process π+ → ℓ+νℓγ with a real photon in the final state [9].
When calculating the decay rates we perform integrals over the two-body (Φ2) or three-body (Φ3) phase-space of the
schematic form

∫

dΦ2 〈π+|T † | ℓ+νℓ〉 〈ℓ+νℓ |T |π+〉 and

∫

dΦ3 〈π+|T † | ℓ+νℓγ〉 〈ℓ+νℓγ |T |π+〉 . (103)
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π+ → ℓ+νℓ π+ → ℓ+νℓγ

T T
†

T T
†

A D0 D D
B D0 D E
C D0 E E

TABLE I: The infrared divergences cancel between the phase-space integrals of the contributions to the matrix
elements of T and its conjugate T † from the diagrams in each of the final three rows separately.

We will take the virtual photon to be in the Feynman gauge and Eq. (A5) for the sum over polarisations of the real
photon.

The cancellation of the infrared divergences occurs between subsets of the diagrams in Fig. 1. The subsets are
shown in Tab. I in which the cancellation occurs between the contributions in each of the three rows. Thus the
infrared divergence from the two body phase-space integral of the contribution of diagram A to the amplitude T and
the lowest order diagram D0 to T † (and vice-versa) cancels that from the three-body phase-space integral in which
the contribution from diagram D is taken in both T and T †. Similarly for the remaining two rows. We therefore
consider the subsets of diagrams in each of the three rows separately in Subsecs. III A - III C respectively.

A. IR cancellation for diagram A and DD

In this subsection we consider the cancellation of infrared divergences between the contribution of the interference
of diagrams D0 and A to the decay width of the process π+ → ℓ+νℓ and the contribution to the square of diagram D
to the width of the decay π+ → ℓ+νℓγ (see the first of the final three rows of Tab. I).

The O(αem) infrared divergent contribution to the decay width from the interference of the QCD diagram D0 and
diagram A is given by

Γdiv
0A =

1

2mπ

∫

dΦ2(pπ; pℓ, pνℓ) 2Re
[

Mdiv
A M †

0

]

, (104)

where Φ2(pπ; pℓ, pνℓ) is the phase space of the two-body final state consisting of the charged lepton ℓ and its neutrino

νℓ, with pℓ + pνℓ = pπ = (mπ ,~0 ) and Mdiv
A is defined in Eq.(58). Combining Eqs. (22), (37) and (57) we rewrite Γdiv

0A

as

Γdiv
0A =

e2

2mπ

(

G2
F |Vud|2
2

)

∣

∣H4
0

∣

∣

2
∫

d 3k

(2π)3
1

2Eγ

e−Eγts

(Eπ(~k ) + Eγ −m0
π)

2

∫

dΦ2(pπ; pℓ, pνℓ)
∣

∣L4
0(pℓ, pν)

∣

∣

2
(105)

and a sum over the polarisations of the final-state leptons is implicit.

The infrared divergent contribution to the decay width for the process π+ → ℓ+ν̄γ from the square of diagram D is

Γdiv
DD =

1

2mπ

∫

dΦ3(pπ; pℓ, pνℓ , k)
∣

∣Mdiv
D

∣

∣

2

= − e2

2mπ

(

G2
F |Vud|2
2

)

∣

∣H4
0

∣

∣

2
∫

d 3k

(2π)3
1

2Eγ

e−2Eγts

(Eπ(~k ) + Eγ −m0
π)

2

∫

dΦ2(pπ − k; pℓ, pνℓ)
∣

∣L4
0(pℓ, pν)

∣

∣

2
, (106)

where Φ3(pπ ; pℓ, pνℓ , k) is the phase space of the three-body final state consisting of the charged lepton ℓ, its neutrino

νℓ and a photon, with pℓ + pνℓ + k = pπ = (mπ,~0 ) and Mdiv
D is given in Eq. (94). In the sum of diagrams D and

E only photons with physical polarisations contribute of course. However in order for the infrared divergences to
cancel separately in the three rows of Tab. I, we exploit the electromagnetic Ward identity and define the diagrams
with a virtual photon (diagrams A, B and C) to be in the Feynman gauge and and take for the sum over the photon
polarisations

∑

λ ǫ
µ
λ(k)ǫ

ν ∗
λ (k) = gµν in both diagrams D and E so that

∑

λ |ǫ4λ(k)|2 = −1 . The sum over the lepton
polarisations is again implicit in Eq. (106).

As k → 0, the integrands in Eqs.(105) and (106) become equal and opposite so that Γdiv
0A+Γdiv

DD is infrared finite. The
finite terms can be determined without any lattice calculations (beyond the evaluation of H4

0 in QCD) as explained
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in detail in Appendix B1. Thus, by using the analytic control of the long-distance portion of the electromagnetic
corrections given by IVR, we are able to realize the usual cancellation of infrared divergences before any lattice
calculation is undertaken.

B. IR cancellation in diagrams D0, B, D and E

In this subsection we consider the second of the three rows in Tab.I and demonstrate the cancellation of the infrared
divergences between the contributions from the interference of diagrams D0 and B to the decay width for the process
π+ → ℓ+νℓ (we denote this contribution by Γ0B) and the interference of diagrams D and E to the decay width for
the process π+ → ℓ+νℓγ (denoted by ΓDE).

We start by considering Γ0B which can be written in the form

Γ0B =
1

2mπ

∫

dΦ2(pπ ; pℓ, pνℓ) 2Re
[

MBM
†
0

]

, (107)

where Φ2(pℓ, pνℓ) is the phase space of the two-body final state consisting of the charged lepton ℓ and its neutrino

νℓ, with pℓ + pνℓ = pπ = (mπ,~0 ). The infrared divergent contribution comes from the component ML div
B in MB,

presented in Eq. (84) and here we focus on this contribution:

Γdiv
0B =

1

2mπ

∫

dΦ2(pπ; pℓ, pνℓ) 2Re
[

MLdiv
B M †

0

]

=
e2

mπ

G2
F

2
|Vud|2

∣

∣H4
0

∣

∣

2
∫

dΦ2(pπ; pℓ, pνℓ)L
4 †
0 ×

∫

d 3k

(2π)3
e−Eγts

2Eγ

{

ū(pνℓ)γ
4(1− γ5)(−E′

ℓ(−~k )γ4 + i(~pℓ − ~k) · ~γ +mℓ)γ
4v(pℓ)

2E′
ℓ(−~k )(E′

ℓ(−~k) + Eγ − Eℓ)(Eπ(~k) + Eγ −m0
π)

}

, (108)

where ML div
B is given in Eq. (84).

The contribution to the decay width from the interference of diagrams D and E can be written in the form:

ΓDE =
1

2mπ

∫

dΦ3(pπ; pℓ, pνℓ , k) 2Re
[

M †
DME

]

, (109)

where Φ3(pπ; pℓ, pνℓ , k) is the phase space of the three-body final state consisting of the charged lepton ℓ, the neutrino

νℓ and the photon γ with pℓ + pνℓ + k = pπ = (mπ ,~0 ). The infrared divergent term in the width comes from the
MLdiv

D contribution to MD (see Eq. (94)) and the Mdiv
E contribution to ME (see Eq. (101)) and is given by

Γdiv
DE =

1

2mπ

∫

dΦ3(pπ; pℓ, pνℓ , k) 2Re
[

MLdiv†
D Mdiv

E

]

=
e2

mπ

G2
F

2
|Vud|2

∣

∣H4
0

∣

∣

2
∫

dΦ3(pπ; pℓ, pνℓ , k)L
4 †
0 e−Eγts ×

ū(pνℓ)γ
4(1− γ5)

{

(

− E′
ℓ(
~k )γ4 + i(~pℓ + ~k) · ~γ +mℓ

)

2E′
ℓ(
~k ) (E′

ℓ(
~k )− Eγ − Eℓ) (Eπ(~k ) + Eγ −m0

π)

}

γ4v(pℓ) , (110)

where the sum of the photon polarisations has been performed. MLdiv
D and Mdiv

E are given in Eqs. (94) and (101)
respectively.

