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C/Catedrático José Beltrán 2, E-46980 Paterna, Valencia, Spain

2Physics & Astronomy, University of Southampton, Southampton SO17 1BJ, UK
3Departamento de F́ısica Fundamental e IUFFyM,

Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca, Spain
(Dated: April 4, 2023)

We benefit from the lattice QCD determination of the Standard Model (SM) form factors
for the B̄s → D∗s and B̄s → Ds semileptonic decays carried out by the HPQCD collaboration
in Refs. Phys. Rev. D 105, 094506 (2022) and Phys. Rev. D 101, 074513 (2020), and
the heavy quark effective theory (HQET) relations for the analogous B → D(∗) decays
obtained by F.U. Bernlochner et al. in Phys. Rev. D 95, 115008 (2017), to extract the

leading and sub-leading Isgur-Wise functions for the B̄s → D
(∗)
s decays. Further use of the

HQET relations allows us to evaluate the corresponding scalar, pseudoscalar and tensor form

factors needed for a phenomenological study of new physics (NP) effects on the B̄s → D
(∗)
s

semileptonic decay. At present, the experimental values for the ratios RD(∗) = Γ[B̄ →
D(∗)τ−ν̄τ ]/Γ[B̄ → D(∗)e−(µ−)ν̄e(µ)] are the best signal in favor of lepton flavor universality
violation (LFUV) seen in charged current (CC) b→ c decays. In this work we conduct a study

of NP effects on the B̄s → D
(∗)
s τ−ν̄τ semileptonic decays by comparing tau spin, angular

and spin-angular asymmetry distributions obtained within the SM and three different NP
scenarios. As expected from SU(3) light-flavor symmetry, we get results close to the ones

found in a similar analysis of the B̄ → D(∗) case. The measurement of the B̄s → D
(∗)
s `ν̄`

semileptonic decays, which is within reach of present experiments, could then be of relevance
in helping to establish or rule out LFUV in CC b→ c transitions.
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I. INTRODUCTION

Present experimental data on B̄ → D(∗) semileptonic decays points to the possibility of lepton
flavor universality violation (LFUV) that will affect charged-current (CC) b → cτ−ν̄τ semilep-
tonic transitions. The ratios RD = Γ(B̄ → Dτ−ν̄τ )/Γ(B̄ → Dµ−ν̄µ) and RD∗ = Γ(B̄ →
D∗τ−ν̄τ )/Γ(B̄ → D∗µ−ν̄µ) have been measured by the BaBar [1, 2], Belle [3–6] and LHCb [7–
10] experiments and their combined analysis by the HFLAV collaboration indicates a 3σ tension
with SM predictions [11, 12].

LFUV requires the existence of new physics (NP) beyond the Standard Model (SM) and, if
confirmed, would have a tremendous impact in particle physics. This makes the study of as many
analogous CC decays as possible timely and necessary in order to confirm or rule out LFUV. The
RJ/ψ = Γ(B̄c → J/ψτ−ν̄τ )/Γ(B̄c → J/ψµ−ν̄µ) ratio has been measured by the LHCb collabo-
ration [13] finding a 1.8σ discrepancy with SM results [14–26]. Another reaction where a similar
behavior was to be expected is the baryon Λb → Λc`ν̄` decay. However, in this case, the recent mea-
surement of the RΛc = Γ(Λb → Λcτ

−ν̄τ )/Γ(Λb → Λcµ
−ν̄µ) ratio by the LHCb collaboration [27]

is in agreement, within errors, with the SM prediction [28]. In this experiment, the τ− lepton was
reconstructed using the τ− → π−π+π−(π0)ντ hadronic decay. It is then of great interest to see
whether the current RΛc experimental value is confirmed or not using the muonic reconstruction
channel. Such an analysis is under way [29].

LHCb has very recently [10] presented the first simultaneous measurement in hadron collisions
of RD∗ and RD0 , identifying the tau lepton from its the decay mode τ− → µ−ντ ν̄µ. The measured
values are RD∗ = 0.281 ± 0.018 ± 0.024 and RD0 = 0.441 ± 0.060 ± 0.066, where the correlation
between these measurements is −0.43. The result for the former ratio supersedes the higher value
previously reported in [7] and it is now in better agreement with the SM. LHCb earlier measured
RD∗ = 0.291±0.019±0.026±0.013 [8, 9] using hadronic tau decays, but a new result in preparation
and reported in [12], RD∗ = 0.257 ± 0.012 ± 0.014 ± 0.012, is in closer agreement with the SM
expectation. Nevertheless combined global results for RD∗ and RD from different experiments
and detection techniques remain around 3σ away from the SM expectation (HFLAV Winter 2023
update [30] presented in [12]).

One would also expect to see LFUV effects in B̄s → D
(∗)
s semileptonic decays which are SU(3)

analogues of the B̄ → D(∗) ones. A measurement of RDs by LHCb [12] is also underway, making
the study of these reactions timely. The theoretical analysis of NP effects in those decays requires
however knowledge of beyond-the-SM (BSM) form factors that have not yet been determined.

SM form factors for the B̄s → D
(∗)
s semileptonic transitions have been evaluated on the lattice in

Refs. [31, 32]. In addition, the approximate heavy quark spin symmetry (HQSS) of QCD allows one
to construct an effective field theory (HQET) to compute these form-factors. Indeed, the HQSS
expressions for them can be obtained from Ref. [33], where they were derived for the B̄ → D(∗)

decays. One can use this information to fit the leading and sub-leading HQSS Isgur-Wise (IW)

functions, which describe the B̄s → D
(∗)
s form factors, to the SM lattice data and quantify the size

of the SU(3) light-flavor breaking corrections.

Once the IW functions are known, one can use the HQSS relations to obtain the scalar, pseu-
doscalar and tensor form factors that are needed in addition to the SM ones for an analysis of

possible NP effects on the B̄s → D
(∗)
s decays. This is what we have done in this work which

is organized as follows. In Sec. II we describe the fitting procedure to obtain the IW functions,
with some auxiliary details collected in the Appendix. A thorough analysis of NP effects, based
on observables that can be measured by the analysis of the visible kinematics of the subsequent
hadronic τ− → π−ντ , τ− → ρ−ντ and leptonic τ− → `−ν̄`ντ decays, is conducted in Sec. III.
Finally in Sec. IV we summarize the main findings.
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FIG. 1. Comparison of the original SM-LQCD form factors for B̄s → Ds [31] and B̄s → D∗s [32] and their
description in this work using the parametrizations of Eqs. (12) and (10), respectively. Both central values
and 68% confidence level (CL) bands show excellent agreement.

II. HQET FIT OF THE B̄s → D
(∗)
s SEMILEPTONIC-DECAY SM-LQCD FORM

FACTORS AND SM DISTRIBUTIONS

In this section we will describe how we fit the SM-LQCD form-factor data from Refs. [31, 32] to
their expressions expected from HQET and derived in Ref. [33]. A comparison of both sets of form
factors is done by showing their predictions for differential decay widths and tau spin, angular and
spin-angular asymmetry distributions. Further use of HQSS will allow us to predict BSM form

factors which we will use in the next section to test for possible NP effects in B̄s → D
(∗)
s τ−ν̄τ

semileptonic decays.

