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An Investigation into Data Driven Modelling of Rail Degradation due to Rolling
Contact Fatigue

by Christina Marie Riley

One of the major problems affecting the UK rail network is a family of defects known
as Rolling Contact Fatigue (RCF). RCF is a phenomena which arises from repeated
contact stresses at the wheel-rail interface resulting in cracks forming at the rail
surface, which if left unmanaged can lead to rail fracture. Management of RCF is
largely performed using re-profiling methods such as rail grinding and milling. The
objectives of such techniques are to restore rail profiles, remove minor cracks, and stall
cracks in their early stages of growth, and therefore these activities have typically been
performed cyclically at time (or traffic) based intervals. In recent years, the advances
in monitoring technologies has dramatically increased the data available to the
network operator, in particular Eddy Current technology, which is capable of
identifying the depths of RCF cracks in their early stages. This data set is previously
unexplored, and presents the opportunity for investigating modern data mining
methods to discover insights that may better inform RCF maintenance strategies. Real,
operational data however are often noisy, and if the noise is not accounted for can
have significant implications on the accuracy of subsequent analysis and modelling.

This thesis thus investigates the use of numerous data pre-processing techniques
which enable Eddy Current data to be reliably used for information extraction and
data-driven modelling. In particular, we address the difficulties in spatially aligning
low frequency, sparse data by incorporating data partitioning, cross correlation and
optimisation methods. Additionally, the successful preparation of the data enables
two main approaches to be explored. Firstly, simple analytical techniques are applied
to derive degradation patterns which can augment the current preventive and
corrective maintenance decision making processes. Secondly, we demonstrate a
methodology for developing a RCF prediction model using several machine learning
algorithms for regression analysis. Whilst the resulting models show excellent
function fitting capabilities, particularly in the case of ensemble, tree-based methods,
we also highlight the potential problems that may arise when using these methods.
Despite this, future developments of these models could present excellent
opportunities for modelling these complex relationships. At the same time, the data
processing and analytical techniques could be presently incorporated into existing
RCF management strategies.
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Chapter 1

Introduction

1.1 Motivation

Railway operators have endured unprecedented turbulence in recent years. The
height of the COVID 19 pandemic resulted in cessation of passenger traffic, followed
by the emergence of new working patterns and changed attitudes toward rail travel.
Over the 2019/20 - 2020/21 period there was a 78% reduction in passenger
journeys (Department for Transport, 2021), and a reduction of 41.8% for the 2021/2022
period compared with 2019/20 (Network Rail, 2022), indicating a sustained reduction
in passenger uptake since restrictions were lifted. Yet there remains sustained pressure
to improve performance, with faster, higher capacity and heavier trains, whilst
simultaneously ensuring system reliability and safety at a reasonable cost to network
users. Maintenance budgets are tightening, and strategies must therefore balance
these conflicting aims to ensure optimum efficiency and long term viability of railway
operations.

Maintenance of Britain’s railway infrastructure is the responsibility of network owner
and operator Network Rail Infrastructure Limited (NRIL), who oversee the 20,000
miles of track, 30,000 bridges, tunnels and viaducts and the thousands of signals, level
crossings and stations (Network Rail, 2022). In 2021, the total amount spent on
maintenance and renewals accounted for 49% of overall expenditure (Network Rail,
2021b), £1,892m was spent on maintenance alone, £3,910m on renewals, with an
additional £288m spent on Schedule 4 performance regime payments (Network Rail,
2021b). 1

The rails are a critical part of the track subsystem, subject to high and repetitive
vertical and longitudinal contact forces at the wheel-rail interface. These pressures

1Schedule 4 payments are aimed to compensate the train operator for loss of service where the
Infrastructure Manager (IM) take back possession of areas of the network, normally as a result of planned
maintenance works.
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eventually result in the formation of defects, which can lead to rail breaks and
potential derailments if left unmanaged. There are few incidences more devastating in
recent years than the Hatfield crash of October 2000, where four people were killed
and 34 injured when a GNER train travelling from King’s Cross to Leeds was derailed
not far from Hatfield (ORR, 2006).

Images from the crash site (see Figures 1.1, 1.2a, 1.2b) exposed the catastrophic failure
of the high rail around Welham Curve, which shattered into some 200 pieces (ORR,
2006). The formal enquiry stated that the immediate cause was a result of the ‘fracture
and subsequent fragmentation of the high rail over a 35-metre length due to
substantial transverse fatigue defects in the rail head. These had their origins in gauge
corner cracks, a form of Rolling Contact Fatigue (RCF), which had developed in the
rail surface.’ (ORR, 2006).

FIGURE 1.1: The Hatfield rail track site following the accident (Grassie, 2005)

Rolling Contact Fatigue (RCF) is a family of fatigue-driven damage phenomena,
characterised by small cracks forming in the running band of the rail. The cracks are
caused by repeated cyclic loading, in combination with frictional forces due to the
rolling/ sliding contact, which eventually exhaust the ductility of the rail steel (Magel
et al., 2004). Once the cracks reach a critical size, they have the potential to propagate
to downward turning transverse cracks that can cause the rail to break.

A key approach to managing RCF defects is re-profiling of the rail by grinding or
milling. These approaches generally have two aims; firstly to restore the rail profile
and optimal wheel/rail contact to reduce contact pressures, and secondly to remove
minor surface cracks and stall moderate cracks from propagating. In the years
following Hatfield, an enormous programme of measures (the ‘National Recovery
Programme’) to deal with widespread RCF included huge amounts of rail renewals
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(A) Looking North in the direction
of travel showing the Driving Van

Trailer (DVT) and coach M
(B) Looking North from the area of

derailment

FIGURE 1.2: Images from the Hatfield Crash Site (ORR, 2006)

and corrective grinding, much of which was likely to be over-compensatory due to a
lack of understanding of the phenomena (Merkert, 2005; Grassie, 2005). Premature
renewals and unnecessary grinding not only reduces the life of the rail though loss of
material and premature replacement, but additionally increases maintenance costs
and can cause disruptions to track availability.

Historically, the predominant forms of maintenance policy within the railway
industry have been reactive- e.g. where the rail is replaced when it has exceeded its
wear limits or critical defects have occurred, and time-based (typically based on
tonnage thresholds being reached). The outcome is generally that the replacement
comes too late when the system is run to failure, or the intervals are too conservative
due to historic failures such as Hatfield and insufficient understanding of how the
system degrades. Condition-Based Maintenance (CBM) policies are widely viewed to
be the most economical, aiming to maximise network availability whilst reducing the
risk of failure (Al-Douri et al., 2016). In CBM, system health is determined by
dynamically monitoring the conditions of the asset, and pre-empting faults before
they occur, so that interventions can be planned accordingly (Lin, 2005). Asset
degradation models provide a distinct advantage, since predicting future states and
understanding key drivers can assist in determining when and where the intervention
should be employed in a robust and repeatable manner (Fumeo et al., 2015). These
models may be based on the physical laws describing system behaviour or derived
from operational condition data (data-driven).

In conclusion, to balance the safety of network users, service reliability and shrinking
budgets, it is important that a robust methodology is developed based on evidence
and understanding of rail degradation to inform maintenance planning.
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1.2 Problem Statement

The work in this thesis addresses the balance between managing the safety of rail
users, with the pressing need for efficiency due to tighter budget constraints and
performance targets. Grinding is a critical strategy for managing RCF, but it is
expensive, may cause disruptions to railway operations and must be done effectively
rather than needlessly reducing rail life.

Ideally, in order to establish an optimised, CBM strategy for the planning of when and
where grinding is performed, two approaches can be explored. Primarily, the operator
can gauge a better understanding of the phenomena and its development across the
network by utilising monitoring data and analysing degradation rates. Secondly, the
development of physical or data-driven asset degradation models for predicting RCF
may assist in understanding and predicting possible future issues. Both approaches
provide a consistent approach for informing the decision making process and can
incorporate real asset data.

Currently there are two predominant strategies employed by Network Rail (NR) for
rail re-profiling, 1) Preventive, and 2) Corrective grinding.

Preventive grinding is performed in the first instance to ensure that the rail profile is
restored to its optimal shape, thus alleviating the contact stresses on the gauge corner.
Yet, the additional benefit of surface re-profiling is the removal of minor cracks, and
prevention of moderate sized cracks from propagating. The prevailing idea is that if
cracks are growing into the rail at a particular rate, then the loss of material by both
natural and deliberate means (wear and grinding, respectively) must at least reach this
rate in order to contain cracking (Grassie, 2005), this rate is termed by Kalousek (1997)
as the ‘Magic Wear Rate (MWR)’. This type of grinding involves cyclically removing
only a small amount of rail material with grinding trains that can travel at moderate
speeds. The current practice at NR is to grind curves after every 15 MGT of traffic, and
tangent track after every 45 MGT (Network Rail, 2018b). It is understood that this
strategy is derived from the studies conducted by the National Research
Council (NRC) of Canada on heavy haul lines in North America (Stanford et al., 2001).
However, the operational and environmental conditions observed at the time of this
study will differ considerably from the UK network today, and therefore these
strategies require updating based on the UK operational data.

Corrective grinding conversely is targetted at treating existing RCF sites or sections of
track before there is substantial risk of the rail breaking. Typically it is reactionary and
requires multiple grinding passes, machine milling, or in some cases re-railing. At NR,
EC and ultrasonic measurements are used to guide the planning of these activities.
The process varies between the network regions and is dependent on the Route Asset
Manager (RAM), but is typically based on an assessment of site risk carried out by
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experts. Determination of risk and rates of degradation are performed by observation
and expertise rather than through repeatable, objective analyses.

Over the past 20 years since the Hatfield crash, several physics-based RCF damage
evolution models have been developed, varying considerably in complexity and
applicability, as discussed by Krishna et al. (2021). Many of the widely used
approaches employ Multi Body Simulations (MBS) of railway vehicles to obtain the
dynamic wheel/ rail loads and kinematics for a range of running conditions.
However, these approaches, as far as is understood from the literature, and through
discussions with maintenance teams at NR, are rarely used to inform grinding
practices.

In recent years, the application of data-driven techniques has grown in popularity due
to the surge in availability of large data sets and advancements in computing power.
In data-driven approaches, the relationships between system input and output
variables are determined directly from the system experimental data. Contrary to
physical models, Data-driven Modelling (DDM) is not reliant on explicit modelling of
the underlying system, and can therefore capture complexities and patterns which
may otherwise be missed. Their appealing flexibility however can sometimes be their
downfall, as without a good understanding of the system under study and
preparation of the data, these methods can fall foul of modelling noise rather than
capturing the process of interest (Cios et al., 1998). Historically, RCF cracking is
detected using ultrasonic methods, but emerging technologies such as EC based
systems are able to detect cracks in their very early stages of development, and thus
generate larger data sets with the opportunity for data mining.

In summary, NR presently utilise two key grinding strategies, neither of which
capitalise on the availability of operational condition data or existing RCF initiation
models for various reasons that will be considered in Chapter 2. This work seeks to
advance these strategies through combining these elements with the objective of:

• Improving Safety: better planning of grinding can ensure interventions are
performed before defects become critical,

• Improving Efficiency: significant savings could be made by reducing
unnecessary intervention and increasing rail life,

• Improving Consistency: a consistent, evidence based approach across the
network that can be validated/ tested in future.

The proposal described in this thesis is the use of data mining techniques with RCF
condition data to provide insights which inform the decision making process for rail
grinding planning. The main body of work is divided into three parts:
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1. EC Data Processing: Due to issues with data quality, the first part of this thesis
discusses methods to clean, process and formulate the data mining problem
with a set of modelling data, which will enable subsequent parts 2 and 3,

2. Data Analysis: Presents two relatively simple, analytical approaches for using
the pre-processed EC RCF data (in particular degradation rates and degradation
based Key Performance Indicators (KPIs)) to augment existing preventive and
corrective interventions strategies,

3. Regression Analysis: illustrates the development and utilisation of Machine
Learning (ML) algorithms to mine the RCF condition data and generate a
suitable model for RCF prediction. Additionally, this section presents a method
for comparing these DDMs, and the observed damage with a simulation
generated using the software tool Track-Ex, which implements a simplified
version of the Whole Life Rail Model (WLRM).

This thesis presents a body of work that demonstrates the use of previously
unexplored rail condition data, a comprehensive and repeatable methodology for
processing this data so that it can be readily used to augment existing interventions
strategies through data analysis or can be used to build a RCF prediction model using
ML algorithms. This work has been conducted in conjunction, and with support from
the UK rail operator Network Rail Infrastructure Limited (NRIL) and the Engineering
and Physical Sciences Research Council (EPSRC) (Grant Number 18000134).
Operational and maintenance data provided by NR from the UK rail network is
utilised.

1.3 Research Aims

The objective of this research is the advancement of grinding planning with the focus
on analysing condition data and the application of data-driven modelling for RCF
prediction. The primary research question is stated as follows:

Can data-driven methods be used to build an effective data-driven RCF prediction
model to help inform grinding strategies?

To commence the body of work required to answer this question, a number of
sub-questions were formed:

1. What are the critical drivers for RCF initiation and degradation?

2. How are RCF cracks detected and monitored?
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3. What are the current grinding practices in use by Network Rail?

4. What existing models are available for RCF evolution modelling?

5. How can the available RCF condition data be formulated for regression analysis?

6. What insights can be gained from the RCF condition data?

7. Can regression analysis be used to build an effective RCF regression model?

8. How does a data-driven approach compare with existing physic-based models?

1.4 Outline of Thesis

This thesis is divided into two major parts, Part 1 (Chapters 2-3) introduces and
describes the problem domain, including the background literature on RCF, RCF
mitigation practices and RCF modelling. Part 2 (Chapters 4-7) includes exploratory
data analyses, pre-processing and regression modelling. The material is organised as
follows, with the relevant research sub-question number expressed in parentheses:

• Chapter 2: RCF introduces the principles behind the RCF phenomena, the key
drivers and typical mitigation practices. There is a particular focus on the
techniques of grinding and milling, and eddy current technology for detection
(Q1-2),

• Chapter 3: RCF Modelling discusses existing RCF modelling techniques,
including physics-based and data-driven models in the literature. The chapter
concludes with the data-driven methodology and models being proposed (Q3),

• Chapter 4: Experimental Data introduces the data sources central to this thesis,
alongside contextual exploration of patterns and relationships in the data, and
identification of the most appropriate methods for processing and formulating
the data for modelling (Q5),

• Chapter 5: Data Pre-Processing presents a methodology for processing eddy
current data and integrating other relevant data sources to generate a modelling
dataset for use in subsequent analysis and regression modelling (Q4),

• Chapter 6: Practical Applications of Data Analysis provides a simple approach
for segmenting the track for preventive grinding and outputs that can be used in
risk assessments for corrective grinding. The methodology is based on analyses
of the processed EC data (Q5),
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• Chapter 7: Regression Analysis with Machine Learning Algorithms A
selection of ML algorithms are trained using the fully processed and integrated
modelling data set with various parameter settings. The full results are
presented and the proposed model is selected. This model is compared with the
physics-based approach, Track-Ex (Q6-8).

• Chapter 8: Summary The conclusions, contributions and recommendations are
put forward in Chapter 8.
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Literature
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Chapter 2

Rolling Contact Fatigue

In common with all transport systems, railways contain elements that must be
continuously maintained. In particular, as the primary interface between the vehicles
and track system, the rails are subject to a harsh operating environment with complex
and variable forces. Wear and rail defects are thus an inevitable consequence of these
conditions where the wheel and rail come into contact. A specific example is metal
fatigue, which is a condition that arises from the repeated cyclic loading of railway
vehicles on the rail. Fatigue is the progressive, localised , permanent structural change
that occurs in materials subjected to fluctuating stresses and strains that may result in
cracks or fracture after a sufficient number of fluctuations (Boyer, 1986). Fatigue in
rails is characterised by minor cracking at the wheel-rail interface which may
propagate due to sheer and bending stresses and ultimately lead to rail
failure (Cannon et al., 2003).

The defects that lead to fatigue failure are known collectively as Rolling Contact
Fatigue (RCF). Sub-surface initiated shells, surface initiated squats and head checking
all fall into this category, and are illustrated in Figure 2.1. The various terms for
different types of RCF can generally be characterised by their appearance and location
on the rail as depicted in Figure 2.2.

2.1 RCF Principles

Fatigue at the wheel-rail interface is distinguished by the high stress field produced by
the wheel-rail contact and cyclic contact stresses which are largely compressive due to
high axle loads (Fletcher et al., 2009). These stresses can cause localised areas of
damage (or cracking). The propensity and frequency of such cracks in the rail depend
on operational and environmental conditions such as track condition, track curvature,
traffic loading, vehicle type, maintenance interventions and climatic conditions. This
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(A) Headchecks (Network Rail, 2021a) (B) Spalling

(C) Squats (Grassie, 2005)

FIGURE 2.1: Types of Rolling Contact Fatigue Defects

FIGURE 2.2: Rail Section with RCF Defects



2.1. RCF Principles 13

study focusses on a particular type of surface initiated cracking typically developed as a
consequence of frictional rolling/ sliding contact that causes plastic flow of the surface
of the material. The initiation of such cracks are not normally associated with any
specific metallurgical, mechanical or thermal fault, but as a result of the rail material’s
inability to sustain the imposed operating conditions indefinitely (Cannon et al., 2003).
As the plastic deformation exceeds the fracture strain (or fracture point) of the
material, a surface crack is formed.

There are believed to be two main causes for surface initiated RCF; either due to
rolling contact accompanied with load and surface roughness; thus resulting in local
stress concentrations, or if the rolling contact is accompanied by interfacial shear and
slip (due to curving, braking and traction) which can result in plastic deformation of
the contacting surfaces and subsequent crack initiation and growth (Ekberg et al.,
2014). Further discussion on the generation of high frictional creep forces when
steering, braking and accelerating are described in Appendix A.

The process of RCF crack initiation and propagation can be summarised in three
distinct stages and are illustrated in Figure 2.3 (Burstow et al., 2009):

1. Phase 1: Crack Initiation/ Early Crack Growth Repeated cycles of rolling/
sliding contact between metals (such as the steel used in modern rails) instigate
a process known as ‘ratchetting’ or ‘cyclic creep’. Ratchetting (illustrated in
Figure 2.4) is the incremental accumulation of plastic strain, whereby the loads
that the material is subjected to are repeatedly above the yield of the material.
Eventually this process causes the material to fracture generating small surface
cracks at the head of the rail (Kapoor et al., 2002; Magel et al., 2004). This process
is estimated to take place over a period of 3-6 MGT (Magel et al., 2003).

2. Phase 2: Shallow Angle Crack Growth

There are several mechanisms under which cracks grow into rails: Firstly where
shallow angle crack growth is driven by shear stresses which occur at the wheel/
rail interface. In this case cracks typically propagate at an angle of 15 degrees to
the head of the rail and in the same direction of travel (traction direction). Crack
growth then slows as the distance from the surface stresses increases some 10-15
mm below the surface (Smith, 2002). In other instances, the presence of fluids
such as water or grease based lubricants play a crucial role (Shaulk, 2016):

• Hydraulic crack growth: whereby the fluid is trapped in the crack and
when the wheel drives over the crack it causes pressure on the fluid,
driving crack growth,

• The fluid entrapment crack growth mechanism is the mechanism where
the crack closes when the wheel passes over it and the fluid is entrapped
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and pressurised. This causes high pressure at the crack faces and tensile
stresses at the tip of the crack causes the growth (Dollevoet, 2010),

• The squeezed film crack growth mechanism: a fluid is trapped in the crack
and growth in the direction of the load motion, the crack mouth opens
under tractive effort, drawing the fluid in where it expands under pressure
as the wheel passes over and the crack is closed (Bogdański et al., 1999).

3. Phase 3: Branching Crack Growth At this stage the growth rate of a crack
accelerates rapidly until failure or intervention. The growth is driven by by bulk
bending and axial stresses in the rail due to wheel loads and residual stresses in
the rails from manufacturing processes. Eventually this causes the majority of
cracks to branch upwards, leading to surface shelling, with chunks of material
spalling from the rail surface. Alternatively, in some cases the cracks will turn
downwards and may develop into a transverse defect and ultimately a broken
rail (Magel et al., 2003).

FIGURE 2.3: Phases of RCF crack development and growth (Burstow et al., 2009)
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FIGURE 2.4: Illustration of Ratchetting

2.1.1 Wear

The same shear stresses caused by loading forces, traction, slippage and friction at the
wheel/rail contact almost always cause wear in addition to Rolling Contact
Fatigue (Magel et al., 2014). Wear is the loss or displacement of material from a
contacting surface, and has historically determined the life of the rail due to the
gradual loss of rail cross section ultimately resulting in replacement. Today, however,
due to improved wear resistance of wheel and rail materials, rail life is now
dominated by RCF damage (head checks and squats) (Schmid, 2010).

In fact, these processes are often competing, since the process of crack initiation and
propagation are impacted by the rate at which material is worn from the surface. In
systems with high wear rates, it is possible to wear away the stressed surface layer
before it can develop cracks, or additionally to delay crack propagation by ensuring
that the cracks do not reach a critical size for branching. However, high wear rates
necessarily reduce component life, and therefore an optimum level of wear where
surface fatigue is controlled and component life is maximised is sought. This
optimum metal removal rate is known as the ‘Magic Wear Rate’ (MWR), which is ”the
rate of wear at which any rolling contact fatigue cracks that are in the initial stages of
development are removed either by natural or combination of natural and artificial
wear” (Magel et al., 2014). In most systems, due to the quality of the rail steels, the
natural wear rates are insufficient to manage crack growth. In these cases grinding
and milling can be used to artificially modify the wear rate of the material and control
the growth of cracking. Although different rail grinding strategies have evolved over
the years, it is generally agreed that the ideal approach is to grind the rail preventively
at the MWR (Magel et al., 2014). In North America preventive grinding of rails,
alongside improved metallurgies, contributed to a two-fold increase in system rail life
and a four-fold increase in system rail fatigue life over the last 25 years. (Magel et al.,
2005)

Figure 2.5 illustrates the combination of natural wear and minimum artificial wear
(grinding) that are needed to achieve the MWR. The frequency of grinding
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intervention needed to achieve this target varies depending on the specific conditions
contributing to crack initiation and propagation at the wheel-rail contact.

FIGURE 2.5: Illustration of relationship between contact fatigue growth, natural wear
and Magic Wear Rates (Magel et al., 2014)

2.2 RCF Management Overview

2.2.1 Managing RCF

In recent years, largely due to the rise in axle loads, traffic density, speed and tractive
forces, and improved wear resistance of modern rail materials, infrastructure
managers have seen an increase in the occurrence and severity of RCF. There are
significant implications with regard to safety and cost to the IM, which has resulted in
numerous global efforts to develop effective management strategies.

These strategies vary between locations and Infrastructure Managers (IMs) since they
depend on operational conditions, but they can broadly be considered as design or
maintenance strategies applied to the vehicle or track side of the Wheel-Rail
Interface (WRI) (Magel et al., 2005):

• WRI Design:

– Wheel/ Rail Metallurgy:
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Rail materials are chosen in order to withstand the high static and dynamic
forces present at the wheel-rail interface. Modern rails are typically
composed of very high-quality steel alloys featuring a high percentage of
carbon (up to 0.7%) as compared with everyday construction
steels (Schmid, 2010). The most common rail material in Europe is R260
(previously named UIC 900A) which has 0.62% carbon and 0.7-1.2 %
manganese. International specifications divide rail treatments into: 1)
naturally hard rail grades and 2) hardened rail grades. The head hardened
rail grades were developed to improve wear resistance and strength.
However, increasing the wear-resistance of modern day rail steels has been
linked to the rise in RCF damage as a result of reduction in natural wear
that has assisted in managing RCF. Similarly, wheels are made of carbon
steel/ manganese alloy, which is normally obtained by processing and
continuous casting of scrap steel.

– Wheel/ Rail Profile Design:

The design of wheel and rail profiles are of central importance in railway
design since they govern the vehicle dynamic behaviour, the forces between
the wheel and rail, and the stresses imposed at either side of the interface.
Figure 2.7 illustrates a typical rail and wheel profile in a new(or restored)
condition, and also in a worn condition. Commonly used terms to describe
different elements of the wheel and rail profiles are provided in Figure 2.7.

Self steering is achieved through the coned shape of the wheel tread for a
given rail profile combined with solid axles. The conicity of a wheel tread is
defined as the tangent of the half angle γ subtended at the apex of the cone
(See Figure 2.6), the cone angle is selected to enable self steering on a
selected rail profile at given inclination. The rails are inclined inwards to
ensure the wheel-contact is centred at the rail crown; the strongest part of
the rail, and additionally to assist with self-steering (in the UK inclination is
1 in 20). The exact parameters related to the wheel/ rail profiles, wheel
conicity and rail inclination however are not considered in isolation, rather
the correct, or optimal combination of these features is of primary
importance.

Over time, as the wheels pass over the rails, the profiles may vary as a
result of wear, both wheel and rail wear patterns will vary depending on
the traffic type and the route characteristics. The illustration shows extreme
cases of wear for both the wheel and rail. Wheel flange wear often occurs as
a result of vehicle with a stiff primary suspension or where the route has a
high proportion of tight curves, whereas tread wear tend to occur on a
route composed of tangent track. In either case the result is a modification
in the wheel conicity which affects vehicle stability, curving performance
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and contact forces. For the rail on the other hand, predominantly straight
track results in head-wear, whilst sharp curves tend to result in side wear.

FIGURE 2.6: Wheel Conicity

FIGURE 2.7: The Wheel/Rail Interface adapted from (Lewis, 2009)

– Suspension Bogies: Flexible bogie suspension improves the steering
capability of the running gear. As described in Appendix A, the reduction
in the bogie primary yaw stiffness can reduce yaw angles in curves which
will reduce lateral creep forces required to keep the vehicle in radial
alignment, and in turn reduce RCF initiation on the rails of shallow curves
and in wheels.

• WRI Maintenance:
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– WRI Monitoring: Improved and/ or more frequent defect detection can
reduce risk of rail failure. Techniques such as Eddy Current testing have
been developed in order to detect cracks in their early stages and therefore
a greater opportunity to monitor crack growth and intervene where
necessary,

– Friction Management:

Wear and damage is also influenced by the frictional characteristics of the
interface. Too high a frictional value, results in noise, increased energy
consumption, wear and damage to components, whereas too low a value
will result in lack of traction, reduced braking and wheel damage. Typical
values appear to range between 0.08 and 0.5 (Lewis, 2009). Lubrication of
the rail gauge-face/ wheel-flange can reduce wear by 95-100%, however
water entrapment has a significant influence on shallow growth through
fluid entrapment, and grease based lubrication may also influence crack
growth via this mechanism.

– Grinding/ Milling:

Grinding is a powerful tool for both preventing RCF development and
removing existing RCF (alongside milling), it further removes surface
damage to improve ultrasonic detection (Cannon et al., 2003). It is one of
the main strategies adopted by railways to combat RCF and is discussed
further in Section 2.4,

– Track Quality: Vertical and lateral track irregularities are often associated
with rapid rates of RCF development in rail adjacent to the
irregularity. (Attoh-Okine, 2016; Zarembski et al., 2016)

2.3 RCF Monitoring

Over the years, various systems have been developed to monitor the health of rails,
and substantial efforts are still being made in this field in order to improve detection
capabilities. Non Destructive Evaluation (NDE) methods are widely applied for the
inspection of rails since they can be carried out in-situ and in many situations the
equipment can be installed on trains and testing vehicles to minimise network
disruption. We focus on the methods in use at Network Rail for RCF detection, for a
more in-depth overview of other Non Destructive Testing (NDT) techniques in use,
see (Bombarda et al., 2021; InnoTrack, 2008).
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2.3.1 Ultrasonic Testing (UT)

Ultrasonic Testing (UT) technology is one of the most common methods applied in the
fields of rail crack detection, and is particularly effective at detecting internal
cracks (Xu et al., 2020). The technique uses high frequency beams of sound energy
which are transmitted into the rail, and the reflected or scattered energy of the
transmitted beam is then detected using a collection of transducers. The amplitude of
any reflections together with when they occur in time can provide valuable
information about the integrity of the rail. Since there is uncertainty in the direction
and location of defects, the energy is transmitted at several different incident angles in
order to maximise the Probability of Detection (PoD) of any detrimental features
present in the rail (Papaelias et al., 2008).

In many countries, this technique is typically employed on Sperry trains (UTU1 and
UTU2 models). The presence of detected defects by the UTU1 and UTU2 Sperry trains
is then confirmed through the deployment of portable ultrasonic inspection units
known as Sperry Sticks (InnoTrack, 2008). Verification of identified defects is required
due to the relatively high occurrence of false alarms. Ultrasonic Detection relies on the
fine-tuning of the test equipment by means of parameters such as the signal threshold
(amplitude of the signal) and the position of the time window (or acquisition time). If
the threshold is set too high then the system will miss cracks whilst if it set too low it
will generate many false alarms.

Additionally UT transducers must be in close contact with the track to achieve
ultrasonic transmission which limits the possible speeds of inspection. Another more
serious drawback of the technique is a phenomena known as ‘shadowing’ (Peterson,
2000; Cannon et al., 2003). In cases where there is shelling, or detail fractures on the
surface of the rail, the equipment may not be able to detect more serious sub-surface
cracks. Generally it is known that ultrasonic testing performs well in detecting deep
surface-braking and internal defects, however is less effective in detecting small
(<4mm) surface defects such as head checks and Gauge Corner
Cracking (GCC) (Papaelias et al., 2008). Technology such as pulsed Eddy Current
sensors have since been developed to detect these types of defects since they have
high sensitivity to rail surface cracking (InnoTrack, 2008).

2.3.2 Eddy Current Testing (ECT)

Eddy Current (EC) technology is currently one of the most effective ways of detecting
rolling contact fatigue across the railway network due to its high speed detection
capabilities and sensitivity to even the smallest near surface defects. At Network Rail,
Sperry EC technology are fitted to the rail inspection vehicle (Ultrasonic Test Units) or
pedestrian sticks. A pilot scheme was established in 2015 to replace the current visual
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inspection for RCF as eddy current technology provides a more reliable, accurate and
consistent means of identifying RCF. The Ultrasonic Test Units (UTUs) will provide
eddy current data along the route that the train takes, but the train borne inspection
process is not approved for use in S&C, and so pedestrian EC testing can be used to
record accurate data within these areas.

The Sperry Surface Crack Inspection System houses an eddy current roller search unit
(RSU), which contains ten sensors spaced across the width of the running surface of
the rail (illustrated in Figure 2.8), and is pressed down to ensure contact with the rail
surface. The sensors; known as probes or coils, are positioned at a predetermined
distance (lift-off ) above the rail, increasing or decreasing the lift-off distance impacts
the system’s sensitivity and penetration capability. High sensitivity of the system can
lead to indications of deep damage from an array of very small cracks, which leads to
overestimation of damage severity. On the other hand, the depth of penetration is of
major importance, since cracks over a given size cannot be reliably sized (in the Sperry
System the maximum depth of detection is 5mm). Variation of these parameters
considerably effects the eddy current response, and thus must be considered when
evaluating the reliability of crack sizing.

(A) Sperry Eddy Current Roller Search Unit
(RSU)

(B) Sperry Eddy Current Probe Con-
figuration (Whitney, 2020)

FIGURE 2.8: Illustration of Eddy Current Measurement System

Eddy Current testing is based on the principles of electromagnetic induction, which
are illustrated in Figure 2.9 (Bhagi, 2011). A primary magnetic field is generated when
alternating current is injected into an induction coil. When the coil is placed over a
conductive sample, Eddy currents are induced in the material. Those Eddy Currents
generate a secondary magnetic field opposed towards the primary field. Any changes
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in the conductivity of the material being examined, such as near-surface defects or
differences in thickness, will affect the magnitude of the eddy current. This change, or
more specifically the coil impedance is detected using either the primary coil or the
secondary detector coil, forming the basis of the eddy current testing inspection
technique (Hwang et al., 2015). Crack lengths are calibrated prior to inspection using a
test setup that mimics eddy current rail inspections as closely as possible.

FIGURE 2.9: Principle of Eddy Current Testing(left) and distortion of eddy current due
to crack, edge-effect, surface crack, and sub-surface void (right)., (Bhagi, 2011)

2.4 RCF Re-profiling

Rail grinding and milling are used in the rail industry to maintain the safety and
quality of the track by removing layers of the rail surface. Grinding is the most
common type of material cutting and surface generation process, which typically uses
an abrasive method for removing the rail material (Zhu et al., 2019). The metal is cut
through the action of a rotating grinding wheel including rubbing, plastic
deformation, cutting and chip formation (Zhang et al., 2020) as illustrated in
Figure 2.10 1. Though it is this mechanism of material removal that has raised some
concerns due to the levels of heat generated which may result in rail pre-fatigue or
burn of the rail surface (Yuan et al., 2021). In particular, Gu et al. (2015) found that
removal rate and surface quality is improved through the elevation of grinding
rotational speed, however the grinding temperature and hardness of rail will also
increase, causing surface burn to the rail.

In contrast, milling (shown in Figure 2.11) is a relatively new technique used in the
railway industry and can be described as a dry rotational cutting process. The method

1other types of grinding are oscillating grinding, or high-speed grinding (HSG), see (British Standards
Institution, 2018; Popović et al., 2022)
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is capable of a much higher level of geometrical accuracy than grinding and can also
remove several millimetre defects in only one pass (Kubin et al., 2019).

The value of these techniques are two-fold, firstly grinding (or milling) can remove
shallow cracks, or prevent them from propagating. For example, if grinding is
performed frequently enough to stall cracks in their early stages of growth (Phase 2),
this reduces the chances of cracks turning down into the rail. Secondly, by re-profiling
the rail transversely, grinding can restore the rail to its original profile to improve
contact conditions and vehicle dynamics. The original wheel/ rail profiles are
designed such that contact stresses are minimised where possible and can move wheel
contact to areas of the rail less susceptible to RCF. Typically we divide grinding
philosophies adopted by IMs as preventive and corrective (Grassie, 2005), these
approaches are described in the following sub-sections, which include the current
methods in use at Network Rail.

FIGURE 2.10: Rotational Grinding of the rail (Zhou et al., 2019)

Specifically, Network Rail have a range of machinery available to use for rail
re-profiling depending on the particular application. For example, the Loram C21
series have a high output and are used for Single Pass (SP) preventive grinding. In
order to target specific rail head defects, corrective grinding is performed using the
Loram SPML series of Speno RPS32 which enable Multi-Pass (MP) grinding.
Currently milling is performed using a Strabag leased Road-Rail Vehicle (RRV) that is
not compatible with UK signalling systems and therefore requires mounting on two
locomotives, this results in reduced productivity due to logistics and access
restrictions. NR are in the process of acquiring a Schwearbau milling train which has
significantly greater cost per shift but superior capability. The fleet also includes
specific Switches and Crossings (SC) grinding equipment (Harsco), that are used
where it is not possible to manoeuvre the plain line machinery. Table 2.1 demonstrates
the relative capabilities of each vehicle model, note that the costs calculated are
approximate.
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FIGURE 2.11: Rail Milling Wheel (Kubin et al., 2019)

TABLE 2.1: Network Rail Intervention Equipment Capabilities

Model
Removal
Depth

Speed Cost Purpose

per pass
(mm)

per pass
(m/hr)

per shift
(£)

Strabag RRV Miller 0.75 420 17500 Milling
Schwearbau Miller 5 350 35000 Milling

Loram C21 Series (PL) 0.2 12872 18626 SP Grinding
Speno RPS32 (PL) 0.1 4022.5 12373.51 MP Grinding
Loram SPML Series (PL) 0.1 4022.5 12373.51 MP Grinding

Harsco (SC) - - - SC Grinding
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TABLE 2.2: Current Best Practice Single-Pass Preventive Grinding Intervals (Magel
et al., 2014)

Curvature Rail Grade Preventive Grinding Interval
Sharp Premium 14-23 (15-25MGT)
Mild Premium 27-45 (30-50 MGT)

Tangent Intermediate 40-54 (45-60MGT)
Tangent Premium 91 (100MGT)

2.4.1 Preventive Action

Preventive rail grinding is a process of controlled artificial wear which seeks to restore
desired rail profiles and achieve the required depth of metal removal with minimal
grinding effort and steel wastage (Magel et al., 2003). In particular, and as already
noted, we often reference a concept known as the ‘Magic Wear Rate’, which is the
desired optimal metal removal rate achieved through the combination of natural and
artificial wear required to remove existing minor cracks and control crack growth.
Crucially here the objective is to prevent rail damage rather than correct for it, and
when applied effectively can be performed with a single pass of the grinding train,
and typically removes less metal than corrective actions. Preventive grinding is
generally understood to greatly improve logistics due to fewer passes and higher
machinery speeds, and is the most economical grinding strategy.