Both Γdiv
0B and Γdiv

DE are infrared divergent, with the integrand over ~k proportional to 1/k3 at small k. Noting
however that at small k

E′
ℓ(±~k ) ≃ Eℓ ±

~pℓ · ~k
Eℓ

(111)

we see that

E′
ℓ(−~k) + Eγ − Eℓ ≃ Eγ − ~pℓ · ~k

Eℓ

≃ −(E′
ℓ(
~k )− Eγ − Eℓ) (112)
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so that Γdiv
0B + Γdiv

DE is indeed infrared convergent. We explain the evaluation of the finite terms in Γdiv
0B + Γdiv

DE in
Appendix B2. Again, this does not require any lattice calculations beyond the determination of H4

0 .

C. IR cancellation for diagram C and EE

The hadronic matrix element which contributes to diagrams C and E with the initial pion at rest is H4
0 which is

readily obtained from two-point correlation functions in Eqs. (23) and (24) with only exponentially small finite-volume
corrections. Once H4

0 , or equivalently the decay constant fπ, have been computed, the contributions to the decay
width from these diagrams only requires O(αem) calculations within QED. These have been performed in Ref. [10].

The contribution to the decay width from the interference of diagrams D0 and the wave-function renormalisation
of the lepton from diagram C in the Feynman gauge is given by

Γ0C =
αem

4π
Γ0

{

log

(

m2
ℓ

M2
W

)

− 2 log

(

m2
γ

m2
ℓ

)

− 9

2

}

, (113)

where we use the W -regularisation for the ultra-violet divergences and have introduced a mass mγ for the photon in
order to regulate the infrared divergences.

The contribution to the decay width from the square of diagram E, with photon energies integrated up to ∆E in
the pion rest frame is

ΓEE =
αem

4π
Γ0 (REE1 +REE2) , (114)

where

REE1 = 2 log

(

m2
γ

4∆E2

)

− 2
1 + r2ℓ
1− r2ℓ

log
(

r2ℓ
)

,

REE2 =
r2E − 1 + (4rE − 6)r2ℓ

(1− r2ℓ )
2

log(1− rE)−
rE(rE + 4r2ℓ )

(1 − r2ℓ )
2

log
(

r2ℓ
)

+
rE(6− 3rE − 20r2ℓ )

2(1− r2ℓ )
2

, (115)

where rℓ = mℓ/mπ and rE = 2∆E/mπ. The contribution to the total rate is obtained by setting ∆E to its maximum
value of mπ/2 (1 − r2ℓ ). Here we introduce the familiar photon energy cutoff ∆E in the pion’s rest frame in order
to write a simple explicit formula. As is described in Sec. IV below, this simple cutoff can be replaced as needed by
energy or angle cuts dictated by a particular experimental setup.

The infrared divergences explicitly cancel in the sum Γ0C and ΓEE and the remaining infrared finite terms are given
in Eqs. (113) - (115).

IV. FINAL RESULT

The final result for the O(αem) contributions to Γ(π+ → ℓ+νℓ)+Γ(π+ → ℓ+νℓγ) consists of a large number of terms
presented in different sections and subsections of this paper and we now collect them all together here. We start by
writing

Γ(π+ → ℓ+νℓ) + Γ(π+ → ℓ+νℓγ) = Γ0 + (Γ0A + ΓDD) + (Γ0B + ΓDE) + (Γ0C + ΓEE) , (116)

where Γ0, given in Eq. (27), is the width without electromagnetic corrections, and the remaining six terms represent
the interference of the amplitudes indicated in the subscripts; thus for example, Γ0A is the contribution from the
interference of the O(α0

em) diagram D0 and the O(αem) diagram A, integrated over phase space. The six contributions
at O(αem) have been grouped into three pairs, each of which is infrared convergent. We now present the results for
each of these three pairs in turn, without rewriting all the expressions, but pointing instead to the equations in the
text where they can be found.

For the two-body decay π+ → ℓ+νℓ the integration over the two-body final-state phase space is fixed. For the three-
body decay π+ → ℓ+νℓγ, it may be appropriate to compute a partial width by introducing cuts on the kinematical
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variables, such as the energy of the photon or the angle between the photon and the charged lepton, in order to match
the theoretical prediction to experimental measurements. The cancellation of infrared divergences is unaffected, but
the remaining finite terms depend on the cuts. Below we do not specify whether any such cuts have been imposed
and simply write the three-body phase space integral as

∫

dΦ3(pπ; pℓ, pν , k).

A. Γ0A + ΓDD

Using the notation of this paper, the result for Γ0A can be written in the form:

Γ0A = Γ0

(

δmπ

m0
π

+
2m0

π

Z0e−m0
πtπH4

0

(

2C̃A
JWφ;R1

(tπ) + C̃AS
JWφ;R2

(tπ) + C̃AL div
JWφ;R2

(tπ) + C̃AL con
JWφ;R2

(tπ)
)

)

(117)

where C̃A
JWφ;R1

(tπ) = CA
JWφ;R1

(tπ) is given in Eqs. (67) - (71), CAS
JWφ;R2

(tπ) in Eq. (46) (or equivalently Eq. (44) after

subtraction of the term proportional to tπ), C̃AL div
JWφ;R2

(tπ) in Eq. (53) and C̃AL con
JWφ;R2

(tπ) in Eq. (54). The infrared

divergence is contained in the term proportional to C̃AL div
JWφ;R2

(tπ), i.e. Γdiv
0A given in Eqs. (104) and (105), and this is

treated separately in AppendixB 1. The remaining terms are infrared finite. The new non-perturbative input into
these calculations are the Hµν

2s (~x, t) for values of |t| ≤ ts.

ΓDD is given by

ΓDD =
1

2mπ

∫

dΦ3(pπ ; pℓ, pν , k)|MD|2 =
1

2mπ

∫

dΦ3(pπ ; pℓ, pν , k)
∣

∣MS
D +MLdiv

D +ML con
D

∣

∣

2

=
1

2mπ

∫

dΦ3(pπ ; pℓ, pν , k)

(

|MS
D|2 + |MLdiv

D |2 + |ML con
D |2 + 2Re

[

MS
D(ML div

D )†
]

+2Re
[

MS
D(ML con

D )†
]

+ 2Re
[

ML con
D (MLdiv

D )†
]

)

, (118)

where MS
D is given in Eq. (91), MLdiv

D in Eq. (94) and ML con
D in Eq. (95). The infrared divergence is contained in

the term with |ML div
D |2 in the integrand and is treated separately in Appendix B1. The remaining 5 terms are all

infrared convergent. Note that the only non-perturbative ingredient, which needs ultimately to be computed using
lattice QCD, is Hµν

1 (~x, t) for time separations between the weak and electromagnetic current which are smaller than
or equal to ts, |t| ≤ ts.

The finite terms which remain after the cancellation of the infrared divergences in Γdiv
0A + Γdiv

DD depend on the
three-body phase space over which |ML div

D |2 is integrated. In AppendixB 1 we evaluate the finite terms obtained
after integrating over the full three-body phase space.

B. Γ0B + ΓDE

The procedure for Γ0B + ΓDE is very similar to the above. We write

Γ0B =
1

2mπ

∫

dΦ2(pπ; pℓ, pν) 2Re[MBM
†
0 ]

=
1

2mπ

∫

dΦ2(pπ; pℓ, pν) 2Re
[

(

MS
B +MLdiv

B +ML con
B

)

M †
0

]

, (119)

where MS
B, M

L div
B and ML con

B are given in Eqs. (78), (84) and (85) respectively and M0 is given in Eq. (22). The
infrared divergence is contained in the term with ML div

B in the integrand of Eq. (119) and is treated separately in
Appendix B2. The remaining 2 terms are both infrared convergent. Again the only non-perturbative ingredient,
which needs ultimately to be computed using lattice QCD, is Hµν

1 (~x, t) for time separations between the weak and
electromagnetic current which are smaller than or equal to ts.
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The expression for ΓDE is

ΓDE =
1

2mπ

∫

dΦ3(pπ; pℓ, pν , k) 2Re [MDM †
E ]

=
1

2mπ

∫

dΦ3(pπ; pℓ, pν , k) 2Re
[

(MS
D +ML div

D +ML con
D )(Mdiv

E +M con
E )†

]

, (120)

where MS
D is given in Eq. (91), ML div

D in Eq. (94), ML con
D in Eq. (95) Mdiv

E in Eq. (101) and M con
E in Eq. (102) . The

infrared divergence is contained in the term with Re[MLdiv
D Mdiv †

E ] in the integrand and is treated separately in
Appendix B2. The remaining 5 terms are all infrared convergent. There are no non-perturbative QCD ingredients
in Mdiv

E and M con
E (beyond the lowest order H4

0 ), and we repeat that the only non-perturbative ingredient in MD ,
which needs ultimately to be computed using lattice QCD, is Hµν

1 (~x, t) for time separations between the weak and
electromagnetic current which are smaller than or equal to ts, |t| ≤ ts.

