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Most time series observed in practice exhibit first- as well as second-order non-stationarity. In this article we propose a novel
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zero-mean assumption of locally stationary wavelet processes and extending the applicability of the locally stationary wavelet
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the series trend. We demonstrate the utility of the method by analysing the global mean sea temperature time series, highlighting
the impact of the changing climate.
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1. INTRODUCTION

In many contexts, it is common to encounter time series for which the mean and autocovariance of the series vary
over time. Examples of time series that exhibit such non-stationary first- and second-order behaviour span a broad
range of applications, including financial time series (Fryzlewicz, 2005), climate data (Beaulieu and Killick, 2018),
and meteorology (Shen, 2015). Consequently, methodology that can incorporate both first- and second-order
non-stationarity within the same modelling framework is appealing in numerous practical scenarios. Often, how-
ever, analysis is only performed on either first- or second-order properties, rather than both. In this article, we
propose a two-stage wavelet-based framework to estimate the trend – the smooth, long-term behaviour – and the
time-varying second-order structure of a time series.

Due to their many advantageous properties, wavelet methods have enjoyed popularity for many years in time
series analysis. In particular, wavelets’ localised nature can provide sparse location-scale signal decompositions;
for a recent overview of wavelet techniques, see for example Vidakovic (2009) or Nason (2008). Recently, there
has been much focus in the area of locally stationary wavelet (LSW) modelling, introduced in the seminal work
of Nason et al. (2000). The LSW framework provides a modelling approach for time series whose second-order
structure evolves slowly over time. The model has been successfully applied for a number of tasks in time series
analysis, including forecasting (Fryzlewicz et al., 2003), changepoint analysis (Killick et al., 2013), stationarity
testing (Nason, 2013) and clustering/classification (Hargreaves et al., 2018; Wilson et al., 2019). This particular
approach to modelling has shown to provide improved analytic insights in areas such as medicine (Sanderson
et al., 2010; Park et al., 2014), biology (Hargreaves et al., 2019) and environmental science (Chapman et al., 2020).
A comprehensive overview of second-order non-stationary time series modelling can be found in Dahlhaus (2012).
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Under the LSW framework, a time series is assumed to have zero mean, and so typically the time series is
detrended prior to applying the model. This extra step will have implications for data analysis, for example, by
introducing extra uncertainty, and potentially a bias in estimation. Furthermore, the task of estimating the mean
function in the presence of non-stationary second-order structure is highly challenging. In principle, most standard
techniques from non-parametric regression such as kernel or local polynomial estimates may be used. However,
due to the non-stationarity of the error structure, theoretical and practical performance suffer.

There exists a body of work for mean estimation in the presence of time-varying dependent error structures.
For example, von Sachs and MacGibbon (2000) use wavelet thresholding to estimate the first-order structure only.
The threshold used is data-driven and depends on the unknown second-order structure, and hence the method can
be difficult to implement in practice. In the semi-parametric setting, Dahlhaus (2000) and Dahlhaus and Neu-
mann (2001) establish results where the mean function is time-varying and/or estimated. Zhang and Wu (2011)
test whether the mean trend of a non-stationary time series is of certain parametric forms. For literature on trend
estimation by wavelet thresholding, see, for example, Brillinger (1994), Donoho and Johnstone (1995) or Donoho
et al. (1995). For a review of other non-parametric regression methods including kernel smoothing and splines,
see Härdle (1990).

Some techniques do consider mean estimation alongside parameters relating to second-order non-stationarity,
see, for example, Tunyavetchakit (2010) for time-varying autoregressive processes. Beran and Feng (2002) pro-
pose parallel first- and second-order estimation, but the second-order structure follows a parametric model and
is assumed to be difference-stationary. However, for locally stationary series, many authors acknowledge that the
topic ‘needs more investigation’ (Dahlhaus, 2012, p. 56), and thus a principled approach to this challenge remains
open.

In this article, we propose a wavelet-based framework to model time series that exhibit time-varying first-
and second-order structure, inspired by the LSW model of Nason et al. (2000). The trend is considered to be a
deterministic smooth function representing long-term (low frequency) patterns or systematic variations in the time
series. By making modest assumptions on the trend, we develop rigorous theory to achieve consistent estimation of
the key time-varying second-order quantities of interest. Crucially this includes a proof that a key wavelet matrix
has a bounded inverse for all Daubechies wavelets – previously only shown for the boundary cases of Haar and
Shannon wavelets. Further, we propose a wavelet thresholding technique to consistently estimate the trend term
in the presence of second-order non-stationarity. In practice, however, our estimators also work well for trends
that depart from our assumptions. Finally, we provide new methodology for the boundary handling in the discrete
wavelet transform employed during the estimation of first- and second-order quantities. This is of particular interest
when analysing first and second-order non-stationary time series, which are not of dyadic length, as standard
techniques can produce spurious artefacts at the boundaries of the time series.

The rest of the article is organised as follows. In Section 2 we give a brief overview of the LSW framework
and propose the trend locally stationary wavelet process model, discussing the key assumptions. Sections 3 and 4
introduce the methodology for estimating the second-order structure and trend in the model. In Section 5 we assess
the performance of the method via a simulation study. In Section 6, we examine the much-studied global mean
sea temperature data set, providing new insights and highlighting the potential uses of our framework. Concluding
remarks are given in Section 7, while proofs of results and additional simulations are contained in the Supporting
Information.

2. THE TREND LOCALLY STATIONARY WAVELET PROCESS MODEL

2.1. Background to LSW Processes

We begin by giving a brief overview of the original LSW modelling paradigm of Nason et al. (2000), which
has been widely used for the modelling of second-order non-stationary – but first-order stationary – time series.
This will form the basis for our more general trend non-stationary time series model. A locally stationary wavelet
(LSW) process is defined as follows.

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. 43: 895–917 (2022)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12643
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TREND LOCALLY STATIONARY WAVELET PROCESSES 897

Definition 2.1. A triangular stochastic array {Xt,T}T−1
t=0 for T = 2J

≥ 1 is in a class of locally stationary wavelet
(LSW) processes if there exists a mean square representation

Xt,T =
−1∑

j=−∞

∑

k∈Z

wj,k;T𝜓j,k−t𝜉j,k, (2.1)

where j and k ∈ Z are scale and location parameters respectively, {𝜉j,k} is a random orthonormal increment
sequence, {𝜓j,k−t}j,k is a set of discrete non-decimated wavelets, and {wj,k;T} is a set of amplitudes. The quantities
in representation (2.1) possess the following properties:

1. E(𝜉j,k) = 0 for all j, k.
2. Cov(𝜉jk, 𝜉lm) = 𝛿jl𝛿km.
3. There exists, for each j ≤ −1, a Lipschitz continuous function Wj(z) for z ∈ (0, 1), which satisfies the

following properties:

−1∑

j=−∞
|Wj(z)|2 < ∞ uniformly in z ∈ (0, 1);

the Lipschitz constants Lj are uniformly bounded in j and
∑−1

j=−∞2−jLj < ∞. There exists a sequence of
constants Cj such that for each T ,

sup
k

||||
wj,k;T −Wj

( k
T

)||||
≤

Cj

T
,

and where the sequence {Cj} satisfies
∑−1

j=−∞Cj < ∞.

Since E(𝜉j,k) = 0 for all j and k, the process mean E(Xt,T ) = 0 for all t. This means the LSW framework is only
able to model time-varying second-order structure. As with classical time series theory, the second-order structure
of an LSW process is encoded in the spectrum. The evolutionary wavelet spectrum (EWS) of an LSW process
is defined as Sj(z) ∶= |Wj(z)|2 for rescaled time z = k∕T ∈ (0, 1) and measures the contribution to variance at
a particular rescaled time z and scale j. Since the Wj are Lipschitz continuous, the spectrum at level j, Sj, is also
Lipschitz continuous; however Fryzlewicz and Nason (2006) and Van Bellegem and von Sachs (2008) extend the
LSW model to consider piecewise constant spectra and those of bounded total variation respectively.