Numerous practices, particularly regarding how often to grind and how much metal
to remove at each cycle have been evolving since the late 1960s. Whilst initially
developed for removing corrugation in the rail, eventually philosophies of regular,
tonnage-based grinding emerged and established the process as being preventive
rather than corrective.

Kalousek et al. (1989) first proposed the use of a ‘Preventive Rail Grinding Strategy’
where the grinding cycles necessary to remove all initiating surface cracks are defined.
The idea was tested by Canadian Pacific Railway (CPR), by grinding up to 6 times per
year (i.e. at 10 MGT intervals), and field testing proved that this method would
control cracking and was considerably more economical than multi-pass grinding
strategies (Magel et al., 2003). Additionally in 1991, the Burlington Northern Santa
Fe (BNSF) line applied this strategy whereby grinding at intervals of 18-40 MGT were
introduced on curves and an interval of 35-60 MGT on tangent track (Magel et al.,
2003). The current single-pass preventive grinding intervals according to Zakharov
et al. (2001) are summarised in Table 2.2.

Additionally other strategies have been developed where there is heavy RCF on the
rail to start with and a more gradual approach to move towards a preventive strategy
is required, example of such programs are the ‘Preventive-Gradual Grinding
Strategy’ (Stanford, 2000) and the ‘Predictive-preventive’ (Harris et al., 2011).
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Outside of North America, Heyder (2014) carried out empirical studies on the
propagation of headchecks in the German railway network to better plan grinding
intervals. Zoeteman et al. (2014) studied the effect of various rail grinding regimes
over a period of 13 years on the Dutchrail network and showed that the interval
chosen for the grinding interventions is very crucial since the cracks grow at much
higher rates at the later stages of propagation.

2.4.1.1 Preventive Grinding at NR

Alongside other European IMs; and largely based on principles suggested in studies
conducted by the NRC on North American railway lines, Network Rail implement the
following cycles to re-profile rails with standard steel grad R260 to control HC defects:
a) after 15 MGT in curves, b) after 45 MGT in the tangent track (British Standards
Institution, 2018) (as illustrated in Figure 2.12). Depending on the track and traffic
characteristics, these cycles can be doubled for harder heat-treated rails (R350HT).

According to a senior RAM at NR this approach was introduced at NR circa 2004, and
has not been modified since. The implementation of the process is predominantly
manual since it relies on a look up being performed for each track section against a
curve register (which is currently performed by hand), and the latest information for
traffic is obtained. The grinding frequency is thus set according to the track curvature
and traffic for that section. Practically speaking, the process is not entirely precise due
to the logistics such as the inability to handle annual tonnages that are not constant
across each subdivision and staying on cycle on routes where sharp curves are miles
apart whereas the majority of sections are covered by mild curves (Harris et al., 2011).
It is also believed that the current grinding equipment may not be producing the
desired profiles which may prove the practice less effective, and it is not always
known whether the RCF cracks have been completely removed when grinding is
finished.

Whilst this approach is simple, and relatively straightforward to apply, it is based on
empirical data from studies completed outside of the UK network and assuming
heavy haul conditions. With the advance of monitoring capabilities and new sources
of data for detecting RCF severity, we propose that grinding intervals should be
informed using analysis of operational data and in particular the historical Eddy
Current Data. Instead of all curves and tangent sections being considered equivalent
in terms of their risk, the data could help to better categorise these sections.
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FIGURE 2.12: Current Preventive Grinding Strategy

2.4.2 Corrective Action

In the case of corrective methods, individual RCF cracks or sections of RCF are
detected and treated before there is a substantial risk of the rail breaking. Corrective
grinding typically involves several passes of the grinding machinery to remove rail
damage by RCF. Corrective action includes the detection by ultrasonic means of
defects that have developed from RCF cracks, as well as the technique pioneered in
UK since late 2000 of classification by visual means (Grassie, 2005).

2.4.2.1 Corrective Grinding at NR

Formally the policy for treating RCF is in adherence with Standard
NR/L2/TRK/001/mod07 (Network Rail, 2018a), which assigns Minimum Action
Code (MAC) to RCF sites depending on the most recent EC measurements and the
track category. Minimum Action Codes define the maximum period in which the
intervention work must occur and may further impose speed restrictions where the
risk of rail failure is perceived to be high.

However, some routes found the guidance to be overly conservative, generating huge
numbers of sites which required remedial actions, speed restrictions and cause
considerable network disruption. Anglia have thus proposed an alternative risk-based
approach which is illustrated in Figure 2.13 (Wilson, 2018). At the beginning of each
year the routes are assigned a number of milling and corrective grinding shifts that
can be used and they are responsible for determining which areas are prioritised to
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maximise productivity and minimise risk. The process set out in the following
sub-sections is intended to determine which sites can be milled and which sites must
be replaced and is applied only to the highest criticality sites: Heavy (H), Severe (S) or
Very Severe (VS). The procedure outputs the sites to be milled and the sites for
re-railing, and these sites are subsequently input to a planning procedure to acquire
the appropriate track possessions.

Light (L) and Moderate (M) sites are considered instead for corrective grinding where
fewer passes may be applied, in this case a risk assessment is not applied and all sites
are put forward for corrective grinding.

1. Capture Data: The engineer completing the risk assessment must manually
gather all the relevant data sources for each track length across the route. The
data required includes:

• EC Data: Most recent 22 yard site data are extracted from the Rail Defect
Management System (RDMS),

• Wear Data: vertical and side wear data,

• Defect Data: Latest UTU Run, defines the number defects over the site,

• Track Data: Curvature, track type, rail age, UTU inspection frequency,

• Traffic Data: Freight/ Passenger Traffic,

• Track Geometry Quality: 220 yard standard deviation data,

2. Data Processing:

• Filter Sites: Retain only Heavy (H), Severe (S) and Very Severe (VS) EC
Sites,

• Integrate different data sources: Aggregate the supporting sources over
each EC Site,

3. Site Risk Assessment:

• Calculate Site Inspection Score: this score is based on the defect data, track
geometry data and vertical and side wear,

• Calculate Track Risk Score: this score is based on the line speed, curvature,
tonnage, UTU frequency and rail age,

• Calculate the Overall Risk Score: the final score is a weighted average of
the above parameters, the weightings are defined by track experts,

• Determine Minimum Action Code (MAC) for Site:, and the site scores are
assigned to a Minimum Action Code (MAC) in accordance with Table2.3,
these mappings are defined by track experts,
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4. Decision: Determine where to grind, mill or re-rail: The remaining rail is
calculated, which is the (remaining depth - maximum crack depth):

• If the remaining rail > 1 mm: Mill,

• If the remaining rail ≤ 1 mm,: Re-rail,

Current Anglia ProcessCurrent Anglia Process

Expert Driven Site Risk 

Model

Expert Driven Site Risk 

Model

DecisionDecision

Track 

Data

Latest EC 22 

Yard Site 

Data

Determine 

Overall Risk 
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Expert Rule: 

Remaining Rail > 1 -> Mill

Remaining Rail <= 1 -> Rerail

FIGURE 2.13: Flowchart for Current Anglia Corrective Maintenance Process (Derived
from personal communication, Kevin Anderson- Network Rail Senior Asset Manager

for Anglia, June 6, 2019)

This risk-based approach is largely a manual procedure, which requires gathering of a
number of data sources, and additionally the reliance on track -experts to make
judgements on RCF risk based on these factors (also determined through expert
judgement). This thesis proposes an evidence based methodology for providing
information to track experts regarding the historic Eddy Current data and rates of
degradation with respect to rail damage and builds on the Anglia approach. This
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TABLE 2.3: Minimum Actions to be taken based on Anglia Risk Assessment (Wilson,
2018)

Defect Depth Defect Class
Minimum Action by Risk Score

60+ 59-53 52-47 46-40 39-33 32-26 26-0

0.1 ≤ 1.5mm Light RCF R26 R26 R26 R26 R52 R52 R52
1.6 ≤ 3mm Moderate RCF R26 R26 R26 R26 R52 R52 R52
3.1 ≤ 4mm Heavy RCF 3K 3L 3L 3S 3S 3T 3T
4.1 ≤ 4.9mm Severe RCF 3K 3K 3L 3L 3L 3S 3S
≥ 5mm Very Severe RCF 3C 3C 3K 3K 3L 3L 3L

TABLE 2.4: Minimum Action Codes from Table 28 (Network Rail, 2018a)

MAC Minimum Action to be taken Time Frame

R26 Retest (Visual & Ultrasonic) every 26 weeks
R52 Retest (Visual & Ultrasonic) every 52 weeks
3C Remove defect Within 13 weeks
3K Remove defect Within 26 weeks
3L Remove defect Within 52 weeks
3S Remove defect Within 2 years
3T Remove defect Within 3 years

could include simple processing of the Eddy Current data, or additionally the use of a
forecasting model to determine future levels of RCF damage.

2.5 Concluding Remarks

In this chapter we have described the phenomena of RCF in rails and subsequently
some techniques for managing it such as frequent monitoring, and rail re-profiling by
grinding or milling. The approaches used to treat RCF are generally divided into
preventive grinding or corrective grinding (or milling), and the approaches adopted
by NR have been discussed.

The current preventive strategy used by Network Rail is based on the track curvature
and tonnage passing over the track, and does not use RCF monitoring data to inform
this method of segmenting the track. The corrective strategy on the other hand uses
the latest Eddy Current data to determine where to intervene, however the basic
guidance is overly cautious and often disruptive to asset managers. In response to
this, Anglia have developed a risk assessment for prioritising the critical sites, which
again uses the latest Eddy Current data in addition to other parameters derived using
expert judgement. These approaches however do not employ information on real rail
degradation rates, rather they rely on expert judgement.
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Additionally it is observed that neither of the current strategies use any existing RCF
modelling approaches to inform their decisions, despite the availability of a software
tool known as Track-Ex which implements a simplified version of the WLRM. The
following chapter describes this method, along with some of the most commonly used
approaches for modelling RCF.

The proposals discussed in this research are aimed at augmenting these strategies by
using data mining and modelling techniques to determine patterns in the RCF
monitoring data (Eddy Current Data). In the case of preventive grinding, we focus on
deriving a new method of assigning scores to tangent and curved track sections based
on the measured data. With respect to the corrective strategy we propose a simple
method for using pre-processed data to determine rates of degradation to highlight
hotspots, and further to build a RCF prediction model using machine leaning
algorithms.





33

Chapter 3

Modelling Techniques Applied to
RCF Mitigation

Mathematical models can generally be characterised as physical (or mechanistic) or
Data-driven (DD). The physical (or mechanistic) models are based on the physical
laws describing the behaviour of the asset, whereas data-based modelling is based on
the analysis of the data characterising the system under study (Solomatine, 2008).

This chapter focusses on RCF modelling, the predominant physics-based approaches,
their uses and limitations and the absence of data-driven modelling in the field of
modelling RCF for maintenance planning.

3.1 Physics Based Modelling Techniques

In recent years, numerous models have been developed for the prediction of RCF
evolution, and owing to the physical complexity of the phenomena it is still a topic of
extensive research. Predominantly, two different groups of RCF damage prediction
models exist (Dirks et al., 2015), the models in the first group are able to predict
successfully the probability of RCF for many wheel-rail contact conditions (Burstow,
2004; Ekberg et al., 2002), and the second group enable the calculation of actual crack
growth through the use of fracture mechanics. Additionally the former category can
be subdivided further, owing to more and less complex modelling of wheel/ rail
contact, as described by (Krishna et al., 2021) we divide the models into Engineering
models and Finite Element (FE) Models:

1. Engineering Models:

• Global Models: In these models, the entire contact patch is considered to
quantify damage, such models include an energy dissipation approach
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known as the Whole Life Rail Model (WLRM) (Burstow, 2004) and methods
based on Shakedown Theory (Ekberg et al., 2002). Notably, these models
cannot predict the actual crack size, rather they are crack initiation models
which consider the risk of surface initiated RCF. However, there are some
works that have looked at combining these approached with fatigue-based
models relating RCF damage parameters with actual crack length, and
validating the results against Eddy Current
Measurements (Rodrı́guez-Arana et al., 2021). Additionally, ‘Finite Element
Models’ are able to predict crack growth through explicitly modelling the
individual cracks.

• Localised Models: These models discretise the contact patch surface area
into numerous elements and quantify the corresponding damage for each
element. Models such as the ‘Wedge’ (Trummer et al., 2016) and ‘KTK’
models (Dirks et al., 2015) are considered to fall in this category. In
comparison with fracture mechanics approaches, the computational
demands are significantly reduced, enabling their incorporation with
vehicle dynamics simulations.

2. Finite Element Methods (FEM): In this group of techniques, crack growth is
explicitly modelled using fracture mechanics and detailed finite element
analyses. Fracture mechanics approaches use the concept of configurational
forces (Simha et al., 2008; Pletz et al., 2014) for crack growth predictions. Crack
initiation criteria and crack growth models, embedding sophisticated
FEM-based simulation models allow predictions of crack initiation and crack
growth based on the complex elastoplastic stress-strain material response.
However such approaches are not practical for railway maintenance planning,
since they involve long computation times, so that only a few loading cycles at
specific locations in the railway network can be calculated in practice (Trummer
et al., 2016).

Whilst finite element approaches are the most complete in their treatment of
wheel-rail contact and crack growth modelling, they are not practical since they
involve such long computation times. To support maintenance planning of entire
networks, it is necessary to be able to consider larger areas of track, and a range of
operational conditions, rather than a few loading cycles at specific locations.
Therefore, we limit our focus here to models in the first category, which are designed
to be used in tandem with Multi Body Simulations (MBS) of vehicle dynamics to
provide damage quantification for numerous operating conditions. The following
sections will first describe the principle of Shakedown theory and the resulting
damage models, followed by the energy dissipation approach known as the WLRM.
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3.1.1 Shakedown Theory

In operation, rails are subject to continuous loading of wheel passages, under these
circumstances the rail material is repeatedly loaded above the elastic limit of the
material. The behaviour of the material at the wheel-rail contact points can be
summarised using the theories of Elastic-Plastic Shakedown as described in Johnson
(1985). These material responses are described below and summarised in Figure 3.1:

1. Perfectly Elastic Response: In the case of sufficiently small loads, there is a
perfectly elastic response, such that the yield stress σy is never exceeded,

2. Elastic Shakedown: With increased loading, the yield strength σy is exceeded,
resulting in a stabilised cyclic plastic flow allowing the material to ‘shakedown’
to a perfectly elastic response. This is possible below the elastic shakedown limit
(σEL),

3. Plastic Shakedown: Once σEL is exceeded, plastic deformation may take place
with every cycle of load such that a closed cycle of plastic strain is obtained
(plastic shakedown) without any accumulated plastic deformation,

4. Ratchetting: Alternatively, the plastic cycle is an open loop, whereby repeated
increments of unidirectional plastic strain are accumulated: a condition known
as ‘ratchetting’. This is the region where RCF cracks form. The accumulation of
deformation continues until the material ductility is exceeded and the material
ruptures (rail break).

FIGURE 3.1: Material Response: Elastic-Plastic Shakedown

Shakedown theorems are fundamental to the understanding of material response, as
they can describe whether plastic loading will result in continued plastic deformation
(ratchetting) or whether the material will shake down to an elastic state. In
particular, Ponter et al. (1985) discuss the derivation of shakedown limits for a
non-conforming rolling-sliding contact, and how these can be summarised in a
diagram known as a ‘Shakedown Diagram/ Map’. A ‘Shakedown Diagram’, as
illustrated in Figure 3.2 may be derived for any material, illustrating the variation in
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material response under different combinations of normal and shear loads within the
contact patch (Burstow, 2004). The y-axis is represented by a load factor known as the
normalised vertical load p0/k: which is the ratio of maximum normal contact pressure
p0, and the material ductility- which is represented by the shear yield strength k. The
x-axis represents the frictional forces in the contact using the friction coefficient ( f ) or
traction coefficient (µ) (which is calculated as the ratio between the traction force (T)
and the normal force (N)), and the boundary curve (BC) separates the region where
ratchetting occurs.

FIGURE 3.2: Shakedown Map (Krishna et al., 2021)

When applied to determine railway RCF, this approach is often used to describe
whether rolling contact conditions will result in the failure of the material due to RCF
or not. However, the shakedown diagram only presents the material’s response in
terms of the applied normal load and shear force coefficient (or traction coefficient, the
ratio of tangential to normal force). In many cases, conditions may vary so that they
require assessment against a number of shakedown limits. For example, the
shakedown diagram does not explicitly account for the effect of spin creep or creepage
so different shakedown limits would need to be used for varying contact
conditions (Burstow, 2004). Further, shakedown maps alone do not provide a means
for direct quantification of fatigue damage, rather whether RCF damage is occurring
or not. Subsequent approaches have derived different parameters from Shakedown
maps to assess the propensity for fatigue damage such as the ‘shakedown
exceedance’ (Burstow, 2003) and ‘surface initiated fatigue parameter’ representing the
effect of shear stress on the rail (Ekberg et al., 2002) which is illustrated in Figure 3.2.
In this approach a WP (µ, v) is mapped to the diagram, and the surface fatigue index
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FIsur f , is determined from the distance of this working point with the boundary curve
(BC).

3.1.2 The Whole Life Rail Model

The WLRM is based on the energy dissipated in the wheel-rail contact, which is
readily coupled with vehicle dynamics simulations and has been used widely within
the rail industry (Bevan et al., 2013; Bevan, 2020; Boyacioglu et al., 2018;
Rodrı́guez-Arana et al., 2021). Here, RCF damage is quantified from the energy
generated by the tangential forces in the contact patch arising from wheel/ rail
contact, which is assumed to shear the rail material.

The parameter, known as Tγ is commonly used in both wear and RCF damage
predictions (Bevan, 2020). It is the energy produced at the wheel-rail contact and
calculated from the sum of the products of the creepage and creep forces as defined in
equation below:

Tγ = Txγx + Tyγy + Mzwz (3.1)

where Tx, Ty and γx, γy are the tangential creep forces and the corresponding
creepages in the longitudinal and lateral directions respectively, and Mz and wz are the
spin moment and the corresponding spin creepage respectively (Bevan et al., 2013).

Extensive analysis of RCF sites enabled significant advancements into the
understanding of crack initiation, and the subsequent development of a function
relating the energy generated in the contact patch (Tγ) with RCF initiation risk, shown
in Figure 3.3. The function comprises of four major regions:

1. Tγ < 15N, below this threshold there is insufficient energy to initiate RCF,

2. Above this limit there is a risk that RCF cracks will initiate. Fatigue is initiated at
15N (J/m) and reaches its peak at 65 N.

3. The model additionally estimates the interaction of wear which may remove
RCF defects, occurring at high values of Tγ > 65N. The risk of wear is
considerably increased in this region, and equivalent to RCF at 175N,

4. At very high values of Tγ > 175N, wear is the dominant surface damage
mechanism,

The ‘damage index’ is determined from the damage function, and is a
non-dimensional number representing the proportion of the fatigue life of the material



38 Chapter 3. Modelling Techniques Applied to RCF Mitigation

FIGURE 3.3: WLRM Damage Function (Burstow, 2004)

exhausted by the contact condition, i.e. for a single load cycle (or wheel passage).
Failure occurs due to damage accumulation, and determination of the number of
cycles until failure (i.e. crack initiation) may be described using the Palmgren-Miner
Linear Damage Rule (Miner, 1945). The Linear Damage Rule states that failure occurs
when the cumulative damage caused by each loading cycle equals one.

More practically, the principles can be extended to determine the damage over a
specific site on the track, given knowledge of the accumulated traffic and contact
forces generated by each vehicle type. The total accumulated damage for each site
location (x, y) can be described by:

D(x, y) = ∑
n

mn ∑
i

f (Fnv)i,n (3.2)

Where f (Fvv) is the function relating damage resulting from wear and RCF to wear
number shown in Figure 3.3, i is the number of axles on each vehicle, n is the number
of vehicle types passing the site and m is the number of vehicles of each type passing
the site in one year.

The WLRM approach has been widely used within the rail industry due to its
simplicity, the ability to incorporate the effects of wear and the ease of coupling with
MBS software to generate results for numerous operating conditions. There are,
however some assumptions and limitations that must be noted when using the model:

• The form of the function shown in Figure 3.3 was tuned to six assessment sites
from the UK network, and therefore has been calibrated for rail steel grades at
these sites (R260), for specific wheel profiles (P8) and wheel steel grades
(R8T) (Burstow, 2004; Bevan, 2020),
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• The model assumes that the mechanisms driving RCF cracks operate in the
traction direction, such that Tγ output the model is signed based on the direction
of the longitudinal creep forces, and only regions where the force is opposite to
the direction of travel are deduced to cause damage. Whilst studies have shown
this provides good correlation on the high rail of curves, the assumption results
in very low levels of predicted low rail damage (Boyacioglu et al., 2018),

• It is further noted that the model is not intended to predict the length of cracks,
since it does not include many of the factors which govern crack growth; rather
the prediction of cracks as they initiate. So, whilst it may be fairly accurate when
cracks are small, as they develop the model may become less accurate.
Nevertheless, the model may be used as an indicator as to areas of the rail head
which are likely to see the largest cracks, since larger values of the damage index
indicate significant wheel-rail contact forces (Burstow, 2004).

Finally, whilst a significantly simpler approach than finite element methods, in order
to apply the method in practice, multi-body simulations for each scenario must be
conducted- which is not practical on a large scale and for engineers on a day to day
basis. Therefore, Network Rail have developed a software tool known as ‘Track-Ex’,
which simplifies this approach through the use of look-up tables known as Vehicle
Damage Matrices (VDMs), which present the wear number as a function of curve
radius and cant deficiency for each vehicle type (Dembowsky, 2013).

3.1.2.1 Track-Ex

Track-Ex is the Excel-based tool developed by Network Rail which incorporates the
empirically derived WLRM function to predict RCF on rails (Dembowsky, 2013). The
intention of Track-Ex was to provide a tool that was relatively easy to use and fast
when compared to full vehicle/ track simulation programs such as Multi Body
Dynamics (MBD) software VAMPIRE. Track-Ex enables users to quantify RCF and
Wear on a particular route given the expected traffic, route characteristics and
track-geometry measurements. Additionally, VAMPIRE is used to generate the forces
and geometry of the contact patch for multiple combinations of track and vehicle
characteristics. These are culminated in a series of tables known as Vehicle Damage
Matrices (VDMs), which act as look up tables for the model. Each VDM contains the
wheel/rail forces with respect to curvature and cant deficiency for a particular
combination of vehicle type, wheel/ rail profile, lubrication, vehicle type, and wheel/
rail friction condition, a basic illustration of these VDMs is shown in Figure 3.4.

A particular functionality of the software is to perform a ‘Route Fleet Analysis’ (RFA)
which calculates the damage on a route for each vehicle type present in the fleet, scales
the damage by the number of such vehicles in the fleet and aggregates (based on total
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FIGURE 3.4: Illustration of Vehicle Damage Matrices (VDMs) (Burstow, 2013)

traffic) the damage into a Grand Damage Index (GDI). The Damage Index for a
particular location (x, y) is calculated using the formula:

DI(x, y) =
max

∑
min

mn

max

∑
min

hwh,n(x, y)d[µwh,n(x), Tγwh,n(x)] (3.3)

where (x, y) are the coordinates of any point of the rail, and the damage is calculated
considering m vehicles of n different types with wh wheelsets on each vehicle. The
parameter h describes a function with elliptic shape over the contact patch, with its
maximum damage (d[µ, Tγ] value) at the centroid. The approach is summarised in
Figure 3.5:

1. Determine Single Axle Tγ: For each vehicle type, determine the Single Axle Tγ

via the appropriate VDM,

2. Determine Single Axle Damage d[µwh,n(x), Tγwh,n(x)]: Convert to a Fatigue
Damage Index using the Damage Function,

3. Calculate Scaled Damage: Sum the damage across the number of axles i for this
vehicle over the entire site which determines the approximate dissipated energy,
and multiply by the annual tonnage for this vehicle,

4. Calculate Total Damage: Sum the scaled damage over all vehicle types in the
site.

Whilst there are studies that indicate the approach indicates good correlation with
measured values; particularly on the high rail, it appears that for every day rail
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FIGURE 3.5: Track-Ex Damage Calculation Along Route
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maintenance decisions and preventive/ corrective maintenance planning the track
engineers on the routes do not use Track-Ex. It is believed that this may be for a
number of practical and technical reasons:

• Initial Conditions: Assumes that the rails are new at the beginning of the
analysis, and thus does not reflect the current condition of the rail. The output
therefore is not useful at distinguishing how bad the rails are currently vs. for
instance how they will look in a year, in order to make decisions,

• No Indication of Rail Condition: Following from the previous point, the model
does not provide any real time information regarding the rail condition, i.e. the
wear and actual EC data/ number of defects to understand the current state of
the rail. Rail engineers would then have to extract this information to make any
decisions,

• Assumption of Linear Damage Accumulation: The model assumes that
damage accumulates linearly based only on traffic. Therefore, for a section of
track; assuming that the traffic does not vary much from year to year, the
resulting damage predictions will be similar from run to run. The model cannot
inform the user, given the current rail condition, what the estimated damage will
be after a given interval, nor can it include the effects of grinding or rail renewal
within a given prediction period,

• Low/ Tangent Rail Predictions: The model predicts very low instances of
damage on the low rail, and none on tangent rails,

• Output Parameter: Note that the output is an indicator of RCF damage initiation
based on the estimated contact forces, it does not reflect the length or depth of
cracks (whilst there may be correlation), it is therefore difficult to compare with
real data. Thus, there is no indication of risk once a crack has initiated, and the
degradation is constant regardless of any other operational parameters other
than expected vehicle traffic. For example, it has been shown that once a crack
has initiated, higher degradation rates are anticipated in some locations
compared with others, despite similar traffic. Other parameters such as wear,
ultrasonic defect data and rail age contribute to degradation and should also be
considered in the maintenance decision,

• Usability: The software is difficult to use and apply on multiple track sections,
since it requires gathering different data sources and some of the track geometry
files are very large. Additionally track geometry files often have sections missing
which means analysis would be to be re-run using other files to determine the
damage on a particular section of track.
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However, it is understood that the major value of the model is understanding of the
impact of specific vehicle types and supporting vehicle design. For instance it is used
within the Vehicle Track Access Calculator (VTAC), which Train Operating
Companies (TOCs) and Freight Operating Companies (FOCs) can use to determine
the access charges they will incur for specific vehicles. The objective here is to
incentivise the operating companies to opt for more ‘track-friendly’ vehicles. It is also
an effective model for inference, enabling designers to understand the effect of
varying individual parameters such as rail type, vehicle type, track curvature, track
deficiency and traffic on RCF initiation.

3.2 Data-Driven Modelling Techniques

In contrast to the physics-based approaches, data-driven modelling does not require
an explicit understanding of the physical principles that drive the phenomena under
study. Rather, data-driven or empirical modelling is based on the analysis of the data
characterising the system under study. A model can then be defined on the basis of
connections between the system state variables with only a limited number of
assumptions about the physical behaviour of the system. Data-driven
Modelling (DDM) covers a wide range of domains such as statistics, probability, data
mining, machine learning and artificial intelligence. In this thesis, we propose an
approach for developing a data-driven model, which utilises machine learning
algorithms and RCF Eddy Current data provided by Network Rail to predict RCF.
The fundamentals of machine learning, and model development are addressed in the
following sections.

Note that for the purposes of predicting RCF evolution, as far as we know there are no
known, comparable strictly data-driven models (whilst it is understood that many of
the models do utilise some empirically derived relationships, the fundamentals of the
models are founded in physics). The DD models which are closely related to this work
however are summarised below, and the reader is referred to the references below:

• Statistical:

– Rail Life/ Break Prediction Modelling: Rail failure modelling using real
data to estimate distribution parameters (Dick et al., 2003; Palese, 2000;
Ben-Gera et al., 2016; Chattopadhyay, 2009; Kumar, 2006),

– Correlating track parameters to visual RCF damage: Study uses statistical
correlation analyses to relate parameters such as curve radius, rail profile
and traffic type to damage using visual RCF inspection data (Magel, 2011),

• Probabilistic:



44 Chapter 3. Modelling Techniques Applied to RCF Mitigation

– Determining the probability of crack initiation: using Monte Carlo
simulation, (Kulkarni et al., 2006; Jianxi et al., 2011),

– Maintenance Scheduling: Determine optimal preventive maintenance
strategy using Markov chains, with parameters estimated from actual
inspection and repair data from a railway line in Norway, (Hokstad et al.,
2005),

– Modelling Multi stage deterioration using Markov chains (Amari et al.,
2006)

• Machine/ Deep Learning:

– Economic Impact of prediction of broken rail using logistic
regression (Schafer, 2008),

– Rail Failure Prediction using logistic regression and decision trees (Sourget,
2006),

– Modelling of Squats:

* Squat risk model: A defect based risk model is presented in (Jamshidi
et al., 2016),

* Squat defect classification: Classification is achieved by means of a
Convolutional Neural Network (CNN) trained on the rail video data,
in combination with crack growth data collected from ultrasonic
measurements (Jamshidi et al., 2017),

* Squat decision support tool: (Jamshidi et al., 2018) propose a decision
support approach which takes into account both the actual conditions
of the rails (using axle box acceleration measurements and rail video
images) and prior knowledge of the track. The approach provides an
integrated estimation of the rail health conditions using expert based
systems in order to support the maintenance decisions for a given time
period. This estimation of rail health conditions facilitates grinding
planning of those segments that are prone to critical conditions using
Mixed Integer Linear Programming (MILP),

* Squat defect classification: Gao et al. (2018) use shallow machine
learning techniques to combine data from three inspection systems,
ultrasonics, eddy current based, and video data to provide optimal
detection and classification of squat type defects,

– Fumeo et al. (2015) propose a novel algorithm for the prediction of
Remaining Useful Life (RUL) of train axle bearings,

– Defect Prediction from UT data: Random Forests and Artificial Neural
Networks are used for defect prediction Guler (2014); Moridpour (2016);
Sharma et al. (2018),

– Predictive Maintenance Scheduling Policies (Lopes Gerum et al., 2019).
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3.2.1 Machine Learning

Machine Learning is a multidisciplinary field branching from artificial intelligence,
which combines elements of statistics, probability, computer and cognitive science. It
is recognised as an algorithmic approach that constructs systems that can learn from
data to make inferences and predictions around a particular phenomena. Or, as
Arthur Samuel once described it as the “field of study that gives computers the ability to
learn without being explicitly programmed”.

Fundamentally, machine learning revolves around the presentation of an optimisation
problem (Brunton, 2019). Depending on the specific task, broadly we seek to
determine the optimal function describing the input data subject to specified
objectives and constraints by use of such algorithms. The three critical components of
all machine learning algorithms are effectively summarised by Domingos (2012):

• Representation: How do we represent the problem such that it is interpretable
by a computer? For example: instances, hyperplanes, decision trees, sets of rules,
neural networks and graphical models.

• Evaluation: Objective/ Scoring/ Cost Function, how does one determine
between a good regressor/ classifier and a bad one? This evaluation method
provides a performance metric for model predictions.

• Optimisation: Search method, how do we find the highest scoring regression
function/ classifier? The choice of optimisation technique is key to the efficiency
of the learner (how quickly one converges to a solution), and helps determine
the outcome in the case that multiple optima exist. Examples of each of these
components are illustrated in Figure 3.6.
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FIGURE 3.6: The Three Components of Machine Learning (Domingos, 2012)

3.2.2 Categories of Machine Learning

There are two main classifications of machine learning algorithms: Supervised Learning
Algorithms and Unsupervised Learning Algorithms.

Supervised Machine Learning (SML) relies on the use of domain experts to assign
labels to the input data in order to ‘teach’ the learning scheme of the relationship
between the input data and an output variable or class. The ML algorithm generates a
mapping between the inputs and outputs which is iteratively updated in accordance
with the objectives of the algorithm. This annotated data set is known as the ‘training
set’, and the ultimate objective is to develop a function that is capable of generalising
on a much larger ‘unseen’ set of data (Shetty et al., 2022). More formally, we aim to
find a mapping function from a set of input variables (X) and an output variable (Y):
Y = f (X). The function is learned through use of an algorithm and a dataset which
comprises of labelled examples (xi, yi)

N
i=1. Where the output Y is discrete the aim is to

classify the data into groups: Classification, whereas predicting a continuous output is
determined using Regression.

Unsupervised problems are unlabelled, such that the output is unknown. The learning
scheme thus aims to determine patterns or classifications within the data (Lechevalier
et al., 2014). The predominant application of unsupervised learning is a technique
known as clustering, which identify inherent groupings within the unlabelled data
and subsequently assign labels to each data value (Marshland, 2014). Other
algorithms include Association Rules Algorithms which tend to identify rules that
accurately represent relationships between attributes (Alloghani et al., 2020), and
Dimensionality Reduction Algorithms such as Principal Component Analysis which aims
to reduce the number of features in a dataset (Campesato, 2020).
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Figure 3.7 shows the most commonly used machine learning algorithms today for
supervised and unsupervised tasks.

FIGURE 3.7: Broad Classification of Machine Learning Algorithms

3.2.3 Model Validation

A central requirement when building these computational models is to develop an
approach which has high prediction capabilities for the input samples, but should also
generalise well to previously unseen data. Poor generalisation can be characterised by
over-training. If the model over-trains, it just memorizes the training examples and it
will not be able to give correct outputs also for patterns that were not in the training
dataset. These two crucial demands are conflicting and are also known as the
bias-variance dilemma (Mitchell, 1999). This trade-off is illustrated in Figure 3.8 which
demonstrates the relationship with model complexity; or the capacity of a model to
represent associations between model inputs and outputs. The complexity of different
models can be compared by their number of parameters and the way these
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parameters interact in the model (eg, linear, non-linear). Models with high complexity
often tend to be too sensitive to the dataset used for training, and where different data
sets drawn from the same population are used for training, have a high error variance.
Models with high complexity and consequently high error variance tend to over-fit,
and therefore their generalisation capability is limited. In contrast, low-complexity
models may be biased to learning simpler associations between inputs and outputs
that might not be sufficient for representing true associations. Developing an optimal
model requires a trade-off between bias and variance by controlling model
complexity. Techniques such as bagging and boosting can also be used to control the
bias and variance of a model (Maleki et al., 2020).