The finite terms which remain after the cancellation of the infrared divergences in Γdiv
0B +Γdiv

DE depend on the three-

body phase space over which 2Re[ML div
D Mdiv †

E ] is integrated. In Appendix B 2 we evaluate the finite terms obtained
after integrating over the full three-body phase space.

C. Γ0C + ΓEE

For Γ0C + ΓEE there is no hadronic input beyond the lowest order H4
0 . As above, the result depends on the

three-body phase-space over which |ME |2 is integrated. In Eqs. (113) - (115), we present the results corresponding to
an upper cut-off ∆E on the energy of the final state photon in the rest frame of the pion but integrating over the
remaining variables [10]. The total rate is obtained by setting ∆E to its maximum value ∆Emax = mπ/2(1−m2

ℓ/m
2
π).

V. SUMMARY AND CONCLUSIONS

In this paper we have presented a framework, based on Infinite Volume Reconstruction (IVR) for the evaluation of
electromagnetic corrections, at O(αem), to the leptonic decay widths of pseudoscalar mesons. Although we have used
the decays of a π+ to illustrate the method, it can be applied identically to the decays of other pseudoscalar mesons.
The IVR technique is based on the observation for sufficiently large time separations (t > ts . L say) between the
electromagnetic currents or between an electromagnetic and hadronic weak current, the only significant contribution
comes from the propagation of a single pion and a photon. As has been explained in detail in Secs. II and III this
allows the computations of the hadronic matrix elements to be limited to time separations ≤ ts. We underline two
important consequences of the IVR method:

i) The computation of hadronic effects in the electromagnetic corrections to the leptonic decay widths is organised
in such a way that infrared divergences are not present. The cancellation of infrared divergences between the
contributions to Γ(π+ → ℓ+νℓ) and Γ(π+ → ℓ+νℓγ) at O(αem) [9] is demonstrated analytically (see Sec. III), so
that all the terms which need to be computed to determine Γ(π+ → ℓ+νℓ) + Γ(π+ → ℓ+νℓγ) are individually
infrared finite.

By contrast, in the QEDL method of Ref. [10] the cancellation of infrared divergences is achieved by subtracting
the contribution to the decay amplitudes obtained perturbatively by treating the pseudoscalar meson as a
point-like particle from the non-perturbatively computed infrared divergent amplitudes (the divergences appear
in the form log(mπL)). The method has been successfully implemented in Refs. [12, 13]. It remains to be
seen whether, and by how much, the uncertainties will be reduced by avoiding the subtraction of an analytic
perturbative expression (the pointlike contribution to the amplitude) from a non-perturbatively computed term
(the finite-volume infrared-divergent amplitude in QCD).

ii) The implementation of this method, as described in this paper, results in finite-volume effects which are ex-
ponentially small in L as compared to the O(1/(mπL)

2) structure-dependent finite-volume corrections present
with the QEDL approach [11]. The impact on the numerical precision of this remains to be investigated.

Finally, in Appendix C we have outlined an additional application of IVR to the calculation of the O(αem)
corrections to the more complex decay process K → πℓνℓ. Here also a complete lattice calculation is possible
with all infrared singularities treated analytically and all finite volume effects vanishing exponentially in L.
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Appendix A: Notation and Conventions

We begin our discussion of the diagrams contributing to the physical amplitudes and decay rates in Minkowski
space-time, before demonstrating that they can be determined in finite-volume lattice computations in Euclidean
space. In this appendix we briefly summarise our notation and the conventions which we use in the main text of this
paper, in both Minkowski and Euclidean space-times.

1. Minkowski space-time

In Minkowski space-time we use the metric gµν = diag(−1, 1, 1, 1) and Dirac matrices which satisfy the anti-
commutation relations {γµ, γν} = −2gµν. The electromagnetic current is given by

Jµ
em =

∑

f

Qf q̄fγ
µqf −

∑

ℓ

ℓ̄γµℓ , (A1)

where the charges Qf = + 2
3 for up-like quarks, − 1

3 for down-like ones and −1 for the leptons ℓ.

The discussion in this paper is presented for the decay π+ → νℓ+(γ) but its generalisation to the decays of other
pseudoscalar mesons, including those containing bottom and/or charm quarks, is totally straightforward with the
natural replacement of the quark fields and CKM matrix elements. The hadronic weak current for the decay of a π+

meson is Jµ
W = d̄γµ(1− γ5)u and the corresponding Lagrangian density is

LW (x) =
GF√
2
V ∗
ud gµν J

µ
W (x)

[

ν̄ℓ(x)γ
ν(1 − γ5)ℓ(x)

]

. (A2)

The photon and lepton propagators are given respectively by

Sµν
γ (x, y) =

∫

d 4k

(2π)4
−igµν

k2 − iǫ
e−ik·(x−y) (Feynman gauge) (A3)

Sℓ(x, y) = i

∫

d 4p

(2π)4
pµγ

µ −mℓ

p2 +m2
ℓ − iǫ

eip·(x−y) . (A4)

For decays with a real photon in the final state coupled to the conserved electromagnetic current, we take for the sum
over polarisations λ:

∑

λ

ǫµλ
(

~k
)

ǫ∗ ν
λ

(

~k
)

= gµν . (A5)
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2. Euclidean space

Following the continuation to Euclidean space, tM → −itE, ~xM → ~xE we relate the Dirac matrices in Euclidean
and Minkowski spaces by5:

γ4E = γ0
M , ~γE = −i~γM . (A6)

The photon propagator in the Feynman gauge is given by

Sµν
γ (x, y) =

∫

d 4k

(2π)4
δµν

k2
e−ik·(x−y) =

∫

d 3k

(2π)3
δµν

2|~k|
e−|~k| |tx−ty| e−i~k·(~x−~y) =

δµν

4π2|x− y|2 (A7)

and the lepton propagator is

Sℓ(x, y) =

∫

d 4p

(2π)4
−ipµγµ +mℓ

p2 +m2
ℓ

eip·(x−y) ≡
∫

d 4p

(2π)4
S̃ℓ(p) e

ip·(x−y) . (A8)

For the polarisation vector in Euclidean space it is convenient to take ǫ∗0λM = −iǫ∗4λE and ǫ∗iλM = ǫ∗iλE (i = 1, 2, 3) so
that

gµνǫ
∗µ
λM γν

M = iǫ∗µλEγ
µ
E . (A9)

Appendix B: Cancellation of infrared divergences - the finite terms

In Sec. III we have shown that the infrared divergences cancelled separately in Γdiv
0A + Γdiv

DD (see Eqs. (105) and
(106)), in Γdiv

0B + Γdiv
DE (see Eqs. (108) and (110) and subsequent discussion) and in Γdiv

0C + Γdiv
EE (see Eqs. (113) - (115)).

Although the infrared divergences cancel seperately in these three pairs, there remain finite-terms. For Γdiv
0C + Γdiv

EE

the finite terms are presented in Eqs. (113) - (115)) as a function of the maximum photon energy ∆E. The results
depend on the three-body phase-space over which the widths for the decay π+ → ℓ+νℓγ are integrated. In this section
we calculate the residual finite terms in Γdiv

0A + Γdiv
DD and Γdiv

0B + Γdiv
DE obtained by integrating over the full three-body

phase-space, in which the photon energy is integrated up to its maximum value kmax = mπ/2 (1−m2
ℓ/m

2
π). If instead

the maximum photon energy is to be taken to be ∆E, then the expressions below should be modified by replacing
kmax by ∆E. If partial widths are studied by imposing kinematical cuts on the lepton momenta then the derivation
below should be modified accordingly.