A. LQCD form factors

We will use LQCD results from HPQCD for the SM form factors for B̄s → D∗s [32] and B̄s →
Ds [31] semileptonic decays. The results are presented as coefficients in power series of a conformal
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variable

z(q2; tth, t0) =

√
tth − q2 −√tth − t0√
tth − q2 +

√
tth − t0

, (1)

where qµ is the four-momentum transfer to the leptons and the choices made for tth and t0 are
given below. For the B̄s → D∗s decay, the authors of Ref. [32] use the following decomposition of
the current matrix elements

〈D∗s ; ~p ′, r|c̄(0)γµb(0)|B̄s; ~p 〉 =
2iV (q2)

MBs +MD∗s
εµνρσε∗ν(~p ′, r)p′ρpσ,

〈D∗s ; ~p ′|c̄(0)γµγ5b(0)|B̄s; ~p 〉 = 2MD∗sA0(q2)
ε∗(~p ′, r) · q

q2
qµ

+(MBs +MD∗s )A1(q2)
[
ε∗µ(~p ′, r)− ε∗(~p ′, r) · q

q2
qµ
]

−A2(q2)
ε∗(~p ′, r) · q
MBs +MD∗s

[
pµ + p′µ −

M2
Bs
−M2

D∗s
q2

qµ
]
, (2)

with ε0123 = +1. The different form factors have been parametrized by1

F (q2) =
1

PF (q2)

3∑

n=0

ãFn (z̃∗)n (3)

with

z̃∗(q2) = z(q2; tth, t0), tth = (MB +MD∗)
2 , t0 = (MBs −MD∗s )2. (4)

The PF (q2) factors account for poles corresponding to bc̄ states with masses below the pair pro-
duction threshold tth. Their expressions can be found in Ref. [32]. The absence of a singularity at
q2 = 0 leads to the constraint

2MD∗sA0(0) = (MBs +MD∗s )A1(0) + (MD∗s −MBs)A2(0). (5)

The central values and errors for the ãFi expansion coefficients in Eq. (3), as well as the correspond-
ing correlation matrix are given, respectively, in Table XIII and Tables XXII-XXXI of Ref. [32].

For the B̄s → Ds semileptonic decay, the form-factor decomposition is [31]

〈Ds; ~p
′ |c̄(0)γµb(0)|B̄s; ~p 〉 = f+(q2)

[
pµ + p′µ −

M2
Bs
−M2

Ds

q2
qµ
]

+ f0(q2)
M2
Bs
−M2

Ds

q2
qµ, (6)

with the constraint

f0(0) = f+(0). (7)

The form factors are parametrized in [31] by

f0(q2) =
1

1− q2/M2
Bc0

2∑

n=0

ã0
nz̃

n,

f+(q2) =
1

1− q2/M2
B∗c

2∑

n=0

ã+
n

[
z̃n − (−1)n−3n

3
z̃3
]
, (8)

1 In contrast to the original works in Refs. [31, 32], we use tilde’s to denote z-variables and a coefficients of the
HPQCD form-factor parametrizations.
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with

z̃(q2) = z(q2; tth, 0), tth = (MBs +MDs)
2. (9)

The constraint in Eq. (7) imposes ã0
0 = ã+

0 .

For our HQSS fit of the form factors we change the parametrizations above to symmetrize the

range of z corresponding to 0 ≤ q2 ≤ t
(∗)
− where t

(∗)
− = (MBs −M (∗)

Ds
)2 for the two decays. For

B̄s → D∗s we use

F (q2) =
1

PF (q2)

3∑

n=0

aFn (z∗)n (10)

with

z∗(q2) = z(q2; tth, t0), tth = (MB +MD∗)
2 , t0 = tth −

√
tth(tth − t∗−). (11)

For B̄s → Ds we use

f0(q2) =
1

1− q2/M2
Bc0

2∑

n=0

a0
nz

n , f+(q2) =
1

1− q2/M2
B∗c

2∑

n=0

a+
n z

n, (12)

with

z(q2) = z(q2; tth, t0), tth = (MB +MD)2 , t0 = tth −
√
tth(tth − t−). (13)

The central values and errors of the new expansion coefficients, together with the corresponding
correlation matrices, are collected in Tables VI–XVII of the Appendix. We use Eq. (5) to fix the
aA2

3 coefficient for B̄s → D∗s and Eq. (7) to fix a+
2 for B̄s → Ds. The quality of these new expansions

can be seen in Fig. 1 where we compare them to the lattice form factors obtained in Refs. [31, 32].
The agreement is excellent.

B. HQSS form factors

In HQET, one normally uses the following form-factor decomposition of the transition-current
matrix elements [33]

〈D∗s ; ~p ′, r|c̄(0)γµb(0)|B̄s; ~p 〉 = i
√
MBsMD∗s hV (q2)εµνρσε∗ν(~p ′, r)v′ρvσ,

〈D∗s ; ~p ′|c̄(0)γµγ5b(0)|B̄s; ~p 〉 =
√
MBsMD∗s

{
hA1(q2)(ω + 1)ε∗µ(~p ′, r)− hA2(q2)[ε∗µ(~p ′, r) · v]vµ

− hA3(q2)[ε∗µ(~p ′, r) · v]v′µ
}

〈Ds; ~p
′ |c̄(0)γµb(0)|B̄s; ~p 〉 =

√
MBsMDs [h+(q2)(vµ + v′µ) + h−(q2)(vµ − v′µ)], (14)

with v, v′ the four-velocities of the initial and final hadron respectively. The hi form-factors depend
on q2, or equivalently on ω = v · v′.

In Ref. [33] the above form factors have been computed in the effective field theory, up to
O(αs,ΛQCD/mc,b) corrections, for the analogous B̄ → D(∗) semileptonic decays. We take advantage

of this study and use the findings of Ref. [33] to describe the B̄s → D
(∗)
s form-factors. In the infinite

heavy quark mass limit the form factors are given by the leading IW function ξ(ω) or they are



6

zero. It is thus convenient to factor out the IW function and define ĥi(ω) = hi(ω)/ξ(ω), which, up
to O(αs,ΛQCD/mc,b) corrections, read [33]

ĥV = 1 + α̂sCV1 + εc(L̂2 − L̂5) + εb(L̂1 − L̂4),

ĥA1 = 1 + α̂sCA1 + εc

(
L̂2 − L̂5

ω − 1

ω + 1

)
+ εb

(
L̂1 − L̂4

ω − 1

ω + 1

)
,

ĥA2 = α̂sCA2 + εc(L̂3 + L̂6),

ĥA3 = 1 + α̂s(CA1 + CA3) + εc(L̂2 − L̂3 + L̂6 − L̂5) + εb(L̂1 − L̂4), (15)