The EWS is estimated via the empirical wavelet coefficients of the time series, given by dj,k;T ∶= ⟨Xt,T , 𝜓j,k−t⟩ =∑
t Xt,T𝜓j,k−t. The raw wavelet periodogram, defined by Ij

k,T ∶= |dj,k;T |2 is a biased, inconsistent estimator of the
EWS (Nason et al., 2000, proposition 4):

E

(
Ij
k,T

)
=
∑

l

AjlSl(k∕T) + (T−1), (2.2)

Var(Ij
k,T) = 2

(
∑

l

AjlSl(k∕T)

)2

+ (2−jT−1), (2.3)

where the operator A = (Ajl)j,l<0 is given by Ajl =
∑

𝜏

Ψj(𝜏)Ψl(𝜏), and the autocorrelation wavelets Ψj(⋅) are
defined by Ψj(𝜏) ∶=

∑
k∈Z

𝜓j,k𝜓j,k−𝜏 , j < 0, 𝜏 ∈ Z.
The vector of periodograms I(z) ∶= {Il

⌊zT⌋,T}l=−1,… ,−J can be bias-corrected using the J-dimensional matrix

AJ ∶= (Ajl)j,l=−1,… ,−J which is invertible. The vector of corrected periodograms L(z) ∶= {Lj
⌊zT⌋,T}j=−1,… ,−J with

J. Time Ser. Anal. 43: 895–917 (2022) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12643 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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898 MCGONIGLE, KILLICK, AND NUNES

L(z) = A−1
J I(z) satisfies

E(L(z)) = E
(
A−1

J I(z)
)
= S(z) + (T−1) ∀ z ∈ (0, 1), (2.4)

where S(z) ∶= {Sj(z)}j=−1,… ,−J . The raw wavelet periodogram is first smoothed and then corrected by A−1
J to pro-

duce an asymptotically unbiased, consistent estimator. Smoothing can be carried out using a number of techniques,
for example, via a running mean as in Nason (2013) or using wavelet thresholding as in Nason et al. (2000).

The local autocovariance (LACV) function for an LSW process provides information about the covariance at a
rescaled location z = k∕T ∈ (0, 1). The LACV, c(z, 𝜏), of an LSW process with EWS {Sj(z)} is defined as c(z, 𝜏) =
∑−1

j=−∞Sj(z)Ψj(𝜏), 𝜏 ∈ Z, z ∈ (0, 1). The LACV can be thought of as a decomposition of the autocovariance of a
process over scale and rescaled time. The process autocovariance arises as the asymptotic limit of the LACV. In
practice, the LACV is estimated by plugging in the smoothed, corrected estimate for the EWS into the equation
for the LACV, which results in a consistent estimator.

2.2. Modelling Locally Stationary Time Series with Trend

We introduce our proposed model, which relaxes the zero mean assumption inherited from Assumption 1 in Defi-
nition 2.1 above. We will show that it is possible to incorporate a non-stationary polynomial trend term within the
context of a second-order non-stationary time series. Furthermore, we will show that this polynomial assumption
can be relaxed, facilitating modelling of time series with more complex first-order structure within our paradigm.
This allows for self-contained modelling of both first- and second-order non-stationarity of a time series. Hence,
it is not necessary to remove the trend before estimating second-order structure, and vice versa, we can obtain
an estimate of first-order structure in the presence of the non-stationary second-order behaviour. To this end, we
define the polynomial trend locally stationary wavelet process as follows.

Definition 2.2. A polynomial trend LSW process {Xt,T}, t = 0, … ,T − 1, and T = 2J is a doubly-indexed
stochastic process with the following representation in the mean square sense:

Xt,T = 𝜇
( t

T

)
+

−1∑

j=−∞

∑

k

wj,k;T𝜓j,k−t𝜉j,k, (2.5)

where the quantities in representation (2.5) possess the same properties as in Definition 2.1, and in addition the
function 𝜇 is a polynomial of degree p, that is,

𝜇

( t
T

)
= Pp

( t
T

)
=

p∑

i=0

ai
ti

Ti
, ai ∈ R.

Our model imposes the same assumptions on the LSW component as in Nason et al. (2000), allowing for locally
stationary second-order structure, while also permitting non-stationary first-order behaviour by incorporating a
polynomial mean function. Using the model defined in Equation (2.5), we build on the rigorous theory of Nason
et al. (2000) to estimate the non-stationary first- and second-order structure of the time series. Note that the assump-
tion that T = 2J is a theoretical one; in practice, using the boundary handling method described in Section 4.4, we
can analyse time series of any length.

3. SPECTRAL ESTIMATION THEORY

Given the process model definition in Equation (2.5), we now turn to the question of estimating the appropriate
quantities of the model. We discuss estimation of the evolutionary wavelet spectrum Sj(z) = |Wj(z)|2 and local
autocovariance function. In Nason et al. (2000), rigorous estimation theory is provided for the case where the

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. 43: 895–917 (2022)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12643
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TREND LOCALLY STATIONARY WAVELET PROCESSES 899

time series does not display a trend. We extend this work to allow for the inclusion of a trend by examining three
separate scenarios: first, we examine the case where the trend is a polynomial of degree less than the order of
the discrete wavelet used in the LSW process (2.5); second, the case where the trend is a higher degree than the
discrete wavelet; and lastly, the case of a general Hölder continuous trend.

Using discrete wavelets to model the second-order non-stationarity allows the incorporation of smooth trends
due to the ability of the wavelet to ‘cancel out’ this trend. This means we circumvent the problem of detrending
the series first, which is challenging due to the second-order non-stationarity. In all three scenarios, we provide
appropriate theoretical results to enable consistent estimation of both the EWS and local autocovariance of the
time series. Given that trends are usually assumed to be slowly-varying, smooth functions, such as low-order
polynomials (see, e.g. Priestley, 1983; Craigmile et al., 2005; Kallache et al., 2005), our model in (2.5) is applicable
to a wide range of data scenarios. In practice, this can serve as a good approximation even when we depart from
the given assumptions.

3.1. Spectral Estimation with Low-Order Polynomial Trends

First, we examine the case of a low-order polynomial trend. We show that we can use the same estimation procedure
as in Nason et al. (2000) to obtain an asymptotically unbiased, consistent estimator of the EWS. This can then be
used to obtain a consistent estimator of the LACV.

Recall that a function 𝜓 ∈ L2(R) is said to have m vanishing moments if it satisfies ⟨xl
, 𝜓(x)⟩ = ∫ xl

𝜓(x)dx = 0,
for l = 0, 1, … ,m− 1. Denote by v(𝜓) the number of vanishing moments of the discrete wavelet 𝜓 . If v(𝜓) = m,
then all wavelet coefficients of any polynomial of degree m− 1 or less will be zero. The commonly used extremal
phase (EP) and least asymmetric (LA) Daubechies wavelet families have k vanishing moments for a filter of length
2k. For example, the Haar wavelet has one vanishing moment and can only annihilate constant behaviour, while
the Daubechies EP wavelet with 10 vanishing moments can annihilate polynomial behaviour up to degree 9.

We henceforth refer to the discrete wavelet 𝜓 defined in the LSW process representation in Equation (2.5)
as the generating wavelet. Since second-order estimation is performed using the generating wavelet coefficients,
estimation will be unaffected by the trend, provided that p < v(𝜓). Hence, we can obtain an unbiased estimate of
the spectrum in the usual way.

Lemma 3.1. Suppose that p < v(𝜓). Then, the expectation and variance of the non-boundary raw wavelet
periodogram is given by Equations (2.2) and (2.3) respectively.

We can correct the raw wavelet periodogram estimator in the usual way with A−1
J as in Equation (2.4) to obtain

an asymptotically unbiased estimator, just as in the original LSW model. Hence, as long as the trend of the time
series can be represented by a low-order polynomial and we use a high enough order discrete wavelet, we can still
apply the standard EWS estimation procedure without incurring any additional bias.

Remark 1. In practice, only the non-boundary wavelet coefficients will be free from trend, while the boundary
wavelet coefficients will still contain the trend. This is due to the way in which the non-decimated discrete wavelet
transform (DWT) is computed at the boundary values of the time series, see, for example, section 4.11 of Percival
and Walden (2006). In Section 4.4, we address this issue by modifying standard boundary handling methods for
estimation at the boundaries of the time series.