In this appendix we simplify the notation in two ways. Firstly since the diagrams are of O(αem) we can replace

m0
π by mπ and secondly, since we have shown that the infrared divergences cancel explicitly we replace Eγ by k = |~k |

where ~k is the three-momentum of the photon.

1. Γdiv
0A+Γdiv

DD

In this section we evaluate Γdiv
0A+Γdiv

DD. For convenience we rewrite Eqs. (105) and (106) here:

Γdiv
0A =

e2

2mπ

(

G2
F |Vud|2
2

)

∣

∣H4
0

∣

∣

2
∫

d 3k

(2π)3
1

2k

e−kts

(Eπ(~k ) + k −mπ)2

∫

dΦ2(pπ; pℓ, pνℓ)
∣

∣L4
0(pℓ, pν)

∣

∣

2

≡ e2

2mπ

(

G2
F |Vud|2
2

)

∣

∣H4
0

∣

∣

2
I0A (B1)

Γdiv
DD = − e2

2mπ

(

G2
F |Vud|2
2

)

∣

∣H4
0

∣

∣

2
∫

d 3k

(2π)3
1

2k

e−2kts

(Eπ(~k ) + k −mπ)2

∫

dΦ2(pπ − kγ ; pℓ, pνℓ)
∣

∣L4
0(pℓ, pν)

∣

∣

2

≡ e2

2mπ

(

G2
F |Vud|2
2

)

∣

∣H4
0

∣

∣

2
IDD . (B2)

5 The suffices E and M denote Euclidean and Minkowski spaces respectively.
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We recall that Eπ(~k ) =
√

k2 +m2
π where k ≡ |~k | and below we denote the four momentum of the photon by

kγ = (k,~k ). Since we will show explicitly that the infrared divergences cancel in I0A + IDD we denote the energy of
the photon by Eγ by k.

While the cancellation of the infrared divergences in I0A+IDD is manifest, there are a number of sources of residual
finite terms, the evaluation of which is the subject of this section:

i) There is a factor of e−kts in the integrand of I0A and e−2kts in IDD.

ii) The sum over the lepton polarisations
∣

∣L4
0(pℓ, pν)

∣

∣

2
is different depending on whether pℓ + pν = pπ as in I0A or

pℓ + pν = pπ − kγ as in IDD, where kγ is the four momentum of the photon .

iii) Similarly the leptonic two-body phase space is different in the two cases.

iv) Finally the integral over |~k| runs from 0 to ∞ in I0A and from 0 to kmax = mπ/2 (1−m2
ℓ/m

2
π) in IDD.

Our result is written in the form

I0A + IDD = F1 + F2 + F3 + F4 , (B3)

where the Fi are simple one or two dimensional integrals which can readily be evaluated for any choice of masses and
ts. For the reader’s convenience we collect all the results here and then proceed to derive Eq: (B3):

F1 =
m2

ℓ

8π3

(

1− m2
ℓ

m2
π

)2 ∫ ∞

0

k dk
e−kts − e−2kts

(
√

k2 +m2
π + k −mπ)2

. (B4)

F2 = − 1

32π3

∫ kmax

0

dk
e−2kts

(
√

k2 +m2
π + k −mπ)2

∫ pmax

ν

pmin
ν

dpν ×
∫ 1

−1

dz fDD(k, pν , z) δ

(

z − m2
π − 2mπk − 2(mπ − k)pν −m2

ℓ

2kpν

)

(B5)

F3 =
m4

ℓ

4π3m2
π

(

1− m2
ℓ

m2
π

)
∫ kmax

0

k2 dk
e−2kts

(
√
k2 +m2 + k −mπ)2

1

mπ − 2k
(B6)

F4 =
m2

ℓ

8π3

(

1− m2
ℓ

m2
π

)2 ∫ ∞

kmax

k dk
e−2kts

(
√
k2 +m2 + k −mπ)2

, (B7)

where z is the cosine of the angle between ~pν and ~k (~pν · ~k = |~pν |kz)

kmax =
mπ

2

(

1− m2
ℓ

m2
π

)

, pmin
ν =

m2
π − 2mπk −m2

ℓ

2mπ

, pmax
ν =

m2
π − 2mπk −m2

ℓ

2(mπ − 2k)
. (B8)

and

fDD(k, |~pν |, z) = 4k2 − 4k(2mπ − k)m4
ℓ

m2
π(mπ − k)2

− 4(2m2
ℓ + 2~pν · ~k + k2)(2~pν · ~k + k2)

(mπ − k)2
. (B9)

The quantities kmax and p±ν are the kinematical limits on the final state photon’s energy and |~pν | respectively. In
order to simplify the notation in Eqs. (B5) and (B9), we have replaced |~p ν | by pν . In deriving these equations we have
used

∣

∣L4
0(pℓ, pν)

∣

∣

2
= 4m2

ℓ

(

1− m2
ℓ

m2
π

)

(B10)

when pℓ + pν = pπ as in I0A and

∣

∣L4
0(pℓ, pν)

∣

∣

2
= 4m2

ℓ

(

1− m2
ℓ

m2
π

)

+ fDD(k, pν , z) (B11)

when pℓ + pν = pπ − kγ as in Γdiv
DD. Since fDD(0, pν , z) = 0, F2 is infrared convergent.
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Another ingredient in the derivation of Eqs. (B4) - (B7) is the integral over the phase space of the leptons. For I0A
the integrand is independent of the integration variables (see Eq. (B10)) and

∫

dΦ2(pπ; pℓ, pν) =
1

8π

(

1− m2
ℓ

m2
π

)

. (B12)

For IDD the integrand in general does depend on the integration variables (see Eqs. (B11) and (B9)) so that

∫

dΦ2(pπ − kγ ; pℓ, pν) fDD(k, pν , z) =
1

8πk

∫ pmax

ν

pmin
ν

dpν

∫ 1

−1

dz fDD(k, pν , z) δ

(

z − m2
π − 2mπk − 2(mπ − k)pν −m2

ℓ

2kpν

)

.

(B13)
When the integrand is independent of the integration variables:

∫

dΦ2(pπ − kγ ; pℓ, pν) =
1

8π

m2
π − 2mπk −m2

ℓ

m2
π − 2mπk

. (B14)

We now ekxplain the origin of the Fi, (i = 1 - 4). F1 arises because it is convenient to have the same factor e−2kts

in the numerator of the integrands in the infrared divergent terms of both I0A and IDD and we therefore write

I0A =
m2

ℓ

2π

(

1− m2
ℓ

m2
π

)2 ∫
d 3k

(2π)3
1

2k

e−2kts

(Eπ(~k ) + k −mπ)2
+ F1 . (B15)

Using Eqs. (B11), (B13) and (B14) we rewrite IDD in the form

IDD = − m2
ℓ

2πmπ

(

1− m2
ℓ

m2
π

)
∫

d 3k

(2π)3
1

2k

e−2kts

(Eπ(~k ) + k −mπ)2

m2
π − 2mπk −m2

ℓ

mπ − 2k
+ F2 (B16)

= −m2
ℓ

2π

(

1− m2
ℓ

m2
π

)2 ∫
d 3k

(2π)3
1

2k

e−2kts

(Eπ(~k ) + k −mπ)2
+ F2 + F3 . (B17)

Finally, we recall that the range of the k = |~k | integration in I0A is (0,∞) and in IDD it is (0, kmax) so whilst the
integrands in the first terms on the right-hand sides of Eqs. (B15) and (B17) are equal and opposite, the integrals do
not cancel exactly and the sum of the two integrals is F4.

We have therefore shown that

Γdiv
0A + Γdiv

DD =
e2

2mπ

(

G2
F |Vud|2
2

)

∣

∣H4
0

∣

∣

2 (
F1 + F2 + F3 + F4) , (B18)

where the Fi are simple finite one or two-dimensional integrals which can readily be evaluated numerically for any
choice of masses and ts.