FIGURE 3.8: The Bias- Variance Trade-off

In order to manage the problem of over-fitting to the training data, the data are often
partitioned into training, validation and test sets, and a performance measure (such as
Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square
Error (RMSE) or the R2) is used to reflect the model error when applied to data in
these sets. The error made by a model when applied to the data in the training set is
referred to as the training error, and the error made by a model when applied to data in
a test set is referred to as test error. The test error is used as an estimate for the
generalisation error (i.e., the error of the model when applied to unseen data).

Additionally the machine learning algorithm, as described above typically transforms
a problem into an optimisation problem and uses different methods to solve this
problem. The optimisation function is composed of multiple hyper-parameters that
are set prior to the learning process and affect how the machine learning algorithm fits
the model to data. Notably these differ from the internal model parameters, such as
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the neural network’s weights, which can be learned from the data during model
training (Claesen, 2015). In order to determine a set of hyper-parameter values which
achieve the best performance on the data, a process known as hyper-parameter
optimisation or tuning is adopted (Wu et al., 2019). Predominantly there are two kinds
of hyper-parameter optimisation methods, i.e., manual search and automatic search
methods. Manual search requires users to have more professional background
knowledge and practical experience, however as the search space grows this becomes
more and more difficult to manage, hence the development of automatic search
methods such as grid search. Grid search is an exhaustive search technique where the
machine learning model is trained with each combination of possible values of
hyper-parameters on the training set and evaluates the performance according to a
predefined metric on a validation set. Finally, grid search outputs hyper-parameters
that achieve the best performance.

Thus the validation data set seeks to tune the model hyper-parameters, whereas
model testing is used to estimate the performance of the final model on unseen data. It
is generally good practice to ensure that the data in the test set are not used during
training or model fine-tuning since this will lead to biased estimates, however in the
case of small data sets this is sometimes not possible.

There are many methods for splitting the data into appropriate training, validation
and testing subsets, but the most commonly used techniques are:

• Random: Selecting a proportion of samples for training and retaining the
remaining ones (holding out) as a validation set. Usually, we repeat this process
many times and the final estimation of the model performance is the average
performance on validation sets of all the iterations; the best-known method used
for this type of repartitioning of the data is probably the bootstrap as proposed
by Efron (1994).

• Cross-Validation (CV): is a data resampling method to assess the generalisation
ability of predictive models and to prevent over-fitting, and has two types which
are hold-out cross-validation and k-fold cross-validation (Schaffer, 1993).

Irreducible error, also referred to as Bayes error, is another type of error resulting from
the inherent noise in the data. Irreducible error is the lowest possible error achievable
for a given task using the available data. This error is independent of the model being
used and often cannot be mathematically calculated. It is often estimated by the error
made by a group of humans with the domain expertise for the task at hand. The
resulting estimate is considered as an upper bound for irreducible error.
Understanding these error types is important for developing and evaluating ML
models.
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3.2.4 Application of ML Algorithms for RCF Prediction

In this study, a central objective is to determine whether a useful RCF prediction
model can be generated using ML algorithms and operational Eddy Current data
which represents rail damage due to RCF. In particular, we seek to find a function
which relates a set of independent variables X; such as track curvature or cumulative
tonnage, with a target variable Y (or RCF damage parameter) derived from the Eddy
Current data representing observations collected along the track over time. The task
we present is a Supervised Learning Problem, since we have a set of observations with
features (independent variables) and corresponding labels (a target variable). The
target variable in its original form is a continuous measurement of crack depth (mm)
corresponding to a measurement date and 1 yard section of rail (this is further
described in Chapter 4). It is possible, using discretisation, to transform the
continuous target variable and generate a set of classes which presents a classification
task. Whilst the transformation may be helpful with regard to interpretability and
simplification of the learning task, in most cases however it introduces some loss of
information or discretisation noise (Rajbahadur et al., 2021). We therefore focus this
study on the Supervised Regression Problem.

Whilst numerous machine learning algorithms exist, this study focusses on a few of
those most prominent within the literature for solving the regression
problem (Caruana, 2006; Alzubi et al., 2018; Dey, 2016), These algorithms are
introduced here and a more in-depth discussion is presented in Appendix B:

1. Linear Regression (LR): Linear regression is one of the simplest and most
commonly used machine learning algorithms. It is a mathematical approach
which investigates the relationship between a dependent (target) and
independent variable(s) (predictor). The approach is to fit a line (linear
regression) or curve(polynomial regression) to the data points so as to minimise
the distances of data points from the curve or line. The most common method of
solving this problem is to use the method of ‘Least Squares’, whereby we fit
coefficients which minimise the least squares difference between the regression
function and the observations.

2. Random Forest (RF):

The random forest (RF) is a methodology derived from decision trees. A
decision tree is a non-parametric supervised learning algorithm which has a
hierarchical, flowchart-like tree structure, consisting of a root node, branches,
internal nodes and leaf nodes and can be used to solve regression or
classification problems (Breiman, 1984). Each of the internal nodes represents a
test on an attribute, for example in the case where we attempt to determine
animal type based on attributes such as the number of legs, one of the internal
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nodes may represent ‘Does the animal have more than 2 legs?’. Each branch
represents the outcome of the test, and each leaf node cannot be divided further
and consequently holds a class label e.g. ‘Rabbit’, ‘Dog’ etc. Different criteria can
be used to select the predictors and decision rules which define the nodes and
leaves, resulting in numerous different tree constructor algorithms which aim to
build an optimal tree. Trees can capture highly complex interaction structures in
the data and; if grown sufficiently deep, have relatively low bias. On the other
hand, they are noisy, high variance estimators which benefit from averaging to
prevent over-fitting to the training data. Methods such as random forests use the
output of multiple independent decision trees to reduce the overall
generalisation error (Hastie et al., 2009).

3. Support Vector Regression (SVR): Support Vector Machines (SVMs) can be
used for classification as well as regression problems, and the method has
increased in popularity due to its good generalisation performance, the ability to
determine a global minima, and sparse representation of solution. The principles
of the support vector machine are based on the structural risk
minimisation(SRM). This induction method seeks to minimise an upper bound
of the generalisation error, which consists of the sum of the training errors and a
confidence interval, rather than the empirical risk minimisation (ERM) principle
which minimises the training error (Vapnik, 2006; Cao, 2003). In practice the
algorithm builds an n-dimensional hyperplane which partitions the data subject
to an optimisation function and constraints. In addition where the data are
non-linearly separable, the data may be transformed to a higher dimensional
feature space using a kernel transformation enabling greater flexibility to the
algorithm.

4. K-Nearest Neighbours (KNN): is a non-parametric method, also known as an
instance-based or lazy learning technique which can be used for classification or
regression, and is particularly useful where there is little or no prior knowledge
about the distribution of the data (Hart, 1968). The KNN rule simply retains the
entire training set during learning and assigns to each observation a class or
value represented by the majority label or average value of its k-nearest
neighbours in the training set. The Nearest Neighbor rule (NN) is the simplest
form of KNN when K = 1.

5. Multi Layer Perceptron (MLP): The Multi Layer Perceptron (MLP) is a type of
neural network designed to approximate any continuous function and solve
problems which are not linearly separable. It is an extension of its predecessor,
the feed forward network and is generally applied to problems of pattern
classification, recognition, prediction and approximation. It consists of three
types of layers: the input layer of source nodes, an output layer of neurons (or
computation nodes) and one or more hidden layers. The input signal is



52 Chapter 3. Modelling Techniques Applied to RCF Mitigation

processed by the input layer, and the required prediction or classification task is
performed by the output layer. In between exist an arbitrary number of hidden
layers, which enable the modelling of complex function forms. The training of
an MLP is accomplished using the back-propagation algorithm (Rumelhart,
1987). As with a feed-forward network, the data first flows in the forward
direction from input to output layer, fixing the network parameters and
determining an error signal. This is followed by the backward phase, where the
error signal is propagated through the network and adjustments are made to the
network to minimise the error (Haykin, 2000).

In general, once the learning problem has been defined; regardless of learning
algorithm, the basic architecture of a supervised learning approach (or pipeline)
consists of:

1. Data Collection and Preparation: The primary task of in the machine learning
process is to collect the data believed to be pivotal in predicting the underlying
process,

2. Data Processing: Preparation of the data to ensure it is in a suitable format for
the given learning algorithm, data cleaning, transformation and integration
across differing sources,

3. Feature Selection/ Generation: Numerous features may be available following
the extraction of data, the most relevant must be selected and new features
which may act as better predictors may be formed as functions of the raw data,

4. Choice of Algorithm: Certain machine learning algorithms are more suited to a
particular class problem, selecting the best machine learning algorithm for the
problem at hand is imperative in getting the best possible results. The various
ML algorithms considered in this study are discussed in Appendix B.

5. Selection of Model hyper-parameters: Each machine learning algorithm
comprises of model hyper-parameters which control the learning process and
affect how the machine learning algorithm fits the model to data. They are
considered as external parameters, and differ from the internal parameters such
as model weights which are learned by the model during training (Claesen,
2015),

6. Define Training/Test Data: The data must be partitioned into training and
testing sets to enable model validation,

7. Model Training: a supervised learning algorithm iteratively calculates a
relationship between the input features and output through optimising of a cost
function,
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8. Model Evaluation: The trained model makes predictions on the test data and
are evaluated using performance metrics such as the Mean Absolute Error,
Residual Sum of Squares (RSS), and Coefficient of Determination (r2) amongst
many others.

Although shown sequentially here, in practice the approach is iterative, for example
preliminary model building may inform additional data processing steps that are
required to learn effectively from the data. Development of the model presented in
this thesis follows this development process, the first two steps are addressed in
Chapters 4 and 5, and the final steps are covered in Chapter 7.

3.3 Concluding Remarks

There are many physics based models in the literature, we have described only the
approaches that could be practically applied to making predictions on a network level
for maintenance planning. Track-Ex is an empirically based software tool developed
by NR which uses MBS simulations to determine contact forces along the rail, and the
WLRM damage function to estimate the resulting damage. It is a powerful approach,
but it is apparent that it is not used widely by route engineers for maintenance
planning due to both technical and practical reasons. Data-driven methodologies, in
particular machine learning algorithms offer an alternative solution to RCF modelling
where rail condition data is available. In the literature, however, particularly in the
case of utilising Eddy Current monitoring data, there are very few studies in this area
with work predominantly focussing on track geometry data, video data and
prediction of squat type defects. This thesis thus seeks to develop a purely data-driven
methodology using machine learning algorithms which combines the key drivers for
RCF initiation that may be incorporated into practical strategies for rail maintenance.
In order to reach this goal, the phenomena under study must be thoroughly
understood, as must the Eddy Current data and supporting data sources including
their characteristics and limitations. A data pre-processing methodology must be
devised to prepare the data for modelling and further analysis. Finally, the resulting
data should be analysed and a regression model developed using the proposed
machine learning algorithms and validated against a suitable test set. These elements
are all described in subsequent Chapters 4-7.
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Part II

Modelling Work
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Chapter 4

Experimental Data

4.1 Data Sources

Central to this study is infrastructure data, captured in a multitude of systems and
databases ranging in age, quality, and interoperability. For historical reasons,
advances in technology and the intended usage of the information, many of these
databases are not readily comparable, and some data streams are not contained in
relational databases at all. Since data engineering and management is a discipline in
itself, it is not always possible to efficiently manage growing sources of data.

Study of the literature and existing physics-based RCF modelling has culminated in a
selected range of data sources to be utilised in this study, these are as follows:

• Eddy Current Data: the Eddy Current data provides the response data at the
core of this study, as described in Section 2 EC technology captures RCF cracks
in their very early stages of growth. The Sperry Roller Search Unit, is onboard
the UTU, however is an entirely independently operating system to the
ultrasonics and other systems on the UTU. The data is collected and processed in
real-time, retaining only the yards of track locations where cracks are detected in
order to reduce the size of the data set,

• Track Data: defines spatial characteristics of the study route, the data is
comprised of homogenous track sections containing information such as track
curvature, cant, line speed, track category, amongst others. The data has been
collected from a table known as the Track Summary table (used as input to the
Track Model), which is constructed from information contained in several
databases:

– Curvature: is measured in units (1/m) since it is calculated from the curve
radius. Curvature is known to be a key driver of RCF, due to the steering
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forces required to guide the vehicles around the track, in particular on the
high rail of a curve. Note: There are some locations where the track
curvature is noted to be absolute 0, it is likely that this indicates missing
data as opposed to zero curvature,

– Track Cant (Super-elevation): is difference in elevation between the two
rails. Cant is designed into the track system, it helps the train to steer
around curves, keeping the wheel flanges from contacting the rail surface
which reduces friction and wear, canting also allows part of the lateral
acceleration to be provided by gravity, thus reducing the lateral forces on
the contact patch. It has been observed that by ensuring the rail is in a cant
deficiency, where the resultant force exerts on the outside rail more than the
inside rail, the RCF damage is reduced on most curves. Cant is measured in
(mm), as the amount of super-elevation required to bring the resultant force
into balance.

– Equivalent Mega Gross Tonnes per Annum (EMGTPA): is used to
represent the forces applied to rail by traffic, and represents the scaled
volume of traffic,

– Maximum Line Speed: higher vehicle speeds impose larger contact forces
on the WRI,

– Locations of Features the positions of discontinuous features such as S&C,
Stations, Tunnels are collected to account for potential variation in the
occurrence of RCF due to factors such as traction and braking, and different
maintenance practices in these areas,

– Rail Profile Type: refers to the rail profile, types include BS113A
Flatbottom, BS110 Flatbottom, UIC 60 Flatbottom,

– Rail Alloy: the specific rail materials, most commonly across the network
the rail is a medium manganese alloy of British origin and also a wear
resistant medium manganese variant, however there are some instances of
High Performance Rail being installed in recent years along with older
compositions.

– Track Category: each line of route is assessed on three key factors: the
speed required on the line, the annual tonnage, the equivalent tonnage (as
described above, it is a measure of the annual tonnage carried over a
section of track but accounts for variations in track damage caused by
different types of rolling stock). The track is assigned a category from 1A to
6 based on a function related to EMGTPA, Category 1A is the highest
(>125mph), and Category 6 is the lowest (<20mph). Figure 4.1 shows the
track category matrix.

• Wear Data: wear and RCF are inextricably linked, in particular due to some of
the positive effects wear can have on the initiation and propagation of RCF
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cracks. NR utilise the KLD labs supplied laser rail profile measuring unit, which
is mounted upon the UTU. Profile measurements such as vertical wear (head
wear), gauge wear, and field wear are captured by the device and data is
uploaded to a NR network drive following each recording run,

• Traffic Data: is extracted from the Actual TRAFFic (ACTRAFF) database to
represent the cumulative forces applied to the rails due to passenger and freight
vehicles. The data supplied indicates the passenger and freight tonnage and
number of trains travelling between two points on the network for a unique 4
week period. DeltaRail were responsible for collecting this data, and utilised
records of traffic movements through signals and freight charging. Reportedly
the data only covers 85% of the network, but it is more accurate than other traffic
datasets such as Net Traffic (NETRAFF) on the track that it does cover. The
ACTRAFF data additionally provides information on the breakdown of vehicle
types for each period. Note that the contract for collecting ACTRAFF data was
halted in 2019 and is awaiting a replacement methodology, thus there is no
traffic data available from 2019. Data for later periods must be estimated.

• Track Geometry Data: is captured by the Track Recording Vehicles (TRVs),
using an unattended track geometry measuring system with 47 sensors to record
data on how far the track is deviating from its ideal geometry,

• Defect Data: the presence of other defects and flaws in the rail are believed to
affect the likelihood of RCF initiation and risk of propagation. Ultrasonic sensors
fitted to the Ultrasonic Test Unit to find flaws in the rail is NR’s predominant
method for detecting severe defects,

• Interventions Data: maintenance actions applied to the rail will have a
significant impact on the level of rail damage detected by the EC RSU. For
example, rail replacements should entirely remove any traces of RCF, whereas
grinding and milling are intended to remove surface cracking and reduce
propagation, and so may be observable in subsequent measurements as a
reduction in the degradation rate or as an improvement (negative degradation-
i.e. the condition of the rail is better than in the previous measurement). The
sources of interventions data are from the following:

– ELLIPSE DATA: ELLIPSE is a system for managing and recording asset
maintenance activities. It is used by the maintenance function for the key
purposes of acting as an asset register, a work bank managements tool, a
means of scheduling work and allocating resources, a record of work
carried out, and to record asset condition and associated condition
monitoring data. The system tracks the majority of in-house maintenance:
activities such as tamping and stone-blowing are captured, most machine
grinding and milling are captured, however it is likely that there is some
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missing data since this work is completed externally. The grinding and
milling reports issued by the contractor are presented as individual PDF
files,

– Route Data: grinding databases captured by the routes independently are
also obtained. Entries have a start yardage, end yardage and a
measurement date. Note that we only have data from Anglia in this study,

– Integrated Network Model (INM): the rail replacement year is taken from
the INM. The INM is the geospatial view of the railway network, and is the
complete record of the track and its components, and is the most reliable
source for rail replacement data. Once rails are replaced the routes must
trigger a procedure to update the network model (INM).

FIGURE 4.1: The Track Category Matrix (Network Rail, 2018a)

4.2 Study Routes

The UK rail network is divided into five regions, Eastern, North West and Central,
Scotland, Southern and Wales & Western. These fives regions encompass the 14 major
routes, each of which are responsible for operations, maintenance and minor renewals.
This study focusses on track lengths from the Anglia and Wessex Routes from Eastern
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and Southern regions respectively, chosen due to their priority, amounts of RCF and
the size of data set. Note that any main-line railway location on Network Rail owned,
or maintained, infrastructure can be uniquely identified by a combination of
Engineers Line Reference (ELR), Track ID (Track ID (TID)) and mileage. Two lengths
of track were selected for this study, the first is Track Length 1: Anglia LTN1 2100 and
Track Length 2: Wessex BML1 2100, the details of these track lengths are as follows:

• Track Length 1 (TL1): Region: Eastern, Route: Anglia, ELR: LTN1, TID: 2100,
One of the motivations for selecting a track length from the Anglian route is due
to the maintenance team contributions with regard to understanding of current
rail maintenance practices. Additionally, the track length is part of the Great
Eastern Mainline (GEML), a 114.5-mile (184.3 km) major railway line on the
British railway system which connects Liverpool Street station in central London
with destinations in east London and the East of England. It is a major route for
freight services from Felixstowe, Tilbury and other locations, and therefore will
experience unique operating conditions with regard to loading and vehicle
types.

The line of interest is defined by ELR LTN, the London Liverpool to Norwich
Line. The line consists of LTN1 and LTN2, but only the former is included in this
study. LTN1 runs from London Liverpool Street to Trowse Junction (just outside
of Norwich), and we study the down-fast (2100) line only (i.e. moving from
London to Trowse). LTN1 2100 is 113 miles long, with areas of track which have
high ‘Track Category’ which makes it an ideal candidate for study due to the
quantity of RCF condition data that is available since tracks with a higher
category are measured more frequently.

The line is defined in Table 4.1 and illustrated in Figure 4.2, note that freight
traffic is diverted to Felixstowe at Ipswich.

• Track Length 2 (TL2): Region: Southern, Route: Wessex, ELR: BML1, TID: 2100
The second line under study is part of the South Western Main Line (SWML), a
143 mile major railway line between Waterloo station and Weymouth on the
south coast of England. The line predominantly acts as a passenger line, serving
many commuter areas such as south western suburbs of London and the
conurbations based on Southampton and Bournemouth.

Operating speeds on much of the line are relatively high, with large stretches
cleared for up to 100 mph (160 km/h) running. The London end of the line has
as many as eight tracks plus the two Windsor Lines built separately, but this
narrows to four by Wimbledon and continues this way until Worthing Junction
west of Basingstoke, from which point most of the line is double track. A couple
of miles from the Waterloo terminus, the line runs briefly alongside the Brighton
Main Line west branch out of London Victoria, including through Clapham
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Junction – the busiest station in Europe by railway traffic. Tourist special
services to a lesser frequency use the line, such as the Cathedrals Express.

The second line in this study is the Bournemouth Main Line (BML), consisting of
BML1, BML2 and BML3. This study covers BML1 between London Waterloo
and Northam Short Mile (Mount Pleasant). Once again BML1 2100 was selected
since it is a long, continuous fast line spanning 75 miles, it thus has a reasonable
amount of Eddy Current data for analysis. It has also been mentioned following
conversations with track experts as experiencing high levels of RCF, likely due
to the shear quantity of traffic passing through some of the major UK stations
such as Clapham Junction.

Figure 4.3, includes this line (termination just short of Southampton Central,
which then merges with BML2), and is described in Table 4.1.

FIGURE 4.2: The Great East-
ern Mainline

FIGURE 4.3: The South Western Main-
line

Additionally, according to the track summary data, TL1 consists of 86 curves and
52.6% of the segments are tangent, whereas for TL2 there are 77 curves with 65.4% of
the track segments being tangents. Figure 4.4 shows a comparison of the distribution
of curve radii for both track lengths, TL1 has considerably more curved sections with
curve radii between 1000 and 2000 m.
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TABLE 4.1: Study Route Line Definitions, reference data :

Route Track Length 1 Track Length 2
Region Eastern Southern
Route Anglia Wessex
ELR London Liverpool to Norwich

Line 1 (LTN1)
Bournemouth Main Line 1
(BML1)

TID 2100: Down-Fast 2100: Down-Fast
Start London Liverpool Street: 00 mi Waterloo: 00.00 mi
End Trowse Junction: 113.68 mi Northam Short Mile: 77.68 mi

Major Stations Bethnal Green: 1.10 mi,
Stratford: 4.03 mi,
Ilford: 7.28 mi,
Romford: 12.30 mi,
Chelmsford: 29.6 mi
Colchester: 51.52 mi,
Ipswich: 68.59 mi (Major Freight
Junction - Felixstowe),
Diss: 94.79

Clapham Junction: 3.74 mi,
Wimbledon: 7.19 mi,
Woking: 24.27 mi,
Basingstoke: 47.61 mi,
Winchester 66.39 mi,
Southampton Airport Parkway:
74.66 mi
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4.3 Eddy Current Data

The Sperry Eddy Current system automatically detects rail that contains RCF and will
initially divide the RCF into 1 yard sections. Rail without RCF is not reported. Each 1
yard section containing RCF is analysed automatically and the following information
is reported (Network Rail, 2018c):

• ELR, Track ID, GPS coordinates, single mileage (for individual yards) or start
and finish mileages (for grouped sites),

• The maximum crack depth of the deepest crack,

• Category of RCF in accordance with Table 4.2,

• The rail affected (left or right rail),

• The maximum depth measured by each of the 10 eddy current probes. The
probes are numbered 0-9 from the gauge across to the field side of the rail, as
pictured in Figure 4.5,

• Measurement Date.

The data are initially processed and filtered on board the Roller Search Unit, these are
then uploaded by Sperry into the RDMS following an inspection. The planned and
maximum intervals between EC inspections are set according to Track Category
(shown in Table 4.3 which corresponds to Table 11 from (Network Rail, 2018c)). In the
case of existing RCF sites, a follow up assessment is prescribed in accordance with
Table 10 in (Network Rail, 2018c) (not shown here), which indicates for example that
some Severe and Very Severe sites must be reassessed as frequently as 6 weekly (42
days).

TABLE 4.2: Network Rail RCF Severity Categories, Table 9 from (Network Rail, 2018c)

Crack Depth (mm) Severity Category
0.1 ≤ x ≤ 1.5 Light
1.6 ≤ x ≤ 3 Moderate
3.1 ≤ x ≤ 4 Heavy
4.1 ≤ x ≤ 4.9 Severe
Indicated 5mm deep (>5mm but beyond
measurement capability)

Very Severe
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FIGURE 4.5: Sperry RSU Probe Layout (Whitney, 2020)

TABLE 4.3: Network Rail Planned and Maximum Intervals Between Inspections using
Eddy Current Testing, Table 11 from (Network Rail, 2018c)

Track Category Planned Interval Maximum Interval
1A 8 weekly 18 weeks
1 8 weekly 18 weeks
2 16 weekly 36 weeks
3 26 weekly 60 weeks
4 26 weekly 60 weeks
5 26 weekly 60 weeks
6 52 weekly 130 weeks
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4.3.1 Response Variable

In order to answer the central questions driving this study, a suitable response variable
is required. Since the Eddy Current Data does not track the progression of individual
cracks, it is not possible to directly study rates of propagation of specific cracks.
Instead, the Roller Search Unit (RSU) captures the deepest crack detected over 1 yard
for each of the 10 probes. So, instead of considering the crack data as individual
events, the output data is an indicator that describes the degree of damage in each
yard of track. Figure 4.6 shows a three-dimensional illustration of a set of raw Eddy
Current data for the left and right rails. The x axis represents the spatial domain
(linear distance (yards)), the y dimension time (days) since the first inspection in the
dataset, and the z axis is the maximum probe measured crack depth (mm).

(A) Left Rail (B) Right Rail

FIGURE 4.6: Spatio-Temporal Illustration of 1 Yard Maximum Crack RCF EC Data

For this study the network is divided into 11 yard segments and the 1 yard cracking
data are aggregated over these track segments. Cracks are summed according to their
severity category (defined in Table 4.2) to generate
L(s,t), M(s,t), H(s,t), S(s,t), VS(s,t), Tot(s,t) which represent the total number of Light,
Moderate, Heavy, Severe, Very Severe and Total cracks in each segment s at time t
(spatio-temporal grid cell (s, t)). Additionally, a custom damage index is generated for
each segment which is a function of crack density and severity, DI2 = weighted sum
of cracks where each weight is dependent on the severity of the crack, the weights are
doubled with severity such that the resulting damage index DI2 can distinguish
between cracks of differing severities. DI2 is thus calculated as follows:

DI2 =
s+1

∑
s

L + 2(
s+1

∑
s

M) + 4(
s+1

∑
s

H) + 8(
s+1

∑
s

S) + 16(
s+1

∑
s

VS) (4.1)

This method of spatial discretisation is important in the realm of data-driven
modelling and can lead to improved predictive accuracy of models trained on this
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data (Cao Feng et al., 2014; Liu et al., 2002; Yang, 2007). Discretisation is applied for
the following purposes:

1. Reducing Noise due to positional uncertainties,

2. Enables the integration of multiple data sources. To formulate data-driven tasks,
leveraging of other significant data sources is important, especially where data is
captured in numerous systems operating at different ranges and frequencies.
Spatial discretisation assists with this problem and any discrepancies in position
across sources,

3. Reducing the problem sample space: spatial discretisation bounds the sample
space and hence reduces problem complexity, instead of predicting a response
variable for 1 yard, we increase the interval to 11 yards.

4.4 EC Preliminary Data Exploration

This section presents a summary of preliminary analyses performed on the raw Eddy
Current data for TL1 and TL2. It aims to facilitate a general understanding of the data
under study. The raw data is extracted directly from the Rail Defect Management
System (RDMS).

4.4.1 EC Data Overview

A summary of the range of both study routes is provided in Table 4.4, the ‘Distance
Range’ begins from the Route Origin (London Liverpool Street and London Waterloo
for TL1 and TL2 respectively), the measurement time range relates to the period of EC
inspections1. As previously described the frequency of inspection depends on the
Track Category and the previously measured condition of the rail; if cracks require
monitoring then they are measured at a higher frequency.

It appears that although Track Length 1 (TL1) covers a longer distance than Track
Length 2 (TL2), there are more cracking events detected in TL2. This may be a result of
the EC measurement frequency (more inspections will result in more cracks being
found), or that TL2 has higher propensity for RCF cracking.

The distribution of damage by severity is fairly consistent between the two routes as
illustrated by Figure 4.7a and Figure 4.7b, with more than three quarters of the cracks
observed being of Light and Moderate Severity. In both cases, the RCF severity

1EC inspections were introduced to the UK network predominantly in 2015, although the system was
piloted in some regions in earlier years.
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TABLE 4.4: Raw EC Data Overview

TL1: LTN1, 2100 TL2:BML1, 2100
Total Observations 118188 134933
Distance Range 576 - 200337 yards 501 - 136938 yards
Measurement Time Range 2015-10-07 - 2022-08-31 2015-09-09 - 2021-07-08

category with the third highest presence in the data is ‘Very Severe’, this is likely
because 5mm is the maximum readable depth for the equipment, so all cracks deeper
than this are also regarded as ‘Very Severe’. Many cracks will be reported as 5mm
depth but will in fact cover a wider range of depths greater than 5mm. Further, for
both track lengths, the category with the lowest number of measured cracks is ‘Severe’.

(A) TL1

(B) TL2

FIGURE 4.7: Distribution of Cracks by Severity by Percentage
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4.4.2 EC Damage Over Time

A summary of how damage is progressing with time is presented in this section,
Table 4.5 and Table 4.6 summarise the number of L, M, H, S, VS and Total cracks found
per year. The table also includes the total number of inspections carried out, and the
total yards covered by the eddy current monitoring system each year for the Left
Hand Rail (LHR) and Right Hand Rail (RHR); these quantities assist with explaining
the considerable variation in the number of cracks each year. An increase in total
cracks per year could be a result of increased levels of damage to the rail due to
increased traffic, reduced interventions, etc.., or it could simply be a result of more
inspections being carried out; generally speaking, more inspections result in more
cracks being detected. Noticeably, TL2 has a greater number of inspections carried out
per year than TL1. To account for this feature of the data, Figure 4.8a and Figure 4.8b
illustrate the rail cracks detected per year in each severity category as a percentage of
the total distance covered by the EC monitoring system that year. For both lengths of
track an overall trend of decreasing RCF cracking over time is observed. This
downward trend may be a result of improvements in intervention practices and RCF
management, or due to reduced inspection frequencies or changes in the detection
method (such as threshold modifications).

TABLE 4.5: Number of cracking events by year: Track Length 1 (TL1)

Year L M H S VS Total No.
Inspec-
tions

Dist.
LHR

Dist.
RHR

2015 3350 4495 683 164 513 9205 4 248954 249902
2016 13018 8087 1559 598 2365 25627 12 827189 889463
2017 5088 3334 547 208 924 10101 8 389137 381301
2018 7785 4407 673 220 848 13933 10 617215 645290
2019 11959 7508 1231 538 1744 22980 12 888431 918732
2020 5212 4529 724 327 875 11667 8 552337 553642
2021 6193 5429 1100 461 1695 14878 12 702039 723898
2022 4058 3475 872 301 1091 9797 10 522107 489210



70 Chapter 4. Experimental Data

2015 2016 2017 2018 2019 2020 2021 2022

Year

0.0

0.2

0.4

0.6

0.8
P

er
ce

n
ta

ge
of

E
C

In
sp

ec
ti

on
D

is
ta

n
ce

Light

Moderate

Heavy

Severe

Very Severe

(A) TL1

2015 2016 2017 2018 2019 2020 2021

Year

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
er

ce
n
ta

ge
of

E
C

In
sp

ec
ti

on
D

is
ta

n
ce

Light

Moderate

Heavy

Severe

Very Severe

(B) TL2

FIGURE 4.8: Illustration of Damage Evolution over Time



4.4. EC Preliminary Data Exploration 71

L
36.4

M

48.8

H

7.4

S

1.8

VS

5.6

2015 : 9205

L 50.8

M
31.6

H

6.1

S

2.3

VS

9.2

2016 : 25627

L 50.4

M
33.0

H

5.4

S

2.1

VS

9.1

2017 : 10101

L 55.9
M

31.6

H

4.8

S

1.6

VS

6.1

2018 : 13933

L 52.0

M
32.7

H

5.4

S

2.3

VS

7.6

2019 : 22980

L 44.7

M

38.8

H

6.2

S

2.8

VS

7.5

2020 : 11667

L
41.6

M

36.5

H
7.4

S

3.1

VS

11.4

2021 : 14878

L
41.4

M

35.5

H
8.9

S

3.1

VS

11.1

2022 : 9797

FIGURE 4.9: Severity of Cracking Events over Time: LTN1

L 47.1

M

29.5

H
6.6

S

3.0

VS

13.9

2015 : 13660

L 53.4

M
34.0

H

6.2

S

2.2

VS

4.1

2016 : 14903

L 48.3

M

37.2

H

7.2

S

2.6

VS

4.6

2017 : 7436

L

35.6

M

40.4

H
10.4

S

4.1

VS

9.5

2018 : 37794

L
40.1

M

39.8

H

9.4

S

3.4

VS

7.3

2019 : 37627

L
42.5

M

35.3

H

9.4

S

4.1

VS

8.7

2020 : 11495

L 46.9

M

34.9

H

8.2

S

3.2

VS

6.8

2021 : 12018

FIGURE 4.10: Severity of Cracking Events over Time: BML1
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TABLE 4.6: Number of cracking events by year: Track Length 2 (TL2)

Year L M H S VS Total No.
Inspec-
tions

Dist.
LHR

Dist.
RHR

2015 6428 4026 896 411 1899 13660 15 296951 289296
2016 7965 5074 923 332 609 14903 30 496217 592013
2017 3592 2769 537 193 345 7436 12 245949 235789
2018 13438 15279 3927 1559 3591 37794 31 663490 621644
2019 15077 14980 3544 1282 2744 37627 34 752637 782539
2020 4883 4060 1080 477 995 11495 19 301505 280635
2021 5633 4194 986 382 823 12018 25 508908 508526

4.5 EC Data Properties

Following the preliminary analyses, a number of notable properties were uncovered
from the EC data, these are described in the following section.

4.5.1 Presence of Space and Time

Eddy Current RCF cracking data have both temporal and spatial dimensions, broadly
data with these characteristics are known as Spatio-Temporal (ST) data. ST data are
found largely in fields such as climate and environmental science, crime, medical
research and transportation, and their scope are increasing exponentially. The data
differ from traditional numeric or categorical data due the complexity of ST data
types, the presence of dependencies between instances (autocorrelation) and the
variation of statistical properties with space and time (heterogeneity). Many widely
used statistical data mining techniques, such as linear regression, rely on the
assumption of independent and identically distributed (i.i.d) measurements, and
therefore may have limited applicability when modelling ST data (Hamdi et al., 2021).

According to Tobler’s first law of geography, “Everything is related to everything else,
but near things are more related than distant things” (Tobler, 1970). For instance, the
weather 1 mile away is likely to be more similar than 10 or 100 miles away. Yet it is an
observation that can equally be extended to the temporal dimension, for example the
weather tomorrow is likely to be similar to the weather today, more so than the
weather a week or a month ago. These phenomena are referred to as spatial and
temporal dependence, or are termed spatio-temporal autocorrelation when they occur
in both dimensions. Spatio-temporal data samples further tend not to follow an
identical distribution across the entire spatial and temporal domains, known as
heterogeneity, or non-stationarity. Instead, different geographical regions and moments
in time may have distinct distributions. Heterogeneity can further arise where data is
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available from different sources and on different spatiotemporal scales (Amato et al.,
2022).

Since many statistically based techniques; such as Linear Regression, assume
independence among observations and identical distributions (the i.i.d assumption), the
application of these techniques may not be well suited for this type of data. Hence,
whilst analysing these data it is important to consider the effect of autocorrelation and
variations in statistical properties and how these factors may impact the analysis.

Figure 4.11 represents a spatio-temporal density plot for RCF cracking. The xy axes
represent the spatial and temporal domains respectively, markers indicate the location
of observations, and the depth of background colour indicates the density of
observations (darker blue = high density, lighter blue = low density). The data exhibit
areas of densely clustered cracks, and further areas of no cracking, this is intuitive
since neighbouring segments have similar characteristics which drive crack formation.
Further, in the temporal domain the condition of the track segment at time t + 1, will
be related to the condition of the segment at time t. The obvious exception to this,
however, is where interventions have occurred.