As in the original LSW model, resulting spectral estimates are inconsistent and must be smoothed. To achieve
consistency, we can simply follow the smoothing strategy taken in Nason et al. (2000): for each fixed scale j,
the periodogram Ij

k,T (which is scaled 𝜒2-distributed) is smoothed as a function of z = k∕T using, for example,
DWT shrinkage or translation invariant (TI) denoising of Coifman and Donoho (1995). The following two results,
which hold for Gaussian LSW processes (and in turn polynomial trend Gaussian LSW processes), describe how
consistency is achieved through DWT shrinkage.

Work in von Sachs et al. (1997) explains how to smooth using an orthonormal second stage wavelet basis of
L2([0, 1]), denoted {�̃� rs}. Smoothing is achieved using nonlinear thresholding of the empirical wavelet coefficients,

J. Time Ser. Anal. 43: 895–917 (2022) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12643 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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900 MCGONIGLE, KILLICK, AND NUNES

ûrs, of Ij(z) and then inverting using A−1 to give the estimate ̂Sj(z). This leads to an extension of theorem 4 and
proposition 5 of Nason et al. (2000) – which are only applicable for Haar and Shannon wavelet zero-mean LSW
processes – to trend LSW processes generated by any discrete wavelet in the Daubechies compactly supported
family.

Proposition 3.2. Let �̃� be a discrete wavelet of bounded variation, with 2r = o(T) for wavelet coefficients ûrs.
Suppose that Sj(k∕T) ≤ D25j∕6 for some constant D. For a polynomial trend Gaussian LSW process generated by
any Daubechies compactly supported discrete wavelet, with threshold given by 𝜆2(j, r, s,T) = Var(ûrs)log2(T), for
each fixed j,

E

[

∫

1

0

(
̂Sj(z) − Sj(z)

)2
dz

]
= 

(
2jlog2(T)T−2∕3

)
. (3.1)

Lastly, we can consistently estimate the LACV by using the EWS estimate.

Proposition 3.3. Suppose the assumptions of Proposition 3.2 hold, and define ĉ(z, 𝜏) by replacing Sj(z) with ̂Sj(z)
in the equation for the LACV, that is,

ĉ(z, 𝜏) =
−1∑

j=−J

̂Sj(z)Ψj(𝜏). (3.2)

Then, for each fixed 𝜏 ∈ Z, ĉ(z, 𝜏) satisfies

E

[

∫

1

0
(ĉ(z, 𝜏) − c(z, 𝜏))2dz

]
= 

(
log2(T)T−2∕3

)
.

Propositions 3.2 and 3.3 show that in the case of a low-order polynomial trend, we can still consistently esti-
mate the evolutionary wavelet spectrum and local autocovariance on the non-boundary values of the wavelet
periodogram. The assumption on the decay rate of the EWS, Sj ≤ D25j∕6, is necessary for the proof of Proposi-
tion 3.2, and hence Proposition 3.3 as well. This assumption is, for example, satisfied for the white noise process,
where Sj = 2j. The assumption is required to control the mean squared error in estimating the EWS using the
J available scales, as we do not have access to all (infinite) scales in practice; it is chosen to balance the mean
squared error rate (up to the log factor) of (log2(T)T−2∕3) that arises from the wavelet thresholding procedure.
This is a slightly weaker assumption than that of Fryzlewicz and Nason (2006) and Sanderson et al. (2010), who
assume that Sj ≤ D2j. Note that no explicit assumption on Sj is made in the original work of Nason et al. (2000).
However, the modification to the original LSW model made in Fryzlewicz (2003), the accepted definition in the
LSW literature, would necessitate the same assumption that we have here.

The extension of consistency results to all Daubechies compactly supported discrete wavelets is in itself an
important contribution to the area of LSW analysis, and is due to a new result on properties of the autocorrelation
wavelet inner product matrix A, given in Proposition 3.2 in the Supporting Information. This proof can be used
to extend much of the current theory of LSW processes – which previously was only valid for Haar and Shannon
wavelets – to all compactly supported Daubechies wavelets. This includes, for example, the work on bivariate LSW
processes of Sanderson et al. (2010), and the extension of the LSW model to spectra of bounded total variation of
Van Bellegem and von Sachs (2008).

3.2. Spectral Estimation with High-Order Polynomial Trends

Next, we consider the case of higher-order polynomial trends with respect to the generating wavelet, which allows
for the modelling of less smooth trends. The key idea is to use a smoother discrete wavelet to analyse the series,
which ensures that the trend is removed from the wavelet coefficients. By calculating the bias that this causes, we
can correct the raw wavelet periodogram analogously to Equation (2.4) to obtain an unbiased estimate.

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. 43: 895–917 (2022)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12643
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TREND LOCALLY STATIONARY WAVELET PROCESSES 901

If the polynomial trend of the time series is a higher degree than the discrete wavelet generating the LSW
process, then the standard non-decimated discrete wavelet transform will not zero out the trend, causing bias in
our estimation. For example, if the Haar wavelet is the generating wavelet, and the time series exhibits a linear
trend, then additional bias will be incurred in the computation of the raw wavelet periodogram, because the Haar
wavelet is only capable of annihilating constants. If we instead use the Daubechies EP wavelet with two vanishing
moments, the linear trend would be removed by the discrete wavelet. Then, the bias of the raw wavelet periodogram
will be quantified in terms of the mismatch between the generating wavelet and analysing wavelet. The next result
shows we can correct for this bias, and extends the work of Gott and Eckley (2013), which examined the effect of
wavelet misspecification on EWS estimation.

Lemma 3.4. Suppose that the polynomial LSW process is generated by discrete wavelet 𝜓0, and let 𝜓1 be a
Daubechies compactly supported discrete wavelet with p < v(𝜓1). Define the non-decimated discrete wavelet
coefficients to be dj,k =

∑
t Xt𝜓

1
j,k−t. Let the matrix C1,0 be the inner product matrix of autocorrelation wavelets

whose j, lth entry is given by

C1,0
jl =

∑

𝜏

Ψ1
j (𝜏)Ψ

0
l (𝜏),

where the superscript denotes the fact that the underlying discrete wavelet is different. Then,

E(d2
j,k) =

∑

l

C1,0
jl Sl(k∕T) + (T−1),

Var(d2
j,k) = 2

(
∑

l

C1,0
jl Sl(k∕T)

)2

+ (2−jT−1).

Provided that C1,0
J is invertible, Lemma 3.4 implies that, for the vector of periodograms I(z) ∶=

{
Il
[zT],T

}
l=−1,… ,−J

,

and the vector of corrected periodograms L(z) ∶=
{

Lj
[zT],T

}
j=−1,… ,−J

with L(z) = (C1,0
J )

−1I(z),

E(L(z)) = E
(
(C1,0

J )
−1I(z)

)
= S(z) + (T−1) ∀ z ∈ (0, 1), (3.3)

where S(z) = {Sj(z)}j=−1,… ,−J . Hence, we do not have to restrict to assuming the trend has a lower order than
the discrete wavelet that generates the LSW process. In this scenario, we can perform the following altered esti-
mation of the EWS. First, we apply the non-decimated discrete wavelet transform using a higher order wavelet,
removing the trend. Next, we form the periodogram and perform smoothing. Finally, we correct the estimate by
premultiplying the appropriate inverse matrix (C1,0)−1.

Correcting in this fashion can be beneficial even when the time series contains no trend. Smoother wavelets
have a shorter support in the Fourier domain and therefore experience less spectral leakage, in which power can
leak into nearby scales. For example, a Haar wavelet estimate will experience more leakage than using a smoother
discrete wavelet like the EP10 wavelet. Therefore, the off-diagonal entries of the Haar A matrix exhibit slower
decay than that of the EP10 A matrix. Hence, the off-diagonal entries of the corresponding C matrix will be smaller
than those of the less smooth discrete wavelet.

If the LSW process is generated by a Haar wavelet and we use a Haar wavelet to analyse the series, then the
spectral estimate may be prone to leakage and the accuracy of the estimate will suffer as a result. However, if
the process is generated by an EP10 wavelet and we use the EP10 wavelet to analyse, the estimate will exhibit
less leakage. Therefore, it can be beneficial, in the case where the generating wavelet is not very smooth, to use a
smoother wavelet to analyse, and then correct the estimate with the corresponding C-inverse matrix, rather than
using the generating wavelet to analyse and the usual A-inverse matrix. Using the smoother wavelet to analyse
helps to reduce leakage, while still achieving an unbiased estimate by correcting in the appropriate way. This leads

J. Time Ser. Anal. 43: 895–917 (2022) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12643 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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902 MCGONIGLE, KILLICK, AND NUNES

to a more accurate spectral estimate: in the Supporting Information, we provide numerical experiments to verify
this observation.