2. Γdiv
0B+Γdiv

DE

We now repeat the evaluation of the finite-terms remaining after the cancellation of infrared divergences in
Γdiv
0B+Γdiv

DE . Again the cancellation of infrared divergences is manifest, but there are a number of finite terms re-
maining which are the subject of this section.

We start be rewriting the integral expressions for these two terms, i.e. Eqs.(108) and (110)

Γdiv
0B =

e2G2
F

2mπ

|Vud|2
∣

∣H4
0

∣

∣

2
∫

dΦ2(pℓ, pνℓ)L
4 †
0 ×

∫

d 3k

(2π)3
e−kts

2k

{

ū(pνℓ)γ
4(1 − γ5)(−E′

ℓ(
~k )γ4 + i(~pℓ + ~k) · ~γ +mℓ)γ

4v(pℓ)

2E′
ℓ(
~k )(E′

ℓ(
~k) + k − Eℓ)(Eπ(~k) + k −mπ)

}

≡ e2G2
F

2mπ

|Vud|2
∣

∣H4
0

∣

∣

2
I0B (B19)



29

and

Γdiv
DE =

e2G2
F

2mπ

∣

∣H4
0

∣

∣

2 |Vud|2
∫

dΦ3(pℓ, pνℓ , k)L
4 †
0 e−kts ×

ū(pνℓ)γ
4(1− γ5)

{

(

− E′
ℓ(
~k )γ4 + i(~pℓ + ~k) · ~γ +mℓ

)

2E′
ℓ(
~k ) (E′

ℓ(
~k )− k − Eℓ) (Eπ(~k ) + k −mπ)

}

γ4v(pℓ)

≡ e2G2
F

2mπ

∣

∣H4
0

∣

∣

2 |Vud|2 IDE . (B20)

We recall that Eℓ =
√

~p 2
ℓ +m2

ℓ , E
′
ℓ(
~k ) =

√

(~pℓ + ~k )2 +m2
ℓ , k = |~k | and Eπ(~k ) =

√

k2 +m2
π. In Eq. (B19) we have

changed variables ~k → −~k so that the lepton trace, written in terms of the momenta and energies, is the same in both
cases. We write the lepton trace as L0B = LDE = Ldiv

0B + Lcon
0B where

Ldiv
0B = Ldiv

DE = −16EνE
2
ℓ − 16Eℓ ~pℓ · ~pν (B21)

Lcon
0B = Lcon

DE = −8(∆Eℓ(~k ))EℓEν − 8(∆Eℓ(~k ))~pℓ · ~pν − 8Eℓ(~pν · ~k)− 8Eν(~pℓ · ~k) , (B22)

where ∆Eℓ(~k ) = E′
ℓ(
~k ) − Eℓ. At small photon momenta Lcon

0B = O(k) and there is then no infrared divergence. The
integrals can readily be performed numerically as we explain towards the end of this section.

We now start by considering the contributions from the divergent terms. For the two-body decay for which Γ0B

contributes to the width, Eℓ and |~p ℓ| are fixed, Eℓ = (m2
π +m2

ℓ )/2mπ and |~p ℓ| = (m2
π −m2

ℓ)/2mπ and

Idiv0B ≡ 1

16π

(

1− m2
ℓ

m2
π

)
∫

d 3k

(2π)3
e−kts

2k

1

(Eπ(~k) + k −mπ)

∫ 1

−1

dzℓ
−16EνE

2
ℓ − 16Eℓ ~pℓ · ~pν

2E′
ℓ(
~k )(E′

ℓ(
~k) + k − Eℓ)

= −m2
ℓ

4π

(

1− m2
ℓ

m2
π

)2 ∫
d 3k

(2π)3
e−kts

2k

1

(Eπ(~k) + k −mπ)

∫ 1

−1

dzℓ
Eℓ

E′
ℓ(
~k )(E′

ℓ(
~k) + k − Eℓ)

= −m2
ℓ

4π

(

1− m2
ℓ

m2
π

)2 ∫
d 3k

(2π)3
e−kts

2k

1

(Eπ(~k) + k −mπ)

∫ 1

−1

dzℓ
1

(E′
ℓ(
~k) + k − Eℓ)

+ F1;0B

= −m2
ℓ

4π

(

1− m2
ℓ

m2
π

)2 ∫
d 3k

(2π)3
e−kts

2k

1

(Eπ(~k) + k −mπ)

∫ 1

−1

dzℓ
1

k + ~pℓ·~k
Eℓ

+ F1;0B + F2;0B , (B23)

where zℓ is the cosine of the angle between ~k and ~pℓ so that ~pℓ · ~k = |~pℓ|kzℓ and

F1;0B =
m2

ℓ

4π

(

1− m2
ℓ

m2
π

)2 ∫
d 3k

(2π)3
e−kts

2k

1

(Eπ(~k) + k −mπ)

∫ 1

−1

dzℓ
∆Eℓ(~k )

E′
ℓ(
~k )(E′

ℓ(
~k) + k − Eℓ)

(B24)

F2;0B = −m2
ℓ

4π

(

1− m2
ℓ

m2
π

)2 ∫
d 3k

(2π)3
e−kts

2k

1

(Eπ(~k) + k −mπ)

∫ 1

−1

dzℓ

~pℓ·~k
Eℓ

−∆Eℓ(~k )

(∆Eℓ(~k ) + k)
(

k + ~pℓ·~k
Eℓ

) (B25)

are finite integrals which can readily be evaluated numerically.

In the first term on the right-hand side of Eq. (B23) the zℓ integration can be performed to give

∫ 1

−1

dzℓ
1

k + ~pℓ·~k
Eℓ

=
Eℓ

pℓk
log

Eℓ + pℓ
Eℓ − pℓ

=
1

k

m2
π +m2

ℓ

m2
π −m2

ℓ

log
m2

π

m2
ℓ

, (B26)

where pℓ = |~pℓ|, so that

Idiv0B = − m2
ℓ

16π3

(

1− m2
ℓ

m2
π

)(

1 +
m2

ℓ

m2
π

)

log
m2

π

m2
ℓ

∫ ∞

0

dk
e−kts

Eπ(~k) + k −mπ

+ F1;0B + F2;0B . (B27)
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The two finite terms, F1;0B and F2;0B are simple two-dimensional integrals (over k and zℓ) which can readily be
evaluated numerically for any values of the masses and ts. The two-body phase-space integral of a general function
f(k, pℓ, zℓ), where pℓ = |~pℓ| can be reduced to

∫

dΦ2(pπ; pℓ, pνℓ)f(k, pℓ, zℓ) =
1

16π

(

1− m2
ℓ

m2
π

)
∫ 1

−1

dzℓ f(k, pℓ, zℓ) . (B28)

The finite contributions corresponding to Lcon
0B in the numerator are evaluated similarly.