ĥ+ = 1 + α̂s

[
CV1 +

ω + 1

2
(CV2 + CV3)

]
+ (εc + εb)L̂1,

ĥ− = α̂s
ω + 1

2
(CV2 − CV3) + (εc − εb)L̂4. (16)

The terms proportional to α̂s = αs/π are perturbative corrections computed by matching QCD to
the HQET and, although dependent on ω, are independent of the light degrees of freedom. The
different CA,V functions can be found in Appendix A of Ref. [33]. In addition, εc,b are given by
εc,b = Λ̄/(2mc,b), with Λ̄ a low energy constant (LEC) of order O(ΛQCD) for which we take the

value quoted in Ref. [33]. The six ω-dependent L̂j functions can be written in terms of just three
sub-leading IW functions χ̂2,3 and η (see Eq. (8) in Ref. [33]) for which the near zero-recoil (ω = 1)
expansions2

χ̂2(ω) = χ̂2(1) + χ̂′2(1)(ω − 1), χ̂3(ω) = χ̂′3(1)(ω − 1), η(ω) = η(1) + η′(1)(ω − 1) (17)

are used. Strictly speaking, Λ̄ depends on the light-quark degrees of freedom. Thus, one expects
some SU(3) breaking that will modify its value compared to that used in Ref. [33] for B̄ → D(∗)

decays. By keeping it the same, we reabsorb this change into the sub-leading IW functions which,
together with the leading one, also suffer from SU(3) breaking effects.

For the leading IW function ξ we shall take the parametrization in Ref. [35], where one has that

ξ(ω) = 1− 8ρ2ẑ + (64c− 16ρ2)ẑ2 + (256c− 24ρ2 + 512d)ẑ3 (18)

and

ẑ(ω) =

√
ω + 1−

√
2√

ω + 1 +
√

2
. (19)

In addition, following Ref. [35], we include the O[(ΛQCD/mc)
2] corrections introduced in Ref. [36],

which affect the form factors that are protected from O(ΛQCD/mc) corrections at zero recoil, ĥ+

and ĥA1 . We shall then use [36]

ĥ+ → ĥ+ + ε2c l1(1), ĥA1 → ĥA1 + ε2c l2(1) (20)

C. Fit of the SM-LQCD form factors to their HQSS/HQET expressions.

Treating the ten HQET LECs ρ2, c, d, χ̂2(1), χ̂′2(1), χ̂′3(1), η(1), η′(1), l1(1) and l2(1) introduced
above as free parameters, we can fit the SM-LQCD form factors to their HQSS expressions. We

2 In the case of χ̂3 one has that χ̂3(1) = 0 from Luke’s theorem [34].
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FIG. 2. Comparison of the original SM-LQCD form factors for B̄s → Ds [31] and B̄s → D∗s [32] semileptonic
decays and the HQET predictions after the fitting procedure described in the main text.

fit the twenty independent coefficients aF=+,0,A0,A1,A2,V
i expressing SM-LQCD form factors. The

fit minimizes a χ2 function, that in a simplified notation we can write as

χ2 =
∑

j

∑

k

(aj − fj)C−1
jk (ak − fk). (21)

Here, the sum is over all the expansion coefficients, for which the a′s represent their central values,
and the f ′s stand for the expressions of the corresponding expansion coefficients in terms of the
ρ2, c, d, χ̂2(1), χ̂′2(1), χ̂′3(1), η(1), η′(1), l1(1) and l2(1) best fit LECs. The fj terms are obtained
by expanding each of the HQSS form factors, multiplied by the pole factors in the corresponding
lattice form factors, in powers of the z∗(z) variable for the D∗s(Ds) case. The covariance matrix C
is block diagonal, built from the separate D∗s and Ds covariances.

Since the SM-LQCD results come from simulations on the same ensembles, with the same lattice
actions and the same treatment of the chiral and continuum limits, we expect correlations between
as well as within them. Lacking information on the former, we also tried fits with the D∗s results
taken as either fully correlated or fully anti-correlated with the Ds ones. That is, we augmented
the correlation matrix corresponding to C with off-diagonal blocks for these two extreme cases
with all entries taken to be either 1 or −1. However, the new C matrices constructed in this way
had negative eigenvalues. We also explored partially correlated scenarios (all matrix elements of
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B̄s → D
(∗)
s B̄s → D

(∗)
s (unc) ε[B̄s → D

(∗)
s ] B̄ → D(∗) [35]

ρ2 1.26± 0.07 1.33± 0.10 0.10 1.32± 0.06
c 1.20± 0.11 1.28± 0.13 0.13 1.20± 0.12
d −0.91± 0.10 −0.97± 0.12 0.11 −0.84± 0.17

χ̂2(1) 0.30± 0.23 0.18± 0.24 0.26 −0.058± 0.020
χ̂′2(1) 0.14± 0.08 −0.02± 0.15 0.18 0.001± 0.020
χ̂′3(1) 0.08± 0.09 0.07± 0.08 0.09 0.036± 0.020
η(1) 0.07± 0.21 0.14± 0.23 0.22 0.355± 0.040
η′(1) −0.51± 0.25 0.12± 0.59 0.68 −0.03± 0.11
l1(1) 0.28± 0.50 0.38± 0.52 0.51 0.14± 0.23
l2(1) −2.24± 0.94 −2.66± 1.1 1.03 −2.00± 0.30

TABLE I. Second column: Mean values and uncertainties of the ρ2, c, d, χ̂2(1), χ̂′2(1), χ̂′3(1), η(1) and

η′(1) LECs obtained by fitting the B̄s → D
(∗)
s SM-LQCD form factors from Refs. [31, 32] to their

O(αs,ΛQCD/mc,b) HQET expressions given in [33]. The first three parameters determine the leading IW
function, while the last five enter in the 1/mc,b sub-leading corrections. In addition, l1(1) and l2(1) account

for O[(ΛQCD/mc)
2] contributions [36], which affect the ĥ+ and ĥA1

form factors, respectively, which are pro-
tected from O(ΛQCD/mc) corrections at zero recoil. Third column: Results from the totally uncorrelated
fit, where we consider only the diagonal elements of the matrix C in the definition of the merit function of
Eq. (21). Fourth column: Final total errors considered on the fitted LECs and used in the evaluation of
the uncertainty bands for derived observables. They are computed by combining in quadrature the errors
from the central fit (second column) with the magnitudes of the differences between the mean values of the
central and uncorrelated fits. Fifth column: Results for the analogous SU(3) fit carried out in Ref. [35] to
B̄ → D(∗) form-factor LQCD and experimental inputs. Note a typo (global sign) in the numerical value of
l2(1) given in the original Table 1 of Ref. [35].