Intuitively, there is strong evidence to suggest that the matrix C1,0 is invertible. By Proposition 3.2 in the Sup-
porting Information, we show that the inverse of the operator A is bounded for all Daubechies compactly supported
discrete wavelets. The A-matrix is the Gram matrix of the set {Ψj(𝜏)}j≤−1 of linearly independent autocorrelation
wavelets. In our case, the matrix C1,0 is the cross-Gram matrix of two sets of autocorrelation wavelets {Ψ0

j }j≤−1

and {Ψ1
j }j≤−1. Unfortunately, the properties of Gram matrices do not necessarily carry over to cross-Gram matri-

ces. This means we cannot directly adapt the proof of the invertibility of A to the invertibility of C. Intuitively,
forming the cross-Gram matrix uses a mix of two discrete wavelet families, and we might expect that the proper-
ties of the cross-Gram matrix are a ‘mixture’ or ‘average’ of the properties of the two Gram matrices associated
to the two wavelet families.

For example, when J = 10, the numerically calculated condition number of the Haar A matrix is 860.47, while
it is equal to 393.12 for the Daubechies extremal phase discrete wavelet with 10 vanishing moments. For the two
C matrices associated with these two families, the condition numbers are 596.97 and 610.97. These numbers are
close to the average of the two A matrix condition numbers. This suggests that the C matrices should also be
invertible, with bounded inverse.

3.3. Spectral Estimation with General Smooth Trends

A polynomial trend may not be an appropriate assumption for a given time series. We investigate how we can
modify the spectral estimation procedure when we place a Hölder continuous smoothness assumption on the trend.
Often, wavelet methods for curve estimation (distinct from trend estimation where more general mean functions
are considered) assume that the mean function lies in some Besov space (see e.g. von Sachs and MacGibbon, 2000;
Neumann and von Sachs, 1995), of which Hölder continuous functions are a special case.

Intuitively, the discrete wavelet coefficients are calculated using difference operations, and so if the trend func-
tion is sufficiently smooth, we expect that these discrete wavelet coefficients will be reasonably small. When using
these coefficients to estimate the EWS – in some of the finer scales at least – where we use less of the data to calcu-
late the wavelet coefficients, and where local changes are small, we could expect the estimate to remain reasonably
accurate.

Formally, consider the class of Hölder continuous functions with exponent 𝛽, where 0 < 𝛽 ≤ 1, in place of the
polynomial trend assumption in Definition 2.2. For example, 𝜇(z) = z𝛽 is Hölder continuous with exponent 𝛽, and
an exponent of 𝛽 = 1 corresponds to Lipschitz continuity. Again, this seems a reasonable assumption to make,
given that trend functions are generally assumed to be smooth and slowly evolving – for example, sinusoids are
Lipschitz continuous. As shown in Lemma 3.5, we accumulate bias in the raw wavelet periodogram proportional
to the level of the discrete wavelet transform and the smoothness of the trend, which is governed by 𝛽.

Lemma 3.5. For any Hölder continuous trend LSW process with exponent 𝛽, the expectation of the raw wavelet
periodogram is given by

E

(
Ij
k,T

)
=
∑

l

AjlSl(k∕T) + (2−j(2𝛽+1)T−2𝛽) + (T−1).

Thus we introduce extra bias due to the trend, which we must account for in our estimation procedure, that
is, when smoothing and correcting. At coarser scales, the bias caused by the trend accumulates in the squared
wavelet coefficients. Analogous behaviour occurs when performing Fourier-based spectral analysis. This is char-
acterised by the phenomenon of a peak in the Fourier periodogram near the zero frequency, as discussed in Dalla
et al. (2020). To avoid the accumulation of bias, one could apply differencing to the time series first to remove
the trend. However, differencing can vastly alter the spectral structure of the time series. A standard LSW anal-
ysis performed on the differenced series may not be appropriate, and the differencing operation should be taken

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. 43: 895–917 (2022)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12643
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TREND LOCALLY STATIONARY WAVELET PROCESSES 903

into account in the estimation procedure. A thorough investigation of a difference-based approach can be found
in McGonigle et al. (2021).

To smooth the wavelet periodogram, we propose to use a simple running mean, as in Nason (2013) and
Sanderson et al. (2010), with bin width size 2n + 1. The smoothed wavelet periodogram is thus defined as

̃Ij
k =

1
2n + 1

n∑

m=−n

Ij
k+m. (3.4)

For simplicity, we use a running mean, but one could just as easily use wavelet thresholding, and achieve similarly
consistent estimation. We must now correct the smoothed wavelet periodogram using the inverse matrix A−1. When
we do this, we alter the standard estimation procedure by only correcting across a certain number of scales – in
relation to T – to control for the bias caused by the trend and the smoothing step. One can view this as akin to a
tapered estimator, which we utilise for both EWS and LACV estimation. Based on the above observations, we can
now state our results related to the consistency of the smoothed estimators of the EWS and local autocovariance
in the presence of a Hölder continuous trend.

Theorem 3.6. Suppose that Sj(k∕T) ≤ D2j for some constant D, and 𝜇 is Hölder continuous with exponent 𝛽, and

let J0 = 𝛼 log2(T) for 𝛼 ∈ (0, 1). Then, uniformly in k, the EWS estimator ̂Sj(k∕T), defined by

̂Sj(k∕T) =
−1∑

l=−J0

̃Il
kA−1

lj , (3.5)

is mean square consistent for each fixed scale j, provided that n−1T𝛼 → 0, nT−1 → 0 and T4𝛽(𝛼−1)+𝛼 → 0 as T → ∞
and n → ∞. The mean squared error of ̂Sj(k∕T) is given by

E
(
̂Sj(k∕T) − Sj(k∕T)

)2 = (2jn−1T𝛼) + (2jnT−1) + (2jT4𝛽(𝛼−1)+𝛼).

Theorem 3.7. Suppose the assumptions of Theorem 3.6 hold. Let ̂Sj(k∕T) be the estimator of the EWS defined
in Equation (3.5). Then, for each fixed 𝜏 ∈ Z, the estimator of the local autocovariance c(k∕T , 𝜏), defined by

ĉ(k∕T , 𝜏) =
−1∑

j=−J0

̂Sj(k∕T)Ψj(𝜏) (3.6)

is mean square consistent, provided that n−1T𝛼 → 0, nT−1 → 0 and T4𝛽(𝛼−1)+𝛼 → 0 as T → ∞ and n → ∞. The
mean squared error of ĉ(k∕T , 𝜏) is given by

E(ĉ(k∕T , 𝜏) − c(k∕T , 𝜏))2 = (n−1T𝛼) + (nT−1) + (T4𝛽(𝛼−1)+𝛼).

Note that these results hold for all Daubechies compactly supported discrete wavelets, just as in Propositions
3.2 and 3.3. In the same manner as Propositions 3.2 and 3.3, we require an assumption on the decay rate of the
EWS, which is necessary to ensure consistent estimation. For this weaker assumption of general smooth trends,
the running mean smoother requires the slightly stronger assumption that Sj ≤ D2j, as in Sanderson et al. (2010).
The third error term, corresponding to the error caused by the trend, will be asymptotically dominated by the first
term, irrespective of the bin width n, for 𝛽 = 1 and 𝛼 < 3∕4. Therefore, the trend term can be seen to have minimal
impact on the spectral estimation, provided it is smooth enough. In the presence of a smooth trend, we can still
recover a consistent estimator of the EWS and LACV. We simply alter the standard estimation procedure by only
using the finest J0 scales. Further, one could just as easily use a different analysing wavelet to the generating
wavelet as described in Section 3.2, and use the appropriate (C1,0)−1 matrix for bias correction.