We now consider IdivDE . Following the corresponding steps to those in Eq. (B23) we have

IdivDE =

∫

d 3k

(2π)3
e−kts

2k

∫

dΦ2(pπ − k; pℓ, pνℓ)
−16EνE

2
ℓ − 16Eℓ ~pν · ~pℓ

2E′
ℓ(
~k )(E′

ℓ(
~k)− k − Eℓ)(Eπ(~k) + k −mπ)

= −4m2
ℓ

(

1− m2
ℓ

m2
π

)
∫

d 3k

(2π)3
e−kts

2k(Eπ(~k) + k −mπ)

∫

dΦ2(pπ − k; pℓ, pνℓ)
Eℓ

E′
ℓ(
~k )(E′

ℓ(
~k)− k − Eℓ)

+ F1;DE

= −4m2
ℓ

(

1− m2
ℓ

m2
π

)
∫

d 3k

(2π)3
e−kts

2k(Eπ(~k) + k −mπ)

∫

dΦ2(pπ − k; pℓ, pνℓ)
1

(E′
ℓ(
~k)− k − Eℓ)

+ F1;DE + F2;DE

= 4m2
ℓ

(

1− m2
ℓ

m2
π

)
∫

d 3k

(2π)3
e−kts

2k(Eπ(~k) + k −mπ)

∫

dΦ2(pπ − k; pℓ, pνℓ)
1

k − ~pℓ·~k
Eℓ

+ F1;DE + F2;DE + F3;DE , (B29)

where F1;DE , F2;DE and F3;DE are infrared finite:

F1;DE =

∫

d 3k

(2π)3
e−kts

2k(Eπ(~k) + k −mπ)

∫

dΦ2(pπ − k; pℓ, pνℓ)×

8Eℓ

((

1− m2

ℓ

m2
π

)

m2
ℓ − 4(mπ − k − Eℓ)Eℓ +mπ(mπ − 2k)−m2

ℓ

)

2E′
ℓ(
~k )(E′

ℓ(
~k)− k − Eℓ)

F2;DE = 4m2
ℓ

(

1− m2
ℓ

m2
π

)
∫

d 3k

(2π)3
e−kts

2k(Eπ(~k) + k −mπ)

∫

dΦ2(pπ − k; pℓ, pνℓ)
∆Eℓ(~k )

E′
ℓ(
~k )(E′

ℓ(
~k)− k − Eℓ)

F3;DE = −4m2
ℓ

(

1− m2
ℓ

m2
π

)
∫

d 3k

(2π)3
e−kts

2k(Eπ(~k) + k −mπ)

∫

dΦ2(pπ − k; pℓ, pνℓ)
∆Eℓ(~k )− ~pℓ·~k

Eℓ(~k)

(k − ~pℓ·~k
Eℓ

)(∆Eℓ − k)
. (B30)

The infrared divergence is contained in the first term on the right-hand side of Eq. (B29) and we now evaluate

∫

dΦ2(pπ − k; pℓ, pνℓ)
Eℓ

Eℓk − ~pℓ · ~k
= −m2

π +m2
ℓ

2mπ

∫

dΦ2(pπ − k; pℓ, pνℓ)
1

pℓ · k
+

∫

dΦ2(pπ − k; pℓ, pνℓ)
Eℓ − m2

π+m2

ℓ

2mπ

Eℓk − ~pℓ · ~k
.

(B31)
The second term on the right-hand side of Eq. (B31) is infrared convergent and we now focus on the first term. The
integrand is Lorentz invariant and so we can evaluate the integral in the rest-frame of the lepton system

−m2
π +m2

ℓ

2mπ

∫

dΦ2(pπ − k; pℓ, pνℓ)
1

pℓ · k
=

1

8πmπk

m2
π +m2

ℓ

2mπ

log
E∗

ℓ + p∗ℓ
E∗

ℓ − p∗ℓ
(B32)

where E∗
ℓ , p

∗
ℓ are the variables in the lepton rest frame:

E∗
ℓ =

m2
π +m2

ℓ − 2mπk

2
√

m2
π − 2mπk

, p∗ℓ =
m2

π −m2
ℓ − 2mπk

2
√

m2
π − 2mπk

. (B33)

Thus we can write

IdivDE =
m2

ℓ

16π3

(

1 +
m2

ℓ

m2
π

)(

1− m2
ℓ

m2
π

)

log
m2

π

m2
ℓ

∫ kmax

0

dk
e−kts

Eπ(~k) + k −mπ

+ FDE , (B34)
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where kmax = mπ/2(1−m2
ℓ/m

2
π) is the maximum value of k in the three-body decay and the finite term FDE is given

by

FDE =

5
∑

i=1

Fi;DE , (B35)

F1;DE , F2;DE and F3;DE are given in Eqs. (B30) and

F4;DE = 4m2
ℓ

(

1− m2
ℓ

m2
π

)
∫

d 3k

(2π)3
e−kts

2k(Eπ(~k) + k −mπ)

∫

dΦ2(pπ − k; pℓ, pνℓ)
Eℓ − m2

π+m2

ℓ

2mπ

Eℓk − ~pℓ · ~k

F5;DE =
m2

ℓ

8π

(

1− m2
ℓ

m2
π

)(

1 +
m2

ℓ

m2
π

)
∫

d 3k

(2π)3
e−kts

k2(Eπ(~k) + k −mπ)
log

mπ(mπ − 2k)

m2
π

. (B36)

Thus finally we have

Idiv0B + IdivDE = − m2
ℓ

16π3

(

1− m2
ℓ

m2
π

)(

1 +
m2

ℓ

m2
π

)

log
m2

π

m2
ℓ

∫ ∞

kmax

dk
e−kts

Eπ(~k) + k −mπ

+ F1;0B + F2;0B + FDE . (B37)

All the terms on the right-hand side of Eq. (B37) are infrared finite.

The finite terms Fi;DE can also be readily evaluated numerically for any values of the masses and ts. F5;DE is a
one-dimensional integral whereas Fi;DE , i = (1 - 4), are two-dimensional integrals. In evaluating these it is natural to

use the mass-shell condition for the neutrino to determine zℓ, the cosine of the angle between ~p and ~k:

zℓ =
m2

π +m2
ℓ − 2mπk − 2Eℓ(mπ − k)

2pℓk
, (B38)

where pℓ = |~pℓ|. The range of integration over pℓ = |~pℓ|, or equivalently Eℓ, can then be determined from Eq. (B8):

Eℓ ≤ Emax
ℓ = mπ − k − pmin

ν =
m2

π +m2
ℓ

2mπ

and pmax
ℓ =

m2
π −m2

ℓ

2mπ

(B39)

Eℓ ≥ Emin
ℓ = mπ − k − pmax

ν =
(mπ − 2k)2 +m2

ℓ

2(mπ − 2k)
and pmin

ℓ =
(mπ − 2k)2 −m2

ℓ

2(mπ − 2k)
(B40)

so that for a general function f(k, pℓ, zℓ)

∫

dΦ2(pπ − k; pℓ, pνℓ)f(k, pℓ, zℓ) =
1

8πk

∫ pmax

ℓ

pmin

ℓ

pℓ dpℓ
Eℓ

f(k, pℓ, zℓ)

=
1

8πk

∫ Emax

ℓ

Emin

ℓ

dEℓ f(k, pℓ, zℓ) , (B41)

where zℓ is given in terms of the integration variable pℓ by Eq. (B38). Note that the factor of 1/k in front of the
integrals in Eq. (B41) is compensated at small k by the ranges of integration being of O(k).

All the finite terms contributing to ΓDE listed above (with the exception of F5;DE which is a simple one-dimensional
integral), including those with Lcon

DE in the numerator, can readily be evaluated using Eq, (B41) for any specified values
of the masses and ts.

Appendix C: Electromagnetic corrections to Kℓ3 decays

In the preceding sections of this paper we have developed a method using infinite-volume reconstruction to calculate
the radiative corrections to leptonic decays, such as πℓ2 and Kℓ2, that promises greater precision than approaches
in which the amplitude is fully computed in a finite volume, such as that based on the QEDL treatment of electro-
magnetism. This refinement replaces power-law finite-volume corrections with corrections which are exponentially
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K̄
0

~pK = ~0

ν̄ℓ

π
+~pπ

~pπ − ~k

ℓ
−

~pℓ + ~k

~pℓ

~k

x

y

FIG. 2: A new representative of a type B diagram identified in Fig. 1 that can appear when computing the
electromagnetic corrections to Kℓ3 decay. Here the three-momenta carried by the propagators have been labeled in a
fashion consistent with Eq. (C5) below.

suppressed in the linear size of the finite volume. The additional analytic control provided by the IVR method also
allows the analytic cancellation of infrared divergences so that all expressions which are evaluated numerically require
no infrared regulator.

In this appendix we generalize this approach to treat the electromagnetic corrections to the Kℓ3 decay, a process
where there is no alternative approach currently known that permits a first-principles lattice calculation. The funda-
mental diagrams for the Kℓ3 process are similar to those in Fig. 1 except that the initial meson is a kaon and a pion
emerges from the hadronic weak vertex. In this case diagrams A and B in Fig. 1, where the photon is attached to one
or two quark lines, will now include the case where one or more of these electromagnetic vertices appear on quarks of
the final-state meson. We show in Fig. 2 an example of such a new type-B diagram in which the photon propagator
connects the lepton with a quark appearing in the final-state pion.