ρ2 c d χ̂2(1) χ̂′2(1) χ̂′3(1) η(1) η′(1) l1(1) l2(1)

1.000 0.808 −0.709 0.207 −0.070 0.537 −0.003 0.124 −0.064 0.112
1.000 −0.986 0.165 0.451 0.428 −0.072 0.207 −0.078 0.113

1.000 −0.147 −0.544 −0.374 0.085 −0.210 0.075 −0.105
1.000 0.049 0.901 −0.231 −0.213 −0.042 0.050

1.000 −0.011 −0.176 −0.177 −0.005 0.075
1.000 −0.030 −0.002 −0.091 −0.001

1.000 0.344 0.226 −0.463
1.000 −0.058 −0.183

1.000 −0.107
1.000

TABLE II. Correlation matrix of the ρ2, c, d, χ̂2(1), χ̂′2(1), χ̂′3(1),η(1), η′(1), l1(1) and l2(1) bestfit parameters
after fitting the SM-LQCD form factors from Refs. [31, 32] to their O(αs,ΛQCD/mc,b) HQET expressions.

the Ds −D∗s off-diagonal blocks set to r, with |r| ≤ 1), but we found positive definite covariance
matrices only for very small correlations |r|, of order a few percent. Finally, we carried out a totally
uncorrelated fit, where we considered only the diagonal elements of the matrix C in the definition
of the merit function of Eq. (21). That is to say, in this fit we also switched off the separate D∗s
and Ds correlations.

The results for the central fitted parameters and errors are given in the second column of Table I,
while the corresponding correlation matrix appears in Table II. The fit has χ2/dof = 0.81. The
next column shows the results from the totally uncorrelated fit (diagonal C matrix) which has
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χ2/dof = 0.29. The two fits give compatible results, with parameter errors slightly larger for the
latter. We take the magnitude of the differences between the mean values of the central fit and
those obtained in the uncorrelated (diagonal C matrix) fit as a further systematic error that we will
combine in quadrature with the errors from the central fit to get our final error estimate for each
of the parameters. Their values are presented in the next-to-last column of Table I. We retain the
correlation matrix from the central fit (Table II). Using these ingredients we construct Gaussian
distributions which are then used to compute 68% confidence level bands for derived observables.

In the final column of Table I, we include Table 1 of [35], which contains the results for the
analogous fit carried out in that work to B̄ → D(∗) LQCD and experimental form-factor inputs.
We see in general small variations, compatible with the expected SU(3)-light flavor breaking cor-
rections (∼ 25− 30%), except for some parameters, which control the sub-leading corrections and
in most cases generate higher powers of (ω − 1), where the differences between the central values
in both fits are bigger. However, these LECs are determined with sizable uncertainties, limiting
an interpretation as possible unexpectedly large SU(3) breaking effects.

A comparison of the original SM-LQCD form factors from Refs. [31, 32] and the HQET pre-
dictions after the fitting procedure just described is shown in Fig. 2. There is a good agreement,
within uncertainties, for all form-factors. Nevertheless, the HQET prediction for V is systemati-
cally below the LQCD result, with the uncertainty band of the former accommodated within the
lower part of the error band of the latter (LQCD), which is notably much wider. We also observe
some discrepancies between HQET and LQCD uncertainty bands for f+(ω) close to zero recoil.

In the next subsection, we show the different q2−distributions that fully determine the semilep-

tonic B̄s → D
(∗)
s τ−ν̄τ transitions for polarized final tau-leptons [37, 38].

D. Visible kinematics of the sequential Hb → Hcτ
−(π−ντ , ρ−ντ , `−ν̄`ντ )ν̄τ decays

If the spins of the Hb,c hadrons are not measured, the ideal experiment to obtain the maximum
information would be one in which both the momentum and spin (or helicity) state of the τ lepton
could be established. This is however not possible since the τ is very short-lived. Thus, information
about the Hb → Hcτ

−ν̄τ parent decay has to be accessed via the visible kinematics of the τ decay
products.

We have considered the three τ decay channels τ− → π−ντ , ρ−ντ and `−ν̄`ντ , with ` = µ, e,
that account for up to 70% of the total τ decay width. Of the τ -decay products, only the charged
particle d = π−, ρ− or `− will be observed and, in the zero τ -width limit, one can write the
differential decay width [38–41]

d3Γd
dωdξdd cos θd

= Bd
dΓSL

dω

{
F d0 (ω, ξd) + F d1 (ω, ξd) cos θd + F d2 (ω, ξd)P2(cos θd)

}
. (22)

As already mentioned, ω is the product of the four-velocities of the Hb and Hc hadrons, which is
related to the four-momentum transfer squared q2 through the relation q2 = M2 +M ′2− 2MM ′ω,
with M(M ′) the mass of the Hb(Hc) hadron. In addition, ξd is the ratio of the d charged particle
and τ energies measured in the τ−ν̄τ center of mass frame (CM), while θd is the angle made by
the three-momenta of the d charged particle and the Hc final hadron, also measured in the CM
frame (for the kinematics, see for instance Fig. 1 of Ref. [42]). Bd is the branching ratio for the
corresponding τ decay mode and P2 stands for the Legendre polynomial of order two. In addition,
dΓSL/dω accounts for the unpolarized Hb → Hcτ

−ν̄τ decay width that can be written as [42]

dΓSL

dω
=
G2
F |Vcb|2M ′3M2

24π3

√
ω2 − 1

(
1− m2

τ

q2

)2
n0(ω), (23)
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with GF the Fermi decay constant and Vcb the corresponding Cabibbo-Kobayashi-Maskawa matrix
element. The n0(ω) function contains all the dynamical information, including possible NP effects.
Finally, the F d0,1,2(ω, ξd) functions read [38]

F d0 (ω, ξd) = Cdn(ω, ξd) + CdPL
(ω, ξd) 〈PCM

L 〉(ω),

F d1 (ω, ξd) = CdAFB
(ω, ξd)AFB(ω) + CdZL

(ω, ξd)ZL(ω) + CdPT
(ω, ξd) 〈PCM

T 〉(ω),

F d2 (ω, ξd) = CdAQ
(ω, ξd)AQ(ω) + CdZQ

(ω, ξd)ZQ(ω) + CdZ⊥(ω, ξd)Z⊥(ω). (24)

with Cda(ω, ξd) kinematical coefficients that are decay-mode dependent and whose expressions can
be found in Appendix G of Ref. [38]. The rest of the observables in Eq. (24) represent spin
(〈PCM

L,T 〉(ω)), angular (AFB,Q(ω)) and spin-angular (ZL,Q,⊥(ω)) asymmetries of the Hb → Hcτ ν̄τ
parent decay [38]. In the absence of CP-odd contributions, these asymmetries, together with
dΓSL/dω, encode the maximal information obtainable if one could directly analyze the polarized
Hb → Hcτ ν̄τ transitions (see Ref. [37] and especially Eq. (3.46) of Ref. [38] and the related dis-
cussion). All the above observables (n0, 〈PCM

L,T 〉, AFB,Q and ZL,Q,⊥) are determined by the matrix
elements of the b → c current between the initial (Hb) and final (Hc) hadrons. After summing
over hadron polarizations the hadron contributions can be expressed in terms of Lorentz scalar
structure functions, which depend on q2 or equivalently on ω, the hadron masses and some Wilson
coefficients if physics beyond the SM is considered. Lorentz, parity and time-reversal transforma-
tions of the hadron currents and states limit their number, as discussed in detail in Ref. [43]. The
discussion of Subsec. 2.2 of Ref. [38] shows how to get the unpolarized dΓSL/dω distribution and
the tau spin, angular and spin-angular asymmetries in terms of general structure functions which
can be obtained from the matrix elements of the relevant hadron operators. The matrix elements
are in turn parametrized in terms of form-factors. The findings of Refs. [38, 43] are quite general
and can be applied not only to the SM but also to any extension of the SM based on the low-energy
effective Hamiltonian comprising the full set of dimension-6 semileptonic b→ cτ ν̄τ operators with
left- and right-handed neutrino fields.