J. Time Ser. Anal. 43: 895–917 (2022) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12643 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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904 MCGONIGLE, KILLICK, AND NUNES

Choice of contributing scales and bin width. When using the tapered estimator, we must choose a value of 𝛼,
the proportion of scales over which we correct. Higher values of 𝛼 ensure a decomposition over a larger number
of scales. In practice, not all scales will be informative, and the number of informative scales will depend on both
the data and choice of discrete wavelet, as noted in Sanderson et al. (2010). In our experiments, we have observed
no significant bias incurred by using most scales, and propose using the proportion 𝛼 = 2∕3. This is motivated by
results in the next section on trend estimation and is in alignment with Sanderson et al. (2010), who also utilise
running mean smoothing for LSW spectral estimation. We recommend the choice 𝛼 = 2∕3 as a balance between
boundary effects, bias in coarse scales occurring due to trend, and capturing the coarse-scale behaviour of the time
series. If the practitioner is interested in very coarse-scale behaviour, then provided the trend is not too pronounced,
a higher value of 𝛼 can be used along with a wavelet with shorter filter length. Different values of 𝛼 can also be
compared visually to assess the fit.

The choice of the bin width parameter n in Equation (3.4) will also affect the quality of the estimate. We can
choose to use level-dependent smoothing of the periodogram, and so a larger bin width is used in coarser scales.
Choosing a bin width in this way will still ensure consistent estimation, and further is natural as coarser scales will
experience stronger autocorrelation.

The results in this section establish that we can still consistently estimate the non-stationary second-order struc-
ture in the presence of a trend, provided that the trend function is smooth. In practice, using a smoother discrete
wavelet to analyse the series is recommended, as it is able to better remove the trend of the series, while also help-
ing to reduce leakage. Smoothing of the wavelet periodogram can be carried out using wavelet thresholding or a
running mean smoother. We advocate the latter due to its simplicity and because only one parameter needs to be
specified.

Finally, we note that many existing methods that utilise the LSW framework immediately extend to our new
model. For example, the extension of the LSW model to spectra of bounded total variation in Van Bellegem and
von Sachs (2008) is valid within our model. Furthermore, the test of second-order stationarity of Nason (2013)
will still be applicable, provided the discrete wavelet used is smooth enough to remove the trend of the time series.
Similarly, locally stationary wavelet models for multi-variate time series, such as Sanderson et al. (2010) and Park
et al. (2014), will be valid for any trend scenario described above.

4. TREND ESTIMATION

Having described the necessary methodology for estimating the non-stationary second-order structure of the time
series, we now address the question of estimating the trend of the series. If we assume that the trend function
is smooth, a natural method for estimating it is to use wavelets, given that polynomial functions can be exactly
represented using wavelet scaling functions (Vidakovic, 2009). Using a discrete wavelet-based approach enables
us to obtain a simple intuitive estimator from which we can derive appropriate confidence intervals.

4.1. Trend Estimation Theory

We follow the same strategy as Craigmile et al. (2004) and Craigmile et al. (2005), who apply wavelet thresholding
in the long memory time series setting. Our problem can be posed as the following. The observed data vector
X = (X0, … ,XT−1)T is given by

X = 𝝁 + 𝜺,

where 𝝁 is the trend component and 𝜺 is the LSW process term. If we use a discrete wavelet that has a high enough
order with respect to the trend, the discrete wavelet transform of the time series will decompose it into a trend
and noise component. This is because the non-boundary wavelet coefficients of a polynomial are zero due to the
vanishing moments property, and so since the increments in an LSW process are zero mean, these coefficients
have expectation zero. The boundary wavelet coefficients and the scaling coefficients will contain a contribution
due to the trend alone.

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. 43: 895–917 (2022)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12643
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TREND LOCALLY STATIONARY WAVELET PROCESSES 905

Motivated by this observation, we can estimate the trend using a type of wavelet thresholding estimator. We
perform the discrete wavelet transform on the time series, choosing the coarsest scale j0 to which we analyse the
series. Then, we set the non-boundary wavelet coefficients to zero. Then, we perform the inverse discrete wavelet
transform to obtain the estimator of the trend. This estimator captures the long-term behaviour of the time series
(trend), but will also contain short-scale variability at the boundaries due to the inclusion of boundary wavelet
coefficients.

Formally, let us write the discrete wavelet transform of the time series in matrix form, from which we can derive
the matrix form of the estimator. Given the time series is of length T = 2J , the total number of (decimated) wavelet
coefficients at each level j is given by Nj = T2j. Then, the Bj = ⌈(2m− 2)(1− 2j)⌉ boundary coefficients are given
by the outer coefficients, where m is the number of vanishing moments of the wavelet. If p is the order of the
polynomial trend, then we can zero out this trend so long as p < m. The number of non-boundary coefficients is
denoted by Mj = Nj −Bj. Denote by diag(x) the diagonal matrix with x along the main diagonal, and let 0n and 1n

denote a vector of n zeros or ones respectively. Let A = diag(1B1
, 0M1

, 1B2
, 0M2

, … , 1BJ
, 0MJ

, 1NJ
), and let IT denote

the T × T identity matrix. Using Daubechies wavelets ensures the DWT is orthogonal, and so we can partition the
data vector x into a trend component and noise component, as

X = WTWX = WTAWX +WT(IT − A)WX ∶= �̂� + �̂�.

Analogously to Proposition 1 of Craigmile et al. (2004), the wavelet-based trend estimator is unbiased, and further
we can show that the estimator is mean square consistent, in the case of both polynomial and Hölder continuous
trend functions.

Proposition 4.1. For a polynomial trend of degree p, and using a discrete wavelet with m > p vanishing moments,
E(�̂�) = 𝝁.

Proposition 4.2. Let j0 = 𝛼 log2 T , for some 𝛼 ∈ (0, 1), be the coarsest scale of the decomposition using discrete
wavelet 𝜓 . Suppose that p < v(𝜓), and assume that Sj(z) ≤ D2j for all z ∈ (0, 1) and some constant D. Ignoring
boundary effects, the trend estimator is consistent in the mean square sense, that is:

1
T

T−1∑

t=0

E
(
(𝜇(t∕T) − �̂�(t∕T))2

)
= (T−𝛼).

Proposition 4.3. Suppose 𝜇 is Hölder continuous with exponent 𝛽. Then, under the same conditions on 𝛼 and Sj

as Proposition 4.2, the following holds:

1
T

T−1∑

t=0

E
(
(𝜇(t∕T) − �̂�(t∕T))2

)
= (T−𝛼) + (T2𝛽(𝛼−1)).

Choice of the parameter 𝛼 can be viewed as akin to selecting the bandwidth in a kernel-based estimation pro-
cedure. Larger values of 𝛼 loosely correspond to a larger bandwidth, and ensure more wavelet coefficients are
thresholded, giving a smoother fit. For a Lipschitz continuous trend, balancing the rates in Proposition 4.3 leads
to taking 𝛼 = 2∕3. We use this for both trend and second-order estimation in practice for simplicity. Under the
conditions of Proposition 4.2 and subject to some mild regularity conditions, the trend estimate is multi-variate
Gaussian, with mean 𝝁 and covariance RCov(𝜺)RT ∶= RΣRT, where R = WTAW, following from asymptotic
normality of the wavelet coefficients (Stevens, 2013, Theorem3.1.1). Full discussion of the appropriate assump-
tions can be found in Stevens (2013). LSW processes with random innovations from the exponential, gamma,
inverse-Gaussian, and F-distribution families all satisfy these assumptions.

4.2. Pointwise Confidence Intervals

Using the results of the previous section, we can derive pointwise confidence intervals (CIs) for a polynomial
trend. Let qa denote the ath quantile of the standard normal distribution, then a pointwise 100(1 − a)% CI for the

J. Time Ser. Anal. 43: 895–917 (2022) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12643 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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906 MCGONIGLE, KILLICK, AND NUNES

trend estimate is given by

�̂�

( t
T

)
±q1−a∕2

√
Var

(
�̂�

( t
T

))
, t = 0, … ,T − 1.

In practice we do not know the true variance. Instead, we have access to a consistent estimate of it on the
non-boundary values of the trend estimate, because we have a consistent estimate of the local autocovariance of the
time series. Thus, we can construct confidence intervals for the trend using this estimate in a rather straightforward
manner. This is in contrast to nonlinear wavelet thresholding techniques, for which construction of confidence
intervals is far from straightforward. In practice, we may need to regularise the covariance matrix to ensure positive
definiteness: this can be achieved straightforwardly using the method of Rothman (2012), for example.