FIGURE 4.11: Distribution of EC Crack Segments: Left Rail
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4.5.2 Inspection Frequencies

There are two predominant challenges with respect to the frequency of data collection:

• Low Inspection Frequencies: The time between inspections can vary from a few
weeks up to 6-12 months between measurements. The interval depends on the
category of track and the previous measurements at the site. Sparse
measurements in the temporal domains make it difficult to ascertain temporal
patterns and presents challenges when assessing the effectiveness of rail
interventions.

• Irregularly spaced measurements in space and time: Controlled or synthetic
environments enable data to be collected such that sensors are placed at regular
spatial intervals, and that data is sampled at regular time intervals (i.e. every
hour, every day, every week at the same time). This provides opportunities for
leveraging novel formulations for spatio-temporal data mining (Atluri et al.,
2017). For example, data instances can be expressed as 2D- time series data
(vector representation, for each sequence), 3D- cross-sectional data (matrix
representation at each time), 4D- spatio-temporal data (tensor representation).
Where intervals are irregular, estimation of missing data is required to formulate
instances as above, and therefore the data must be represented as points.

Figure 4.12 shows the yards covered by the UTU, with green indicating that the
Eddy Current equipment has successfully tested the track, and red representing
testing failure. The figure also demonstrates how measurements are distributed
in the temporal and spatial dimensions:

– Temporal: There are some measurements which occur close together
(approximately 6 weeks), whereas others have gaps >250 days, for example
in 2017 and 2020. TL1 is predominantly ‘Track Category’ 1 and 2 and
therefore has a planned EC measurement interval of 8 weeks (56 days), and
maximum of 18 weeks (126 days) and so this is unusual. After discussions
with NR staff (Personal Communication, Brian Whitney- Network Rail-
Track Technical Expert, 2022) it is understood that this is largely a result of:
a) the gradual addition of the Sperry RSU to all UTUs, which has only
occurred more recently, gaps in the data are likely because the monitoring
was carried out using a UTU with no EC system, or b) during the
COVID-19 pandemic and due to social distancing rules, ultrasonic and EC
operators were unable to work alongside each other, ultrasonics were seen
as the priority and therefore EC measurements were not taken.

– Spatial: In the spatial dimension three regions with differing inspection
frequencies are distinguishable, 0-100,000 yards, 100,000-120,000 yards, and
120,000-210,000 yards with a degree of overlap, these overlapping sections



4.5. EC Data Properties 75

may cause some difficulties in the analysis particularly if they are spatially
misaligned.

FIGURE 4.12: EC Tested/ Untested: Left Rail

4.5.3 Prevalence of Zeros/ Sparse Data

Notably, the majority of track sections present no cracking at all, and therefore there
are large areas of the track with no data. Additionally, where cracks are not detected,
this data is not reported by the system, it must be inferred by the lack of data, which
could also be attributed to absence of measurements at the position/time, or system
failure in this section, as opposed to no RCF.

The regions in the Figure 4.11 without scatter points indicate either missing
observations (the track was not monitored) or a lack of RCF (the track was monitored
and no RCF was detected). Some cases can be cross-checked with the UTU tested data
shown in Figure 4.12. The red points indicate where the UTU has travelled but the EC
testing failed, the green points represent successful recordings, and the yellow points
represent the overlaid EC observations.
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4.5.4 Interventions

Since EC data is collected directly from the operational environment, not only will it
represent a system of rail degradation due to RCF, but also will be subject to changes
from maintenance interventions such as re-profiling and rail replacement. When
observing a segment of track it may appear as if the track is degrading, and then
spontaneously it improves. It is assumed from the data that this is a result of grinding,
milling, spot replacements or full track renewal, however care must be taken since this
could also result from poor spatial alignment and other sources of noise.

Figure 4.13a and 4.13b show the 1D time series for the left and right rail at position
11,176 yards, with interventions represented by vertical lines, the rail surface damage
by the green series, and vertical wear by the blue. The left rail has no recorded
measurements at this location, but the right rail presents low levels of RCF. Following
interventions such as grinding or milling, it is anticipated that the levels of RCF would
reduce, or at least show decreasing degradation rates, and the vertical wear would
increase. On the other hand, after rail replacement it is expected that RCF and vertical
wear would dramatically change. The rail replacement data states that a replacement
occurred at this location in 2019, although it is not known when in 2019 that this
occurred. In this study all rail replacements are allocated to January 1st of the year.
The effect of rail replacement on the damage indicator DI2 at any point in 2019 is
difficult to detect since there are only measurements from 2017 and 2020. The wear
data on the other hand shows four measurements in 2019 with large drops in vertical
wear between measurement 1 and 2, and also between 3 and 4. It is therefore likely
that the replacement also occurred in the later half of 2019. Grinding data is also
presented, with data from the Anglia grinding database represented in yellow, and the
work order grinding data in grey. However there doesn’t appear to be any consistent
effect on the wear or RCF data, in fact in some instances the vertical wear appears to
reduce following a recorded grinding.
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FIGURE 4.13: Illustration on the effect of rail replacement for TL1 at 11176 Yards

Additionally, Figure 4.14a and 4.14b illustrate a section of rail where there is reported
milling in mid-2019. Once again it is difficult to detect a significant change in the RCF
data due to temporal frequency and relatively low levels of damage, however the wear
data confirms (through a spike in vertical wear) that rail has very likely been milled as
stated. The reliability of the grinding data must again be questioned, since there is no
obvious correlation between the wear or RCF data and the occurrence of grinding.

In summary, there are some high levels of variation in the temporal patterns of the EC
data which is likely as a result of interventions, and some measurement/ processing
noise. The interventions data further appears to be inconsistent and of low temporal
resolution, which is problematic if the analyses rely on this data. There are instances
where re-railing is indicated but the wear/ RCF data does not support this, and
vice-versa instances where a significant improvement is observed in the rail RCF
damage and/ or vertical wear but is not recorded in the intervention data. There is the
possibility of using a combination of wear and RCF data to infer the occurrence of
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FIGURE 4.14: Illustration on the effect of Rail Milling for TL1 at 52591 Yards

re-railing, as this does in some cases seem to be apparent, however the additional
problem is the varying temporal frequencies of the wear and RCF data, and any
spatial misalignments between the measurement sources.

4.5.5 Noise

Georeferencing errors result in misalignments between cross sectional eddy current
data, such that RCF cracks are reported to change location between measurement
runs. The other challenge is the misalignment of data from different sources:
information such as track curvature, cant, traffic density, locations of S&C and
interventions data for instance all have different sources for determining their position
on the track. Thus the problem is not only that RCF cracks will not align between
runs, but that RCF cracks cannot be accurately positioned on the track.
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Figure 4.15a and Figure 4.15b illustrate the geo-spatial misalignment between cross
sections of EC data measured on separate occasions, for a subset of TL1 data. In most
cases, the cross sectional peaks are clearly identifiable (shown in green), in particular
for the right hand rail. However there are some instances, such as 2015-12-02,
2016-05-20, 2016-12-21 and 2017-10-26 where the data is sparse and therefore difficult
to ascertain identifiable features to align. The 2016-03-23 cross section is clearly
spatially shifted from some of the preceding and following cross sections, and should
be moved some 500 yards farther down the track. These figures also indicate the
localised regions of spatio-temporal correlation in the data, illustrating the similarities
in cross-sections, and the clusters of RCF in space, the cross-sectional correlation can
be utilised when re-aligning the data. Failure to re-align the data may result in highly
anomalous results, especially when generating rates of change.

Further, there are numerous processing stages performed by the Sperry system
on-board the UTU which generate the raw data made available for this study. Over
the years, thresholds such as the lift-off distance (introduced in Section 2.3.2) which
represent the distance of the probes above the rail in order to optimise for penetration
ability vs. sensitivity to cracks may have changed which may present some
inconsistencies over time. Additionally, there are reports of occasions where other
conductive materials, such as remnants from ground rail interfere with the Eddy
Current measurement system.
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(A) Left Rail

(B) Right Rail

FIGURE 4.15: Spatial Misalignment
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4.5.6 Modifiable Area Unit Problem (MAUP)

Scale effects in space and time are a challenging issue in spatio-temporal data analysis
and mining (Venkateswara Rao, 2012). MAUP affects result when point-based
measures are aggregated into districts, the resulting summary values are influenced
by both the shape and scale of the aggregation unit.

As described in Section 4.3 the EC data in raw form can be represented by a point
(d, s, t) where d represents the maximum crack depth over a 1 yard track section s,
detected at time t. Whilst the temporal granularity will remain unchanged due to the
temporal irregularity and low frequency of measurements, the data in the spatial
domain are numerous, and the data at the 1 yard level of granularity are likely to
result in high levels of noise and thus will be difficult to analyse. In the spatial domain
therefore, aggregation is applied. However, the aggregation window will be constant
and as low as practical to ensure minimum bias but also enabling a sufficient
reduction in noise and the ability to integrate the data reliably with other sources.

4.6 Concluding Remarks

This chapter has introduced the data under study, some preliminary analyses, but
most significantly the challenges and properties displayed in the Eddy Current data.

The Eddy Current data has dimensions in the spatial and temporal dimensions, and
thus may present characteristics such as spatial and temporal dependencies
(autocorrelation), and variation in statistical properties in space and time
(heterogeneity). These features must be considered, particularly when making
inferences using models that assume independence amongst observations, and further
the use of validation schemes that also may make independence assumptions.
Additionally, the data are irregularly spaced in time and space which means that
learning instances for presentation to machine learning algorithms must be
represented as 1D points rather than using novel representations that are available to
spatio-temporal data such as time series (2D), rasters (3D) or tensors (4D). The
irregularity may also cause issues with regard to correcting for other issues such as
noise and misalignments. Some of the most significant problems with the Eddy
Current data however include the presence of noise and interventions, which are
directly addressed in the following chapter using alignment methods, smoothing and
outlier detection. Spatial misalignment in particular presents an issue for analysing
degradation rates, and therefore will inhibit any meaningful analysis and generate
unreliable models if used in its raw form. Additionally the presence of interventions,
and the inconsistent, unreliable data on rail replacements, grinding and other rail
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maintenance activities mean that assumptions may be required for estimating when
interventions have occurred in order to determine degradation rates.

In order to successfully implement a data driven methodology, it is fundamental that
these challenges are addressed. The following chapter summarises the various
pre-processing techniques that have been employed to satisfy these goals and ensure
the data is suitable for extracting useful insights.
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Chapter 5

Data Pre-Processing

Data pre-processing is a critical step in ensuring that the data are provided in a
suitable quantity, structure and format for data mining. Data mining is a process of
extracting knowledge from real data sets, which in reality are often scattered, noisy
and even incomplete. The quality of these data can have a significant influence on
subsequent analyses and data mining models, and thus various pre-processing steps
have been developed to ensure the data meet the input requirements of the model,
improve the relevance of the prediction target, and make model optimisation
simpler (Li, 2019).

The proposed pre-processing methodology for the Eddy Current, Wear, Track,
ACTRAFF and Defect data is depicted in Figure 5.1. Specifically, Eddy Current data
processing is addressed in Section 5.1, whereas the additional data sources are covered
in Section 5.2.
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FIGURE 5.1: Data Pre-Processing Methodology

5.1 EC Data Processing

As described in Chapter 4, there are several characteristics of the Eddy Current Data
which make the application of data mining techniques difficult and unlikely to yield
useful results if applied directly. The purpose of this section is to describe some of the
proposed techniques for addressing these problems, the raw data is denoted: Praw, the
discretised data: Pseg, and the final processed modelling data set is: Ppro,w where w is
the applied smoothing window. The full processing methodology is illustrated in
Figure 5.1, here we describe the Eddy Current Data processing steps:
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1. Data Extraction: The 1 Yard Historic EC Data are extracted from RDMS, we
denote this dataset: Praw,

2. Data Cleaning: This step includes:

• Conversions: Converting discrete data to categorical data types,

• Missing Values: Identifying Not a Numbers (NaNs), which are values
which are missing or undefined, determining a method of filling these
values and also removal of duplicates,

• Check Ranges: Ensuring data ranges are reasonable,

• Date Compression: EC recording runs performed on consecutive dates for
different lengths of track are combined in order to generate longer
‘continuous’ lengths of track data for analysis, and to reduce any difficulties
with overlapping data when calculating rates. In order to combine signals
that should be considered as occurring on the same date to improve the
ease of analysis a time window must be chosen. We know that in most
instances, the same site will not be reassessed more frequently than
approximately 6 weeks (42 days), using this knowledge, and a preliminary
look at the data 20 days was selected for this data set since it picked up the
majority of clearly anomalous cases, however this may change depending
on the input data set,

• Timescale: Timestamps are converted to a continuous daily time scale, the
earliest date in the dataset represents the first inspection for this sample,
and is thus denoted 0 days. All the other dates are converted with reference
to this first inspection date.

3. Data Discretisation: As noted in Section 4.3.1, the locations of cracks are
described by linear yardage that assume a continuous value between the origin
and total track length. i.e, cracks can be detected at 10 yards, 10.5 yards, 10.2
yards etc. Discretisation is applied in order to reduce the sample space, and
hence problem complexity, and enable integration of independently collected
data sources (such as the track spatial characteristics, etc.) using a common
spatial reference frame. Thus each observation will represent an 11 yard
spatio-temporal cell, containing Light, Moderate, Heavy, Severe and Very Severe
cracks, which can be mapped to other spatial and temporal parameters. Note
that the spatial dimension is regular but the temporal domain is irregular. 11
yards represents the lowest resolution for which other data sources are available,
it is commonly used to discretise the NR network, and therefore is selected for
ease of integrating with other data sources which are required for subsequent
analysis.

To discretise the data, the track is first divided into equally sized segments (11
yard segments) and the Eddy Current observations with common time stamps
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are aggregated over each spatial segment (s, s + 1), where s represents the index
for the starting linear position of a segment, and s + 1 the end position. The
aggregations applied to observations at time t, over spatial segment (s, s + 1) are
as follows:

(a) Maximum Crack Depth- DImax: Maximum Crack Depth (mm) of cracks in
segment (s, s + 1))

(b) Total No. Cracks in Segment, DIcount: Total number of all cracks in segment
(s, s + 1)):

(c) Damage Indicator, DI2 is a weighted sum of cracks where each weight is
dependent on the severity of the crack, this is intended to generate larger
damage values where the severity is high in order to distinguish between
high density and severity:

DI2 =
s+1

∑
s

L + 2(
s+1

∑
s

M) + 4(
s+1

∑
s

H) + 8(
s+1

∑
s

S) + 16(
s+1

∑
s

VS) (5.1)

where L, M, H, S, VS represent the total number of observations in each of
the Light, Moderate, Heavy, Severe and Very Severe categories.

For example a row of data may look like:

TABLE 5.1: Example of Discretised EC Data

Start End L M H S VS Sum Max. Depth (mm) DI2
11 22 1 3 0 4 0 8 4.2 39
22 33 2 3 1 2 1 9 5 44

The resulting discretised dataset is denoted as Pseg,

4. Alignment: A major shortcoming affecting the EC measurements is geospatial
misalignment. Largely this is historical due, in-part to some manual operations
with regard to synchronising GPS signals with mileposts. Data cross-correlation
is utilised to perform alignment between Eddy Current runs. Care must be taken
with alignment parameters due to the temporal frequency of EC signals which
results in potentially large run-run variations causing large shifts to be
recommended to maximise total signal cross-correlation. The methodology is
described further in Section 5.1.1,

5. Outlier Analysis: The Local Outlier Factor (LOF) is a distance-based approach
in which the density of regions in the data are computed, and the instances in
the low density regions are declared as outliers. Data points with high LOF have
more sparse neighbourhoods and typically represent stronger outliers, unlike
data points belonging to dense clusters that usually tend to have lower LOF
values Lazarevic (2005). The methodology is described further in Section 5.1.2,
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6. Smoothing: Also known as curve fitting, or low pass filtering, smoothing is
intended to detect trends in the presence of noisy data, and includes techniques
such as clustering, regression and binning (Alasadi, 2017). The outcome is
essentially noise reduction, which, in its simplest form eliminates the extreme
evaluates of the signal, giving in effect the reduction of average magnitude of
the signal (Kowalski, 2018). Smoothing improves data quality by replacing the
noisy irregular signal with the new smoothed signal which probably better
describes the measured phenomena. The methodology is described further in
Section 5.1.3,

7. Feature Engineering: In machine learning, a sufficiently descriptive feature set
is critical for the explanatory or predictive power of a model. Feature
engineering is the practice of constructing suitable features that lead to
improved predictive and explanatory performance (Nargesian et al., 2017).
Additional features derived from the EC data are described in Section 5.1.4,

5.1.1 EC Alignment

Georeferencing errors in the Eddy Current equipment are known to result in spatial
misalignment between recording runs. For instance, consider subsequent damage
measurements Dsi ,tj , which represents an observation occurring in spatial cell si at
measurement time tj, and Dsi ,tj+1 which corresponds to the subsequent observation in
time recorded in spatial cell si. In the presence of spatial misalignments between
recording runs, these observations may have in fact occurred in different spatial cells.
If this is occurring repeatedly in the data, it will introduce misleading patterns and
results which are calculated from analyses and learning algorithms based on these
data.

5.1.1.1 Theory

Techniques developed in the realm of signal processing have been utilised in many
domains to re-align signals. These techniques depend on the assumptions regarding
the nature of the misalignment, and differing measures for determining signal
similarity. For example, temporal signals can be aligned using techniques such as
dynamic time-warping, which assume shifts and distortions in time to determine the
optimal alignment between two sequences under certain restrictions (Müller, 2007).
However in this case, we have spatial cross-sections of data corresponding to different
measurement times, which are believed to be constantly shifted in space, rather than
non-linearly distorted.
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A basic measure of similarity between two signals as a function of the space or
time-lag between them is cross-correlation. The cross correlation of the discrete time
signals X j[m] and Xk[m] for a spatial or time lag n is expressed as:

RX jXk [n] =
∞

∑
m=−∞

X j[m]Xk[m + n] (5.2)

The maximum (peak) cross-correlation occurs when the lag between the two signals is
zero, and indicates the initial shift between the two signals. When the lag between the
signals is zero, the positive peaks of signals X j[m] and Xk[m] are aligned, and thus
maximally contributing to RX jXk . Similarly, when the negative peaks of signals X j[m]

and Xk[m] align, they also make a positive contribution to RX jXk . Thus, the maximum
of the cross-correlation function will occur when the two signals overlap, and will
depend on the magnitude of the two signals, i.e., the peak-to-peak magnitude, or
energy, of both signals (Potas et al., 2015).

The selected approach uses a ‘naive implementation’ of cross-correlation analysis to
align multiple signals, where, rather than calculating the cross-correlation between all
signals, the relative shifts are estimated with respect only to a Reference signal, Xβ.

5.1.1.2 Application to EC Data

For each track length TL1 and TL2 a methodology is applied to align multiple Eddy
Current signals, which will be termed spatial cross-sections or signals interchangeably.
Note that we refer here to the discretised 11 yard Eddy Current data (Pseg).

Rather than the simple illustrated case of aligning two cross sections of data, the aim
here is to align N EC signals. Assuming that these each of these N signals is shifted
with respect to the others, it is not possible to estimate the set of absolute drifts
δ1, δ2, ..., δN . Rather, the relative drift of the jth and kth signal δjk = δj − δk is estimated.
Thus, in this study we estimate the relative shifts of the N − 1 remaining signals with
respect to a selected reference signal, Xβ.

The reference signal, Xβ will determine the alignment of all other signals, and
therefore it is important that it carries sufficient information to enable effective
alignment performance. The alignment procedure here includes a method for
determining a suitable reference signal which involves calculating various signal
characteristics such as the damage variation and the number of peaks in the signal.

Additionally the procedure must address the problem that each signal covers different
portions of the track length. Some may cover 0-50000 yards, whilst others only cover
20000 - 50000 yards. The data are zero-padded, and this will result in low
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cross-correlation between these signals in the regions where one signal is assumed to
be zero.

To account for this the signals are divided into spatial clusters before alignment, and
each shift is constrained using a maximum shift threshold, ∆.

The parameters for these procedures, such as the optimum reference signal Xβ∗, the
optimal number of partitions (clusters) required to divide the data κ∗, and the optimal
maximum shift ∆∗must be estimated empirically from the data in order to maximise
the quality of the resulting alignment of all signals. A popular measure in the
literature for establishing the alignment accuracy between two signals is the Pearson’s
Cross Correlation coefficient (r) (Korifi et al., 2014). Given paired data
(x1, y1), ..., (xn, yn) consisting of n pairs, rxy is defined as:

rx,y =
∑N

i=1[(xi − x̄)(yi − ȳ)]√︂
∑N

i=1(xi − x̄)2 ∑N
i=1(yi − ȳ)2

(5.3)

where n is the sample size, xi, yi are the individual observations indexed with i, x̄ and
ȳ are the sample means for x and y (Berman, 2016).

In this study; to determine the quality of the alignment between the N signals, the
average of the Pearson’s coefficient for each signal with reference to the Xβ is
calculated, (ρ = ∑ Rj/N). The reference signal and maximum shift threshold are
selected to maximise this Performance Indicator (ρ). The optimum number of clusters
κ∗ can subsequently be determined by maximising the average of our performance
indicator ρ across the clusters, i.e. (∑κ

i=1 ρ/κ).

The full procedure for aligning Eddy Current cross sectional data is described below
and in Figure 5.6. Note that we assume for each cluster the shift is constant across the
cluster, and further that the left and right rail shifts are the same:

1. Select input data for alignment: the data is first segmented into clusters of
observations which cover similar portions of the track. For this study the
procedure will be followed using 1, 2, 3, 4, 5 and 6 as the total number of clusters
κ, this level of segmentation should be sufficient to maximise alignment
accuracy:

• Choose number of sub-sections (clusters) from κ = [1, 2, 3, 4, 5, 6]

• Use the K-Means clustering algorithm to compute clusters in the data based
on the linear distance of each observation, an illustration of the resulting
clusters where κ = 3 are shown in Figure 5.2.

The following steps (2 and 3) are performed for each total number of clusters
κ = [1, 2, 3, 4, 5, 6], and each cluster i ∈ [0, ..κ]
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FIGURE 5.2: Data Segmented for Alignment: 3 Clusters

2. Identify 3 ‘Best’ Reference Signals [Xβi1 , Xβi2 , Xβi3 ]: the Reference signal must
contain sufficient information to enable effective signal alignment,

• Compute Signal KPIs: Key Performance Indicators (KPIs) are derived for
each signal in cluster i in order to determine the ‘best’ signal for using as a
reference, these are as follows:

– Total No. Signal Peaks: a peak or local maximum is defined as any
sample whose two direct neighbours have a smaller amplitude, the
basis of using this as an indicator of a ‘good’ reference signal is that a
signal with a high number of peaks is easier to align. In this study,
based on some basic analyses, a peak is determined to exceed a
threshold of DI = 3, and separated by 300 track segments (3,300 yards),

– Difference between Start and End Positions: a reference signal should
span a reasonable distance,

– Observation Count: A reference signal should have a large number of
observations which can be aligned to,

– Signal Variances: Var(X1), Var(X2), ...Var(XN), a signal with very low
variation is difficult to align to since the algorithm will find it difficult
to distinguish signal characteristics,

• Scale Data: Scale the performance indicators between [0, 1] using a
maximum value scaler,

• Rank Signals: Determine the rank of each signal based on the 4 parameters
in order of importance: [Total No. of Peaks, Signal Variance, Difference between
start and end yardages, Observation count],

• Assign 3 Reference Signals for cluster i: the top three ranked signals
Xβ1i , Xβ2i , Xβ3i are selected for input to the alignment procedure,



5.1. EC Data Processing 91

3. Align Signals in Cluster i, for each of the 3 reference signals:

• Compute Shifts: For each maximum shift:
∆ ∈ [50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000], and
Xβi ∈ [Xβ1i , Xβ2i , Xβ3i ], the objective is to determine the N − 1 spatial shifts
δ1, ...δN−1 which optimise the left and right rail cross correlation functions
between signals Xj and Xk:

rj,k =
∑S

s=1[(Xs
j − Xj¯ )(Xs

k − Xk¯ )]√︂
∑S

s=1(Xj − Xj¯ )2 ∑S
s=1(Xk − Xk¯ )2

(5.4)

where j represents the index of the reference signal, and k the index of the
remaining N − 1 signals to align, subject to the constraints:

δle f t ≤ ∆

∩ δright ≤ ∆

∩ δle f t = δright

(5.5)

where δle f t and δright are the calculated left and right hand shifts. These
constraints reflect the limit on the upper bound for the spatial shift of the
signal, and ensure that both the left and right rails are shifted by the same
amount,

• Shift each Signal shift each of the N − 1 signals in time by calculated shifts
δ1, ...δN−1, and calculate the resulting vector of correlation coefficients for
the left and right rails: R[i, Xβi , ∆] : rβ,1, ...rβ,N−1 where β ∈ [1, 2, 3]

4. Calculate the performance for each set of parameters: [κ, ∆, i, Xβ]: For each
number of clusters, cluster index, reference signal and maximum shift, the
Pearson’s Cross Correlation coefficient is calculated between the reference signal
and each of the remaining n− 1 signals for each rail independently. These
coefficients are mean averaged to determine an indicator for the left and right
rails ρle f t = ∑N−1

k=1 Rkle f t /N and ρright = ∑N−1
k=1 Rkright /N, which are then summed

to generate a joint performance indicator ρ. Figures 5.3a and 5.3b illustrate these
results for κ = 4 and κ = 5 respectively.

5. Select Parameters which Maximise ∑κ
i=1 ρ/κ: Select parameters [κ, ∆, Xre f ] for

the final alignment. Table 5.2 indicates the parameters which maximise ρ, and
Table 5.3 subsequently indicates the average performance over the total number
of clusters ∑κ

i=1 ρ/κ.

6. Final Alignment of Data: The final results indicate that the data should be
segmented into 3 clusters (κ = 3) (see Table 5.3), alongside corresponding
parameters for each cluster i ∈ [0, 1, 2] as highlighted in Table 5.2.
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(A) No. Clusters: κ = 4 (B) No. Clusters: κ = 5

FIGURE 5.3: Illustration of Performance Indicators for Alignment Parameters: Xβ and
∆ for each Cluster i ∈ 1, ...κ

Figure 5.4 and 5.5 illustrate the outcome of the alignment process for κ∗ = 3,
i = 0 for the left and right rail respectively, where the optimal maximum shift,
∆∗ for this cluster is 100, and the reference signal is β2 (which corresponds to the
signal measured on 2017-10-04). From the figures, the success of the alignment
procedure is clearly visible for signals dated 2016-03-23 and 2021-08-04.

TABLE 5.2: Performance Indicators for Optimal Alignment for κ ∈ [2, 3, 4, 5]

Total
Clusters
κ

Cluster
Number
i

Max.
Shift ∆

Ref. Sig-
nal Xβ

Rle f t:
Left Rail

Rright:
Right
Rail

ρ

1 0 100 2 0.14 0.15 0.29
2 0 150 0 0.32 0.39 0.70
2 1 200 2 0.10 0.22 0.32
3 0 100 2 0.16 0.46 0.62
3 1 300 2 0.1 0.27 0.37
3 2 100 0 0.41 0.43 0.83
4 0 100 0 0.41 0.43 0.83
4 1 250 1 0.10 0.25 0.35
4 2 100 1 0.17 0.46 0.63
4 3 100 2 0.05 0.13 0.18
5 0 300 1 0.23 0.20 0.43
5 1 300 0 0.12 0.32 0.43
5 2 100 0 0.40 0.43 0.84
5 3 150 2 0.25 0.46 0.71
5 4 100 2 0.05 0.13 0.18
6 0 250 2 0.25 0.16 0.41
6 1 250 2 0.18 0.35 0.52
6 2 100 0 0.40 0.43 0.84
6 3 100 2 0.25 0.46 0.71
6 4 100 2 0.05 0.13 0.18
6 5 100 0 0.07 0.03 0.10
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FIGURE 5.4: Optimal Alignment: Left Rail, Cluster i = 0, Max. Shift ∆∗ = 100, Optimal
Ref Signal (β∗) = 2
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FIGURE 5.5: Optimal Alignment: Right Rail, Cluster i = 0, Max. Shift ∆∗ = 100, Ref
Signal (β∗) = 2
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For each cluster i ∈  [1, 2, …,κ ]:

2. Determine Reference Signals: Xβ  = [Xβ1, Xβ2, Xβ3]

For each cluster i ∈  [1, 2, …,κ ]:

2. Determine Reference Signals: Xβ  = [Xβ1, Xβ2, Xβ3]

3. Compute Shifts δ1, ...δN-1 for Xk where k ∈  [1, …,N-1] and k ≠β1∪β2∪β3  for:

Xβ= [Xβ1, Xβ2, Xβ3]

Δ  = [50, 100, 150, 200, 250, 300]

3. Compute Shifts δ1, ...δN-1 for Xk where k ∈  [1, …,N-1] and k ≠β1∪β2∪β3  for:

Xβ= [Xβ1, Xβ2, Xβ3]

Δ  = [50, 100, 150, 200, 250, 300]

For κ ∈  [2, …,6]: 

1. Segment data

For κ ∈  [2, …,6]: 

1. Segment data

Segment 

Track into κ 

clusters 

Compute KPIs for 

each signal

Rank signals using 

KPIs

Compute cross correlation 

Rleft(Xref, Xk) and Rright(Xref, 

Xk)

Compute Shiftleft and 

Shiftright for Xk

Shift Signal

Shiftleft=Shiftright

Shift < Δ 

Yes

Find index of the 

correlation vector 

where constraint 

conditions hold

No

4. Calculate Performance

5. Parameter Selection

6. Shift Signals according 

to selected parameters

FIGURE 5.6: Spatial Alignment Procedure
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TABLE 5.3: Performance Indicators: Optimal no. Clusters

Total Clusters κ ∑κ
i=1 ρ ∑κ

i=1 ρ/κ

1 0.29 0.29
2 1.02 0.51
3 1.82 0.61
4 2.00 0.50
5 2.59 0.52
6 2.75 0.46

5.1.2 Outlier Detection

Outlier detection refers to the problem of finding patterns in data that do not conform
to expected normal behaviour (Chandola, 2009). It is important in this case to
distinguish between noise removal, which aims to immunize a statistical model
estimation against outlying observations, from novelty detection, which aims at
detecting emergent patterns in the data. For example, errors due to measurement,
processing and geolocation may be classed as noise, and on the other hand,
observations that are subjected to an intervention, or very severe cracking events are
considered as outliers in the traditional definition, but they are also interesting
patterns that have significance in isolation as compared with other sources of noise. In
this instance, we wish to identify noise which will otherwise influence subsequent
statistical analyses.

5.1.2.1 Theory

Many outlier detection methods work on the principle that being an outlier is a binary
property, however approaches such as the Local Outlier Factor assign to each
observation a degree of being an outlier, which increases the information available for
each observation, rather than discarding it (Breunig, 2000). The Local Outlier
Factor (LOF) is a distance-based approach in which the density of regions in the data
are computed, and the instances in the low density regions are declared as outliers.
Data points with high LOF have more sparse neighbourhoods and typically represent
stronger outliers, unlike data points belonging to dense clusters that usually tend to
have lower LOF values (Lazarevic, 2005).

The approach requires a single parameter, k (or the minimum points) which indicate the
number of nearest neighbours used in defining the local neighbourhood of the
observation. For each observation x, the calculation of the Local Outlier Factor (LOF)
is as follows (Sugiyama, 2016):
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• Calculate k-distances: The distances between points using a distance function
such as Euclidean or Manhattan are determined to find the k-nearest neighbours
of point x,

• Calculate the Reachability Distance: The maximum distance between two
points (x, x′) and the k-distance of that point.

RDk(x, x′) = max(x− x(k), x− x′) (5.6)

where x(k) is the kth nearest neighbour of x in xi
n
i−1,

• Calculate the Local Reachability Density: For each point, determine the LRD
which is a measure of the density of k-nearest points around a point x which is
calculated by taking the inverse sum of all of the reachability distances of all the
k-nearest neighbour points. When x is isolated from surrounding samples, the
local RD takes a small value,

LRDk(x) =
1

( 1
k ∑k

i=1 RDk(x(i), x))
(5.7)

• Calculate the LOF: The ratio of the average of the LRDs of k number of
neighbours of x and the LRD of x:

LOFk(x) =
1
k ∑k

i=1 LRDk(x(i))
LRDk(x)

(5.8)

The intuition behind the calculation of the LOF is that if the density of the neighbours
and x are almost equal, then these points are similar. If the density of the neighbours is
much lower than the density of x, then x is an inlier, i.e. insider the cluster. Whereas, if
the density of the neighbours is much higher than x, then x can be considered an
outlier. Overall, if LOFk(x) takes a large value, then x is regarded as an outlier and it is
at the discretion of the analyst to determine a LOF threshold if outliers are to be
removed. Typically, a contamination parameter c is defined, which indicates the
estimated proportion of outliers present in the dataset.

5.1.2.2 Application

To reduce the impact on subsequent analyses, we aim to identify the most significant
local spatio-temporal outliers. These outliers are removed from the data set before
performing regression analyses. The process implemented is described below:

1. Select Input Data: The input data set is the aligned output from the previous
processing step 5.1.1,
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2. Select Model Parameters:

• No. Neighbours/ Min Points (k): As suggested in the practical guidelines,
a k value between 10 and 20 is suitable for many applications (Breunig,
2000). For this study, k = 10 is selected due to the sparsity of the data, the
higher the k value the more local points are required for an observation to
be considered an inlier, and therefore the lower bound of this
recommendation was selected,

• Contamination: a contamination of 3% is utilised to remove the most
severe outliers,

• Features: Linear Distance, Measurement Date, Rail Side, Damage Indicator
(DI2) are selected,

3. Calculate the LOF for each observation,

4. Remove 3% of data with highest LOF.

From a dataset of 17,184 observations, 52 points are removed using this method.
Figure 5.7a and 5.7b indicate the spatio-temporal locations of the aligned observations,
with the colour and size of the point representing the LOF Score (Note that the colour
scale is log normalised in order to show more clearly the anomalous points). There is
not an obvious pattern in the locations of these outliers, but there is a degree of
clustering of moderate outliers for the left rail at approximately 125,000 yards.
However, many of the more significant outliers tend to occur before 2019, which may
be a result of how measurement procedures have improved since then. Further, as
illustrated in Figure 5.8 many of the observations with high outlier scores have lower
damage scores, and all of the points removed from the data set correspond to damage
values: DI2 < 50. It is therefore, unlikely that we are removing any potentially
significant observations of ‘unexpected hotspots’.
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(A) Left Rail

(B) Right Rail

FIGURE 5.7: Spatio-temporal Representation of Outliers Identified using the LOF, n =
10
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FIGURE 5.8: Illustration of LOF variation with Damage Score, n = 10

5.1.3 EC Spatial Smoothing

Noise reduction can be performed using methods such as filtering, smoothing and
prediction (estimation), but the choice of method is dependent on the application. In
the case of the EC data, we wish to smooth the EC cross sectional data in the spatial
domain, to reduce localised noise particularly with the aim of calculating rates of
change between measurements.

Smoothing improves data quality by replacing the noisy irregular signal with the new
smoothed signal which may better describe the measured phenomena. Methods
include mean filters, median filters, Kalman filters and Gaussian filtering. Due to
computational efficiency, and applicability to the target data- spatial data where
ordering must be preserved, a mean filter is applied here.