For pseudoscalar meson decay into pseudoscalar or vector mesons, the relations between struc-
ture functions and form-factors can be found in Appendix B of Ref. [44].

In Figs. 3 and 4 we show, for the B̄s → D∗s and B̄s → Ds semileptonic decays respectively, the
results for the dΓ/dq2 differential decay width and the different asymmetries, introduced above, that
can be obtained from the measurement of the visible kinematics of the charged τ -decay product.
Only the differential dΓ/dq2 distribution was shown in the original LQCD work of Ref. [31] for
B̄s → Ds, while for the vector meson decay mode B̄s → D∗s , the tau forward-backward angular
AFB and spin 〈PCM

L 〉 asymmetries were also presented in [32]. The rest of the observables are
shown here for the very first time for the SM in Figs. 3 and 4 and for some extensions of the SM
in the next section. As for Figs. 3 and 4, they have been evaluated both with the SM-LQCD form
factors from Refs. [31, 32] and with the SM-HQET form factors obtained in Subsec. II C. The two
results agree within uncertainties in all cases.

All this gives us confidence in the quality of the fitted HQET IW functions so that we can go a
step further and use the relations in Ref. [33] to obtain in addition the HQSS scalar, pseudoscalar

and tensor form factors of the two B̄s → D
(∗)
s semileptonic transitions. Using the full set of HQSS

form factors we can address, in the next section, the possibility of NP effects in these two decays.

III. NEW PHYSICS EFFECTS IN B̄s → D
(∗)
s τ−ντ SEMILEPTONIC DECAYS

Following Ref. [45], to account for NP effects in a model independent way, we shall take a
phenomenological effective field theory approach in which we consider all dimension-six b → cτ ν̄τ
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FIG. 3. dΓSL/dq
2 differential decay width, divided by Γµ = Γ(B̄s → D∗sµ

−ν̄µ), and the different tau-
asymmetries introduced in Eq. (24) for the semileptonic B̄s → D∗sτ ν̄τ decay. We compare the results
evaluated with the SM-LQCD form factors from Refs. [31, 32] and with the SM-HQET form factors obtained
after the fitting procedure described in Subsec. II C.

semileptonic operators (see Sec. III A below). These effective low energy operators are assumed
to be generated by BSM physics that enters at a much higher energy scale. Their strengths
are governed by Wilson coefficients (WCs) that can be fitted to experimental data. This data
typically includes the RD(∗) = Γ(B → D(∗)τ−ν̄τ )/Γ(B → D(∗)µ−ν̄µ) ratios, the tau longitudinal
polarization asymmetry and the longitudinal D∗ polarization (also measured by Belle [5, 46]), the
τ forward-backward asymmetry and the upper bound for the B̄c → τ ν̄τ decay rate [47]. There have
been a large number of calculations along these lines, for the B̄ → D(∗) [33, 35, 37, 44, 45, 48–63],
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FIG. 4. Same as Fig. 3 for the B̄s → Ds semileptonic decay.

B̄c → J/ψ, ηc [22, 24, 44, 64, 65], Λb → Λc [35, 37, 43, 55, 66–79] and3 Λb → Λc(2595),Λc(2625) [71,
80, 81, 84–87] semileptonic decays.

Here, profiting from the lattice determination of the SM form factors in Refs. [31, 32] and the

HQET study of B̄ → D(∗) form factors in Ref. [33], we have obtained all the B̄s → D
(∗)
s form

factors needed for a similar study of the B̄s → D
(∗)
s τ ν̄τ semileptonic decays. If NP is responsible

for LFUV, one would expect to see its effects in these reactions at a level similar to that found in

3 The isoscalar Λc(2595) and Λc(2625), with JP = 1/2− and 3/2− respectively, are promising candidates for the
lightest charmed baryon heavy-quark-spin doublet of odd parity resonances [80–82], although some reservations
are given in [83]. Experimental distributions for the semileptonic decay of the ground-state bottom baryon Λb into
both excited states would definitely help shed light on this issue [82].
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the analogous B̄ → D(∗) decays. In addition to the R
D

(∗)
s

= Γ(B̄ → D(∗)sτ ν̄τ )/Γ(B̄s → D
(∗)
s `ν̄`)

ratios, we will investigate the role that the different asymmetries presented in Subsec. II D could
play in establishing the presence of LFUV and, if experimentally confirmed, to distinguish between
different extensions of the SM.

A. Hb → Hc`
−ν̄` Effective Hamiltonian

The effective low-energy Hamiltonian that we use follows Ref. [60] and it includes all possi-
ble dimension-six semileptonic b → c operators with both left-handed (L) and right-handed (R)
neutrino fields,

Heff =
4GFVcb√

2

[
(1 + CVLL)OVLL + CVRLOVRL + CSLLOSLL + CSRLOSRL + CTLLOTLL

+ CVLROVLR + CVRROVRR + CSLROSLR + CSRROSRR + CTRROTRR
]

+ h.c.. (25)

Here, the CXAB (X = S, V, T and A,B = L,R) are, complex in general, Wilson coefficients that
parameterize the deviations from the SM. They can be lepton and flavor dependent although they
are generally assumed to be nonzero only for the third quark and lepton generation. The dimension
six operators read

OV(L,R)L = (c̄γµbL,R)(¯̀γµν`L), OS(L,R)L = (c̄ bL,R)(¯̀ν`L), OTLL = (c̄ σµνbL)(¯̀σµνν`L), (26)

OV(L,R)R = (c̄γµbL,R)(¯̀γµν`R), OS(L,R)R = (c̄ bL,R)(¯̀ν`R), OTRR = (c̄ σµνbR)(¯̀σµνν`R), (27)

with ψR,L = (1± γ5)ψ/2. The effective Hamiltonian can be rewritten as [38]

Heff =
4GFVcb√

2

∑

χ=L,R

[
c̄(CVχ γ

µ + hχC
A
χ γ

µγ5)b l̄γµνlχ + c̄ (CSχ + hχC
P
χ γ5)b l̄γµνlχ

+CTχ c̄ σ
µν(1 + hχγ5)b l̄σµννlχ

]
(28)

with hL = −1, hR = +1 and

CVL = (1 + CVLL + CVRL), CAL = (1 + CVLL − CVRL),

CSL = (CSLL + CSRL), CPL = (CSLL − CSRL), CTL = CTLL,

CVR = (CVLR + CVRR), CAR = −(CVLR − CVRR),

CSR = (CSLR + CSRR), CPR = −(CSLR − CSRR), CTR = CTRR,

(29)

We shall compare results obtained in the SM and in three different NP extensions. The latter
correspond to the L Fit 7 of Ref [35], where only left-handed neutrino operators are considered,
the R S7a scenario of Ref. [60] with only right-handed neutrino operators, and the left-handed
neutrino L R2 leptoquark model of Ref. [58], for which the two nonzero WCs (CSLL and CTLL) are
complex4. In this latter case the effective Hamiltonian violates CP.