Calculating the electromagnetic corrections toKℓ3 decays involves two new difficulties not present in leptonic decays,
such as Kℓ2 [34, 35]. Both difficulties are associated with the exchange of a photon between the two charged final-
state particles, the pion and the lepton as shown in Fig. 2 6. In the final state, these two particles are non-interacting
and each carry the three momentum that is determined by the lattice interpolating operator which annihilates them.
Thus, the total energy carried by the pion and lepton, Eπℓ, is also determined. However, the intermediate state
can also consist of a pion and a lepton, where the individual particles have spatial momenta that are different from
those of the final-state particles. This is illustrated in Fig. 2, by the pion with momentum p− k and the lepton with
momentum l+ k. The π-ℓ intermediate state can therefore have an energy E′

πℓ which is lower than Eπℓ. This creates
a familiar difficulty in a Euclidean-space lattice calculation since such a lower-energy pion-lepton intermediate state

will result in an exponentially growing term in the 〈0|φπ(t)φℓ(t)J
µ
em(tx)J

ν
em(ty)HW (0)φ†

K(tK) |0〉 correlation function,

where φ†
K , φπ and φℓ are interpolating operators used to create or annihilate the corresponding particles and we have

only exhibited the time-dependences. In this case the lower-energy pion-lepton intermediate state will be favored
because of its less-rapid exponentially-falling Euclidean-space time dependence, leading to an exponentially growing
relative factor proportional to e(Eπℓ−E′

πℓ)t. In a conventional Euclidean-space lattice calculation such an unphysical
term must be carefully identified and subtracted.

In the infinite-volume integration over the photon’s momentum k, as E′
πℓ approaches Eπℓ a singular energy denomi-

nator appears. Applying the Feynman prescription of introducing the usual −iǫ in the denominators of the lepton and
photon propagators results in a complex amplitude. The real part of this amplitude is obtained by a principal-part
recipe while the imaginary part comes from a delta function, giving a result dictated by the standard optical theorem.
A finite-volume Euclidean calculation would miss this imaginary contribution and the approximation of the principal
part by a discrete sum would introduce potentially large finite-volume corrections [33].

These difficulties arise from the space-time region in which the photon is exchanged between the pion and the lepton
at increasingly late times in the decay, i.e. with tx and ty close to t. This is precisely the region that can be treated
analytically using IVR. In fact, using IVR a lattice QCD calculation can treat the final state pion directly in Minkowski
space avoiding the difficulties described above. If we assume that other possible Xℓ intermediate states with energy
E′

Xℓ smaller than Eπℓ are unimportant, then this provides a complete treatment of the radiative corrections to Kℓ3

decays. Here the most important hadronic state X is the two pion state whose lack of significance is suggested by

6 The difficulties are also present in the semileptonic decay of a charged kaon, e.g. K− → π0ℓ−ν̄ℓ. In this case however, the imaginary
part of the amplitude in Minkowski space is not infrared divergent.
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the ratio of partial widths: Γ(KL → π+π0ℓ−νℓ)/Γ(KL → π+ℓ−νℓ) ≈ 10−4. In addition, if desired such two-pion
intermediate states can be further suppressed or avoided altogether by considering Kℓ3 decays in the kinematic region
in which the neutrino carries substantial energy.

A discussion of the radiative corrections to Kℓ3 decays which is as detailed as that presented here for leptonic decays
is beyond the scope of this paper. However, given the absence of other lattice approaches to the calculation of these
corrections and its value as a further example of the methods developed in this paper, we present a broad outline of
this approach in this appendix. The critical step is the use of IVR to determine the contribution of an intermediate
pion carrying a known spatial momentum. We begin with the relevant hadronic matrix element expressed as a sum
over intermediate states:

〈π(~pπ)|Jµ(x)JW
ν (0)|K(~0)〉E =

∑

n

〈π(~pπ)|Jµ
em(x)|n〉〈n|Jν

W (0)|K(~0)〉E (C1)

≃
∫

d3p ′

2Eπ(~p ′)
e−x4

(

Eπ(~p
′)−Eπ

)

〈π(~pπ)|Jµ
em(~x, 0)|π(~p ′)〉〈π(~p ′)|Jν

W (0)|K(~0)〉, (C2)

where x4 > 0 and the subscript E has been introduced when necessary to indicate a Euclidean-space amplitude. For
a generic momentum ~q we define Eπ(~q) =

√

~q 2 +m2
π, and in order to simplify the notation we define Eπ to be the

energy of the external pion, Eπ =
√

~p2 +m2
π. As has already been extensively discussed, by taking the Euclidean time

x4 to be sufficiently large we can insure that only the intermediate pion state contributes as described by Eq. (C2).

Following the now familiar steps taken earlier, we can Fourier transform Eq. (C2) to determine the pion contribution
Aπ(~p, ~p

′, x0) to this amplitude at an arbitrary time x0 in Minkowski space from our Euclidean lattice result:.

Aµν
π (~pπ, ~p

′, x0) ≡ 〈π(~pπ)|Jµ
em(0)|π(~p ′)〉〈π(~p ′)|Jν

W (0)|K(~0)〉e−ix0(Eπ(~p
′)−Eπ) (C3)

= hµρhνσ

∫

d3x ei(~p−~p ′)·~x e(ts−ix0)(Eπ(~p
′)−Eπ)〈π(~p )|Jρ

em(~x, ts)J
σ
W (0)|K(~0)〉E , (C4)

provided the real Euclidean time ts is sufficiently large and positive. Here h = diag(1, i, i, i) is introduced to take
into account that the currents in Eq. (C3) are defined in Minkowski space whereas those in Eq. (C4) are defined in
Euclidean space using the conventions in Appendix A. We have also replaced the variable x4 by ts to follow more
closely the conventions used earlier. Thus, the Minkowski-space amplitude Aµν

π (~pπ, ~p
′, x0) can be determined directly

from a Euclidean lattice calculation. All finite-volume errors will remain exponentially small in the size of the spatial
volume provided we keep ts . L.

We can now use the amplitude Aµν
π (~p, ~p ′, x0) to avoid both of the difficulties described above that are involved

in the calculation of the radiative correction to Kℓ3 decays. Firstly, the amplitude Aµν
π (~p, ~p ′, x0) can be substituted

directly into the Minkowski-space calculation of the contribution of the πℓ intermediate state to the Kℓ3 decay. There
will be no terms with exponentially growing time dependence since the calculation is performed in Minkowski space
and the unwanted term that oscillates at large times can be isolated in this analytic calculation and dropped as was
done in Ref. [4]. The resulting complex amplitude will obey the optical theorem 7.

An explicit expression for this Minkowski-space amplitude coming from a single pion intermediate state can be
readily written down directly in terms of the underlying lattice QCD amplitude:

∫ ∞

−∞

dk0

∫

d 3k ets(Eπ(~pπ−~k )−Eπ)

∫

d 3x ei~x·
~k hµρhνσ〈π(~pπ)|Jρ

em(~x, ts)J
σ
W (0)|K(~0)〉E

Eπ − Eπ(~pπ − ~k )− k0 + iǫ
×

1

k2 − iǫ

ūℓ(~pℓ)γµ(γ · (pℓ + k) +mℓ)γν(1− γ5)vν(~pν̄)

(pℓ + k)2 +m2
ℓ − iǫ

. (C5)

The four-vector k is the Minkowski-space momentum carried by the photon propagator, pℓ is the four-momentum of
the final-state lepton and pν the four-momentum of the final-state anti-neutrino. The routing of momenta adopted
in Eq. (C5) is shown in Fig. 2. This expression is independent of the parameter ts when ts is sufficiently large that
intermediate states more massive than the pion can be neglected.