The mean filter is one of the simplest smoothing methods (Kowalski, 2018), and the
output value is calculated by computing the average of all samples from a given
window. Its’ formula has the following form:

zj =
∑n

i=−n xj+i

2n + 1
(5.9)

Where xi is a sample of the input signal, 2n + 1 is the window length, zj represents the
output value, and j is the current index of the output value.
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5.1.3.1 Application

The mean filter is applied to each spatial cross-section of data X1, X2, ...XN for the left
and right rail independently, utilising the window sizes, w = [5, 10, 15, 20, 25, 50]1. The
window sizes are arbitrarily chosen to provide a reasonable range of windows without
reducing the magnitude of signal peaks too considerably. Note that a window size of 5
applied to the 11 yard data means that damage is averaged over 55 yard intervals
across the data, whereas a window size of 10 applied to 11 yard data corresponds to
averaging over a 110 yard interval. Figure 5.9 illustrates the effect of spatial smoothing
on the 11 Yard damage signal for recordings collected on a particular date. The effects
of peak truncation are apparent as the smoother window is widened especially where
the window exceeds 15 segments and the 11 yard damage is concentrated over a small
distance. Additionally Table 5.4 shows the effects of the smoothing window size on
key signal parameters such as the minimum and maximum damage, the damage
variance and mean damage. Each of the parameter values reduce sharply to begin
with, however as the smoothing window increases the reduction in value levels off.
When developing a regression model, a suitable smoothing parameter will be selected
in Chapter 7. The appropriate degree of smoothing should balance the effects of
model accuracy, correct data representation and model computation time.

1Although these are the windows illustrated here, for the final analysis carried out in Chapter 7, addi-
tionally windows w = [2, 4, 6, 8, 10, 12, 14] were tested to increase the resolution for smaller window sizes
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(A) Left Rail

(B) Right Rail

FIGURE 5.9: Spatially Smoothed Damage Data
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TABLE 5.4: Data Characteristics after Smoothing

Rail Side Window Min. Dam-
age

Max Dam-
age

Variance Mean

Left 0 0 176 389.07 14.21
Left 2 0 176 231.97 10.35
Left 4 0 164 142.8 7.38
Left 5 0 166.4 121.95 6.58
Left 6 0 166 106.84 5.97
Left 8 0 150 85.89 5.1
Left 10 0.1 134.6 71.61 4.5
Left 12 0.08 128.58 61.24 4.05
Left 14 0.07 123.07 53.3 3.7
Left 15 0.07 117.93 50.01 3.56
Left 20 0.05 104.25 37.85 3.01
Left 25 0.04 91 29.99 2.65
Left 30 0.03 76.03 24.61 2.39
Left 40 0.025 69 17.94 2.04
Left 50 0.02 69 14.01 1.82
Right 0 0 176 607.15 18.96
Right 2 0 176 394.2 14.84
Right 4 0 168.5 263.59 11.46
Right 5 0 161.6 228.99 10.46
Right 6 0 156.67 202.92 9.67
Right 8 0 150.5 164.78 8.48
Right 10 0 125.6 138.62 7.63
Right 12 0 108.5 119.85 6.97
Right 14 0 95.07 105.98 6.45
Right 15 0 89.93 100.37 6.23
Right 20 0.05 70.3 80.07 5.38
Right 25 0.04 73.04 66.89 4.79
Right 30 0.03 63.83 57.55 4.36
Right 40 0.025 59 45.14 3.75
Right 50 0.02 59 37.44 3.33

5.1.4 EC Feature Engineering

Once the aligned and smoothed data sets are generated, additional features are
calculated to improve resultant analyses and regression modelling. These features are
a result of iterative analyses and prior subject knowledge.

As previously described, the eddy current data are spatio-temporal, presenting
characteristics such as autocorrelation and heterogeneity amongst others (see
Section 4.5). Spatio-Temporal Data Mining (STDM) is a particular branch of data
analytics which explicitly models this type of data. In the literature, the benefit of
using STDM is to capitalise on novel formulations and methods that arise from these
data due to their dimensions (Atluri et al., 2017). However, predominantly these
studies assume regular gridded data, such that observations are available for each
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(s, t) cell in the dataset. For the EC data presented here, this is clearly not the case and
without the use of estimation or interpolation techniques, these approaches cannot be
taken advantage of. An alternative to using ST models whilst still accounting for the
natural ordering, and relationships within this type of data is to construct a feature set
that represents the ST variation in the data.

Further, due to rail maintenance, either through grinding, milling or re-railing, the
data does not represent a process of pure degradation, since there are restorative
processes occurring. As described in Chapter 4 obtaining reliable and sufficiently
detailed interventions data is a problem since we cannot determine accurately where
the track segment is degrading naturally or there has been some other process that has
modified the rate of degradation. It is therefore necessary to determine when these
interventions have occurred, and generate new temporal features describing a
degenerative process only, without the inclusion of data which has experienced
improvements.

• Track Segment Damage Rates Rates of deterioration are useful in identifying
hot spots, and also may provide increased insight. Rates of change can be
calculated for each track segment s between two subsequent inspections [t,
t + 1]. For instance, take observation DIs,t−1 and DIs,t, where s is the track
segment, [t− 1, t] is the measurement interval, then the rate of change is
calculated:

RateDIs,t =
DIs,t − DIs,t−1

(Ts,t)− (Ts,t−1)
(5.10)

• Lagged Damage Variables: To represent the autocorrelation in the data, it is
assumed that rail damage in a segment of track is dependent on previous
measurements of rail damage. These Lagged Damage Variables are continuous
features which represent the Damage Index: DI2 from the previous inspection
for the spatial cell (track segment),

• Time Since Intervention The EC RCF cracking data does not represent a system
of solely rail degradation due to RCF, but is influenced by the presence of
maintenance activities. These improvements in rail condition (a reduction in the
damage indicator : DI2), are visible from the data set (See Figures 4.13 and 4.14
from Chapter 4),

In order to model the degradation process, in this study it is assumed that an
improvement in the rail condition indicates an intervention and therefore should
not be represented in the dataset. For each rail and track segment, the rate of
change of DI2 between subsequent measurements is calculated, the measurement
time: Tec is then converted to an Intervention Time Tint. Clearly, if an intervention
is detected over an interval: [t, t + 1] the precise Tint is unknown. However, in
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the absence of reliable interventions data it is assumed in this study that; in this
case, the Tint= 0 days, and subsequent measurements (where degradation
occurs) are re-indexed accordingly with reference to this measurement. All
records in the data set represent a system of degradation, note that where there
are less than 2 measurements on a track segment, rates cannot be obtained and
therefore these records are removed.

• High/ Low Rail Indicator: The high rail, due to super-elevation in curves, is
hypothesised in many studies to have higher rates of RCF due to increased
contact forces experiences at the leading outer wheel-set when curving. An
indicator for whether the rail is the low or high rail can be determined using
curvature and rail side information (from the EC data: it is assumed that the left/
right indicator is consistent for all EC inspections over a single length of track).

– If RailSide = Le f t and Curvature ≤ 0⇒ High/Low = Low

– If RailSide = Le f t and Curvature ≥ 0⇒ High/Low = High

– If RailSide = Right and Curvature ≤ 0⇒ High/Low = High

– If RailSide = Right and Curvature ≥ 0⇒ High/Low = Low

– If Curvature ≥ 0 and Curvature ≤ abs(1e− 4)⇒ High/Low = Tangent,
1e-4 is currently set as an arbitrary tangent/ curve boundary

– If Curvature = 0⇒ High/Low = Unknown, this category represents 0
curvature, it has previously been mentioned in conversations that curvature
is this category is most likely non-zero (Personal Communication, Julian
Williams, Network Rail- Principal Analyst Whole Life Cycle Costing, 2022).

5.2 Additional Data Sources Processing

The points below describe the processing stages for each of the supporting data
sources utilised in the study, each data source must be cleaned and discretised as a
first step, followed by generation of additional required features, and then integrated
with the Eddy Current data. The approach for data integration depends on the
spatio-temporal nature of the data source. For data sources with space and time
attributes, the features must be mapped to each EC observation, whereas for spatial
data, such as track characteristics and segment wear rates, these features can be
mapped to the EC spatial cell. Table 5.5 contains a final set of the parameters included
in the study, and an indication of the data type.

The resultant data is a modelling dataset Ppro,w for varying smoothing window size w.

• Wear Data
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1. Data Extraction: The wear data is extracted directly from the NR network
drive containing csv files for each recording run. The wear parameters of
interest are: Vertical Wear (Max. Average), Gauge Face Wear (Max.,
Average), Field Wear (Max., Average), Head Width Remaining (Max.,
Average), Gauge Face Remaining (Max., Average) and the Estimated Rail
Depth (Minimum),

2. Basic Processing: cleaning such as removal of duplicate entries is required
for the wear data, note that where a duplicate is detected the most recent
entry is retained in the data set,

3. Discretisation and Aggregation: the wear data are mapped to the 11 yard
track segments, where an 11 yard track segment overlaps with two wear
segments the average of the wear values in both wear spatial cells are used,

4. Calculate Deterioration Rates: the average deterioration rates are then
calculated for each of the wear parameters,

• ACTRAFF Data

1. Data Extraction: The ACTRAFF parameters selected are the Period ID,
Start Yards, End Yards, Total Tonnes, Passenger Tonnes, Freight Tonnes,
Total No. Trains, No. Passenger Trains and No. Freight Trains,

2. Basic Processing: Missing periods are interpolated using an average of the
periods either side of the missing period,

3. Estimation: As previously stated, the ACTRAFF data is not available from
approximately 2019, however this varies depending on track location. The
future traffic must therefore be extrapolated in order to leverage ACTRAFF
data in the study. A basic estimate is employed for determining Passenger,
Freight and Total Traffic. These estimates are based on discussions with
Network Rail staff, Network Rail published reports (as stated) and
assumptions that traffic from the years pre-pandemic were roughly
constant between corresponding periods from year to year. We know that
following the pandemic (as stated in Chapter 1) that there was a
considerable reduction in traffic on the network. The estimates used are as
follows:

– Where the estimated date is pre-COVID, the period estimate from the
previous year is utilised, i.e. 2018-2019 year,

– Where the estimated date is from April 2020 - April 2021, we employ a
75% reduction in traffic for each period from pre-pandemic levels (78%
reported in (Department for Transport, 2021)),

– For April 2021-April 2022, a 50% reduction is used (41.8% reported in
(Network Rail, 2022)),
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– For April 2022- April 2023, a 25% reduction is used based on the
assumption that uptake improves again by approximately 25%.

An illustration of these estimates is provided in Figure 5.10 for TL1.

4. Discretisation and Aggregation:, the ACTRAFF data are discretised into 11
yard segments, where an 11 yard segment overlaps two ACTRAFF
segments the traffic data closest to the start yardage of the 11 yard segment
are used (i.e. the data to the left)

• Defect Data: A number of studies have concluded that the existence of rail
surface defects intensifies the deterioration of tracks, and has the potential to
result in rail failure due to increased vertical dynamic forces of wheelsets onto
rails (Zhang et al., 2022). Therefore, as a key risk factor, the presence of other
defects detected using ultrasonics/ visual monitoring practices is incorporated
into the feature set. There are two key features generated for each observation, 1)
the total number of defects detected on the section s over the course of
monitoring 2) the existence of a defect on the section s since the last
measurement date t− 1 (binary).

1. Data Extraction: Historic defect data are extracted from the RDMS,

2. Basic Processing:

3. Data Discretisation and Aggregation: The total number of defects are
summed over each spatial cell,

• Track Summary Data:

1. Data Extraction: the primary parameters of interest include track cant,
curvature, maximum line speed, tonnage, track category, rail material, track
type, location of S&C, stations and tunnels,

2. Basic Processing: Conversion of categorical data types,

3. Feature Generation:

– Centripetal Force Fcentripetal ,

Fcentripetal = mv2 (5.11)

where m is the tonnage and v is the maximum line speed.

– Cant Deficiency CD (in mm),

CD =
11.82 ∗ v2

R
− CA (5.12)

where V is the maximum line speed, R is the curve radius and CA is the
cant applied, the 11.82 is defined for normal gauge and takes into
account g (gravitational acceleration), S (the cross-level standardised
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reference for rail heads centreline distance (mm)) and the speed unit
conversion from m/s to km/h, see (Constantin, 2015; Cope, 1993) for a
full description,

– Distance to Features: traction and braking forces are related to the
generation of frictional (creep) forces responsible for RCF, it is therefore
hypothesised that where trains are likely to be braking or accelerating
more frequently will experience more instances of RCF. The distance of
each cell from the nearest Stations, Tunnels, Switches and
Crossings (SC) is therefore calculated,

– Time since Rail Replacement: the track summary data includes the
INM values for when each segment of rail was replaced. Since the data
is only available at a yearly resolution, the replacement is assumed to
have occurred on the 1st January of that year,

4. Discretisation and Aggregation: the track summary data are discretised
and mapped to the 11 yard track segments, where the 11 yard segment
overlaps with 2 TS segments:

– for the continuous value parameters (such as curvature, speed, cant)
the average value is used,

– for the feature distances- the minimum values are used, i.e we assume
the worst case,

– for discrete binary parameters such as the location of tunnels and
stations one segment will indicate 0- no station, and the other 1- a
station present, the aggregated value always assumes 1,

– for discrete parameters such as the age of the rail, the value which
covers the greatest proportion of the cell is used.
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TABLE 5.5: Features

Feature Type
Track Characteristics

Curvature (1/m) Continuous Spatial
Cant (mm) Continuous Spatial
Cant Deficiency (mm) Continuous Spatial
Line Speed (mph) Continuous Spatial
EMGTPA (MGT) Continuous Spatial
Station Indicator Binary Spatial
Linear Distance to Station (Yards) Continuous Spatial
S&C Indicator Binary Spatial
Linear Distance to S&C (Yards) Continuous Spatial
Tunnel Indicator Binary Spatial
Linear Distance to Tunnel (Yards) Continuous Spatial
Track Category Discrete Spatial

Wear Data
Vertical Wear Average (mm) Continuous ST
Vertical Wear Max. (mm) Continuous ST
Gauge Face (GF) Wear Average
(mm)

Continuous ST

Gauge Face (GF) Wear Max. (mm) Continuous ST
Field Wear (FW) Average (mm) Continuous ST
Field Wear (FW) Max (mm) Continuous ST
Head Width Remaining Avg. (mm) Continuous ST
Head Width Remaining Min. (mm) Continuous ST
GF Remaining Avg. (mm) Continuous ST
GF Remaining Min. (mm) Continuous ST
Estimated Rail Depth Min. (mm) Continuous ST

ACTRAFF
Total Tonnes (MGT) Continuous ST
Passenger Tonnes (MGT) Continuous ST
Freight Tonnes (MGT) Continuous ST
Total Trains (MGT) Continuous ST
Passenger Trains (MGT) Continuous ST
Freight Trains (MGT) Continuous ST

Defect Data
Total Defects Discrete ST
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FIGURE 5.10: ACTRAFF Projected Passenger and Freight Tonnes over TL1

5.3 Concluding Remarks

This chapter presents the essential pre-processing tasks that are required to ensure the
data is suitable for further analysis, and additionally is formulated such that it can be
used as training data for a machine learning algorithm. The Eddy Current data is
extracted directly from the RDMS which represents the maximum crack depth
measured (mm) over a 1 yard section of the network at a particular measurement date.
This data are mapped to the 11 yard network whereby a damage index is constructed
which represents the density and severity of RCF cracking over an 11 yard section. As
shown in Chapter 4, the data are often misaligned in space between recording runs,
and therefore a novel process for re-aligning Eddy Current signals is developed using
cross correlation methods. Further, to address noise in the EC data, outliers are
removed using a density based parameter known as the Local Outlier Factor (LOF)
and smoothing is applied to reduce the effects of localised noise in the spatial domain.
The spatial smoothing parameter is varied such that the effect of modifying this
window can be assessed when developing a ML model for RCF prediction (see
Chapter 7). As the smoothing window is increased, the signal converges to the global
average and is thus easier to predict, however this would not be a very useful model
and therefore we must determine a balance between model accuracy and correct data
representation. Subsequently, additional features such as Lagged Damage Indicators;
which reflect the known autocorrelation in the data, rate variables and parameters
reflecting the estimated time since an intervention are generated. Finally, the
processed Eddy Current data are integrated with supporting data sets such as track
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characteristics, wear, defect and cumulative traffic parameters to generate a final
modelling data set with representative features for mining information.

The benefits of processing the data are two-fold, firstly without too much complex
analysis the processed data set could now be used by maintenance teams to conduct
practical analysis of the Eddy Current Data. The focus of Chapter 6 is specifically
aimed at using the processed data to augment the current strategies for preventive
and corrective RCF intervention measures introduced in Chapter 2. Secondly, the
comprehensive cleaning and preparation of the data ensures the best possible
outcome with regard to building representative data-driven models for RCF
prediction. Without a thorough pre-processing methodology, it is unlikely that any
resulting models would yield results that were accurate or reliable. The RCF
regression modelling work is presented in Chapter 7.





113

Chapter 6

Practical Applications of Data
Analysis

Chapter 5 provides a summary of the techniques applied to the raw Eddy Current and
supporting data sources to generate a modelling data set which is suitable for data
mining applications. This chapter uses that data and expands on the preliminary
analyses provided in Chapter 4 to demonstrate simple methods which capitalise on
the processed data (Ppro,w) and could be used to supplement existing maintenance
strategies. The section is structured as follows:

• Rate Analyses: an introduction to damage rates of change is presented,
including terminology and parameters which form the foundations for
application within preventive and corrective maintenance strategies,

• Preventive Applications: describes an approach for the use of pre-processed EC
data in determining a revised method for segmenting the track into categories
with similar damage properties,

• Corrective Applications: utilises the pre-processed EC data to identify RCF hot
spots and rank these according to custom Key Performance Indicators (KPIs).

Note that all of the following analysis is performed using the processed data set Ppro,0

(i.e. no smoothing is applied).

6.1 Rate Analyses

After cracking events are mapped and aggregated over 11 yard segments, as indicated
in Section 5.1.4, the rate of change for each spatial segment can be calculated. For each
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track segment s, rates of change of DI2, VS, S, M, H, L can be calculated between two
subsequent inspections [t, t + 1]. For example, take two observations DIs,t−1 and DIs,t,
where s is the 11 yard segment, [t− 1, t] is the measurement interval, and DI
represents the measured damage (either DI2, VS, S, M, H, L). Then the rate of change
can be calculated:

Rs,t =
DIs,t − DIs,t−1

(Ts,t)− (Ts,t−1)
(6.1)

Note that where Rs,t > 0 (positive rate), this represents degrading rail condition,
whereas Rs,t < 0 (negative rate) indicates an improvement in rail condition. In this
section, when discussing the degradation rate, we refer only to rates which are greater
than or equal to 0, i.e. Rs,t ≥ 0. Figure 6.2a and 6.2a illustrate the monthly rate of
change for damage index DI2 corresponding to the left and right rail, respectively. The
positive rates are indicated by yellow-red tones, and negative rates are represented by
green- blue tones. Comparatively the right rail appears to experience higher rates of
degradation than the left rail, with more points exceeding rates of 60 units. Table 6.1
and Figure 6.1 illustrate the distribution of track curve radius for the TL1 track section.
A negative curve radius represents a Left Hand (LH) curve, whereby the RHR would
act as the high rail, and a positive curve radius (Right Hand (RH) curve) results in the
LHR acting as the high rail. There are considerably more track segments where the
RHR acts as the high rail and has a curve radii in the range 1000-2000 m (1281)
compared with 705 for the LHR. This region is known to be where RCF is induced,
and may be a factor explaining the prevalence of higher rates in the RHR.

TABLE 6.1: Distribution of Curve Radii for TL1

Curve Radius No. 11 Yard Segments

≤ -3000.0 529
(-3000.0, -2000.0] 513
(-2000.0, -1500.0] 494
(-1500.0, -1000.0] 787
(-1000.0, -500.0] 217

(-500.0, -0.01] 0
Tangent Track 9992

(0.01, 500.0] 46
(500.0, 1000.0] 89
(1000.0, 1500.0] 292
(1500.0, 2000.0] 413
(2000.0, 3000.0] 1130

> 3000 1002

Additionally, Table 6.2 demonstrates the distribution of monthly degradation rates for
all observations in the processed data set. The data are divided into six categories,
with group size increasing with degradation rate due to the negative skew in the data
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FIGURE 6.1: Curve Radius Summary for TL1

(note that Category 0 essentially represents a rate of 0). The table supports the
observation that the right rail presents higher rates of degradations amongst the
observation, with the quantity of observations exceeding the left rail in all categories.
Figure 6.3a and 6.3b show a histogram of the information presented in Table 6.2.

TABLE 6.2: Monthly Degradation Rate Categories

Monthly Degradation
Rate Category

Category
No.

Left Rail:
Count

Right Rail:
Count

Both Rails

(0.0, 0.1] 0 151 94 245
(0.1, 2.5] 1 1740 2360 4100
(2.5, 5.0] 2 518 796 1314
(5.0, 10.0] 3 379 590 969
(10.0, 20.0] 4 213 382 595
(20.0, 100.0] 5 123 186 309



116 Chapter 6. Practical Applications of Data Analysis

(A) Left Rail

(B) Right Rail

FIGURE 6.2: Monthly Rates of Change of DI2
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FIGURE 6.3: Histogram for the Monthly DI2 Degradation
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(A) Left Rail

(B) Right Rail

FIGURE 6.4: Monthly Rates of Change of DI2
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6.1.1 Segment Rates

In much of the following work we refer to specific KPIs for each track segment s,
which are defined:

• Mean Segment Degradation Rate: the mean of all positive degradation rates for
segment s:

KPIsRmean =
∑as

i=1 Ri

as
(6.2)

where as is the total number of observations in segment s where Di+1 − Di ≥ 0

• Max Segment Degradation Rate: the maximum of all positive degradation rates
for segment s,

KPIsRmax = Max(Ri) (6.3)

where i = 1, ...as are the observations in segment s where the rate of change is
positive or equal to zero,

• Segment DI2 Sum: the sum of damage over all observations in segment s:

KPIsDIsum =
bs

∑
i=1

Di (6.4)

where j = 1, .....bs are indices for all observations in segment s, (i.e. where there
are no constraints on Di+1 − Di )

• Mean Segment DI2 Sum: the average of the sum of all observations in segment
s:

KPIsDImean =
∑bs

i=1 Di

bs
(6.5)

where j = 1, .....bs are indices for all observations in segment s, (i.e. where there
are no constraints on Di+1 − Di )

Figure 6.5a and Figure 6.5b illustrate these segment performance indicators for the left
and right rails respectively between 0 and 5000 yards. The Mean Segment Degradation
Rate reflects the mean of all positive rates over the segment, and is clearly the most
variable of all parameters. This is a result of the susceptibility to outliers, particularly
where the temporal frequency for the segment is low. For instance, at approximately
1000 yards on the RH rail, there are spikes in the Mean Segment Degradation Rate which
are much smoother for Segment DI2 Sum or Mean Segment DI2 Sum indicators. This is
likely to be due to the low number of measurements available at this location, which
reduces the reliability of the rate KPI (KPIsRmean) at these locations. Figure 6.6a and
Figure 6.6b illustrate the correlation between Mean Segment Degradation Rate and
Segment DI2 Sum, the marker colour represents the number of measurements in the
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segment, with red indicating high, and blue is low. There is a weak positive correlation
where, on the whole, the higher the rate the higher the sum, but there is a clear
dependence on the number of measurements in the segment. Intuitively, where the
measurement frequency is low, Mean Segment Degradation Rates are high and Segment
DI2 Sums are low, therefore it is important that the analyses consider these factors.
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(A) Left Rail

(B) Right Rail

FIGURE 6.5: Segment Aggregated Rates of Change
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(A) Left Rail (B) Right Rail

FIGURE 6.6: Segment KPIs

6.2 Application for Preventive Strategy

The preventive strategy presently employed by Network Rail is introduced in
Chapter 2. The process uses a simple segmentation method, whereby the track is
divided into curved and tangent track, and these are cyclically ground after 15 Mega
Tonnes (MGT) and 45 MGT respectively due to the recognition that curves degrade
faster than tangent track. The process is illustrated once more in Figure 6.7. Whilst this
strategy is simple, it is based on theory developed in the early 2000’s and not tested on
the UK network, and has not been validated since its introduction. Rather than
segmenting the track based purely on the track curvature, is is proposed that we
capitalise on the available Eddy Current data and utilise historic measurements to
develop a new method for segmenting the track.

Track 

Data

Radius ≤ 

2500m 

Grind 

Frequency: 

Every 15MGT

Curved 

Track?

Grind 

Frequency: 

Every 45MGT

Yes No

Yes

No

FIGURE 6.7: Current Preventive Grinding Strategy
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Additionally, Figure 6.8a and Figure 6.8b illustrate the curved and tangent track
sections which are utilised currently to determine the grind frequencies for the LHR
and RHR. The historic EC data are overlaid using yellow markers (note that this is the
processed data set with no smoothing, i.e. Ppro,0), and tunnels, stations and S&C
locations are specified for reference (using the Track Summary data). The charts
indicate that not all curves experience the same levels of damage, and therefore it may
be beneficial to derive track segments based on the damage data as well as track
curvature alone.

Further, for the LHR at approximately 3,000 yards the chart indicates that there is a
tangent section of track experiencing high levels of damage. In this case, it is believed
that this is likely due to spatial misalignments between the Eddy Current data and the
track itself defined by the track summary data. Whilst the alignment process specified
in Chapter5 aligns the Eddy Current data internally, it cannot align the Eddy Current
data with the track. This is a problem where track parameters are captured using
different sources, i.e. Eddy Current monitoring and measurement of track curvature
are captured with different systems and are therefore not aligned.



124 Chapter 6. Practical Applications of Data Analysis

(A) Left Rail

(B) Right Rail

FIGURE 6.8: Preventive: Initial Segmentation
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6.2.1 Proposed Method for Improving Segmentation

A simple extension to the current strategy is to understand whether curved/ tangent
track segments have low or high levels of RCF damage, which can be assessed using
the processed data (Ppro). The basis of this approach is to understand if the curved/
tangent section may benefit from more or less intervention than is being implemented
by current strategies. The following steps define the approach:

1. Divide Track: Split the track length into contiguous curved and tangent
segments, and index each new section,

2. Calculate Section KPIs:For each curved/ tangent section, three performance
indicators are calculated in the spatial and temporal domains. These KPI are
extensions of those introduced in Section 6.1.1, which refer only to the temporal
dimension to produce a KPI for each track segment. The following KPI represent
the damage over the tangent/curved section in space and time:

(a) Mean of Segment Mean Degradation: the segments means are averaged
over the entire section,

KPIsectionRmean,mean =
∑M

m=1 KPIsRmean(m)

M
(6.6)

where M is the total number of 11 yard segments in the site,

(b) Mean of Segment DI2 Sum: the segment DI2 sum are averaged over the
entire section,

KPIsectionDsum,mean =
∑M

m=1 KPIsDsum(m)

M
(6.7)

(c) Mean of Segment DI2 Mean: the segment DI2 mean are averaged over the
entire section,

KPIsectionDmean,mean =
∑M

m=1 KPIsDmean(m)

M
(6.8)

3. Calculate Final Section Score: Based on a sum of the scaled Mean of Segment
Mean Degradation, Mean of Segment DI2 Mean and the Total number of measurement,
the final score is calculated for the section.

4. Rank Sections and Assign: Order the sections by score and allocate the sections
to three categories:

• Category 1- Low: 33.3̇% of the sections with lowest KPI score,

• Category 2- Medium: 33.3̇% of the sections with moderate KPI score,

• Category 3- High: 33.3̇% of the sections with highest KPI score,
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FIGURE 6.9: Flowchart for the Proposed Track Segmentation

6.2.2 Results

The output of the segmentation process shown in Figure 6.9 is to assign a new
category to each tangent and curved section of track: (Low, Medium, High or None
(no EC Damage)). In total, there are 172 curved and tangent sections for TL1 and
Table 6.3 illustrates their resulting category assignment, with 27 sections having no
recorded RCF damage, 5 of these are tangent and only 5 are curved sections. As one
might expect, it is predominantly curved sections assigned to the ‘Higher’ category,
however there are 17 tangent sections that are experiencing similar levels of damage
and are therefore assigned to this category. On the other hand, there are a significant
number of curved sections which, historically, are exhibiting low levels of RCF
damage and thus it may be worth revising/ reducing the interventions carried out on
these sections.

Additionally, Figure 6.10a and Figure 6.10b illustrate the new classifications; [high,
moderate, low, none] and their relative positions along the track for 0- 5000 yards. The
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background colours represent the section type, with red tones indicating curved track
and blue tones for tangent track. the darker the tone the higher the damage category.

TABLE 6.3: Section Category Allocations

Section Type Section Score Category Defn. Category No. Sections

Tang. - None 22
Tang. [0, 0.134] Low 21
Tang. (0.134, 0.33] Mod 26
Tang. (0.33, 1.415] High 17
Curve - None 5
Curve [0, 0.134] Low 28
Curve (0.134, 0.33] Mod 22
Curve (0.33, 1.415] High 31
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(A) Left Rail

(B) Right Rail

FIGURE 6.10: Preventive: Proposed
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6.3 Application for Corrective Strategy

With respect to corrective grinding and milling, as discussed in Section 2.4, in the first
instance routes must comply with Standard NR/L2/TRK/001/mod07 (Network Rail,
2018a). However, some routes such as Anglia have implemented their own methods
to assign risk scores to RCF sites. The approach however relies heavily on expert
judgements with regard to degradation rates and their correlation with factors such as
traffic and curvature, the process is once again shown in Figure 6.11. The following
proposal offers a demonstration for how the data generated by the proposed
pre-processing process described in Chapter 5 (Ppro,0) can be used to inform a revised
version of the existing Anglia Process.

6.3.1 Proposed Method for Corrective Strategy

The steps are described below and illustrated in Figure 6.12. Note that the examples
presented do not include wear, traffic or other parameters at this stage for
determination of site rank (highlighted in grey in Figure 6.12). It is intended here that
the emphasis is placed on presenting the leveraging of rates and parameters
determined solely from the processed EC data. Additional parameters can be readily
incorporated at a later stage since they are already present in the Integrated Data
SetPpro,w.

1. Data Selection: The input data to this process is the Integrated Data Set with no
smoothing applied, Ppro,0. The user must select the set relevant to the track
section under analysis, for example: TL1: LTN1, 2100, Start Yards: 0, End Yards:
5,000, Track Type: Plain Line,

2. Filtering: Since we wish to see the most recent severe cracking events we wish
to filter by:

• Date: Only observations within 1 year of the analysis date are selected,

• Severity: Only segments including at least one Severe or Very Severe crack
are to be included,

3. Determine RCF Sites: Using a threshold distance of 66 yards, 11 yard segments
are combined to make a site if they are located within the threshold distance of
the 11 yard starting yard. The threshold distance represents the maximum
distance between sites where no EC damage is indicated, any segments within
66 yards of each other are clustered together into a single site. Note, that at this
stage the threshold distance (66 yards) is simply a first guess which provided
reasonable results however in reality it will depend on what route maintenance
teams decide is practical to consider a ‘site’,
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FIGURE 6.11: Flowchart for Current Anglia Corrective Maintenance Process
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4. Determine Site KPIs: For each identified site, several KPIs are calculated for the
user:

• EC Degradation KPIs:

– DI2 Monthly Degradation Rate Average (KPIcorr,1) : For each segment
in the site an average monthly degradation rate is calculated, this is
then subsequently averaged over all segments in the site,

– DI2 Monthly Degradation Rate Maximum (KPIcorr,2) : the maximum
of the segment monthly averages is taken over the site,

• EC Absolute KPIs:

– DI2 Total Sum (KPIcorr,3) : The total sum of DI2 for each segments is
calculated,

– Normalised DI2 Total Sum (KPIcorr,4) : The DI2 Total Sum is divided by
the total number of measurements per segment, and yards in the site to
generate a normalised value.

• Site Size: Size of the RCF Site (in yards),

• Total Site Measurements: This includes measurements in space and time
over the site, it is a key indicator which guides the validity of the site. For
example, some sites may identify high rates of change, however this is
based on a single rate of change measurement between two observations.
This site should therefore be given less weight than another with 100
observations over the site,

• Spatio-Temporal Measurement Ratio (KPIcorr,5) : The number of yards in
site affected with RCF/ the total number of measurements in the site. The
lower the ratio the more trust we have that the site KPIs are supported with
sufficient data,

5. Rank Sites: Currently the ranking is performed on a basic weighted
combination of the DI2 Monthly Degradation Rate Mean (KPIcorr,1),
Spatio-Temporal Measurement Ratio (KPIcorr,5), Normalised DI2 Total Sum
(KPIcorr,4), with weights 45, 35, and 20 respectively. At this stage, these weights
are selected simply to represent the perceived relative importance of each of
these variables. For example, we are primarily concerned with sites which are
deteriorating quickly (high Average Degradation Rate), but also must consider the
robustness of this measurement through understanding the density of
measurements in this site and prioritise these large high density sites
(Spatio-temporal measurement ratio), and finally understand the sum of damage
over all historic measurements in the site (i.e. has the site always had high levels
of damage? which is determined using Normalised DI2 Total Sum). These weights
can be adjusted following conversations with track experts and a thorough
analysis of the sites generated. The resulting ranking is shown for a section of
track 0-5,000 yards for both rail sides.
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Future revisions of this procedure could incorporate KPIs such as:

• Wear Degradation KPIs:

– Vertical Wear Monthly Degradation Rate Average,

– Gauge Face Wear Monthly Degradation Rate Average,

– Remaining Depth Monthly Degradation Rate Average,

• Wear Absolute KPIs:

– Vertical Wear Average,

– Vertical Wear Maximum,

– Gauge Face Wear Average,

– Gauge Face Wear Maximum,

– Rail Remaining Depth Minimum,

– Rail Remaining Depth Minimum,

• Traffic KPIs:

– Average Passenger traffic over site during last period,

– Average Freight traffic over site during last period,

• Defect KPIs: Total Defects in site at last measurement,

• Track Geometry KPIs:
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FIGURE 6.12: Flowchart for the Proposed RCF Severe Site Identification
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6.3.2 Results

The proposed method is demonstrated for the TL1 integrated data set between 0 and
5,000 yards for the left and right rails, where 17 sites are identified. The sites and their
KPIs which govern the site priority are highlighted in Table 6.4:

• Rank: the Rank for each of the sites based on the calculated KPI,

• Site Start: the linear distance defining the start location of the site,

• Rail Side: left/ right rail,

• KPIcorr,1: the DI2 Monthly Degradation Rate Average,

• KPIcorr,4: is the Normalised DI2 Total Sum,

• VS Sum Av. per yard: represent the normalised total sum for the number of VS
cracks,

• S Sum Av. per yard: represent the normalised total sum for the number of S
cracks,

• Site Length: represents the length of the identified RCF site in yards,

• No. Site Measurements: refers to the total number of observations identified for
the RCF site (over space and time),

• No. Yards RCF: the number of yards in the site affected with RCF,

• KPIcorr,5: the Spatio-Temporal Measurement Ratio is the ratio of the Total No. Site
Measurements and the Total No. Yards Measurements.

For example, row 1 shows the highest ranking RCF site determined using this
procedure, which is located at 4,741 yards and occurs on the right hand rail. This site
has the highest monthly rate of degradation (KPIcorr,1) and the averaged sum of DI2
over all ST cells KPIcorr,4, 7.16 and 7.48 respectively compared with all other sites in
the table, and the average sum of VS and S cracks are also relatively high at 0.38 and
0.09. Additionally, the site is made up of 88 yards (8 segments), has 176 recordings of
RCF in space and time, and 100% (8) segments are affected with RCF, which increases
the trust in the generated scores.