4.3. Simultaneous Confidence Intervals

We can also compute simultaneous 100(1 − a)% confidence intervals for the trend estimate. Denote the vector of
standard errors of the trend estimate by v, that is,

v =
(√

Var(�̂�0),
√

Var(�̂�1), … ,

√
Var(�̂�T−1)

)T

.

Recall that the critical value is calculated as the value 𝛿 that satisfies

1 − a = Pr(�̂� − 𝛿v ≤ 𝝁 ≤ �̂� + 𝛿v) = 1 − 2 Pr(𝝁 − �̂� > 𝛿v),

using the symmetry and continuity properties of the multi-variate normal distribution. Therefore, 𝛿 is calculated
to satisfy

Pr(𝝁 − �̂� > 𝛿v) = a∕2.

Assuming that the true spectral structure is known (in practice we have an asymptotically unbiased, consistent
estimate), then

𝝁 − �̂� ∼ (0,RΣRT).

Hence we calculate 𝛿 as the value such that the probability of this multi-variate normal random variable exceeding
𝛿v is equal to a∕2. Thus, within our framework, we can straightforwardly calculate an estimate and confidence
intervals for the trend. In turn this could be used for hypothesis testing of the presence of trend. Although we have
assumed a low-order polynomial for the trend, the simulation results demonstrate that even if we depart from this
assumption, the trend estimator is still able to perform well. This is due to the fact that a polynomial can serve as
an accurate approximation to a more complicated trend function, and the ability of smooth wavelets to zero out
the trend, as explained in Section 3.3.

4.4. Boundary Handling

Using the results from Section 3, we can obtain an unbiased, consistent spectral estimator for the non-boundary
coefficients when the time series exhibits a smooth trend. However, this will not be true for the boundary coeffi-
cients as they will still contain the trend of the time series. This behaviour is not bias but simply a consequence
of the way the boundary coefficients are handled when performing the non-decimated wavelet transform. The two
most common methods for boundary handling are to reflect the data at the boundaries or to periodise it – see section

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. 43: 895–917 (2022)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12643
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TREND LOCALLY STATIONARY WAVELET PROCESSES 907

2.8 of Nason (2008) or section 4.11 of Percival and Walden (2006) for more discussion. These two methods can
be used effectively in a zero mean time series, but are less suitable when the time series displays a trend.

We can adapt the reflective boundary handling to produce better estimates of the EWS in the coarser scales.
We use reflection of the time series as this ensures that the spectral properties of the time series in the reflected
part evolve slowly as we move from the end of the time series past into the reflected, extended part. This is more
appealing than periodising the time series, as spectral properties at one boundary of the series may not be as similar
to those at the other boundary, due to the non-stationarity of the time series. Starting with a time series of length
T , we form a time series of length 4T , whereby the original data are centred within the extended time series. That
is, we add 3T∕2 data points to the beginning, and end, of the original series.

We note that in most applications, the standard practice of boundary handling involves repeating the series half
of the length in each direction, giving a series of length 2T . However, we have found in our empirical analysis that
using a series of length 4T offers stronger practical performance. One of the reasons for this is that in the coarser
scales of the wavelet transform, the wavelet filter is often already longer than the length of the time series. Hence,
in these coarse scales, the wavelet coefficients are formed only using boundary handling, which causes issues due
to the trend of the time series. Therefore, extending the time series to length 4T ensures that a larger number of
wavelet coefficients are not affected by the trend. This enables more accurate estimation in the coarser scales for
the evolutionary wavelet spectrum.

We illustrate the boundary handling procedure for the right-hand boundary of the data with Figure 1. An anal-
ogous procedure is used to add data to the beginning of the series, and so here we focus on an illustration of
adding data to the end of the series. In (a), we see a polynomial trend of length T = 1024 (in the example, we
use a deterministic series for illustrative purposes). We wish to extend the data at the right boundary in such a
way that we continuously extend the trend to minimise the boundary effect caused when calculating the boundary
non-decimated wavelet coefficients. To achieve this, we first (b) reflect the entire time series at the boundary, given
by the dashed vertical line, motivated by the reasoning above, obtaining a series of length 2T = 2048. Next, we
multiply the boundary series (data points 1025–2048) by −1, to ensure that the gradient of the reflected trend part
is similar to that at the edge of the time series (c). Finally in (d), we must add some value, c, to this reflected part,
to align the edge of the time series with the boundary part. The value c used to align the boundary part with the
original series is calculated using a simple pre-estimate of the trend function, obtained via a polynomial regres-
sion. From this we obtain a pre-estimate for the value of the trend at the boundary. The value c is given by two
times this value, as this reverses the effect caused by multiplying the boundary series by −1, realigning the series.

Having performed this step, we can repeat this again to add another T∕2 = 512 data points on the right side,
giving a series of length 5T∕2 = 2560. We then repeat the whole procedure for the left side boundary, adding
3T∕2 = 1536 data points to the start of the series, giving the final series of length 4T = 4096. In practice, we can
apply the procedure when performing trend estimation, to produce a more reliable estimate at the boundaries of the
time series. In this case, we no longer have strictly valid confidence intervals at the boundary locations. However,
we have found that performing the boundary handling step significantly improves estimation at the boundaries by
reducing the variability of the estimate.

Finally, we observe that this procedure can be easily adapted to time series whose length is non-dyadic. A time
series of general length n is extended to one of dyadic length d, where d = 4 × 2⌊log2 n⌋. Indeed, the data example
used in Section 6 is non-dyadic.

5. SIMULATION STUDY

To illustrate the ability to incorporate a smooth trend within the LSW framework, we perform a simulation study.
In the simulation, we define three different evolutionary wavelet spectra, shown in Figure 2 and explicitly defined
in the Supporting Information. Spectrum S1, studied in Nason (2008), displays coarse-scale, slowly-evolving sinu-
soidal behaviour with a fine-scale burst in power at time point 800; spectrum S2 is a concatenation of moving
average processes and contains power moving from fine to coarser scales, and was examined in Nason et al. (2000);
spectrum S3 contains slowly-evolving power at fine scales.

J. Time Ser. Anal. 43: 895–917 (2022) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
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908 MCGONIGLE, KILLICK, AND NUNES

Figure 1. Boundary handling process for an example trend

We simulate time series {Xt}T−1
t=0 of length T = 210 = 1024 from LSW processes with those spectra, using

Gaussian innovations. Depending on the simulation, different wavelets were used, to highlight the observations
from Section 3. The simulations were performed in R (R Core Team (2019)) using the wavethresh package of
Nason (2016). For each spectrum, 100 LSW processes with different trends added on were simulated.

We examine the effects of including a trend across three scenarios, corresponding to Sections 3.1, 3.2, and 3.3
of this article. In the first scenario, we add low-order trends to LSW processes simulated using a Daubechies EP
wavelet with four vanishing moments, which corresponds to the setting of Section 3.1. In the second, contained
within the Supporting Information, we add low-order trends to LSW processes simulated using Haar wavelets,
which corresponds to Section 3.2. In the final set of simulations, we add non-polynomial trends to LSW processes
simulated using the Daubechies EP4 wavelet, corresponding to Section 3.3.

To assess the spectral estimation performance, for each realisation, the un-smoothed estimate of the EWS was
calculated, which was then used to obtain an averaged estimate for the EWS across the 100 realisations. In align-
ment with the discussion in Sections 3 and 4, we correct the EWS across the finest seven scales and use the
boundary handling procedure, which ensures that the boundary effects of the trend are minimised. Furthermore,
in the Supporting Information, we also provide numerical evidence to show that using a smoother wavelet for
spectral estimation is beneficial.