7 Note, this result will contain a physical infrared divergence that results from the logarithmic radial dependence of the Coulomb wave
functions. This divergence can be regulated by adding a photon mass and removed by including screening effects or evaluating a ratio
in which these effects cancel. This divergence contributes to the imaginary part of the amplitude and hence does not enter the O(αem)
correction to the decay rate being considered here.
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As in our earlier derivations, the analytic integrals over k0 and ~k can be performed at fixed ~x allowing the quantity
in Eq. (C5) to be expressed as the product of a Euclidean-space, finite-volume lattice amplitude and an analytic kernel
which in this case has both real and imaginary parts. Equation (C5) isolates the contribution of the pion intermediate
state inserted between the currents Jµ

em(~x, x4)J
ν
W (0) for the case that x4 > 0. We should recognize that all features

of the electromagnetic interaction of a physical pion are captured by this Euclidean-space matrix element, including
the pion’s electromagnetic form factor.

The second step of the calculation targets the remaining terms in the sum over intermediate states that appear in
Eq. (C1). These terms can be written in Minkowski space using the notation introduced in Eqs. (C1), (C3) and (C5):

Ã ≡
∫ ∞

−∞

dk0
2π

∫

d 3k

(2π)3

∫ ∞

0

dx0 e−ix0k0

{
∫

d 3x ei~x·
~k〈π(~pπ)|Jµ

em(~x, x0)J
ν
W (0)|K(~0)〉 − Aµν

π (~pπ, ~pπ − ~k, x0)

}

×

1

k2 − iǫ

uℓ(~pℓ)γµ(γ · (pℓ + k)−mℓ)γν(1− γ5)vν̄(~pν̄)

(pℓ + k)2 +m2
ℓ − iǫ

. (C6)

This Minkowski amplitude is written as a product of a time-ordered QCD matrix element multiplied by covariant
Feynman propagators for the photon and lepton. This can of course be re-expressed as a conventional time-ordered
matrix element of one weak current and two electromagnetic currents in which the photon and leptons as well as the
QCD degrees of freedom all appear as intermediate states. By removing the contribution of the single-pion state to
these intermediate states and neglecting the small contributions of two- and three-pion states, we guarantee that no
intermediate states appear in the right-hand side of Eq. (C6) with lower energy than mK .

Under these circumstances, the same result for this subtracted decay amplitude will be obtained in either Minkowski
or Euclidean space. Thus, Eq. (C6) can be re-expressed as the product of a time-ordered QCD matrix element
multiplied by covariant Feynman propagators for the photon and lepton, all expressed in Euclidean space. The
resulting amplitude will fall exponentially as the separation between the hadronic weak and electromagnetic currents
increases, allowing the hadronic matrix element to be computed in lattice QCD with only exponentially suppressed
finite volume errors.

In this appendix we have focussed on the region x0 > 0, since this is where the difficulties discussed above, associated
with intermediate states with energies lower than mK , appear. For x0 < 0 there are no such difficulties; the Minkowski
and Euclidean integrals over negative x0 and x4 respectively are equal, so that the corresponding contribution to the
physical hadronic matrix element can also be computed in lattice QCD with only exponentially suppressed finite
volume errors.

Finally we summarize the results of this appendix. We have provided a further application of the IVR method to
treat the electromagnetic corrections to Kℓ3 decays. The resulting approach has the same important features as the
treatment of the electromagnetic corrections to the decay of a pseudoscalar meson into a lepton and neutrino which
was the main topic of this paper: i) All errors resulting from the finite volume in which the lattice QCD portions of
the calculation are performed fall exponentially with increasing lattice volume. ii) Infrared divergences appear only
in the analytic parts of the calculation, leaving the amplitudes to be computed using lattice QCD infrared finite.

The electromagnetic corrections to Kℓ3 decays are more complex than those needed for the leptonic decays of a
pseudo-scalar meson and have until now alluded a treatment in lattice QCD. The most significant obstacle to such
a lattice calculation is the photon exchange between the final-state pion and lepton. The difficulties associated with
this photon exchange contribution are the infrared-singular imaginary part and the appearance of intermediate pion-
lepton states that are less energetic than the final pion-lepton. Both difficulties can be resolved analytically in the IVR
approach allowing this pion-lepton scattering contribution to be computed in a finite-volume lattice calculation of the

φ†
K-JW -Jem-φπ four-point function as summarized in Eq. (C5). After the contribution of this single-pion intermediate

state has been evaluated, the remaining contribution can be directly evaluated from the lattice QCD calculation of a
finite-volume Euclidean-space amplitude as indicated in Eq. (C6).
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[30] P. Boyle, V. Gülpers, J. Harrison, A. Jüttner, C. Lehner, A. Portelli and C. T. Sachrajda, JHEP 09 (2017), 153

doi:10.1007/JHEP09(2017)153 [arXiv:1706.05293 [hep-lat]].
[31] S. Basak et al. [MILC], Phys. Rev. D 99 (2019) no.3, 034503 doi:10.1103/PhysRevD.99.034503 [arXiv:1807.05556 [hep-lat]].
[32] R. Horsley et al. [CSSM, QCDSF and UKQCD], J. Phys. G 46 (2019), 115004 doi:10.1088/1361-6471/ab32c1

[arXiv:1904.02304 [hep-lat]].
[33] N. H. Christ, X. Feng, G. Martinelli and C. T. Sachrajda, Phys. Rev. D 91 (2015) no.11, 114510

doi:10.1103/PhysRevD.91.114510 [arXiv:1504.01170 [hep-lat]].
[34] C. T. Sachrajda, M. Di Carlo, G. Martinelli, D. Giusti, V. Lubicz, F. Sanfilippo, S. Simula and N. Tantalo, PoS LAT-

TICE2019 (2019), 162 doi:10.22323/1.363.0162 [arXiv:1910.07342 [hep-lat]].
[35] C. T. Sachrajda, Acta Phys. Polon. B 52 (2021) no.3, 175-201 doi:10.5506/APhysPolB.52.175 [arXiv:2104.04312 [hep-lat]].

http://arxiv.org/abs/2009.08287
http://arxiv.org/abs/2103.11331
http://arxiv.org/abs/2108.05311
http://arxiv.org/abs/2202.01472
http://arxiv.org/abs/2206.00879
http://arxiv.org/abs/1502.00257
http://arxiv.org/abs/1611.08497
http://arxiv.org/abs/1711.06537
http://arxiv.org/abs/1904.08731
http://arxiv.org/abs/0804.2044
http://arxiv.org/abs/2109.05002
http://arxiv.org/abs/2212.04709
http://arxiv.org/abs/1911.00938
http://arxiv.org/abs/0708.0484
http://arxiv.org/abs/1006.1311
http://arxiv.org/abs/1303.4896
http://arxiv.org/abs/1406.4088
http://arxiv.org/abs/1508.06401
http://arxiv.org/abs/1704.06561
http://arxiv.org/abs/1706.05293
http://arxiv.org/abs/1807.05556
http://arxiv.org/abs/1904.02304
http://arxiv.org/abs/1504.01170
http://arxiv.org/abs/1910.07342
http://arxiv.org/abs/2104.04312

	Radiative corrections to leptonic decays using infinite-volume reconstruction
	Abstract
	I Introduction
	II Evaluation of the diagrams
	A The amplitude in QCD without QED
	B Contribution to the amplitude from Diagram A
	1 Contribution from Region R2
	2 Contribution from Region R1
	3 Contribution from Region R3
	4 Summary of the contribution to the amplitude from Diagram A

	C Contribution to the amplitude from Diagram B
	1 Summary of the contribution to the amplitude from Diagram B

	D Contribution to the amplitude from Diagram C
	E Contribution to the amplitude from Diagram D
	F Contribution to the amplitude from Diagram E

	III Cancellation of infrared divergences
	A IR cancellation for diagram A and DD
	B IR cancellation in diagrams D0, B, D and E
	C IR cancellation for diagram C and EE

	IV Final Result
	A 0A+DD
	B 0B+DE
	C 0C+EE

	V Summary and Conclusions
	 Acknowledgements

	A Notation and Conventions
	1 Minkowski space-time
	2 Euclidean space

	B Cancellation of infrared divergences - the finite terms
	1 0Adiv+DDdiv
	2 0Bdiv+DEdiv

	C Electromagnetic corrections to K3 decays
	 References