None of the observables dΓSL/dω, 〈PCM
L,T 〉, AFB,Q and ZL,Q,⊥ entering Eqs. (22) and (24) are

sensitive to CP-symmetry breaking terms [37, 38]. Hence, we will also show results for the L R2

leptoquark model of Ref. [58] for other distributions, related to the tau polarization component
(PTT ) along an axis perpendicular to the hadron-tau plane [37], which could be accessed if one
could further measure the azimuthal angle (φd) of the charged d particle (see Fig. 1 of Ref. [42]).

4 The numerical values that we use for these two WCs can be found at the beginning of Subsec. 4.2.1 of Ref. [37].
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Note that in the differential distribution given in Eq. (22) this angle has been integrated out since
measuring φd would require full reconstruction of the tau three-momentum. The latter can be
circumvented through the analysis of distributions that also involve the decay products of the Hc

hadron. Thus, some CP-odd observables have been presented for B̄ → D∗ and Λb → Λc decays in
Refs. [50, 51, 53, 63] and Refs. [75, 77] respectively.

As already mentioned, we refer the reader to Ref. [38], and references therein, for a full account
of our formalism.

B. Partially integrated sequential Hb → Hcτ
−(π−ντ , ρ−ντ , `−ν̄`ντ )ν̄τ decay distributions

The feasibility of NP studies can be severely limited, however, by the statistical precision in the
measurement of the triple differential decay width of Eq. (22). One can increase statistics, at the
price of losing information in some of the observables, by integrating over one or more of the ω, ξd
and θd variables, although in this case not all observables entering in Eq. (24) can be extracted.
In this way one can obtain the distributions [42]

d2Γd
dωdξd

= 2Bd
dΓSL

dω

{
Cdn(ω, ξd) + CdPL

(ω, ξd) 〈PCM
L 〉(ω)

}
, (30)

from which only dΓSL/dω and the CM τ longitudinal polarization can be extracted, or

d2Γd
dωd cos θd

= Bd
dΓSL

dω

[1

2
+ F̃ d1 (ω) cos θd + F̃ d2 (ω)P2(cos θd)

]
, (31)

with

F̃ d1 (ω) = CdAFB
(ω)AFB(ω) + CdZL

(ω)ZL(ω) + CdPT
(ω) 〈PCM

T 〉(ω), (32)

F̃ d2 (ω) = CdAQ
(ω)AQ(ω) + CdZQ

(ω)ZQ(ω) + CdZ⊥(ω)Z⊥(ω), (33)

which retains information on dΓSL/dq
2 and six out of the seven original asymmetries. The latter

cannot, however, be extracted from knowledge of F̃ d1 and F̃ d2 alone.

One can further integrate over ω to obtain [42]

dΓd
d cos θd

= BdΓSL

[1

2
+ F̂ d1 cos θd + F̂ d2 P2(cos θd)

]
, F̂ d1,2 =

1

ΓSL

∫ ωmax

1

dΓSL

dω
F̃ d1,2(ω) dω. (34)

and

dΓd
dEd

= 2Bd
∫ ωsup(Ed)

ωinf(Ed)
dω

1

γmτ

dΓSL

dω

{
Cdn(ω, ξd) + CdPL

(ω, ξd) 〈PCM
L 〉(ω)

}
, (35)

where γ = (q2 + m2
τ )/(2mτ

√
q2) and, in the latter case, the appropriate ω limits can be found in

Ref. [42].

Although the information on the individual asymmetries is now completely lost, the above two
distributions could still be useful observables in the search for NP beyond the SM.
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FIG. 5. Distribution n0 from Eq. (23) and the tau asymmetries introduced in Eq. (24) for the B̄s → D∗sτ ν̄τ
decay. We compare the results for these observables obtained in the SM and the NP models L Fit 7, R
S7a and L R2 of Refs [35], [60] and [58], respectively. We use the HQET form-factors derived from the
SM-LQCD form factors obtained in Refs. [31, 32].

C. NP results and discussion

1. LFUV ratios, unpolarized differential decay widths and tau angular, spin and spin-angular asymmetries

We start by showing, in Table III, the values for the semileptonic decay widths Γτ = Γ(B̄s →
D

(∗)
s τ ν̄τ ) and Γ` = Γ(B̄s → D

(∗)
s `ν̄`), with ` = e, µ, and the corresponding R

D
(∗)
s

ratios, evaluated

within the SM and the three NP extensions, L Fit 7 of Ref [35], R S7a scenario of Ref. [60] and the
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FIG. 6. Same as Fig. 5 but for the B̄s → Dsτ ν̄τ transition.

L R2 leptoquark model of Ref. [58], considered in this study. For the first two NP models, we see
the ratios clearly deviate from the SM prediction5. Their central values are higher than SM ones,
with the highest one corresponding always to L Fit 7, which leads to ratios around 5σ above the
SM predictions. The results are similar to those obtained in Ref. [42] for the analogous B̄ → D(∗)

decays (see Table 3 of that reference). In the L R2 case, RD∗s is larger than the SM value while
RDs is lower and compatible within errors.