We also assess the trend estimation performance by reporting the averaged mean squared error of the trend
estimate across the 100 realisations. The trend estimate is calculated using the Daubechies LA4 wavelet, with

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. 43: 895–917 (2022)
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TREND LOCALLY STATIONARY WAVELET PROCESSES 909

Figure 2. Spectra used in the simulation study. Left: S1, sinusoid with ‘burst’; centre: S2, concatenated moving average process;
right: S3, slowly-evolving fine-scale power

boundary handling applied. Our linear wavelet thresholding method is referred to as LSWT in the comparison
tables. We compare our method to three other trend estimation methods. We first compare to the approach of von
Sachs and MacGibbon (2000), which utilises a local MAD estimator in a wavelet thresholding procedure. No
code is publicly available for this method, and so we have implemented the method utilising wavethresh and
following the description of the computation of the threshold in section 2.5 of von Sachs and MacGibbon (2000).
This method is referred to as VSMWT in the comparison tables. Secondly, we also compare to the spline-based
method using the R function smooth.spline, where the smoothing parameter is chosen via cross validation.
Lastly, we compare to a local polynomial regression estimator, calculated using the loess function in R. We use
the default settings and a local quadratic polynomial for fitting the trend.

5.1. Low-Order Polynomial Trend, High-Order Generating Wavelet

We add various low-order polynomial trends to LSW processes generated by the three different spectra. In par-
ticular, we use three different trends 𝜇1

t , 𝜇2
t , and 𝜇3

t (where 𝜇t = 𝜇(t∕T)); polynomials of degree 1, 2, and 3 given
by

𝜇

1
t = 4t, 𝜇

2
t = 12t2 − 12t, 𝜇

3
t = 32t3 − 48t2 + 22t − 3. (5.1)

A plot of example realisations from each trend and spectrum scenario is shown in Figure 3. We use the EP4 wavelet
to analyse the series, the same wavelet that generates the LSW processes, which is a high enough order to remove
the polynomial trends.

In each of the simulations, we compare the estimates of the EWS obtained when trends are added, to the esti-
mate of the EWS obtained in the absence of any trend (‘None’ in Table I), obtained in the standard way using the
ewspec command within wavethresh. The averaged estimates for each spectrum across the four trend scenar-
ios are shown in the Supporting Information. Table I contains the mean squared error across the four trends and
three spectra, which shows that the trend has negligible impact. In fact, for the third spectrum, the mean squared
error is actually lower when a trend is added. From the simulation results, we see that there is no discernible
difference in the estimation quality between the no trend case and the case when a trend is added.

In Table II, we report the average mean squared error for the trend estimates, calculated over 100 realisations,
with standard deviation given in brackets. Bold values in the table indicate the lowest mean squared error for

J. Time Ser. Anal. 43: 895–917 (2022) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12643 Journal of Time Series Analysis published by John Wiley & Sons Ltd.

 14679892, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12643 by U

niversity O
f Southam

pton, W
iley O

nline L
ibrary on [20/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



910 MCGONIGLE, KILLICK, AND NUNES
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Figure 3. Example realisations from each trend and spectrum scenario. Dashed line shows time series with true underlying
trend shown in solid line. Left: spectrum S1, sinusoid with ‘burst’; centre: S2, concatenated moving average process; right: S3,

slowly-evolving fine-scale power

Table I. Mean squared error (in units ×10−3) of the averaged spectral estimate over 100 realisations

Trend Spectrum 1 Spectrum 2 Spectrum 3

None 3.13 4.88 1.87
Linear 3.13 5.50 1.79
Quadratic 3.13 5.50 1.79
Cubic 3.13 5.50 1.79

each trend and spectrum combination. From the table, we see that our method performs well and gives a low
mean squared error across the various scenarios. The method consistently outperforms the competing methods,
with only one scenario in which it does not give the lowest mean squared error. In particular, we outperform the
wavelet-based method of von Sachs and MacGibbon (2000), which is in part due to the lack of proper boundary
handling. As we might expect, the local polynomial method also performs well. The spline-based method performs
well for spectrum 3, which is likely due to the fact this process contains only weak autocorrelation.

5.2. Non-Polynomial Trend, High-Order Analysing Wavelet

Lastly, we show simulation results when the trend is less smooth. In this simulation, the spectra are simulated
using the Daubechies EP4 wavelet, and we add three non-polynomial trends to the series. The three trends are a

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. 43: 895–917 (2022)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12643
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TREND LOCALLY STATIONARY WAVELET PROCESSES 911

Table II. Average mean squared error and standard deviation of trend estimate over 100 realisations

Method

Trend Spectrum LSWT VSMWT Spline Loc. Poly.

Linear 1 7.10 × 10−4 (4.66 × 10−4) 0.273 (0.094) 0.438 (0.115) 1.59 × 10−3 (1.75 × 10−3)

2 5.32 × 10−4 (7.71 × 10−4) 0.226 (0.064) 0.154 (0.087) 7.32 × 10−4 (6.45 × 10−4)

3 1.01 × 10−4 (1.31 × 10−4) 0.161 (0.041) 2.26 × 10−5 (2.99 × 10−5) 4.63 × 10−4 (3.37 × 10−4)

Quadratic 1 7.05 × 10−4 (4.50 × 10−4) 0.284 (0.101) 0.453 (0.118) 1.51 × 10−3 (1.48 × 10−3)

2 4.61 × 10−4 (6.91 × 10−4) 0.208 (0.061) 0.154 (0.086) 6.79 × 10−4 (7.77 × 10−4)

3 9.69 × 10−5 (1.13 × 10−4) 0.157 (0.039) 1.55 × 10−3 (8.81 × 10−5) 4.87 × 10−4 (4.15 × 10−4)

Cubic 1 7.18 × 10−4 (4.49 × 10−4) 0.285 (0.098) 0.466 (0.122) 9.07 × 10−3 (3.14 × 10−3)

2 6.77 × 10−4 (8.41 × 10−4) 0.228 (0.070) 0.161 (0.092) 6.79 × 10−3 (1.52 × 10−3)

3 1.07 × 10−4 (1.41 × 10−4) 0.177 (0.044) 2.57 × 10−3 (8.17 × 10−4) 6.85 × 10−3 (1.25 × 10−3)

Table III. Mean squared error (in units ×10−3) of the averaged spectral estimate over 100 realisations, with trend scenarios in
Equation (5.2)

Trend Spectrum 1 Spectrum 2 Spectrum 3

None 2.60 5.00 1.80

Sine 2.93 4.34 1.53

Logistic 2.94 4.35 1.54

Exponential 2.94 4.35 1.54

sinusoidal, logistic, and exponential trend, defined as follows:

𝜇

s
t = sin(2𝜋t) + cos(𝜋t), 𝜇

l
t =

4
1 + exp(4 − 7 log 4t)

, 𝜇

e
t = 2 exp(3t). (5.2)

The sinusoidal and logistic trends are Lipschitz continuous; however, the exponential trend is not, and further it is
not Hölder continuous. Realisations from the simulated time series can be found in the Supporting Information.
We use an EP10 wavelet to compute the spectral estimate, which is the smoothest available wavelet in this family
within wavethresh and will therefore be the best at removing the effect of the trend.

The Supporting Information contains plots of the averaged spectrum again showing that then trend has not biased
the spectral estimate. In Table III we compare the mean squared error for the averaged spectral estimates, and find
similar results to that in Section 5.1. The error when including a trend is higher for spectrum S1, while lower for
the other two spectra. These results confirm the finding in Section 3.3, that including a smooth non-polynomial
trend will cause little bias to the estimate of the EWS. They also serve to highlight that using a smoother wavelet
can achieve a more accurate spectral estimate.

Finally, we assess the trend estimation performance. Example trend estimates for each of the three trend sce-
narios for spectrum S3 are shown in the Supporting Information. In Table IV, we report the average mean squared
error for the methods calculated over 100 realisations, with standard deviation given in brackets. Despite the fact
that the trends are non-polynomial, the wavelet-based estimator still performs well. Our method is consistently

J. Time Ser. Anal. 43: 895–917 (2022) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
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912 MCGONIGLE, KILLICK, AND NUNES

Table IV. Average mean squared error and standard deviation of trend estimate over 100 realisations

Method

Trend Spectrum LSWT VSMWT Spline Loc. Poly.