The site ranked second corresponds to a site at 2882 yards on the left rail. Although
there are considerably more measurements across the site (597), and it spans 341 yards
(31 segments) where 27 of these segments are affected with RCF, the severity of the
degradation is less concentrated than the top ranking site.
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On the other hand, the site ranked 10th is located at 847 yards with a high average
degradation rate (KPIcorr,1), in fact it is the second highest compared with all other
sites. However, when we look at the other measures such as KPIcorr,4, and see that
there are only 4 measurements corresponding to this site with only 1 segment
reporting RCF damage it significantly reduces the priority of the site since it is such as
small site and likely that the high degradation rate includes an outlier.

Figure 6.14a and 6.14b highlight the hot spots and labels their ranking. Additionally
the Segment Rate Mean (the mean degradation rate is calculated for each segment), and
the Segment DI2 Sum (DI2 is summed for each segment across all temporal
measurements) are illustrated in blue and green respectively. Further the Count
(number of segment measurements) is shown in red and the most recent DI2 in
orange. Finally, the 17 RCF hotspots are shown in grey, and labelled according to their
calculated ranking.

TABLE 6.4: RCF Site Identification and Ranking Procedure Results: TL1: 0- 5000 yards

Rank Site
Start

Rail
Side

KPIcorr,1 KPIcorr,4 VS
Sum
Av.
per
yard

S
Sum
Av.
per
yard

Site
Length
(Yds)

No.
Site
Mea-
sure-
ments

No.
Yards
RCF

KPIcorr,5

1 4741 Right 7.16 7.48 0.38 0.09 88 176 8 22
2 2882 Left 4.03 5.03 0.19 0.08 341 597 27 22.11
3 4191 Left 2.17 1.60 0.01 0.06 33 57 3 19
4 2585 Right 3.80 2.64 0.13 0.01 352 454 29 15.66
5 4455 Left 1.63 0.73 0.01 0.01 110 139 8 17.38
6 627 Right 3.01 3.05 0.10 0.02 44 40 4 10
7 2255 Right 0.36 0.48 0 0 121 148 11 13.45
8 4301 Left 0.90 0 - - 11 13 1 13
9 1870 Left 1.76 3.07 0.10 0.01 88 80 8 10
10 847 Right 5.30 0 - - 11 4 1 4
11 2002 Right 0.40 0.75 0 0 66 45 5 9
12 3795 Right 2.05 0.45 0 0 22 10 2 5
13 2574 Left 0.13 1.23 0 0 22 12 2 6
14 4037 Right 0.80 0 0 - 11 4 1 4
15 2508 Right 0 0 - - 11 2 1 2
16 1309 Right 0 0.18 0 0 33 3 2 1.5
17 660 Left 0 0 0 - 0 11 1 1

To optimise this process it is recommended that the method is fine tuned with track
experts to meet their needs. However the principle is demonstrated whereby a
relatively simple aggregation of data could be used to assist in selecting sites for
maintenance activity; given that the data has been appropriately processed. Wear,
traffic, defect and track geometry indicators could also be readily incorporated.
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6.4 Concluding Remarks

This chapter has proposed some simple approaches for utilising the processed
modelling data set to inform preventive or corrective maintenance procedures.

Firstly, we introduced a methodology for allocating curved and tangent sections to an
enriched set of groups based on historical RCF damage. The new groups represent no
damage, low, moderate and high levels of damage, and provide the foundations for
implementing various interventions schemes depending on group, rather than simply
by curvature. For example, sections in the high damage category may indicate that a
route may need to significantly revise their intervention strategies, through more
frequent grinding/ milling, more lubrication, or even the potential for future rail
replacements of high performance rail to reduce the incidence of RCF. On the other
hand, sections assigned to the low category, or where no RCF damage occurs may
look at reducing their interventions, presenting the opportunity for cost savings. This
approach is focussed on the segmentation of the track based on historic data rather
than proposing new interventions/ grinding frequencies. In order to better
understand the temporal aspect and time to intervene, it is imperative that the quality
of the interventions data collected is improved. For instance, understanding of the
effectiveness of each intervention and how this impacts the initiation/ propagation of
RCF cracks must be gained. Parameters such as grinding depth, number of passes,
and desired profile etc., should be collected in addition to simply the start and end
points of machine grinding. Additionally, for rail replacements, the temporal
resolutions are currently accurate only to the year, which is not helpful for
understanding rates of degradation. Simultaneously, the frequency of the Eddy
Current measurements should reflect these interventions, such that RCF
measurements are available before and after each intervention. And finally, a
replacement for ACTRAFF data is required to understand the cumulative tonnage
over each track section between EC measurements.

Secondly, a method for highlighting RCF hotspots and ranking these based on
historical damage data is described. The results presented here are intended as a
demonstrator for how the degradation data can be used to influence how risk is
assigned to a hotspot, rather than utilising other track characteristics defined by track
experts. It is recommended that collaboration with route experts is still required to
fine tune the process and define some of the parameters defined in the approach, such
as the choice of additional data sources when defining site scores, and the thresholds
for site definition.

In summary, two simple methods have been presented to demonstrate the potential
for utilising pre-processed historic data to augment maintenance strategies. In order
to work towards more consistent, evidence-based approach to maintenance, it is
important to develop these strategies and use experts to supplement and fine tune
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data driven approaches. The following chapter goes a step further into the realm of
data-driven modelling by investigating the use of regression analysis and machine
learning algorithms to predict RCF damage using the pre-processed data.
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Chapter 7

Machine Learning for RCF
Prediction

The third and final part of this thesis aims to assess and develop a data-driven model
which predicts the evolution of RCF. The problem of predicting or classifying an
outcome of interest (in this case rail damage due to RCF) can be tackled using
supervised learning methods. Classification and regression are two specific forms of
prediction, the former predicts a variable of discrete nature, whereas the latter
involves continuous value output (Huang et al., 2020). In addition to traditional
statistical methods, machine learning offers new tools for solving supervised learning
problems especially in instances where other methods are unsuitable (Jiang et al.,
2020). This chapter will firstly discuss the problem formulation and the methodology
employed to develop and evaluate a data-driven model. Secondly the modelling
results are presented which comprise of three parts:

1. Results 1: A comparison of the full set of model configurations and different
algorithms, a subset of model configurations are determined for
hyper-parameter tuning,

2. Results 2- Determine Optimal Parameters: Hyper-parameter tuning is
performed for each of the algorithms given the chosen smoothing parameter and
input features. Additionally some analysis of these optimised models are
presented,

3. Track-Ex Comparison Analysis: Demonstrates a comparison of the optimised
models with physics-based approach WLRM using the Track-Ex
implementation.
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7.1 Problem Formulation

As described in Chapter 3, we seek to solve a supervised learning task. If we consider
two input data sets P, P′ ∈ ξ representing eddy current cracking observations,
described by the location, time, and other defining parameters for each observation.
The labels, or output data are denoted by DI, DI′ ∈ X which indicate the degree of
damage associated with P and P′ respectively. Machine learning algorithms aim to
‘learn’; a functional relationship between data P (training dataset) and label DI, in
order to predict unseen labels DI′ from the new data set P′ (test data set). More
formally the supervised learning problem is to find a function f = f (P, DI, θ), where θ

denotes the set of adjustable model parameters that may be estimated during the
training phase. The estimated function can be used on a new dataset to predict unseen
labels (Valente, 2008).

DI′ˆ = f (P′, DI, θ) (7.1)

where DI′ˆ denotes an estimate of the labels DI′. In this study, we consider labels with
continuous values, a regression problem.

7.2 Proposed Modelling Methodology

The regression methodology is illustrated in Figure 7.1 and described below, the
process utilises each of the pre-processed data sets generated by the process defined in
Chapter 5 for smoothing windows: [0,2,4,5,6,8,10,12,14,15,20,25,30], the entire process
produces 2184 different configurations. The use of the IRIDIS High Performance
Computing Facility at the University of Southampton was imperative in completing
these runs.

Additionally, as explained in Appendix B, there are numerous possible
hyper-parameter settings that could be used for model training and the approach is
often undergo a process known as ‘tuning’. At this stage, the initial algorithm
hyper-parameter settings are identified and shown in Table 7.4. These parameters are
a result of preliminary analysis, recommended ‘default’ algorithm settings, the degree
of noise and sparsity in the data, and with the objective to minimise over-fitting. Once
the initial results are generated for each run configuration, the best feature set and
smoothing parameter will be identified. The algorithms will then be tuned using these
settings to determine the ‘best’ model. This approach is used in order to reduce the
number of runs required.
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Note that ideally hyper-parameter tuning is conducted using a separate verification
set of data, in order to reduce the bias in the test results, however in this case due to
the limited number of observations in the temporal dimension a separate verification
set is not used, and the final results are presented for the same test set for which the
algorithms are tuned. In future, when more data are available the process should be
repeated.

FIGURE 7.1: Modelling Methodology
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1. Pre-processing: The pre-processing stage refers to the preparation of the
modelling dataset with respect to a set of run configurations. To determine the
effect of modifying specific input parameters, numerous configuration are tested
as defined in Table 7.1.

• Feature Selection: Feature Sets 0-7 are utilised as input to the model, these
are defined in Table 7.2 and Table 7.3,

• Filter Data: Only the degradation data is retained for regression analysis,
observations which have detected an improvement since the last
measurement in the segment are removed from the data set,

• Outlier Detection: The Local Outlier Factor (LOF) is utilised to determine
an outlier feature for each observation, each of the following configurations
are tested:

– None: No outlier detection is performed, outlier features are not
included in the feature set,

– LOF: N-Neighbours= 10,

– LOF: N-Neighbours = 20,

2. Scale Continuous Data: In data-driven approaches, it is common to scale the
continuous features in the dataset before learning. The motivation behind
scaling is that variables measured at different scales do not contribute equally to
the model fitting and therefore might cause bias. This is also model dependent,
with some distance based models such as support vector regression often
dependant on scaling of the input data. There are many methods used for
scaling; we use the following:

• Robust Scaling: As the name suggests, robust scaling methods are robust
to outliers, the method for scaling is similar to min/max scaling but uses
the interquartile range (rather than the range to scale the data). It follows
the formula:

xscaled =
xi −Q1(x)

Q3(x)−Q1(x)

where Q1 and Q3 are the first and third quartiles respectively

3. Training/ Test Split: The data are divided into a training set and a test set by
randomly splitting the data into training and testing sets. 10 different randomly
generated splits will be generated, with the training data apportioning 66% of
the data and 33% for the test data,

4. Train Models: Training the learning algorithm with input data.

(a) Model 1: Linear Regression (LR),

(b) Model 2: Support Vector Regression (SVR) (kernel- linear),
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(c) Model 3: Support Vector Regression (SVR) (kernel- gaussian),

(d) Model 4: Random Forest (RF): ,

(e) Model 5: K-Nearest Neighbours (KNN): k = 5,

(f) Model 6: K-Nearest Neighbours (KNN): k= 15,

(g) Model 7: Multi Layer Perceptron (MLP): 50 layers,

These models comprise some of the most commonly applied algorithms utilised
within the literature for this type of regression problem. The implementation of
these algorithms was performed using the python library
‘scikit-learn’ (Pedregosa et al., 2011). These algorithms are discussed in detail in
Appendix B.

5. Make Predictions: Trained models are used to make predictions using the test
data,

6. Model Evaluation: For each run configuration the predictions are evaluated
using performance metrics aggregated across the 10 data splits, note that yî is the
predicted value of the i-th sample and yi is the corresponding true value for total
n samples:

(a) Mean R2: The mean average of R2 for all splits. R2- the coefficient of
determination, represents the proportion of the variation in the dependent
variable that is predictable from the independent variable. The best
possible score is 1.0 and negative values are possible since the model can be
arbitarily worse than choosing the expected value. A constant model that
always predicts the expected value of y (yī), disregarding the input features,
would get a score of 0.0. The coefficient of determination for a training
sample, size n is defined:

R2(y, ŷ) = 1− ∑n
i=1(yi − yî)

2

∑n
i=1(yi − yī)2 (7.2)

where n is the number of observations in the sample, ȳ = 1
n ∑n

i=1 yi and

∑n
i=1(yi − yî)

2 = ∑n
i=1 ϵ2

i

The mean R̄2 over all splits k is thus:

R̄2
(y, ŷ) =

∑K
k=1(R2

k)

K
(7.3)

where K is the total number of data splits, in this study K = 10,

(b) Range R2 : The range of the R2:

Range(R2(y, ŷ)) = max(R2)−min(R2) (7.4)
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(c) Mean Run Time: The run time for each split is calculated and averaged
over the 10 splits,

7. Model Selection: At this stage we select the best set of input features and
smoothing parameters,

TABLE 7.1: Modelling Runs

Model Input Parameters
tbd

Smoothing Window [0,2,4,5,6,8,10,12,14,15,20,25,30]
Models 1: Linear Regression,

2: Random Forest,
3: Support Vector Regression: Linear,
4: Support Vector Regression: Gaussian,
5: KNN: 1,
6: KNN: 2,
7: MLP

Input Features (X) Feature Set 1
Feature Set 2
Feature Set 3
Feature Set 4
Feature Set 5
Feature Set 6
Feature Set 7

Outlier Analysis None, LOF- k = 10, LOF- k = 20
Scaling Robust

TABLE 7.2: Modelling Input Feature Set

Feature
Set No.

Modelling Input Feature Set

0 Basic Features
1 Basic Features, Spatial Features
2 Basic Features, Spatial Features, ACTRAFF Features
3 Basic Features, Spatial Features, ACTRAFF Features, Wear Features
4 Basic Features, Spatial Features, ACTRAFF Features, Wear Features, Wear

Rate Features
5 Basic Features, Spatial Features, ACTRAFF Features, Wear Features, Wear

Rate Features, Time Since Intervention
6 Basic Features, Spatial Features, ACTRAFF Features, Wear Features, Wear

Rate Features, Time Since Intervention, Defect Features
7 Basic Features, Spatial Features, ACTRAFF Features, Wear Features, Wear

Rate Features, Time Since Intervention, Defect Features, Lagged Damage
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TABLE 7.3: Modelling Feature Definitions

Name Feature

Basic Linear Distance, Time Since Measurement, Number of Seg-
ment Measurements, Rail Side

Spatial Track Curvature, Cant, Speed, EMGTPA, High/ Low Rail,
Track Category, Station, Tunnel, Distance to Station, Dis-
tance to Tunnel, Distance to S&C

ACTRAFF Features Total Tonnes, Passenger Tonnes, Freight Tonnes, Total
Trains, Passenger Trains, Freight Trains

Wear features Avg. Gauge Face Wear, Max. Gauge Face Wear, Avg.
Vertical Wear, Max. Vertical Wear, Avg. Field Side Wear,
Max Field Side Wear, Avg. Head Width Remaining, Min
Head Width Remaining, Avg. Gauge Face Remaining, Max.
Gauge Face Remaining, Avg. Remaining Rail Depth, Min
Remaining Rail Depth

Wear Rate Features Monthly Rates, Segment Rates as above.
Time Since Interven-
tion

Time since Estimated Intervention

Defect Features Defect Occurred
Lagged Damage Shifted Segment Damage Index

TABLE 7.4: Algorithm Hyper-parameters

Index Algorithm Hyper-parameters

1 Linear Regression (LR) N/A
2 Random Forest (RF) Implementation: Breiman Cutler,

No. Trees in the forest: 100,
Size of Feature Set Considered at each split: All
Features,
Max. Depth tree: 10,
Splitting Criterion: Squared-Error,

3 Support Vector Regres-
sion (SVR) Linear

Kernel: Linear,
Regularisation: 1,
Epsilon: ,

4 Support Vector Regres-
sion (SVR) Gaussian

Kernel: Gaussian,
Regularisation: 1,
Width (Gamma): 0.1,
Epsilon:

5 K-Nearest Neighbours
(KNN) 1

k = 5,
Distance Metric: Euclidean
Weights: Uniform

6 K-Nearest Neighbours
(KNN) 2

k = 15,
Distance Metric: Euclidean
Weights: Distance

7 Multi Layer Perceptron
(MLP)

No Hidden Units: 100,
Solver: ADAM,
Regularisation: [0.0001]
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7.3 Results 1: Regression Model Comparisons

This section presents the results of model runs defined in Table 7.1. The full set of
results are presented in order to determine a number of optimal models for further
development.

Figure 7.2 presents the results for all configurations where Outlier Features are not
included in the modelling. The smoothing window is indicated along the x-axis and
the model mean accuracy R2 is shown along the y-axis. Each marker and colour
represents the ML algorithm and feature sets respectively. The inclusion of the Lagged
Damage indicator variables clearly has the largest impact on model accuracy since
typically the highest accuracies are achieved for models trained with Feature Set 7. On
the other hand the lowest accuracies are generally achieved when only including the
basic feature set- Feature Set 0, which includes the observation linear position, time
and segment frequency. Additionally; as anticipated, in most cases model accuracy
increases with smoothing, however a balance must be struck between model accuracy
and correct data representation. Whilst smoothing helps to reduce noise, it also blurs
the data, reducing peaks and details that may be imperative for describing the
underlying phenomena. The smoothing process also introduces additional data points
at locations which would have otherwise been zero, for example in the original
dataset there are 6,921 observations, but this increases to 34381 observations when the
smoothing window is 30. The increase in data set size is reflected in the computation
times, which are shown in Figure 7.3. In particular, some algorithms, such as KNN
and RF are especially sensitive to increasing data set size.

Figure 7.5 presents box plots for each algorithm and smoothing level representing the
range in model accuracy (R2) across all 10 splits of the data. The model accuracies,
particularly for the LR, SVR and MLP algorithms are generally low but increase with
smoothing parameter. The spread in R2 value is also low indicating low sensitivity to
the change in input data set, for algorithms such as linear regression this is
unsurprising due to its low-variance nature. The instance-based (K-Nearest
Neighbours (kNN)) and tree-based methods however have much higher degrees of
variability, and are considerable more unstable without clear patterns that accuracy is
improving with smoothing parameter. Ideally it is desirable to choose a model that
indicates a much lower sensitivity to the data set, since it is more likely to be robust to
new, unseen data sets.

The same results are presented in Figure 7.5 with Feature Set 7 as input. In this case it
is clear that there is a significant improvement in prediction accuracy in all cases, and
a reduction in variability, except in the case of the MLP algorithm. It is likely that in
the case of the MLP algorithm that this is due to the hyper-parameter settings. The
MLP algorithm can run into convergence issues due to initial settings (data set), such
as high learning rates or a low number of iterations, in which case the solution may
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FIGURE 7.2: Results: Model Accuracy, Outlier Model = None

FIGURE 7.3: Results: Computation Time, Outlier Model = None
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converge to local minima (Lo et al., 2012). In this case it is highly desirable to tune the
hyper-parameters to determine a set which are more optimal, for example increasing
regularisation, increasing step size or the maximum number of iterations may help the
algorithm converge consistently to a global optimum.

To select the optimal smoothing parameter, we use Figures 7.2 and 7.3, and a heuristic
known as the ‘elbow method’. Often used in determining the optimum number of
clusters in k-means clustering (Syakur et al., 2018), the elbow method interprets the
turning point of a graph representing a model parameter of interest vs. the optimal
parameter to be selected (whether it be the number of clusters, k, or here, the
smoothing parameter, w). The method is used to identify the point where diminishing
returns (with respect to model accuracy (R2) and data set sensitivity) are no longer
worth the additional cost, which in this case is computation time and correct data
representation. A smoothing window w = 5 is thus selected, which in real terms
represents 5 segments- a smoothing window of 55 yards.

Clearly, Feature Set 7 results in the highest accuracy. The full set of tabulated results
are presented in Appendix C in Table C.1. The following section presents the results of
hyper-parameter tuning where the smoothing parameter is set to 5 and input feature
set 7 is used, these parameters will thus be used in the Track-Ex comparison analysis.
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7.3.1 Results 2: Regression Models with Optimal Parameters

Continuing from the preceding section, here we illustrate the results of
hyper-parameter tuning where the smoothing parameter is set to 5, and input feature
set 7. The hyper-parameter variations are indicated in Table 7.5 and the optimal
parameters along with new results fo each algorithm are contained in Table 7.6 (note
the full results are contained in Appendix C.2). Additionally an overview of feature
importances and model residuals are included.

TABLE 7.5: Algorithm Hyper-parameter Tuning

Index Algorithm Hyper-parameters

1 Linear Regression (LR) N/A
2 Random Forest (RF) Implementation: Breiman Cutler,

No. Trees in the forest: [25, 50, 75, 100],
Size of Feature Set Considered at each split: [50% of
features, All Features],
Max. Depth tree: [5, 10, 15],
Min. No Samples Per split: [20, 40, 60, 80],
Splitting Criterion: Squared-Error,

3 Support Vector Regres-
sion (SVR) Linear

Kernel: Linear,
Regularisation: [0.1, 1, 10, 100],
Epsilon: [0, 0.01, 0.1]

4 Support Vector Regres-
sion (SVR) Gaussian

Kernel: Gaussian,
Regularisation: [0.1, 1, 10, 100],
Width (Gamma): [0.001, 0.01, 0.1] ,
Epsilon: [0, 0.01, 0.1]

5 K-Nearest Neigh-
bours (KNN) 1

k = [5, 10, 20, 40, 80, 160],
Distance Metric: Euclidean
Weighting: Uniform

6 K-Nearest Neigh-
bours (KNN) 2

k = [5, 10, 20, 40, 80, 160],
Distance Metric: Euclidean
Weighting: Distance Based

7 Multi Layer Perceptron
(MLP)

No Hidden Units:
[(10,), (50,), (100,), (150,),
(10, 10), (50, 50), (100, 100), (150, 150),
(10, 10, 10), (50, 50, 50), (100, 100, 100), (150, 150,
150), ],
Solver: ADAM,
Regularisation: [0.0001, 0.001, 0.01, 0.1, 1]
Max Iterations: [500, 1000]

Table 7.6 indicates the optimal parameters, the R2 before optimisation (BO) and after
optimisation (AO), additionally the table shows the range in R2 for each fold of the
data to illustrate the model stability. Notably the R2 accuracy has increased for each
algorithm, and in particular for the MLP a greater level of stability has been achieved
due to hyper-parameter tuning. The range over all 10 splits is now only 0.03, and the
model R2 is significantly increased. Stability is achieved through increasing
regularisation (α), the number of iterations and the number of hidden layers and
neurons within each hidden layer. Additionally the accuracy of the Gaussian SVR has
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TABLE 7.6: Optimal Algorithm Hyper-parameters

Algorithm Hyper-parameters Max
R2:
BO

Range
R2:
BO

Max
R2:
AO

Range
R2:
AO

1 LR N/A 0.8 0.068 0.8 0.068
2 RF Implementation: Breiman Cutler,

No. Trees in the forest: 100,
Size of Feature Set Considered at each
split: All Features,
Max. Depth tree: 10,
Splitting Criterion: Squared-Error
Min Samples Split: 20

0.85 0.029 0.856 0.026

3 SVR Lin-
ear

Kernel: Linear,
C: 0.1,
dual: False,
ϵ: 0,
Loss Function: Squared Epsilon Insen-
sitive,
Max. Iterations: 1000,
Tolerance: 0.0001,

0.8 0.067 0.803 0.066

4 SVR
Gaussian

Kernel: Gaussian,
C: 100,
ϵ: 0.1,
γ: 0.01,
Tolerance: 0.0001,

0.72 0.104 0.868 0.047

5 KNN 1 k = 5,
Distance Metric: Euclidean
Weights: Uniform

0.83 0.022 0.86 0.025

6 KNN 2 k = 5,
Distance Metric: Euclidean
Weights: Distance

0.82 0.036 0.86 0.03

7 MLP α: 1,
Hidden Layer Sizes: (150, 150, 150),
Max. Iterations: 1000,
Solver: ADAM,

0 18936 0.86 0.068

also been significantly improved by increasing regularisation and decreasing the γ

parameter. γ is the kernel coefficient which defines how much influence a single
training example has, if γ is too large, then the radius of the area of influence of the
support vectors only includes the support vector itself and even with considerable
regularisation the model cannot be prevented from over-fitting to the data. On the
other hand if γ is too small, then the model is too constrained and cannot capture the
complexity in the data. The Random Forest, Gaussian Support Vector, kNN and MLPs
have the highest accuracies (∼0.86) amongst the models which is unsurprising due to
their ability to model highly complex functions. The optimal choice of algorithm will
be made once a comparison is made with the physics-based approach in the following
section.
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7.3.1.1 Model Residuals

Model Residuals provide an overview of regression model performance, in particular
the distribution of the model errors and how these highlight any violations in classical
statistical assumptions. Table 7.7 tabulates the mean, standard deviation and variance
for each of the optimal models using a single split of the data (hence accuracy scores
will not match the averaged scored provided in Table 7.6). Figures 7.6 to 7.12 illustrate
how the model predictions correlate with the observed values and how these errors
are distributed, and the marker colours represent the rail type, i.e. high rail, low rail or
tangent rail.

In the case of a linear regression model, the resultant model also provides a function
which represents the contribution of each independent variable (or feature) with the
target variable. However, in this case there are indications of multicollinearity, such
that two or more of the features are dependent on one another. Instinctively, it is
highly likely to be the case that the ‘Lagged Damage Indicator’ is highly co-dependent
on other features, since we know from previous research and the literature that
damage is a function of features such as curvature, wear, traffic etc. therefore it follows
that the lagged damage is also. Additionally, there is significant variation in coefficient
estimates across all of the 10 folds of data, and coefficient signs are sometimes
counter-intuitive. For a linear regression model, multicollinearity affects the accurate
determination of model parameters (coefficients), since the estimation procedure
struggles to distinguish between the effect of co-dependent terms, this in turn affects
utilising the model for making further inferences.

Another observation from the residuals is that in some cases the errors are not
constant in size, i.e. the residuals are increasing with the observed damage suggesting
that the models predict damage more accurately at lower values. This characteristic is
known as heteroscedasticity, errors which are non-constant, and is most apparent in the
case of the Linear Regression and Support Vector based models. Once again,
heteroscedasticity is particularly an issue for Linear Regression, since the ordinary
least squares method (used to determine optimal model parameters) assumes that all
residuals are drawn from a population that has a constant variance.

Additionally, for the models developed using the Linear Regression and Linear
Support Vector algorithms, the residual plots indicate negative predictions of damage,
which are possible due to the nature of the algorithms, hence generating some very
large errors in these cases. Since none of the training examples have negative target
values, this is not possible when using any of the other algorithms. On the whole,
each of the algorithms appear to under-predict the expected RCF damage.
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FIGURE 7.6: LR Residuals

FIGURE 7.7: RF Residuals

FIGURE 7.8: SVR-Lin Residuals
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FIGURE 7.9: SVR-Gaus Residuals

FIGURE 7.10: KNN1 Residuals

FIGURE 7.11: KNN2 Residuals
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TABLE 7.7: Model Residuals Summary

Model No. Model Mean SD Var

0 LR -0.150 8.271 68.409
1 RF 0.061 6.269 39.295
2 SVR-Lin -0.142 8.246 67.996
3 SVR-Gaus -1.234 6.856 47.005
4 KNN 1 -0.132 6.394 40.882
5 KNN 2 -0.050 6.013 36.152
6 MLP 0.204 6.043 36.523

FIGURE 7.12: MLP Residuals

7.3.1.2 Feature Importances

Whilst machine learning models are able to map very complex relationships between
inputs and outputs, they are often termed ‘black boxes’, such that it is difficult to
understand the decisions that drive the model predictions. Traditional parametric
statistical models such as linear regression enable the analyst to make statements
about how inputs and outputs are related, and determine the uncertainty of these
estimates using probability theory. However, neural networks can be made of
hundreds of neurons, and random forests can be constructed using hundreds of trees
with numerous nodes, and these techniques make it almost impossible to derive such
insights analytically.

Deriving numerically determined feature importances is hence a useful technique in
understanding how much a model’s predictions depend on certain inputs. One
method for determining relative feature importance is permutation feature importance.
Once a model has been trained, the technique determines the decrease in a model
score when a single feature is randomly shuffled. Ideally, random reordering of a
column ought to result in reduced accuracy, since the new data has little or no
correlation with real-world statistics. Model accuracy suffers most when an important
feature, that the model was quite dependent on, is shuffled. The benefit of this
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technique is that it is model agnostic, and can be calculated many times with different
permutations of the feature.

The permutation importance algorithm is indicated in Algorithm 8:

Algorithm 1: Permutation Importance Algorithm (Breiman, 2001)
Input: Fitted Predictive Model m, training dataset D, input features Fj

Output: Feature Importances {i1, ...iJ}
1 Compute the reference score s of the model m on data D (i.e. R2);
2 for each feature Fj in {F1, ..., FJ} do
3 for each repetition k in {1, ..., K} do
4 Randomly Shuffle column j of dataset D to generate a corrupted version of

the data Dk,j;
5 Compute the score sk,j of model m on correupted data Dk,j;

6 end
7 Compute importance ij for feature Fj defined as ij = s− 1

k ∑K
k=1 sk,j

8 end

Since there are numerous model configurations given the 10 folds for cross validation
and the 7 different algorithms, feature importances were calculated across these
configurations. Firstly for each configuration, the relative importance of each feature
was calculated by running the model and removing each feature in turn and
re-training the model. Following this the average importance across all configuration
is calculated as well as the sum of the feature rank in each configuration, these are
illustrated for the top 20 ranking features in Figure 7.13 and Figure 7.14 respectively.
The full set of results are tabulated in Table C.9 and Table C.8. In the case of the
average importance, a larger score indicates higher importance, whereas for the
cumulative rank a lower ranking score indicates a higher importance.

In both cases, the lagged damage indicator ranks highest overall, and generally the
ACTRAFF and wear features are highly ranked for both cases, which correlates well
with prior knowledge of RCF initiation and degradation. It should be observed,
however, that the strength of the dependence on the lagged damage indicates the
presence of autocorrelation in the data. This characteristic may present issues with
any independence assumptions asserted by the models, in particular in the case of
linear regression models where the independence assumption is required to make
statistical inferences using the model. In the case of other machine learning models
such as K-Nearest Neighbours and Decision trees this violation of independence may
have more of an effect on the model accuracy estimated using model validation
techniques such as random cross validation. When using random k-fold cross validation
to test the accuracy of a model, the assumption is that the data are independent and
identically distributed (Arlot, 2009) which therefore makes the cross-validated
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prediction error a good approximation to the true expected prediction error (Burman
et al., 1994). However, in the case of dependent samples, this may reduce the accuracy
of the estimate and in some cases present over optimistic estimations of model
accuracy. Validation methods that do observe these dependencies include methods
such as ‘blocked hold-out’ validation, whereby the training data always precedes the
test data in a temporal sense, and the training and test observation dates to not
overlap. This method is utilised in Section 7.4 when we compare the data-driven
methodology with the existing physics based approach used at Network Rail.

FIGURE 7.13: Permutation Feature Importance: Average Importance Across all Mod-
els

FIGURE 7.14: Permutation Feature Importance: Cumulative Rank Across all Models

7.4 Modelling with Track-Ex

As described in Section 3, Track-Ex is the NR implementation of the WLRM. The
intention of this section is to provide a basic comparison of the approach for
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estimating damage using Track-Ex with the proposed regression models and recorded
EC measurements.

In order to generate a Track-Ex damage simulation which can be compared with the
data-driven models presented in the previous sections there are some elements of both
the data-driven and WLRM approaches that must be considered:

• Forecast Horizon: A Track-Ex RFA simulation uses a set of track geometry data
to define the initial track characteristics over a chosen site at a specific point in
time, an estimate of damage is determined based on these initial conditions,
pre-calculated contact forces and the traffic over a given forecast horizon,
whereas the data-driven approach includes damage measurements at the given
recording dates. In this case, an estimation is determined over a 1 year (13
periods) horizon, and thus Track-Geometry files must be available at the
beginning of the time-window, and Eddy Current data close to the end of the
window in order to make the comparison. Track Geometry Data for TL1 is
therefore collected from August 2018, to enable a prediction of damage to be
made for August 2019 and compared with Eddy Current Data collected in that
month. The Regression Model estimates must also be modified to reflect this set
up. Thus far, regression models are evaluated using K-Fold Cross Validation,
where 10 randomly generated 60-40 splits of the data are utilised to generate 10
different models and the mean average over all splits is presented. Instead when
making future predictions similar to Track-Ex, it is important that the temporal
ordering of observations is preserved when devising training and test splits.
Therefore the data is split such that only data before August 2019 is used for
training, and data in August 2019 for the test data.

• Spatial Frequency: The Track-Ex and Data-driven model approaches generate
outputs on different spatial scales. For instance, the spatial frequency of
Track-Ex is driven by the sampling frequency of the Track Geometry (TRGM)
data (approximately 0.2m), whereas the ML models are presented at spatial
frequencies of 11 yards.

Clearly the cases are not identical, and there will be some error, however it is the
nearest approximation with the data available. The complete process for devising both
sets of calculations is presented below and in Figure 7.15:

1. Problem Specification:

• Define Route: TL1,

• Define Forecast Horizon: 1 year (i.e. 13 periods) , prediction for August
2019,
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2. Calculate Damage along Route using Track-Ex (DITE):

(a) Collect Data:

• ACTRAFF: Period 317 has been utilised for the estimation and the
resulting damage is appropriately scaled to generate an annual result,
Period 317 was selected since it is the last available period from the
ACTRAFF data before the data would need estimating,

• TRGM: Track Geometry data are collected from August 2018,

• Other Information: The track summary data is utilised to define the
stations, tunnels and line speeds,

• VDMs: The Vehicle Damage Matrices (VDMs) are extracted from
Visual Basic (VBA) implementation of Track-Ex (version 4.5),

(b) Make predictions: RCF Damage predictions are estimated for a worst case
scenario, i.e. assuming the rail is the high rail, note that the effects of
braking and traction are not included in this implementation.

• Wear Condition: Moderate,

• Wheel-Profile: P8,

• Rail Type: 113a,

• Steel Grade: Standard 260,

• Lubrication: 1,

(c) Map Track-Ex damage to 11 yard segments: Track-Ex and Regression
model are output at different spatial frequencies, the Track-ex outputs are at
the frequency of the track geometry data whereas the regression model are
output to 11 yards, in order to compare directly the Track-ex data would
require mapping and aggregating to the 11 yard segments,

3. Calculate Damage along Route using Regression Model (DI2):

(a) Input Configuration: Smoothing 5, Algorithms: [Linear Regression,
Random Forest, SVR-Lin, SVR-Gaus, KNN, MLP] with optimised
parameters as in Section 7.3.1,

(b) Data Preparation:

(c) Model Training: In this instance data are not randomly split into training
and testing sets. Instead the test data is the damage data recorded on a
selected test date and the training data is all data collected prior to this
date. In this case the data is ‘held -out’, i.e. the model has not seen any of
the data before. For this particular case the test date is selected as August
2019, The resulting training data size: 5770, test data size: 610.

(d) Model Testing: Make predictions for test date (August 2019) using the
trained model,



7.4. Modelling with Track-Ex 163

4. Compare Model Outputs:

• Scale Model Outputs: The outputs of the models are of different orders of
magnitude, the regression model is at the same scale as the input data,
whereas the Track-Ex damage indicator is a non-dimensional quantity that
represents relative damage across spatial locations. These may be
normalised to enable closer comparison, DITE and DI2 are normalised
using a standard scalar,

• Determine Comparison factors: Methods for comparing the models are
discussed in the next section.
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7.4.1 Results

7.4.1.1 Results: WLRM Approach

Figure 7.16 illustrates the output of the Track-Ex simulations for the left and right rails
and how these results compare with the EC measurements for August 2019. Note that
the lower chart illustrates the curvature data utilised in both methods, clearly there are
some regions where the TRGM data (Track-Ex input) is missing- these areas are
highlighted in grey and all future comparisons will not include these regions.