In Figs. 5 and 6 we show now the values for the n0(ω) function introduced in Eq. (23), which

5 The LQCD results in Refs. [31] and [32] are RSM
Ds

= 0.2993(46) and RSM
D∗

s
= 0.2490(60)(35). The former is in

excellent agreement with the prediction quoted in Table III obtained with the HQET parameterization of the
B̄s → Ds form-factors. For RSM

D∗
s
, we get a value around 0.6σ (∼ 1.5%) smaller than quoted in [31].
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SM L Fit 7 [35] R S7a [60] L R2 [58]

Γe(µ) 0.92± 0.06

B̄s → Ds Γτ 0.27± 0.01 0.36± 0.02 0.305+0.061
−0.017 0.259+0.029

−0.017
RDs 0.298+0.009

−0.007 0.391+0.021
−0.017 0.333+0.066

−0.016 0.283+0.031
−0.017

Γe(µ) 2.11+0.17
−0.22

B̄s → D∗s Γτ 0.52+0.04
−0.05 0.62± 0.05 0.59± 0.06 0.57± 0.05

RD∗
s

0.245+0.007
−0.006 0.293+0.011

−0.007 0.280+0.016
−0.015 0.27± 0.01

TABLE III. Semileptonic decay widths Γτ = Γ(B̄s → D
(∗)
s τ ν̄τ ) and Γe(µ) = Γ[B̄s → D

(∗)
s e(µ)ν̄e(µ)] (in units

of 10 × |Vcb|2ps−1) and ratios R
D

(∗)
s

= Γ(B̄s → D
(∗)
s τ ν̄τ )/Γ[B̄s → D

(∗)
s e(µ)ν̄e(µ)] obtained using the SM-

HQSS form factors, the NP model L Fit 7 (R S7a) of Ref [35] ([60]), which only includes left- (right-)handed
neutrino NP operators and the L R2 leptoquark model of Ref. [58]. Errors induced by the uncertainties in
the form-factors and Wilson coefficients are added in quadrature.

contains all the dynamical information of the dΓSL/dω differential decay width, and the set of tau
spin, angular and spin-angular asymmetries introduced in Eq. (24). Most of the observables allow
for a clear distinction between SM and L Fit 7 results, the exception being the CM longitudinal
spin asymmetry 〈PCM

L 〉 for the B̄s → D∗s decay. In fact, these observables also differentiate between
L Fit 7 and the other two NP scenarios. With few exceptions, notably the ZQ and Z⊥ asymmetries
for the B̄s → Ds decays, the R S7a and L R2 NP scenarios tend to agree within errors and they
are closer to the SM, especially in the case of the L R2 model.

As already mentioned, none of the observables shown so far is sensitive to CP breaking terms.
To measure those one needs to analyze the CP violating triple product asymmetries that involve
the decay of the Hc hadron [50, 51, 53, 63, 75, 77], or otherwise to be able to fully establish the tau
three-momentum. In the latter case, one has access to the 〈PCM

TT 〉(ω) observable, which gives the
component of the CM tau-polarization vector along an axis perpendicular to the hadron-tau plane
(see Eqs. (3.14), (3.24) and (3.25) of Ref. [37]). Among the different NP extensions considered
in this work, only the L R2 leptoquark model of Ref. [58], with complex Wilson coefficients, can
generate a nonzero value for the 〈PCM

TT 〉(ω) distribution. In this NP model, the two nonzero WCs
CSLL and CTLL are given, at the bottom-mass scale appropriate for the present calculation, in terms of
just the value of CTLL at the 1 TeV scale, where CSLL(1 TeV) = 4CTLL(1 TeV), and the corresponding
evolution matrix (see Ref. [58]). The best fit of the WCs to the B̄-meson LFUV signatures does
not fix the sign of the imaginary part of CTLL(1 TeV). Contrary to the other observables considered
so far, 〈PCM

TT 〉(ω) is linear in this imaginary part and thus its measurement would break this
degeneracy. The results for 〈PCM

TT 〉(ω), using both possible signs for Im[CTLL(1 TeV)], are shown in
the upper panels of Fig. 7 for the B̄s → D∗s (left) and B̄s → Ds (right) decays respectively. We
see that the absolute value of this distribution is around one order of magnitude larger for the
pseudoscalar than for the vector decay modes. An observation of a nonzero 〈PCM

TT 〉(ω) value will
be a clear indication of the existence of NP beyond the SM and CP violation.

In the bottom panel of Fig. 7 we show the degree of polarization of the tau

〈P 2〉(ω) = −〈P 2
L + P 2

T + P 2
TT 〉(ω) (36)

which is a Lorentz invariant quantity. As shown in Ref. [37], this is exactly −1 for 0− → 0−

transitions, reflecting the fact that for such decays the outgoing taus are fully polarized. Thus we
only present the results for the B̄s → D∗s decay. As seen from the figure this observable, which
is sensitive to CP-odd terms in the effective Hamiltonian, discriminates very efficiently between
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FIG. 7. Upper panels: 〈PCM
TT 〉(ω) for the B̄s → D∗s (left) and B̄s → Ds (right) decays evaluated with the

L R2 leptoquark model of Ref. [58]. Bottom panel: comparison of the 〈P 2〉(ω) distribution obtained in the
SM and the NP extensions L Fit 7 [35], R S7a [60] and L R2 [58].

different NP models and the SM.

2. Distributions of charged tau decay products

In Figs. 8 and 9, we give the products n0(ω)F̃ d1,2(ω) (Eqs. (32) and (33)) that can be obtained
from the measurement of the double differential decay width dΓd/(dω d cos θd) corresponding to the

B̄s → D
(∗)
s τ−(π−ντ , ρ−ντ , µ−ν̄µντ )ν̄τ sequential decays6. In most cases, with the main exception

being the τ → ρντ decay mode for the B̄s → D∗s decay, the predictions from the L Fit 7 model are
clearly distinguishable from the ones obtained in the SM and the other two NP scenarios. The SM
and the latter two NP models give results that agree within errors.

A similar situation is seen in Fig. 10, where we display the normalized [BdΓSL]−1dΓd/d cos θd

angular distribution for the B̄s → D
(∗)
s τ−(π−ντ , ρ−ντ , µ−ν̄µντ )ν̄τ sequential decays. Again, with

the exception of the ρ channel for the B̄s → D∗s decay, we see that the L Fit 7 NP scenario of
Ref. [35] can be distinguished from the SM and the other two NP scenarios. This is most clearly
seen for forward and backward angles of the pion and rho mesons from the hadronic τ -decay modes
in the parent B̄s → Ds semileptonic decay. As for the R S7a scenario of Ref. [60] and L R2 Fit
of Ref. [58], their corresponding distributions are compatible with the SM and among themselves
within errors. In fact, for the L R2 model, the central values are very close to the SM ones. These
behaviors derive from the ones seen for F̃ d12(ω) in Figs. 8 and 9 and they are also seen in the

corresponding F̂ d1,2 coefficients that we give in Tables IV and V for the leptonic and two hadronic
τ -decay channels, respectively. These latter coefficients are obtained after integrating over ω the
F̃ d1,2(ω) functions, as indicated in Eq. (34), and depend on the tau-decay mode. For L Fit 7, we

6 The spin analyzing power makes the pion tau-decay mode a better candidate than the leptonic or rho modes for
the extraction of information on the spin and spin-angular asymmetries (see discussion of Eq. (2.11) of Ref. [42]).
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FIG. 9. Same as Fig. 8 for the B̄s → Dsτ
−(π−ντ , ρ−ντ , µ−ν̄µντ )ν̄τ sequential decays.

generally find that one of the two coefficients is very different from SM and other NP model values.
For the R S7a scenario, they are compatible with SM, within errors, and they are very close to the
SM ones in the L R2 case.