Sine 1 7.17 × 10−4 (4.93 × 10−4) 0.289 (0.108) 0.467 (0.127) 3.26 × 10−3 (2.49 × 10−3)
2 6.35 × 10−4 (8.61 × 10−4) 0.201 (0.064) 0.152 (0.097) 1.88 × 10−3 (9.37 × 10−4)
3 1.19 × 10−4 (1.57 × 10−4) 0.157 (0.0387) 1.49 × 10−3 (5.76 × 10−4) 1.65 × 10−3 (5.47 × 10−4)

Logistic 1 2.63 × 10−3 (1.08 × 10−3) 0.284 (0.110) 0.451 (0.124) 1.58 × 10−2 (3.65 × 10−3)
2 2.52 × 10−3 (1.73 × 10−3) 0.214 (0.061) 0.148 (0.085) 1.41 × 10−2 (1.37 × 10−3)
3 2.15 × 10−3 (7.56 × 10−4) 0.158 (0.039) 2.32 × 10−3 (1.41 × 10−4) 1.38 × 10−2 (7.94 × 10−4)

Exponential 1 9.45 × 10−4 (4.91 × 10−4) 0.386 (0.088) 0.446 (0.098) 2.99 × 10−2 (6.36 × 10−3)
2 8.61 × 10−4 (9.94 × 10−4) 0.347 (0.072) 0.154 (0.084) 2.27 × 10−2 (3.62 × 10−3)
3 2.54 × 10−4 (1.54 × 10−4) 0.294 (0.040) 3.61 × 10−3 (8.57 × 10−4) 2.29 × 10−2 (1.85 × 10−3)

Figure 4. Global average monthly sea temperature data

the best performing across all of the trend and spectrum scenarios. Overall, the simulation results show that the
linear wavelet thresholding estimator can perform well in a variety of trend settings in the presence of locally sta-
tionary errors. In particular, we observe that the linear wavelet thresholding estimator outperforms the nonlinear
thresholding method of von Sachs and MacGibbon (2000).

6. GLOBAL MEAN SEA TEMPERATURE DATA APPLICATION

This section highlights the ability to model time series with time-varying first- and second-order structure on the
monthly global mean sea temperature dataset (GMST) version 4.6 from the Goddard Institute for Space Studies
(GISS) Surface Temperature Analysis (GISTEMP, NASA, 2020). The data are available at http://data.giss.nasa.
gov/gistemp, and are shown in Figure 4. The GMST time series exhibits periods of warming separated by a long
pause from approximately the mid-1940s to the mid-1970s (Kellogg, 1993) and possibly a second, shorter one,
since the late 1990s/early 2000s, although this is highly debated (Trenberth, 2015; Beaulieu and Killick, 2018).
The series should be well-suited to our methodology, as it appears to contain both long-term trends and short-term
variability that may be non-stationary.

In general, the series exhibits an upward trend; therefore, using a high-order wavelet should remove the trend
from the wavelet coefficients and allow us to obtain an estimate for the spectrum. In addition, we might reasonably
expect there to be strong dependency within the data: as with many environmental time series, this may be a result
of certain physical phenomena.

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. 43: 895–917 (2022)
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TREND LOCALLY STATIONARY WAVELET PROCESSES 913

Figure 5. EWS estimate of the GMST series. Each level is scaled individually for clarity

In Figure 5, we see the spectral estimate for the GMST time series. This is estimated using the Daubechies
LA10 wavelet, while the raw wavelet periodogram is smoothed using a running mean smoother with bin width
120, corresponding to 10 years. Each level is scaled individually for clarity. Additionally, we have used the bound-
ary handling procedure outlined to properly handle the endpoints of the series. Motivated by the discussion in
Section 3.3, we only calculate the EWS estimate across the finest seven scales, which corresponds to 70% of the
scales. The choice of the LA10 wavelet is motivated by the discussion in Section 1 of the Supporting Informa-
tion that suggests the benefit of using smoother wavelets. A more systematic approach to wavelet choice could
be devised by adapting the work of Cardinali and Nason (2017). This method uses a penalised likelihood-based
approach to select, for a given wavelet, an appropriate set of wavelet packets to use in the analysis of an LSW
packet process.

We see that the spectral behaviour is generally slowly evolving with peaks at various locations: for example,
note the burst of power that occurs in scale −4 around 1910. We also see an appearance of power in scale −7 at
approximately 1940 and scale −6 slightly later, corresponding to the proposed period of pause in warming.

Next, we investigate how the autocorrelation structure of the GMST time series evolves over time. A common
assertion in the Climate literature is that the autocorrelation within the Global Mean Sea Temperature Data is con-
stant across time. Here we use the estimate of the spectrum to examine the autocorrelation function at different
periods in the series. In Figure 6, we see a plot of the autocorrelation function of the time series at six different
time-points across 25-year intervals, starting at 1890 and ending at 2015. Commonly, the error structure of cli-
mate change data is modelled using a low-order AR process, for example, Beaulieu and Killick (2018) and Karl
et al. (2000). In similar analyses on gridded datasets, Lenton et al. (2017) find an increase in variance and auto-
correlation in global surface sea temperature data, while Boulton and Lenton (2015) find a ‘reddening’ – a gradual
increase in autocorrelation – in North Pacific surface sea temperature data.

Our analysis suggests that overall, the low-order AR assumption may be appropriate at certain time points;
however, the degree of autocorrelation changes over time, and the assumption of a stationary AR model may not
be appropriate. From the plot, the non-stationary nature of the second-order structure can be seen. In 1890, 1915,
1965, 1990, and 2015, the autocorrelation exhibits a similar decay behaviour, falling within the upper and lower
confidence lines after approximately lag 60, corresponding to a time period of 5 years. However, at time 1940,
given by the dark solid line, we see much stronger autocorrelation, exhibiting a shape that is not well represented

J. Time Ser. Anal. 43: 895–917 (2022) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
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914 MCGONIGLE, KILLICK, AND NUNES

Figure 6. Autocorrelation of the GMST series across six time points, up to lag 400

Figure 7. Global average monthly sea temperature with trend estimate (solid line) and 95% pointwise confidence intervals
(dashed lines)

by a low-order AR model. This increase in autocorrelation can be attributed to the appearance of power at the
coarsest scale of the spectrum, as seen in Figure 5. Moreover, our analysis shows that in the period between 2005
and 2020 – which is debated to be another warming pause – the variance of the series increases by roughly 63%
from 0.0153 to 0.0240. This may explain the appearance of a pause due to increased variability, as many methods
assume the series to be second-order stationary. Note that the trend estimate does suggest the appearance of a
pause in this time period; however, because this occurs at the boundary, the estimate should be used with caution.

Lastly, in Figure 7, we see the estimate for the trend shown in the solid line, with the 95% pointwise confidence
interval shown in the dashed lines. This was calculated with the Daubechies EP10 wavelet, using the methodology

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. 43: 895–917 (2022)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12643
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TREND LOCALLY STATIONARY WAVELET PROCESSES 915

described in Section 4, using the boundary extension procedure. Note that the estimate near the endpoints is
therefore dependent on this boundary handling and inference should be carefully considered. The EP10 wavelet
was selected using advice from a domain expert, by comparing several choices and their resulting fitted trends.
Overall, our estimate agrees with many previous analyses of the series: we see a long pause between approximately
the 1940s and 1970s, as well as a sustained period of warming post-1970 to the early 2000s.

7. CONCLUDING REMARKS

In this article, we have addressed the commonly encountered problem of modelling time series that display first-
and second-order non-stationarity. Our model extends the locally stationary wavelet model of Nason et al. (2000),
used for modelling second-order non-stationarity, to include a non-stationary, smooth mean structure. Within our
framework, we can model both smooth deterministic trends and slowly-evolving second-order behaviour, allowing
for a flexible model that can be applicable to time series in many applications.

We have established results concerning the theoretical properties of the estimators of the first- and second-order
quantities of interest, which are shown to have good consistency properties and strong practical performance.
Furthermore, we have found using a smoother wavelet to be useful even in the case of a zero-mean time series.
To ensure the applicability of our methodology, we propose a new method for handling the boundary of a time
series when computing the discrete non-decimated wavelet transform, which incorporates data of any length and
is suitable for data that display trend behaviour. In our framework, the results and methodology are suitable for
polynomial and smooth trends; however, a polynomial or smooth function is a good approximation to many trends
of practical interest. In practice, the techniques described here will work well when we depart from the assumptions
of the model, as evidenced within the simulation study.

We demonstrated our methodology on a data example that shows that our model can be successfully applied to
a variety of data sets that exhibit time-varying first- and second-order structure. In our analysis of the global mean
sea temperature dataset, we find that the second-order structure of the series varies over time, while observing
similar findings as previously described of a general increasing trend of global mean sea temperature.
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