Whilst on different scales, visually the measurement data and Track-Ex predictions
appear to be in relatively good agreement, for instance the predictions for the left and
right rail at approximately 30000 yards appear to be well aligned.

On the other hand there are instances of differences in locations of damage. For the
left rail, there are 4 instances around 80000 yards where Track-Ex predicts damage to
occur on the high rail (left rail) but this is not reflected in the EC data, a reason for this
may be the presence of interventions such as rail replacements. Additionally at 60000
yards, Track-Ex does not predict the damage on the left or right rails, these rails are the
lower rail of curves. Track-Ex estimates considerable forces at 45000 and 53000 yards
on the right rail (this corresponds to the high rail at these locations) which are not
indicated at the same levels in the EC data. At 45000 yards there is virtually no
measured damage, and at 53000 yards there is damage detected but at a much lower
levels than at 32000 yards (where Track-Ex predicts the opposite to occur). Track-Ex
suggests that the highest levels of damage should be seen at approximately 53000
yards, whereas the measured data suggests that highest levels of damage are seen at
32000 yards.
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FIGURE 7.16: Track-Ex Predictions

7.4.1.2 Results: Data-Driven Approach

Table 7.8 presents the results for the optimised data-driven models, where the training
data includes only EC observations prior to August 2019, and the predictions are
calculated for August 2019.

The first observation from the results in Table 7.8 is the considerable reduction from
the results presented in Section 7.3.1 and Table 7.6. The change is a result of the
alteration in validation method, instead of randomly splitting the data into training
and testing sets, the data are treated as sequential in order to provide a forecasting
estimate. Therefore for training the model will only be trained on data recorded prior
to August 2019 (since the test date is August 2019), all data from 2020, 2021, and 2022
is not utilised. The reason for choosing this date was the availability of TRGM data
here and the ability to utilise ACTRAFF data prior to the pandemic where estimates
vary considerably from pre-pandemic levels. Whilst in the case of random
cross-validation the accuracy for KNN, MLP, SVR-Gaus and RF models were very
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similar, in this case the Random Forest algorithm predicts RCF damage for August
2019 with the highest accuracy. The following section presents the analyses conducted
for comparing the data-driven and WLRM based approaches with the observed
results.

TABLE 7.8: Modelling Results: LOF 0, Smoothing 5, Input Features 7, Optimum Pa-
rameters, Hold Out Validation

Index Regression Model Outlier Model R2 MAE MSE Run Time (s)

0 LR None 0.597 0.54 0.749 10.8503647
1 RF None 0.706 0.406 0.546 15.3321705
2 SVR-Lin None 0.617 0.523 0.712 19.5808818
3 SVR-Gaussian None 0.499 0.446 0.931 16.4730338
4 KNN 1 None 0.446 0.55 1.03 13.3388583
5 KNN 2 None 0.448 0.549 1.026 11.78977
6 MLP None 0.544 0.504 0.848 20.2853095

7.4.2 Results: Comparison

Due to the nature of these two approaches, it is difficult to directly compare their
outputs. Therefore below are some metrics that may help indicate their similarities,
some similar metrics were used by Krishna et al. (2021). Here we denote Track-Ex
estimations, regression model estimations and EC measurements as DITE, DIRM and
DIEC respectively. The metrics are the percentage of damaging cases, false negative
and false positives, and correlation of damaging cases.

7.4.2.1 Percentage Damaging Cases

Firstly we calculate the percentage of non-zero damage cases for each model to
determine how well the models estimate where damage will occur. The results for
Track-Ex and the Observed values are shown in Table 7.9, which contains the
percentage of damaging cases alongside the absolute number of cases for Track-Ex
and the observed damage. Note that this data includes only the track sections where
Track-Ex has valid track geometry data (which is 442 11 yard segments). And further
that the data-driven models are not included in the table since the damaging cases are
identical to the Observed damaging cases, the data-driven models predict the location
of damaging sections with 100% accuracy. Figure 7.17 illustrates the results shown in
the Table 7.9. Notably Track-Ex appears to neglect half of the damaging cases
compared with the measured data, from the area of track under study the observed
data highlight 60% and 59% of sections to have some RCF damage for the left and
right rail respectively, compared with 26% and 34.39% identified by Track-Ex.
However, for the high rail the number of damaging cases are much closer between the
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FIGURE 7.17: Percentage of Damaging Cases

observed data and Track-Ex. On the other hand, when looking at the low rail and
tangent sections of track Track-Ex estimates so few cases of damage on the low rail and
none at all on tangent track that the difference between the outcomes is significant.

TABLE 7.9: Comparison of Observed and Track-Ex Predicted Damaging Cases by Rail
Type

TE Damag-
ing %

Total No.
Cases
DITE > 0

Obs Dam-
aging %

Total No.
Cases
DIEC > 0

Total No.
Sections

Left Rail 26.24 116 60.40 267 442
Right Rail 34.38 152 59.04 261 442
High Rail L 52.63 100 88.42 168 190
High Rail R 65.48 129 72.6 143 197
Low Rail L 8.12 16 36.04 71 197
Low Rail R 12.1 23 38.94 74 190
Tangent L 0 0 50.9 29 55
Tangent R 0 0 80 44 55

7.4.2.2 False Positives and False Negatives

Whilst the percentage of non-zero cases are outlined in the previous section, this
metric does not indicate how many of these cases were correctly predicted compared
with the measured data. The quantities of False Positive (FP) and False Negative (FN)
will determine where the observed and Track-Ex estimations overlap.

• False Positives: Where the observed value is zero but the model predicts
non-zero damage,

FP =
(DEC = 0) ∩ (Dmodel ̸= 0)

(DEC = 0)
(7.5)
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• False Negatives: Where the observed value in non-zero but the model predicts
zero damage,

FN =
(DEC ̸= 0) ∩ (Dmodel = 0)m

(DEC ̸= 0)
(7.6)

Table 7.10 indicates the percentage of FN, FP and the total number of damaging and
non-damaging cases for reference (once more only the 442 sections where the TRGM
data is valid are considered in the comparison). There are no cases of FN or FP for any
of the regression models which is unsurprising since the data-driven approach relies
on the values the algorithm has seen previously at each location. The data-driven
approach would only generate a FN if the historic data did not present any damage at
this location, and conversely would only result in a FP if there was no longer any
damage at a location that has previously seen damage.

For the high rail, in the case of FP, where damage is observed to be 0, Track-Ex
incorrectly predicts non-zero values for 37% and 50% of cases for the left and right
rails respectively, however we note in this case that the total of cases where DIEC = 0
is low (Left-22 cases, Right-54 cases). Further Figure 7.18 and Figure 7.19 illustrates the
FPs and FNs along the track for the left and right rails, the plots also show where the
rails have been replaced between 2014 and 2019. Whilst the rail replacements do not
account for all of the false positives identified by Track-Ex, they do appear to overlap
with some cases. It can be seen when observing more closely that there are a number
of incidences on the right rail between 10000 and 12000 yards where a FP is indicated
but this also coincides with an area which has undergone recent rail replacement
which may explain the absence of RCF in the measured data. In the case of the low
rail, as expected the FP are very low (Left- 1.5%, Right 12%) since Track-Ex predicts
such a low number of damaging cases for the low rail, it reflects that out of all the
cases where we observe damage to occur on the low rail, that Track-Ex indicates
damaging cases for very few cases. Since Track-Ex does not predict damage for
tangent track, there are no false positives.

False Negatives (FNs), on the other hand, are areas that could be further investigated
to understand if there are elements driving RCF which Track-Ex does not consider
since, FNs are the cases where, according to the Eddy Current data there are RCF
cracks occurring in these segments, however Track-Ex does not predict damage here.
For the high rail, the rate is 46.43% of cases for the left rail and 23.07% on the right rail.
As expected, for the low rail, there is a very high percentage of false negatives due to
the low incidence of RCF damage predicted by Track-Ex on the low rail. Similarly, for
the tangent rail sections, once again since Track-Ex does not predict damage in these
sections, none of the cases identified in the measured data are correctly predicted.
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FIGURE 7.18: Track-Ex Predictions: False Negative and False Positives, 0- 100000 yards
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FIGURE 7.19: Track-Ex Predictions: False Negative and False Positives, 0- 15000 yards
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TABLE 7.10: Quantity of False Negatives and False Positives Generated by Track-Ex
Simulation Compared with Observed Data

FN (%) FN: DIEC ̸= 0 FP (%) FP: DIEC = 0

L All Rail 61.04 267 6.85 175
R All Rail 54.40 261 18.23 181
L High Rail 46.43 168 45.45 22
R High Rail 23.07 143 35.18 54
L Low Rail 80.28 71 1.59 126
R Low Rail 87.83 74 12.06 116
L Tangent Rail 100 28 0 27
R Tangent Rail 100 44 0 11

7.4.2.3 Correlation of Damaging Cases

A measure for joint variability of the estimated damage and actual damage is
established using correlation analysis. Higher correlation denotes higher values from
one model mainly corresponding with with high values of the observed.

ρi−j ←→ ρj−i =
cov((DIi), (DIj))

σDIi σDIj

(7.7)

where ‘cov’ denotes covariance function and σ denotes standard deviation. This value
varies between -1 and 1, where a negative value implies an inverse relationship, 0
implies very low correlation (i.e. random behaviour) and a value of 1 suggests linear
proportionality.

Figure 7.20 depicts the correlation between the ML models (LR, RF, SVR-Lin, SVR-G,
kNN-1, kNN-2, MLP), Track-Ex Predictions (DITE) and the Observed data (DIEC) for
the Left and Right Hand Rails. Note that we compare only areas where Track-Ex has
non-zero entries, since FN are addressed in the previous section, additionally we do
not present Track-Ex correlation results for the low or tangent rail sections since
Track-Ex generally predicts zero damage in these areas and thus the correlation is zero.

In general, the ML models present higher correlation for the RHR than the LHR such
that all models are demonstrating a correlation > 0.93, whereas the LHR shows
correlations > 0.71. Overall the Random Forest algorithm presents the highest overall
correlation with the observed data (0.93 and 0.97 for the left and right rails). In
contrast the Track-Ex predictions are very weakly positively correlated with the
observed values for both rail sides.

However, it should be emphasised that the reported correlation coefficients are
representative of the sample, denoted by r, the true population statistic is represented
by ρ. Thus, we conduct a statistical hypothesis test to determine whether the
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calculated relationships in the sample are statistically significant, or could happen by
chance given the sample data. Our test the following hypotheses:

• Null Hypothesis: H0 : ρ = 0 (i.e. the population correlation coefficient is not
significantly different from zero, and therefore there is no linear relationship
between the model predictions and the observed values),

• Alternate Hypothesis: H0 : ρ ̸= 0 (i.e. the population correlation coefficient is
significantly different from zero, and therefore given the data we can conclude
that there is sufficient evidence to support a linear relationship between the
model predictions and observed values).

Table 7.11 summarises the calculated p-values, notably all p-values are significantly
less than the typically utilised significance level of 0.05. Thus, there is sufficient
evidence to conclude that there is a linear relationship between the ML model
predictions and the observed data for the high rail because the correlation coefficient
is significantly different from zero.

To summarise, the relationship between the Random Forest model predicted values
(with optimal input parameters) and the observed damage values is much closer than
for all other models, and the correlation coefficient is statistically significant. The
random forest model tends to predict high and low values of damage well.

TABLE 7.11: Correlation P-Values

Model Track-Ex: Left
Rail

Observed:
Left Rail

Track-Ex:
Right Rail

Observed:
Right Rail

LR 0 0 0.00000195 0
RF 0 0 0 0
SVR Lin 0 0 0.00000006 0
SVR Gaus 0 0 0 0
KNN1 0 0 0 0
KNN2 0 0 0 0
MLP 0 0 0 0
Track-Ex Prediction NA 1.00E-08 NA 0
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FIGURE 7.20: Correlation Coefficients (r) of Damaging Cases: High Rail
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7.5 Concluding Remarks

This chapter is introduced by formally framing the regression problem which aims to
devise a mapping which relates a set of features with a RCF damage parameter
derived from Eddy Current measurements. We present a methodology employed to
combine the pre-processed data generated in Chapter 5, and specifically prepared for
this learning problem, with the use of machine learning algorithms to extract the
complex relationships in the data.

Numerous model configurations are proposed and tested to determine optimal model
settings such as the input feature set and the level of spatial smoothing applied to the
input data. From this process the smoothing level selected is a window size of 5, and
the Input Feature Set 7, which are subsequently utilised for further modelling to
determine optimal algorithm hyper-parameters. The models were validated using
k-fold cross validation such that the data were randomly divided into 10 different
training-test subsets and the average performance over all of the 10 folds is presented,
in order to reduce the affect of over-fitting. Over-fitting is a common issue presented
when using highly flexible algorithms such as decision trees and neural networks, but
by assessing the accuracy of the model on different subsets of the data, the variability
of the final model accuracy is reduced, which has been illustrated in Figure 7.5. Using
this approach RF, SVR-Gaus, KNN and MLP algorithms produced models with
highest accuracy (> 0.85). However, it should be highlighted, due to the size of the
data, when optimising parameters such as the smoothing window and algorithm
hyper-parameters, the same set of training and test data were utilised as when
building and determining the final accuracy of the ML models. Ideally, a third,
validation set should be used once parameters have been optimised to determine the
true generalisation performance. In this case therefore, there is the possibility that the
models are over-fitted to the data, and the accuracy does not truly represent their
ability to generalise well.

Analysis of model residuals has also highlighted some potential violations of
commonly used statistical assumptions such as multicollinearity of the input features
and heteroscedasticity in the model errors. These characteristics raise some questions
into the statistical validity of using models which are based on linear regression,
particularly for making inferences and determining model characteristics such as error
bounds.

Further, despite the remarkable function-fitting capabilities demonstrated using
machine learning techniques, their opacity in explaining the basis of their predictions
still remains an issue. Feature importances are therefore generated across all models to
understand the driving features for predicting RCF damage. The highest ranking
features highlighted in this procedure are the lagged damage indicator, the traffic
features and the wear features, which correlates well with what we understand about
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RCF generation and propagation. Instinctively, previously measured RCF damage
will clearly influence the current RCF damage in a particular location, and its
propagation will rely heavily on the accumulated traffic and the wear characteristics
of the track. However, the significant dependence of the models on lagged damage
strongly indicates the presence of autocorrelation in the data. Autocorrelation implies
that instances are not independent, and therefore presents issues when using methods
such as ordinary least squares. Additionally, whilst many machine learning methods
do not rely on the independence assumption during training, random k-fold cross
validation does make this assumption. We must therefore bare this in mind when
considering the resulting model accuracies generated using random cross validation.
Alternatively, validation methods that observe these dependencies such a ‘blocked
hold-out’ validation can account for autocorrelation, and are discussed in the second
part of the chapter when a comparison with the physics based methodology is
presented.

The second part of this chapter demonstrates a different approach in the modelling
methodology. Rather than randomly splitting the data into training and test splits, the
temporal structure of the data was observed such that the timestamps for data
contained in the training set and test sets do not overlap. For instance, observations
collected in 2015, 2016, 2017 and 2018 are selected for training, and observations
collected in 2019 are retained (or ‘held-out’) for testing. This enables a true future
estimate of RCF damage to be obtained and accounts for autocorrelation, and
additionally enables a comparison of the data-driven technique with the physics
based approach implemented in Network Rail software-tool Track-Ex. Input
parameters and model hyper-parameters are retained from the first part of this
chapter and the results are presented for each of the ML algorithms, these results are
then subsequently compared with a Track-Ex simulation which has been devised to
match the observational circumstances as closely as possible. Since it is difficult to
directly compare these methods a number of metrics are analysed to provide an
insight into how these methods compare.

Firstly, it is established that the data-driven approaches correctly identify all the
locations where RCF is detected in the observed data-set, i.e. the number of damaging
cases is identical, and there are no instances of false negatives (where the observed
data indicates a non-zero case but the model estimates zero damage) or false positives
(where the observed data indicates a non-damaging case but the model predicts
damage at this location). When we compare Track-Ex with the observed data,
Track-Ex only predicts approximately half the number of total damaging cases as
compared with the measured data for both rail sides. However it is estimated that
many of these cases that are not identified correspond to low rail and tangent rail
sections, where Track-Ex notably predicts extremely low instances of damage or none
at all for tangent sections. Additionally there are many instances of False Negatives
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and False Positives, i.e. the damaging and non-damaging cases do not correctly
overlap with the measured data. Due to the much lower percentage of damaging
cases identified by Track-Ex, the high False Negative values are plausible, in particular
with respect to the low rail and tangent rail sections. Track-Ex incorrectly predicts no
damage for 80% and 87% of cases for the left and right lower rails compared with the
observed data, and does not predict any cases of damage for tangent track. In the case
of False Positives, some cases may be explained by the presence of rail replacements
which result in the observed damage falling to zero where a replacement has
occurred. Further the FN and FP may also be influenced by spatial misalignments
between the Track-Ex simulations and the EC data. It should be noted that it is well
recognised that Track-Ex tends to under-predict low rail RCF damage (Burstow, 2004;
Boyacioglu et al., 2018; Bevan, 2020). High rail damage is driven by the direction of
creep forces in the traction direction, which enables fluid entrapment in minor cracks
and drives these deeper into the rail, resulting in higher growth rates and risk of
transverse defects (Burstow, 2004). On the other hand, it has been observed that low
rail RCF cracks are driven predominantly by lateral forces, and the longitudinal
(traction) forces are small. Since Track-Ex requires a positive longitudinal shear force
in order to trigger the damage calculation (such as in the case of high rail damage),
these cases are likely to indicate no RCF damage.

Finally, the correlation of damaging cases is analysed for each of the data-driven and
Track-Ex models compared with the observed data. The predictions generated by the
random forest algorithm present strong positive correlations with the observed
damage, with correlation coefficients of 0.93 and 0.97 for the left and right rails, whilst
other data-driven models correlate well on the whole (i.e. all correlation coefficients >
0.7). Comparatively the Track-Ex model predictions demonstrate weak positive
correlation with the observed values (0.2 and 0.13). However, again it should be noted
that there are some discrepancies in the comparison. Track-Ex is not intended to
predict the length/ depth of cracks, rather where they are likely to initiate due to high
contact forces, whereas the regression models base their predictions on the historic
locations and magnitudes of damage.

Thus to conclude, whilst we understand that there are a number of practical reasons
that prevent engineers from using Track-Ex to plan where to correctively grind or mill
we have also presented some quantitative evidence to suggest why we might choose
not to use Track-Ex in this instance. Data-driven models on the other hand have
presented a robust method of indicating with 100% accuracy exactly where the
damaging and non-damaging cases are located, and additionally they indicate a good
correlation with the intensity of damage that should be expected. Therefore,
combining these techniques with the approaches currently in use; particularly for a
corrective strategy, engineers can highlight the areas forecast to have high damage
using the proposed model.
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Chapter 8

Summary

8.1 Conclusions

In summary, this thesis has provided a body of research which seeks to formulate and
solve the problem of predicting rail damage due to Rolling Contact Fatigue using a
data-driven methodology. The approach aims to use the numerous data sources at
Network Rail more effectively and develop a strategy which could be integrated with
planning of maintenance tasks such as grinding and milling, with the objective of a
better targetting of resources.

The major difficulties which have arisen when embarking on such a task are the
wealth of data-driven techniques available and the utilisation of real data sources
compared with simulation data. Real Eddy Current data are plagued by noise and
complexities in their structure which have driven the direction of modelling in this
study. A model driven by data is only as good as its inputs, thus the data processing
task has been central to this study, without which regression modelling or analysis of
the data directly were unlikely to produce useful or reliable results. Additionally the
data demonstrates some complexities such as the presence of space and time,
sampling irregularity and sparsity which restrict the ability to apply certain
techniques that rely on evenly gridded, high frequency data.

This study has presented an approach that considers these difficulties, and utilises
optimisation and machine learning algorithms to explore, process, integrate and
formulate the data for the learning task. We then provide two primary outputs; 1) a
number of simple approaches that could be applied directly to assist the preventive
and corrective strategies already in use at Network Rail (Chapter 6), and 2) a
regression model based on machine learning algorithms to forecast damage, which
could be used in a variety of planning tasks. This method has additionally been
compared with a well-known physics based engineering model currently used by
Network Rail- the WLRM (Chapter 7).
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In order to achieve these objectives the initial sub research questions outlined in
Chapter 1 were considered, and these are summarised below:

1. What are the critical drivers for RCF initiation and degradation? To understand the
key parameters necessary to build a RCF prediction model, the underlying
physics driving crack initiation and propagation were considered. It is well
understood in the domain that cracks initiate on rails due to fatigue, whereby
the wheel/rail contact experiences numerous wheel passes which surpass the
fracture point of the rail material eventually resulting in the formation of minor
cracks. Additionally wear plays a crucial role in managing RCF, since low levels
of wear act to remove minor cracking and prevent cracks from reaching a critical
size needed for branching and propagation. Thus the crucial parameters that
affect RCF are determined to be track curvature, super-elevation, line speed,
accumulated traffic, rail mettalurgy, rail profile (i.e. head, side wear), and
presence of defects,

2. How are RCF cracks detected and monitored? Traditionally ultrasonic testing
methods have been used to detect internal defects in the rail, however these
techniques perform poorly at detecting small surface cracks < 4mm. Eddy
Current technology on the other hand has the ability to detect very light
cracking at the surface of the rail such as RCF damage. The method has been
pilotted since 2015 on the UK network but have not as yet been analysed in any
great detail. The Eddy Current data for plain line track were thus selected to
drive data-driven prediction of RCF damage.

3. What are the current grinding practices in use by Network Rail? The two leading
strategies used by Network Rail are in-traffic preventive grinding and corrective
grinding. Preventive grinding is performed cyclically based on the track
curvature and tonnage, whereas corrective grinding is a risk-based activity
which uses the recent Eddy Current data, and a number of additional sources
that have been culminated in a risk framework based on expert judgement.
Notably neither of these strategies capitalise on the availability of the WLRM
model to inform their strategies, nor do they use information of historical rates
of cracking. Thus, a methodology based on real data may be beneficial.

4. What existing models are available for RCF evolution modelling? There are many
studies which cover RCF modelling, and in Chapter 3 we review the engineering
models that couple multi body simulations to generate different contact
conditions, and empirical methods to estimate a rail damage indicator. The
WLRM is a well-known technique used by Network Rail and is implemented
within a software tool known as Track-Ex where it is possible to determine RCF
risk for large sections of track based on the anticipated future traffic. As
compared with more complex and higher fidelity methods, its accuracy may be
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lower however it has the ability to predict damage on large sections of the rail,
which is a necessity if it is to be used alongside strategies and everyday
maintenance use. However, it is noted that within Network Rail this model is in
fact not generally used by maintenance teams to impact their decisions on
grinding and milling, this is likely to be due to a number of reasons. For
instance, the outputs of the models do not present information such as current
conditions of the rail, the model assumes perfect initial conditions, and assumes
a linear damage accumulation rather than using measured rates. Additionally
the software can be difficult to use and requires the gathering of numerous data
sources for its inputs, and can only generate results for a portion of the track at a
time. To do this numerous times for different track lengths, and additionally
gather supporting data regarding the current condition of the rail is a highly
manual and time-consuming process from a practical perspective. In the
literature review, as far as we are aware there are no studies that investigate the
use Eddy Current data, and machine learning models to drive a RCF prediction
model. Whilst there are some related studies which look in particular at squats,
and many papers on applications of machine learning for video and track
geometry data, this is not the case for modelling of head checks, gauge corner
cracking which are detected using EC and Ultrasonics,

5. How can the available RCF condition data be formulated for regression analysis?
Preliminary Analyses of the Eddy Current data reveals some of the complex
characteristics of the data, such as the presence of space and time, temporal and
spatial sampling irregularity, data sparsity and misalignments. Additionally the
temporal resolution and quality of the sources of interventions data are not
suitable for deriving useful information. It is therefore determined that the data
must be cleaned, and filtered to generate a data set which represents the
degradation of the rail without the presence of interventions. Moreover
additional features must be generated to capture the spatial and temporal
features, and different data sources must be combined to leverage some of the
key RCF drivers stemming from the literature review.

6. What insights can be gained from the RCF condition data? Once the data has been
pre-processed, aligned and integrated with other data sources, Chapter 6
generates a number of KPIs which provide an indication of the historic damage
over each 11 yard segment. These KPIs are used in two simple approaches,
firstly the KPIs are used to divide track segments into distinct groups
representing track curvature and low, moderate and high levels of damage.
These categories may be used to indicate where interventions strategies may
need revising. Secondly an approach for indicating where RCF hotspots are
located on the track based on these KPIs, and ranking these is presented. The
two methods indicate how simple approaches can be useful once the data is in a
cleaned and structured format.
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7. Can regression analysis be used to build an effective RCF regression model using
machine learning algorithms? Several machine learning algorithms are trained
using an array of input features, input data sets (with different levels of spatial
smoothing applied), and algorithm parameters. The models are tested across 10
different folds on the input data to determine their sensitivity to different
training data and generalisation capability. Low levels of smoothing (i.e. a
window size of 5- i.e. 55 yard segments), and a feature set which includes lagged
damage indicators, wear, traffic, spatial characteristics (such as curvature, cant,
speed), distance to track features (such as stations and S&C) and defect
parameters result in a model with a high (> 0.8) average r2 score.

8. How does a data-driven approach compare with existing physic-based models? A
Track-Ex simulation is performed to generate estimations of rail damage over a
year from August 2018 to August 2019. Additionally the proposed data-driven
approach is modified such that the validation method observes the temporal
ordering of the data such that a true and comparable forecast can be generated.
The observed data, track-ex predictions and ML predictions are presented, and a
number of metrics are presented to indicate their similarities. In general, the ML
methods generate much closer predictions to reality with respect to correctly
identifying the location of damaging cases, and additionally the general
correlation in magnitude of these estimated damaging cases. Track-Ex in
particular suffers with low prediction accuracy for low rail and tangent track.
However it is noted that the comparison is not exact, and may suffer from some
bias, for instance the Track-Ex predictions are for a specific simulation case
which assumes a specific wheel profile, level of lubrication, etc, and there is no
simulation of the braking and traction experienced at stations. There is also the
issue of mis-alignment, Track-Ex predictions rely on TRGM data for position,
whereas the ML models and observed data are aligned precisely with each other,
but may be misaligned from the track geometry data. Further, it is noted that
Track-Ex has never been intended to predict crack depth or length, rather an
indication of the magnitude of the contact forces needed to drive RCF damage.

In an overall conclusion, the work sought to answer the question: Can data-driven
methods be used to build an effective data-driven RCF prediction model to help inform
grinding strategies?

This thesis has shown principally that the data processing task is critical in uncovering
patterns in this type of noisy, spatio-temporal data such that it can be used for
subsequent extraction of useful information. In particular, a routine for consistently
aligning Eddy Current data in space is presented using partitioning, cross-correlation
and optimisation techniques in order to address the low frequency and irregular
nature of the EC data. Once the data is processed, simple analytic techniques
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accounting for degradation patterns can be used to directly augment some of the
existing preventive and corrective strategies. Two such suggestions are presented,
firstly tangent and curved sections of track are analysed and categorised based on
their historic Eddy Current measurements. These new categories are aimed to indicate
where interventions strategies, such as preventive grinding, application of lubrication
and friction modifiers, and identification of areas for high performance rail, may be
adapted in future. Additionally, the processed data may be incorporated into a
methodology to identify and rank current RCF hotspots to assist in managing the risk
of these sites.

Secondly, this thesis has shown that a regression model can be built based on machine
learning algorithms to determine damage due to RCF with relatively high accuracy.
However, the performance of the model relies on extensive pre-processing and feature
engineering to remove noise and capture the underlying phenomena. The ability of
machine learning algorithms to map highly complex relationships between inputs and
outputs is demonstrated, but it is also important to understand their limitations.
Although these methods can indicate the relative importance of the input features,
unlike physics-based methods, most cannot be used as inferential models to
understand why a phenomena is occurring. An exception of course is Linear
Regression, a statistically rooted distributional based method, where a function is
estimated to represent the phenomena, and coefficient values indicate the contribution
of each feature. Nevertheless, such distributional methods make rather stringent
assumptions of the data under study, which, if violated can undermine their validity.
For instance, further analysis has highlighted issues such as autocorrelation
(non-independent instances), multicollinearity (feature dependencies) and
heteroscedasticity (non-constant errors). Whilst most machine learning methods do
not impose these same assumptions, and the presence of these features may not
necessarily impact their ability to fit a suitable function to the data, there can be other
issues arising due to these characteristics. For instance, if autocorrelation exists in the
data, using random cross validation to estimate generalisation error may not be
accurate. Instead, validation methods that observed the dependencies in the data (i.e.
the temporal structure) can be used to combat this and are demonstrated when
comparing the data-driven methodology with the physics-based approach using
Track-Ex. Additionally, other methods in future could be used to account for some of
these characteristics. For instance, rather than prediction of the absolute damage,
prediction of the rate of change of damage can remove the effect of autocorrelation, a
technique known as differencing, and feature reduction techniques could also be
applied to reduce the effects of multicollinearity.

Additionally understanding the bounds of the model is critical, the purely data-driven
models are limited by the data they are trained on, for example, if the model has not
seen an instance with damage index > 100 before (i.e. the variability in the data has
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changed, the data is non-stationary), then it will not be able to predict this either, and
therefore may tend to under-predict in this case. Yet, these models can capture high
levels of non-linear complexities, can generate predictions on the scales at which the
data is measured, and be continually updated using real -time information. The
generation of the modelling data sets further integrates numerous sources to a
common reference frame which is highly useful to a track engineer. To better
understand risk and degradation, predict specific outputs and highlight patterns
within the data (rather than providing an explanatory model), these techniques and
models can be highly advantageous to analysts and railway engineers.

We next present our contributions to the field of research, followed by the
recommendations for future work and direction.

8.2 Contributions

The thesis contributions to this field (in the order they are introduced) include:

• A robust approach for consistently aligning Eddy Current data is proposed that
addresses the characteristics of low frequency and sparse data. The approach
may be used to enable reliable analyses of degradation rates and perform
regression modelling (Chapter 5),

• The development of a methodology for cleaning and integrating numerous real
data sources related to the generation of RCF defects on the UK rail network.
The approach proposed a RCF damage parameters based on EC data, and
combats undesirable qualities such as noise and different data scales in order to
formulate a data set that can be learned from using data-driven and specifically
machine learning techniques (Chapter 5),

• Demonstration of an approach for repeatedly analysing the processed modelling
data set to better understand RCF degradation rates and augment the existing
Network Rail preventive and corrective grinding strategies. New KPIs are
proposed to determine the estimated amount of RCF damage in a specific track
segment. These KPIs can be used for maintenance decision making by
infrastructure managers (Chapter 6),

• This thesis presents a thorough comparison of the development and training of
regression models using different machine learning algorithms. Further we
propose the most suitable model for the application of predicting damage over a
length of track on the UK rail network that may be integrated with existing
maintenance strategies (Chapter 7),
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• The proposed data-driven methodology is formulated as a forecasting problem
and compared with outputs generated by the Whole Life Rail Model (WLRM).
Track-Ex a software tool which implements a simplified version of the WLRM,
using look-up tables generated by multi body simulations. An approach is
described which enables a basic comparison between the observed data,
Track-Ex predictions and the ML predictions. Overall, the analysis indicates that
for forecasting damage, the proposed approach based on numerous shallow
decision trees presents improved correlation with the observed data as
compared with the WLRM approach (Chapter 7).

In summary, probably the most important contribution of this thesis is that, given
suitably pre-processed data, modern data-driven modelling can predict RCF at least as
well as, and often better than, the current physics-based approach used by Network
Rail and can effectively augment the practices of rail maintenance teams.

8.3 Recommendations and Further Work

Here we present recommendations in the areas of data collection, practical application
of the methods applied in this study and some areas of further modelling and analysis
that could be conducted by industry or researchers.

• Data Collection: In future, if operators such as Network Rail intend to use their
data more effectively, it is critical that data collection and in particular data
quality is considered more carefully. Some specific observations include:

– Improve the timing of data collection: in order to assess the effectiveness of
interventions, there needs to be Eddy Current measurements taken before
and after an intervention such as grinding or milling.

– Improve the quality of collected data: the grinding data would ideally
contain more information than simply where and when the grinding has
taken place, it would be desirable to have information on the machine
number and type, the grinding profile and pattern, the speed, the number
of passes etc. Further the grinding and milling records are generally
collected by the contractor, e.g. Speno or Loram, and are passed to Network
Rail in the form of individual pdf files, this data contains useful information
which should be contained in a relational database for any future work
regarding analysis of defects and maintenance data,

– It would considerably speed up analysis if wear data were contained
within a relational database, for the purposed of this study it was necessary
to locate within numerous csv and Excel files the relevant ELR and TID,
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and then extract these manually and input into a personal relational
database in order to integrate with EC data

– Accurate Traffic Data is critical for this application, a replacement must be
be found for ACTRAFF for future work,

– Resolution of the rail replacement data: currently the year of replacement is
available, this type of analysis requires a date or at least month of
replacement,

– More accurate track characteristic data, such as track type, track curvature
and location of S&C and stations,

• Practical Applications: It is recommended that some of the methods proposed
in this thesis are applied on some selected lengths of track in collaboration with
the routes, for example in the Anglian region:

– Data Pre-processing: Data for the selected routes should be extracted and
the pre-processing methods demonstrated in Chapter 5 should be applied
to each of these. Subsequently an analysis should be conducted to
determine whether parameters of the process require adjusting, in
particular with regard to the signal alignment process, this can be verified
through visual analysis of the resulting data and some basic statistical
analysis indicating the performance of the alignment (statistics such as the
Pearsons cross correlation coefficient)),

– Preventive Application: Following the applied pre-processing of the data
the KPIs proposed in Section 6.2 should be calculated to indicate which
curved and tangent track section may require further or less interventions.
These results can be verified with track experts, and then further proposals
for intervention strategy modification could be suggested. For example, it
could assist in targetting candidate areas for high performance rail or
improved lubrication,

– Corrective Application: Additionally, the procedure proposed in
Section 6.3 should also be trialled for these track lengths. Initially, the
parameters detailed in this study should be used, however once the results
are presented these should be analysed with route experts. The parameters
should be subsequently fine tuned, and other data incorporated such as
wear and traffic data. The results of this process should also be directly
compared with the proposals that would otherwise be generated using the
existing Anglia Risk Assessment procedure for Severe and Very Severe RCF
sites,

• Regression Modelling: In future, the techniques presented in Chapter 7 could
be used to develop a RCF prediction model using the machine learning
algorithms proposed here. Further areas of investigation include:
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– Validation: The resulting models could be further validated using the
historic data especially as the data set grows and enables for a more
conclusive validation. The model should also be tested on additional track
lengths. Unfortunately due to time constraints, and difficultly in obtaining
all of the relevant data sources, the analysis was only performed for a single
track length. Ideally in future the analysis would be repeated for a
secondary route of similar criticality and sufficient quantity of Eddy
Current data. The results could then be compared and the approach
validated for other sections of track,

– Modification of target variable: As explained in the conclusions,
additionally methods such as differencing can be applied to the data, so as
to predict the rate of degradation rather than the absolute damage,

– Reformulate as a Classification Problem for Rate Prediction: To extend
the regression model and provide an output that may be in a more useful
format for track engineers, the learning task could be reformulated to a
classification problem. Instead of predicting the RCF damage index, the
target variable could be reconstructed such that a rate category is predicted
(as stated in the previous point), all the RCF damage indices may be
converted to a rate of change and then categories such as high, moderate
and low for rate of degradation may be derived.