Finally, in Fig 11, we present the results for the dimensionless distribution

F̂ d0 (Ed) =
mτ

2BdΓSL

dΓd
dEd

, (37)

which contains all the relevant information on the dΓd/dEd energy differential decay width. For
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F̂µ1 F̂µ2

SM −0.0607+0.0004
−0.0003 −0.0359± 0.0008

B̄s → Ds L fit 7 −0.031+0.008
−0.011 −0.0776+0.0023

−0.0005
R fit S7a −0.03+0.02

−0.04 −0.028± 0.003

L R2 −0.0579+0.0028
−0.0020 −0.0367+0.0028

−0.0019

SM −0.126± 0.004 −0.0068± 0.0014

B̄s → D∗s L Fit 7 −0.171+0.017
−0.010 −0.0025+0.0015

−0.0016
R S7a −0.099+0.006

−0.016 −0.0057+0.0014
−0.0022

L R2 −0.108+0.006
−0.009 −0.0062± 0.0014

TABLE IV. Predictions for the angular moments F̂µ1, 2 for the B̄s → D
(∗)
s τ(µν̄µντ )ν̄τ sequential decay

evaluated in the SM and the same NP scenarios considered in Table III.

all three tau-decay channels considered. It is normalized as

1

mτ

∫ Emin
d

Emin
d

dEdF̂
d
0 (Ed) =

1

2
, (38)

but its energy dependence is still affected by the CM τ longitudinal polarization 〈PCM
L 〉(ω). How-

ever, as seen in Fig 11, for the B̄s → D∗s parent decay, all NP scenarios considered are compatible
with SM predictions, and among themselves, within uncertainties, while for the B̄s → Ds, the
distribution obtained from the L Fit 7 NP model of Ref. [35] can be distinguished from all other
predictions.
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F̂π1 F̂π2 F̂ ρ1 F̂ ρ2

SM 0.5440+0.0017
−0.0020 0.0791+0.0017

−0.0019 0.3246+0.0010
−0.0012 0.0426+0.0009

−0.0010
B̄s → Ds L fit 7 0.17+0.10

−0.08 0.170+0.002
−0.008 0.09+0.06

−0.05 0.0916+0.0017
−0.0048

R fit S7a 0.45+0.05
−0.09 0.053+0.012

−0.007 0.285+0.015
−0.053 0.026+0.008

−0.004
L R2 0.520+0.010

−0.012 0.080+0.004
−0.005 0.310± 0.006 0.0430+0.0019

−0.0027

SM 0.269± 0.007 0.016± 0.003 0.087+0.006
−0.007 0.0088± 0.0018

B̄s → D∗s L fit 7 0.311+0.010
−0.017 0.006± 0.004 0.081± 0.007 0.0038± 0.0022

R fit S7a 0.182+0.067
−0.013 0.012+0.005

−0.003 0.048+0.035
−0.008 0.0067+0.0031

−0.0018
L R2 0.255+0.009

−0.008 0.014± 0.003 0.091+0.006
−0.008 0.0080+0.0019

−0.0020

TABLE V. Predictions for the angular moments F̂π,ρ1, 2 for the B̄s → D
(∗)
s τ(πντ , ρντ )ν̄τ sequential decays

evaluated in the SM and the same NP scenarios considered in Table III.
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FIG. 11. F̂ d0 distribution (Eq. (37)) for the B̄s → D
(∗)
s τ−(π−ντ , ρ−ντ , µ−ν̄µντ )ν̄τ sequential decays.

IV. SUMMARY

We have used the results of lattice evaluation of the SM form factors for the B̄s → D
(∗)
s semilep-

tonic decays in Refs. [31, 32] and their HQET expansions in Ref. [33] to obtain in addition the scalar,
pseudoscalar and tensor form factors also needed for an analysis of NP effects on both semileptonic
decays. We have compared results evaluated within the SM and three different NP extensions that
have been previously used in the study of other CC b → c transitions. We find effects similar to
those obtained for the SU(3)-analogue B̄ → D(∗) decays. We have evaluated the correspondingRDs

and RD∗s ratios which, as in the B̄ → D(∗) case, should be the easiest LFUV observable to measure.

We have also analyzed the role that different tau asymmetries in the B̄s → D
(∗)
s τ−ν̄τ decay could

play, not only in establishing the existence of NP, but also in distinguishing between different NP
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extensions of the SM. We have studied partially integrated angular and energy distributions of the
charged particle produced in the subsequent τ− → π−ντ , ρ−ντ , e−(µ−)ν̄e(µ)ντ decays. The latter
differential decay widths have a better statistics than the asymmetries themselves and they could
also help in establishing the presence of NP beyond the SM.

If NP is responsible for LFUV it should show up in B̄s → D
(∗)
s semileptonic decays at the same

level as for the B̄ → D(∗) ones. The analysis of this transition, as well of other CC b→ c mediated
decays, could then help in establishing or ruling out LFUV.

ACKNOWLEDGEMENTS

N.P. thanks Physics and Astronomy at the University of Southampton for hospitality during the
making of this work and a Generalitat Valenciana grant CIBEFP/2021/32. This research has been
supported by the Spanish Ministerio de Ciencia e Innovación (MICINN) and the European Regional
Development Fund (ERDF) under contracts PID2020-112777GB-I00 and PID2019-105439GB-C22,
the EU STRONG-2020 project under the program H2020-INFRAIA-2018-1, grant agreement no.
824093 and by Generalitat Valenciana under contract PROMETEO/2020/023.

Appendix A: Mean values and covariance matrices of the aFi coefficients in Eqs. (10)-(13).

As discussed in the main text, for our HQSS fit of the form factors we change the parametriza-
tions in Refs. [31, 32] and adopt a new one to symmetrize the range of variation of the conformal
variable z. Hence, we have expanded the SM form-factors as detailed in Eqs. (10) and (12). Statis-
tical details of the new coefficients are collected here in Tables VI–XVII. Both sets of coefficients
are related by linear transformations, making it straightforwared to obtain new mean values and
covariance matrices from the Gaussian means, errors and correlation matrices given in Refs. [31, 32]
for the coefficients of the conformal expansions employed in those LQCD works. For each entry in
the tables below, we provide three significant digits but neglect order 10−5 or smaller.

a00 a01 a02 a+0 a+1

0.674± 0.009 −0.238± 0.218 −0.13± 1.61 0.764± 0.018 −3.04± 0.43

1.000 0.117 −0.074 0.567 −0.011
1.000 −0.062 0.421 −0.030

1.000 −0.145 0.229
1.000 −0.726

1.000

TABLE VI. Central values and errors (first row) of the a0,+i coefficients of the new f+,0 parametrization
introduced in Eq. (12) and their corresponding correlation matrix. Note that a+2 is fixed through the
condition f0(0) = f+(0).
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TABLE XV. Correlation matrix for the z∗−expansion coefficients of A2. We use Eq. (5) to fix the aA2
3

coefficient for B̄s → D∗s decay.
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TABLE XVII. Correlation matrix for the z∗−expansion coefficients of V .
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