The engineer could then see, given a forecasting window, which segments
of track are likely to degrade faster, and should therefore be targetted first.
This approach can be used in conjunction with the techniques shown in
Chapter 6 to highlight and prioritise hot spots,

– Feature Reduction: We propose also that further work is done to look at
feature reduction techniques to reduce the effects of multicollinearity.

• Other Analyses and Modelling: Here we present the possibilities for further
development of the work outlined in this thesis:

– Segment Based Model: Based on the pre-processed modelling data set, can
we use a decision tree/ classification algorithm to predict segment
summary data (such as the KPIs presented in Chapter 6). For instance, then
we could determine if the average rate of degradation of a track segment
can be determined from its input features and if this model could be
applied to a completely different section of track. Could an approach be
devised such that we know which parameters drive the average segment
rate of track deterioration?

– Data-driven Wear Model: A similar data driven regression model could be
developed for the wear data, particularly since the data is much higher
frequency in spatial and temporal dimensions, and therefore extracting



188 Chapter 8. Summary

degradation rates may be more straightforward. However, the issues of
poor intervention data still remain.

– Analysis of EC Probe data: A distributional analysis could be performed
on the individual probe data to understand the relationship between the
location of the damage on the rail head, and the other track features.
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Appendix A

RCF Physics

A.1 Rolling Contact Fatigue

To comprehend deterioration phenomena such as RCF and wear, an understanding of
the forces generated at the wheel-rail interface is required. Contact forces at the WRI
are driven by the static load of the vehicle sitting on the track, alongside the dynamic
interaction between the track and vehicle as the train accelerates, brakes and steers
during operation. These forces are divided into longitudinal forces, and lateral forces
which are transmitted through the small area of contact known as the contact patch.
This section provides an introduction into the physics of rolling contact, and the
frictional forces present in a real system and how they are generated.

A.1.1 Principle of Rolling Contact/ Creep Forces

As a rail vehicle rolls over the rail, the motion may be described as pure rolling
provided there is no slippage, or sliding at the point of contact between the two
bodies. The resistance force due to friction is attributed to the sliding motion and it is
absent in pure rolling motion, however in reality the motion is a combination of both
rolling and sliding. The cases of pure rolling and rolling-sliding motion are illustrated
in Figure A.1:

• Pure Rolling Motion: Here, the angular velocity ω, should equal v0/ro, where
v0 is the sliding velocity and r0 is the radius of the wheel. The rotational velocity
component counterbalances the one from sliding at the point of contact, the
contact point is thus at rest.

• Rolling-Sliding Motion: In the event of some over or under-speed, ω′, where
ω = v0/r0 + ω′, the point of contact is no longer at rest. A relative motion now
exists between the contacting surfaces, known as a rolling-sliding motion.
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FIGURE A.1: a) Pure Rolling b) rolling-sliding motion of a rigid wheel (Shahzama-
nian Sichani, 2016)

In the second case, of rolling-sliding, there is a relative motion between the wheel and
rail which results in friction which doesn’t occur in the case of pure rolling. The
resulting frictional forces generated in the contact patch due to micro-slippage, are
known as creep forces, and act in longitudinal and lateral directions, and are in the
opposite direction to the relative motion between the wheel and rail (Thompson,
2009). Formally, creepage is defined as the relative (sliding) velocity v normalised by
the rolling velocity V (vehicle speed), and can be divided into three components: a
longitudinal creep (νx), a lateral creep (νy) and an angular sliding velocity around an
axis system normal to the contact patch, which is called spin (ω) or spin creep (φ)
when divided by the vehicle speed:

Longitudinal creep : νx =
vx

V

Lateral creep : νy =
vy

V
Spin creep : φ =

ω

V

(A.1)

Longitudinal creepage is largely a result of over/ under speed due to braking or
acceleration, and the rolling radius difference between the nominal and actual rolling
radii during curving. Lateral creepage is attributed to the yaw angle (or angle of
attack) of the wheelset in curves, whilst the spin is generated due to the conical shape
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of the wheels and inclined rails (Shahzamanian Sichani, 2016). The principles of
vehicle steering are addressed in the following section, which helps to explain the
generation of such forces.

A.1.2 Steering Forces

In a curve a typical vehicle wheelset shifts laterally across the railhead as a result of
the centrifugal forces and the conical wheel profile. Figure A.2 illustrates the wheelset
sitting at the nominal mid-position when running along a tangent track, where the
rolling radius is Rnom, namely RL = RR = Rnom. As the wheelset negotiates a curve the
lateral motion allows the outer wheels to use their larger radius of their inner edge RL,
whilst the effective diameter of the inner wheelset (RR) decreases, therefore a
difference in rolling radius difference occurs. The circumference of the outer wheel is
larger, and will try to roll further than the inner wheel for a given rotational speed. If
the wheelset moves far enough laterally, the resulting rolling radius difference will be
enough to compensate for the difference in rail lengths. In this case, the single
wheelset achieves ”pure rolling” without any frictional forces being generated. If we
consider a free wheelset, in which pure rolling is achieved, the position where the
wheelset can roll freely round the curve is known as the equilibrium rolling line. The
following equation links the lateral displacement, y, and the curve radius R:

Rnom − γy

Rnom + γy
=

R− l0
R + l0

(A.2)

The (equilibrium) rolling line offset is therefore:

y =
Rnoml0

Rγ
(A.3)

where Rnom is the radius at the contact point where the wheelset is central, l0
represents half the gauge, R the radius of the curve and γ is the effective conicity.

In reality, however the wheelset is not able to position itself perfectly radially in a
curve in most cases, and additionally wheelsets are not ”free” and instead are
constrained in order to provide lateral stability against an unstable mode referred to as
”hunting”.

Hunting phenomenon is a kinematic oscillation of a wheelset on lateral and yawing
directions, and appears as a swaying motion of the railway vehicle. When a wheelset
is unconstrained, hunting is generated even at very low speeds. Modern vehicle
wheelsets are therefore mounted most commonly in a rigid bogie, restrained by a
large yaw stiffness. Where the wheels are constrained to remain parallel with one
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FIGURE A.2: Illustration of railway vehicle self-steering

another, curving performance departs from nominal behaviour as the wheels cannot
both align with the curve radius of the track. Creep forces are generated between the
wheel and rail attempting to steer the wheelset back into radial alignment, the size of
which is dependent on the angle Ψ to be overcome and the yaw stiffness of the
primary suspension (see Figure A.3).

Figure A.3 and Figure A.4 show a typical bogie navigating a large radius curve and a
small radius curve respectively, both indicate the lateral and yaw positions of the
wheelsets relative to the flangeway clearance; the distance between the wheel flange
and the railhead. The arrows in the figures illustrate the direction and relative
magnitudes of the forces on the wheels, the forces on the rails are in the opposite
direction.

In the first curving case, wheelsets are free to curve free of flange contact, the leading
wheelset rolls forwards and out from the equilibrium rolling line which generates an
RRD excess giving rise to creepage (or micro-slip) between the wheel and rail.
Crrepage is defined as the relative velocity normalised by the rolling velocity, and
consequently gives rise to longitudinal creep forces which steer the wheelset relative
to the rail. In this case, only small lateral forces are generated. Similarly, the required
longitudinal steering forces at the trailing wheelset are generated by moving inwards
from the equilibrium rolling line (Evans, 2002).
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FIGURE A.3: Large Radius Curve
No Flange Contact, Small Lateral

Forces
FIGURE A.4: Small Radius Curve:

High AOA, Flange Contact, High Lat-
eral Forces

As the radius of the curve tightens, the steering forces required to maintain radial
alignment increase. This can be achieved by the wheelset moving farther from the
equilibrium rolling line, increasing the RRD and thus the longitudinal creep forces.
Eventually as the curve radius reduces, it is no longer possible to develop sufficient
creep forces to steer the wheelset since either the limit of available adhesion has been
reached, or because the flange prevents the wheelset moving out to generate a large
enough RRD. Figure A.3 illustrates a case in which the flange prevents the leading
wheelset moving out further to generate a sufficient RRD to steer the wheelset in pure
rolling, giving rise to creepage (or micro-slip). The leading axle generates a negative
angle of attack αL, and gives rise to a large lateral creep force at the flange contact
point trying to pull the vehicle in the direction that it is pointing. These lateral creep
forces will be resisted by opposing flange contact, or normal forces, keeping the
vehicle on the track. The friction at the contact becomes saturated, reducing the
longitudinal creep forces and hindering steering in the leading wheelset further. On
the trailing wheelset, αT is positive, and the creep force is directed to the inside of the
curve and counteracts the effect of the centrifugal force produced by cant deficiency.
In general steering breaks down at the leading wheelset first before the trailing
wheelset. Firstly, the flangeway clearance enables the bogie to rotate, thus increasing
the AOA at the leading wheelset and reducing it at the trailing wheelset. Secondly, the
equilibrium rolling line is located towards the outside of the curve, and thus the
leading wheelset has a shorter distance to travel before making flange contact than the
rear. Hence, it takes a tighter curve to result in flange contact in the rear wheelset, this
ultimately results in lower forces in the trailing wheelset.

The primary factors affecting the curving performance include:

• curve radius;

• wheel and rail profiles;
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• cant deficiency

• wheelset yaw stiffness;

• bogie wheel base

• axleload;

• coefficient of friction between the wheel and rail.

Ultimately, for a wheelset to steer radially in a curve, the yaw moment, caused by
longitudinal creep forces, has to be higher than the resisting forces of the primary
suspension. Thus, a more flexible primary suspension (lower resisting forces), or a
greater wheel conicity (larger RRD and hence steering force), the smaller the curve
radius for which perfect curving will be possible given a particular flangeway
clearance. However the compromise is vehicle stability, the greater the conicity, and
softer the suspension, the lower the rolling speed at which the wheelset becomes
unstable.

A.1.3 Traction and Braking

As mentioned previously, the tangential force, also known as tractive force, and
longitudinal creep exist because of the micro-slip that occurs in the rear region of the
contact region as traction is transferred to rail due to sliding friction in relation to
micro-slip. To brake or accelerate for example, an extra torque is applied to the wheel
to generate an under-speed or an over-speed. This results in a relative motion at the
point of contact and generates the friction force in the desired direction to adapt the
acceleration or braking of the wheel (Shahzamanian Sichani, 2016).

Typical braking and acceleration rates for passenger vehicles are 0.8 m/s2

(corresponding to 9%g). Assuming a four axle vehicle has a mass of 45 000 kg gives a
wheel/rail longitudinal force of 4.5 kN during braking and acceleration, which is
significantly less than the tangential forces that are typically generated when a vehicle
travels through a curve.
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Appendix B

Machine Learning Algorithms

B.1 Supervised Machine Learning Algorithms for Regression

The supervised machine learning algorithms discussed and utilised in this study are
as follows:

• Linear Regression,

• Support Vector Regression,

• Nearest Neighbour Algorithms: K-Nearest Neighbours or Radial Neighbours,

• Tree Based Methods,

• Neural Networks, the Multi-layer Perceptron,

• Ensemble Methods: Random Forests.

B.1.1 Linear Regression

Linear regression was first conceptualised in the early 19th century (Stanton, 2001)
and is often considered to be within the world of statistics rather than machine
learning. The concept of regression is to determine how different variables are related
to each other by means of a function or mapping, this is sometimes referred to within
machine learning as our hypothesis function h(x). In the non-linear case a curve is
used to define the function, this is known as polynomial regression, linear regression is a
subset in which lines can be used to fit the data. Figure B.1 demonstrates the simplest
case of linear regression- Simple Linear Regression, with only a single feature.

In the linear setting, we propose that y can be approximated as a linear function of x,
the hypothesis function is denoted as:
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FIGURE B.1: Illustration of Simple Linear Regression

hθ(x) = θ0 + θ1x1 + θ2x2 + θnxn (B.1)

Where θ′i are the parameters (or weights) parametrising the space of linear functions
mapping from X to Y, where n is the total number of features to be included in the
model. It is our objective the learn the optimal weights θi for our model to generate
the best possible mapping between the input variables X and the target variable Y.
These optimal linear predictors are determined from the data by deriving a suitable
cost function, and solving for the parameters which minimize this cost function. The
cost function is an indicator of how well the model hθ(x) agrees with the data, and for
linear regression can be derived given some probabilistic assumptions about the data.
Given that we assume the target variables and inputs are related via:

y(i) = θ̂
T

x(i) + e(i) (B.2)

If we assume that the errors ei are independently and identically distributed (i.i.d)
according to a Gaussian distribution), with mean 0 and variance σ2 i.e. ei ∼ N(0, σ2), a
cost function is determined which corresponds to finding the maximum likelihood
estimate of θ: The least-squares cost function is defined:

J(θ) =
1
2

m

∑
i=1

(hθ(x(i)) · y(i))2 (B.3)
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The solution for minimising J(θ) may be found explicitly, through the use of the
‘normal equations’ or using an iterative solver such as the method of gradient
descent (Ng, 2007). A comprehensive description can be found in (Kutner et al., 2004).

B.1.2 Support Vector Machines

First we present the supervised learning problem for the SVMs. We seek to determine
some unknown and non-linear dependency (function) y = f (x) between some
high-dimensional input vector x and scalar output y (or vector output in the case of
multi-class SVMs). In this case we have no information about the underlying
distributions, the only information is the training dataset:
D = (xi, yx) ∈ X×Y, i = 1, l, where l is the number of training data pairs and is
therefore equal to the size of the training data set D.

However, unlike the assumptions which are utilised in approaches such as Linear
Regression and Neural networks, the assumptions underpinning SVMs are very
different. Classic Statistical inference assumes that 1) the data can be modelled by a set
of linear in parameter functions, 2) the underlying joint probability distribution is a
gaussian distribution, and this assumption enables the maximum likelihood estimator
to be used for parameter estimation (which reduces to the minimization of the
sum-of-errors-squares cost function as explained in B.1.1). However, in reality many
of these assumptions turn out to be problematic and thus the maximum likelihood
estimator is no longer appropriate.

Instead the formulation of the SVM is based on the structural risk minimisation
principle(SRM). This induction method seeks to minimise an upper bound of the
generalisation error consisting of the sum of the training errors and a confidence
interval, rather than the commonly used empirical risk minimisation (ERM) principle
which minimises the training error(Cao, 2003). The result is to improve the
generalisation capability of the algorithm.

In its simplest form, we demonstrate the use of the SVM principle through using a
linear separating hyperplane to create a ‘maximal margin classifier’. For visualisation
purposes Figure B.2 represents a simple, linearly separable binary classification task.
Here, a support vector machine aims to pass a hyperplane through the points to
classify the data into two groups. The hyperplane is a linear separator which can be
extended into any dimension; for example as illustrated a line (2D), a plane (3D), or a
hyperplane (4D+). In other words, the decision boundary, i.e. the separation line in
input space is defined by the equation w1x1 + w2x2 + b = 0, where w1, w2 represent
weights. The difficulty is, there are many possible ways of separating the data, and
thus a method for obtaining the optimal hyperplane is required such that it
generalises as well as possible to new data.
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FIGURE B.2: Illustration of Linearly Separable Problem

The proposed solution is to choose the separator that minimise the training error (i.e.
empirical risk) with the largest margin from the surrounding data points, known as the
Maximal Margin Hyperplane (MMH). As seen in Figure B.2, the MMH is the mid line
of the widest block that we can place between the two classes such that they are
perfectly separated. The location of this hyperplane depends only on the Support
Vectors, which are the training observations which lie directly on the margin boundary.
The maximal margin M is defined (Kecman, 2001):

M =
2
|w| (B.4)

It can further be shown that the minimisation or norm ||w|| equals a minimisation of
wTw = ∑n

i=1 w2
i and this leads to a maximisation of margin M. Hence the learning

problem is deduced (note that the multiplication by 1/2 is for numerical convenience
only) (Kecman, 2005):

Minimise :
1
2

wTw

subject to

yi[wTxi + b] ≥ 1, i = 1, ..., l

(B.5)
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This is a classic quadratic optimisation problem with inequality constraints and can be
solved using Lagrange multipliers.

However, these constraints simply state that each observation must be on the correct
side of the hyperplane and at least a distance M from it (i.e. the data are linearly
separable). In reality, however a routine is required that is robust to observations
which do not enable a perfect separation of classes. This is known as the Support
Vector Classifier (SVC) or Soft Margin Classifier (SMC). A SVC enables some
observations to be on the incorrect side of the hyperplane. We therefore introduce
some ‘slack’ parameters, namely ξi - the slack values and C- a penalty parameter. C,
also known as the regularisation constant, controls te trade-off between the model
complexity and the empirical risk, which helps to avoid over-fitting. If C is too large,
the optimisation will only minimise the empirical risk, regardless of the model
complexity.

Thus, instead the hyperplane must satisfy:

Minimise :
1
2

wTw + C
l

∑
i=1

ξi

subject to

yi[wTxi + b] ≥ 1− ξi, i = 1, ..., l, ξi ≥ 0,

(B.6)

In summary we see that the resulting formulation simultaneously balances
minimising the empirical risk (C ∑l

i=1 ξi) via optimisation constraints and ||w||2.

In the case of regression, we measure the error of approximation instead of the
margin, M used in classification. In this case a novel loss function is introduced here,
Vapnik’s linear loss function with ϵ-insensitivity zone. In principle, the loss function
defines a ‘tube’ such that where a predicted value is inside the tube, then the cost is
zero, otherwise the cost is equal to the difference between the predicted value and the
radius ϵ of the tube. It follows for regression that we form a linear regression
hyperplane f (x, w) = wTx + b by minimising:

Minimise :Rw,ξ,ξ∗ =
1
2
||w||2 + C(

l

∑
i=1

ξi +
l

∑
i=1

ξ∗i)

subject to

yi − wTxi − b ≤ ϵ + ξi, i = 1, l,

wTxi + b− yi ≤ ϵ + ξ∗i , i = 1, l,

xi∗i ≥ 0, ξ∗i ≥ 0, i = 1, l,

(B.7)
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where ξi and ξ∗i for measurements above and below the ϵ-tube respectively. Similar to
procedures applied in the SV classifiers’ design, we solve the constrained optimization
problem above by forming a primal variables Lagrangian.

In reality, many problems are not linearly separable even with the allowable errors
introduced by soft margins, and therefore a powerful extension is available to this
method to allow non-linear decision boundaries. The principle is to use
transformation functions to convert the input data into a form which also enables the
use of linear solvers. These functions are known as kernel functions, K. Examples of
typically used kernel functions are polynomial, gaussian, sigmoid.

B.1.3 Random Forests

B.1.3.1 Decision Trees

A decision tree is considered a map of the reasoning process that helps solve the task
of classifying cases into individual categories. The tree structure, as illustrated in
FigureB.3 is composed of nodes and branches, and terminal nodes are called leaves.
Intermediary nodes, known as decision or internal nodes must be assigned an
appropriate splitting attribute/ feature. The choice of the attribute is typically based
on some impurity measure, which is determined from the subset of the training dataset.
The impurity measure is used to calculate the split measure function for each feature,
and the node is split into child nodes according to the chosen attribute. When a node
data cannot be split into additional child nodes, it is called a terminal node. There
exist two types of decision trees: binary and non-binary. In the case of non-binary tree,
the node is split into as many children as the number of elements of set . Each branch
is labelled by a single value of attribute . If the tree is binary, the node is split into two
child nodes (Rutkowski et al., 2014).

The problem of constructing optimal binary decision trees is an NP-complete problem
and thus theoreticians have searched for efficient heuristics for constructing
near-optimal decision trees. The existing algorithms for decision tree construction
differ mainly by tree type (binary or non-binary) and impurity measure. Some of the
most commonly used algorithms are:

• ID3 Algorithm: Produces non-binary trees and uses information entropy as the
impurity measure, the split measure function is called information gain. The ID3
algorithm has been extended to algorithms such as ID4 and ID5,

• C4.5 Algorithm: Is an updated version of the ID3 algorithm and includes an
additional function, called the split information which takes high values for
attributed with large domains. The split measure is then determined as the ratio
of the information gain and split information,
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FIGURE B.3: Illustration of Linearly Separable Problem

• CART Algorithm: The CART procedure performs “binary recursive
partitioning”. The term “binary partitioning” as described above implies that
the parent nodes are always split into two child nodes, and “recursive” means
that the process is repeated by treating each child node as a parent node. This
process is repeated until further partitioning is impossible or is limited by some
criterion set by the user. Once the first terminal node has been created, the
algorithm repeats the procedure for each set of data until all data are categorized
as terminal nodes (Steinberg, 2009; Breiman, 1984). The CART algorithm
includes seven single-variable splitting criteria, namely—Gini, Symmetric Gini,
Twoing, Ordered Twoing, Class Probability for classification trees, Least Squares,
and Least Absolute Deviation for regression trees, and also one multi-variable
splitting criterion, the Linear Combinations method.

One of the drawbacks of using decision tree algorithms is that, in their construction
they are repeatedly build to account for the variability in the data, which can result in
overfitting. One way of reducing this problem is to prune the tree. The actions of the
pruning phase are often referred to as post-pruning in contrast to the pre-pruning that
occurs during the growth phase and which aims to prevent splits that do not meet
certain specified threshold (e.g. minimum number of observations for a split search,
minimum number of observations for a leaf). In addition, we can apply techniques
such as bagging, or bootstrap aggregation is a technique for reducing the variance of
an estimated prediction function (Hastie et al., 2009). For regression, the same
regression tree is fitted many times to bootstrap sampled versions of the training data,
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and average the result. The idea is to average many noisy but unbiased models, and
hence reduce the variance.

B.1.3.2 Ensemble Learning

Random Forests are a signifiant modification of bagging that builds a large collection
of de-correlated trees where each tree is trained independently on a random subset of
the data.

Although any one tree may be somewhat over-trained, the randomness in the training
process encourages the trees to give independent estimates, which can be combined to
achieve accurate and robust results.

Random Forests are highly interpretable, fast to train and simple to use with very few
hyper-parameters, making the technique a popular choice for many applications. The
key algorithm hyper-parameters are:

• N-estimators: The number of trees in the forest. Increasing this parameter slows
the learning process, a typical setting is 100 estimators,

• Maximum tree depth: The maximum depth of the tree. If this is parameter is not
restricted then the tree continues to grow until all leaves are pure or the
minimum samples in split criteria is reached, over fitting is thus more likely,

• Minimum Samples in Split: The minimum number of samples required to split
an internal node. Setting this to a moderate level prevents the tree from
becoming too complex and over fitting to the training data.

• Maximum Number of Features: The number of features to consider when
looking for the best split, all features are considered for each split rather than a
random subset.

B.1.4 K-Nearest Neighbours

The K-Nearest Neighbours (kNN) algorithm is one of the oldest and simplest methods
for data classification tasks, but has nevertheless proved effective in many
applications (Hart, 1968). In the case of classification, the kNN rule assigns each
unlabelled example by the majority label among its k nearest neighbours in the
training set. Or in the case of regression, the label assigned is the average over the
k-nearest neighbours. The performance of the algorithm depends heavily on the
choice of k, increasing k tends to smooth out decision boundaries, which is useful
where the data set is noisy, whereas small values of k tend to result in over-fitting.
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The steps of the estimation procedure are as follows, after specifying a value for k, for
each observation x in the test data set:

1. Find the k-nearest neighbours for observation x:

• Calculate the distance between x and each point in the training data-set
using one of the distance functions such as:

– Euclidean:,

d(x, y) =

√︄
m

∑
i=1

(xi − yi)2 (B.8)

– Manhattan:,

d(x, y) =
m

∑
i=1
|xi − yi| (B.9)

• Sort the values in ascending order based on distances, i.e. closest
observations first,

• Find the top k values from the list, i.e. the k-nearest neighbours for point x,

2. Estimate value/ label for x: Assign the new data points based on the average of
the k-nearest neighbours for that point, additionally weights can be introduced,
such that nearer neighbours contribute more to the average than more distant
points (Imandoust, 2013).

From the steps defined above it is clear that, unlike many other machine learning
algorithms there is not defined training and testing process, i.e. all computation is
deferred until the test examples require classifying (or estimating). This is known as
memory based classification, or lazy learning, and comes with greater storage
requirements and high computational cost (Aha, 1997). Improvements such as
reducing the scale of the search for the k nearest neighbours (Sun et al., 2009), and
incorporating techniques such as clustering to reduce the search space (Taneja et al.,
2014).

Other drawbacks of the kNN algorithm include the choice of k, for many cases
deciding the output of each test example using the same number of neighbours k as
other test points is not suitable, and therefore adaptive versions (AdaNN) of the
algorithm have since been developed (Sun, 2010).

A summary of the key hyper-parameters are as follows:

• Number of Neighbours: the number of neighbours to include during the value
estimation or classification or an observation,

• Weights: with Uniform weights, all points in each neighbourhood are weighted
equally, whereas distance based weighting weights points by the inverse of their
distance, closer points will have more of an influence than points further away.
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• Metric: The distance metric to use for the tree, typically Minkowski is used, if
P = 1 then Manhattan, P = 2 then standard Euclidean. Other possible distance
metrics are Cosine and Jaccard.

• P: power parameter used for the Minkowski metric, if p =1 this is the equivalent
of using the Manhattan distance metric, if p = 2, then equivalent to using
standard Euclidean metric.

• Leaf Size: affects the speed of the construction and query as well as memory.

B.1.5 Multi Layer Perceptron

Deep Learning is a specialisation of machine learning (sometimes referred to as
modern machine learning), and consists of more complex methods which generally
are based on deep neural networks. Neural Networks (NNs) utilise many layers of
non-linear processing of information in order to perform supervised or unsupervised
feature extraction, pattern analysis, classification and prediction. In particular, Deep
Learning (DL) aids in learning more complex features and input-output relationships
in a given set of data, and additionally can learn multiple levels of useful
representation from such as images, sound, text and numeric data types.

The techniques based on Artificial Neural Network (ANN) are especially effective in
the solution of high complexity problems for which a traditional mathematical model
is difficult to build (where the nature of the input-output relationship is neither well
defined nor easily computable) (Szkuta et al., 1999).

However, it is often difficult to ascertain why a neural net produces a particular result,
and they are critically labelled as ‘black boxes’, in which the users do not understand
the inner workings.

Neural networks, as their name suggests, are inspired by the biological brain and the
nervous system. The resemblance is two fold, 1) knowledge is acquired by the
network through a learning process, and 2) interconnection strengths known as
synaptic weights are used to stored the knowledge (Haykin, 1998). In summary, the
technique learns through a process by which the free parameters (i.e. synaptic weights
and bias levels) of a network are adapted through a continuing process of stimulation
by the environment in which the network is embedded (i.e. the information it is
provided).

A neural network consists of a number of interconnected processing elements called
neurons, which can be perceived as a processing unit. In a neural network neurons are
connected to each other through a ‘synaptic weight’ (or just ‘weight’). Each neuron in a
network receives ‘weighted’ information via these connections from the neurons that it
is connected to and produces an output by passing a weighted sum of those input
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signals (either external inputs from the environment or the outputs of other neurons)
through an ‘activation function’ (such as a step function). This principle is illustrated in
Figure B.4, which shows a single layer neural network, known as a Perceptron. The
figure shows the flow of information, the inputs are first multiplied by their weights,
then a weighted sum is determined, and an activation function is used to map the
input to the required values such as (0,1) or (-1, 1). The perceptron is the building
block of a neural network which typically consists of multiple such elements to
generate a non-linear mapping.

FIGURE B.4: An Illustration of a Perceptron

There are two-main categories of network architectures which depend on the type of
connections between the neurons, these two architectures may be applied to different
learning problems and include:

• Feed Forward Networks: A Feed-forward Neural Network (FNN) is an artificial
neural network wherein connections between the nodes do not form a cycle, i.e.
there is no feedback from the outputs of the neurons towards the inputs
throughout the network. The feed-forward neural network was the first and
simplest type of artificial neural network devised. In this network, the
information moves in only one direction—forward—from the input nodes,
through the hidden nodes (if any) and to the output nodes. There are no cycles
or loops in the network. A MLP is a supplement of the feed-forward neural
network, consisting of three types of layers- input layers, hidden layer, output
layer which are shown in Figure B.5. The learning procedure for determining
network weights uses the back-propagation algorithm which is simply described as
follows:

1. Starting with the input layer, propagate data forward to the output layer.
This step is the forward propagation.

2. Based on the output, calculate the error (the difference between the
predicted and known outcome). The error needs to be minimized.

3. Back-propagate the error. Find its derivative with respect to each weight in
the network, and update the model.
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Repeat the three steps given above over multiple epochs to learn the ideal
weights. An epoch is one cycle of the learning process for a neural network, a
forward pass and a backward pass together are counted as one pass. Finally, the
output is taken via a threshold function to obtain the predicted class labels.

A MLP can approximate any continuous value function and solve problems
which are not linearly separable. The major use cases of MLP are pattern
classification, recognition, prediction and approximation. Additionally
Convolutional Neural Network (CNN) are further extensions of the FNN, which
are widely used for image classification, image clustering and object detection in
images. They are also employed for optical character recognition and natural
language processing.

FIGURE B.5: A Hypothetical Example of a Multilayer Perceptron Network (Hassan
et al., 2015)

• Recurrent Neural Network (RNN): On the other hand, where there exists such
feedback, i.e. a connection from the outputs towards the inputs, then the
network is called a ‘recurrent neural network’. A Recurrent Neural
Network (RNN) (unlike feed-forward architectures such as MLP)enable
modelling of sequence data such as sound, time series sensor data or written
natural language.

Other extensions of these method do exist such as Restricted Boltzmann machines,
Deep Belief Networks, Generative adversarial networks and Deep auto-encoders.

Some of the key hyper-parameters for the MLP are as follows:

• Hidden Layer Sizes: The number of neurons in the ith hidden layer,

• Activation: Activation function for the hidden layer, typically the rectified linear
unit function is used,
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• Solver: The solver for weight optimisation.

• Max. Iterations: The maximum number of iterations for weight optimisation,

• Alpha: The strength of the L2 regularisation term. L2 is divided by the sample
size when added to the loss. The term combats overfitting by constraining the
size of the weights. Increasing alpha may fix high variance (a sign of overfitting)
by encouraging smaller weights, resulting in a smoother decision boundary.
Similarly, decreasing alpha may fix high bias (a sign of under-fitting) by
encouraging larger weights, potentially resulting in a more complicated decision
boundary,

• Learning Rate: The learning rate schedule for weight updates,

• Tolerance: Tolerance for the optimisation, determines when convergence is
reached.
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Appendix C

Regression Analysis: Results

C.1 Results 1: Model Comparisons
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C.2 Results 2: Selected Models

TABLE C.2: Results: Hyper-parameter Tuning: RF, Feature Set 7

Index r2:
OF-
None

r2:
OF1

r2:
OF2

Range
r2

max
depth

Max
Fea-
tures

Min
Sam-
ples
Split

No.
Trees

0 0.817 0.821 0.821 0.038 5 0.5 20 25
1 0.821 0.821 0.821 0.033 5 0.5 20 50
2 0.823 0.823 0.823 0.028 5 0.5 20 75
3 0.823 0.824 0.824 0.031 5 0.5 20 100
4 0.814 0.815 0.815 0.051 5 0.5 40 25
5 0.817 0.815 0.815 0.037 5 0.5 40 50
6 0.818 0.818 0.818 0.031 5 0.5 40 75
7 0.818 0.818 0.819 0.032 5 0.5 40 100
8 0.811 0.812 0.812 0.044 5 0.5 60 25
9 0.812 0.812 0.813 0.033 5 0.5 60 50
10 0.814 0.815 0.816 0.031 5 0.5 60 75
11 0.813 0.815 0.816 0.033 5 0.5 60 100
12 0.804 0.81 0.81 0.043 5 0.5 80 25
13 0.809 0.81 0.811 0.032 5 0.5 80 50
14 0.81 0.812 0.813 0.032 5 0.5 80 75
15 0.809 0.812 0.812 0.038 5 0.5 80 100
16 0.821 0.822 0.822 0.037 5 1 20 25
17 0.823 0.823 0.823 0.035 5 1 20 50
18 0.824 0.823 0.824 0.036 5 1 20 75
19 0.823 0.823 0.823 0.035 5 1 20 100
20 0.817 0.818 0.818 0.038 5 1 40 25
21 0.819 0.82 0.82 0.035 5 1 40 50
22 0.82 0.82 0.82 0.035 5 1 40 75
23 0.82 0.82 0.82 0.036 5 1 40 100
24 0.817 0.816 0.816 0.036 5 1 60 25
25 0.817 0.818 0.818 0.035 5 1 60 50
26 0.818 0.818 0.818 0.035 5 1 60 75
27 0.818 0.818 0.818 0.035 5 1 60 100
28 0.813 0.812 0.813 0.038 5 1 80 25
29 0.814 0.815 0.814 0.035 5 1 80 50
30 0.815 0.815 0.815 0.035 5 1 80 75
31 0.815 0.815 0.815 0.035 5 1 80 100
32 0.821 0.822 0.822 0.037 5 All 20 25
33 0.823 0.823 0.823 0.035 5 All 20 50
34 0.824 0.823 0.824 0.036 5 All 20 75
35 0.823 0.823 0.823 0.035 5 All 20 100

Continued on next page
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Index r2:
OF-
None

r2:
OF1

r2:
OF2

Range
r2

max
depth

Max
Fea-
tures

Min
Sam-
ples
Split

No.
Trees

36 0.817 0.818 0.818 0.038 5 All 40 25
37 0.819 0.82 0.82 0.035 5 All 40 50
38 0.82 0.82 0.82 0.035 5 All 40 75
39 0.82 0.82 0.82 0.036 5 All 40 100
40 0.817 0.816 0.816 0.036 5 All 60 25
41 0.817 0.818 0.818 0.035 5 All 60 50
42 0.818 0.818 0.818 0.035 5 All 60 75
43 0.818 0.818 0.818 0.035 5 All 60 100
44 0.813 0.812 0.813 0.038 5 All 80 25
45 0.814 0.815 0.814 0.035 5 All 80 50
46 0.815 0.815 0.815 0.035 5 All 80 75
47 0.815 0.815 0.815 0.035 5 All 80 100
48 0.852 0.856 0.852 0.026 10 0.5 20 25
49 0.856 0.857 0.856 0.025 10 0.5 20 50
50 0.856 0.859 0.858 0.026 10 0.5 20 75
51 0.856 0.859 0.859 0.027 10 0.5 20 100
52 0.841 0.844 0.843 0.026 10 0.5 40 25
53 0.843 0.845 0.845 0.023 10 0.5 40 50
54 0.845 0.846 0.846 0.025 10 0.5 40 75
55 0.845 0.847 0.846 0.029 10 0.5 40 100
56 0.834 0.837 0.837 0.028 10 0.5 60 25
57 0.837 0.838 0.836 0.033 10 0.5 60 50
58 0.837 0.838 0.839 0.031 10 0.5 60 75
59 0.837 0.839 0.839 0.03 10 0.5 60 100
60 0.824 0.829 0.828 0.031 10 0.5 80 25
61 0.828 0.831 0.832 0.031 10 0.5 80 50
62 0.83 0.832 0.833 0.029 10 0.5 80 75
63 0.83 0.833 0.833 0.035 10 0.5 80 100
64 0.844 0.845 0.844 0.029 10 1 20 25
65 0.846 0.847 0.848 0.026 10 1 20 50
66 0.847 0.848 0.848 0.026 10 1 20 75
67 0.847 0.847 0.848 0.026 10 1 20 100
68 0.837 0.837 0.837 0.029 10 1 40 25
69 0.839 0.839 0.84 0.026 10 1 40 50
70 0.84 0.841 0.841 0.026 10 1 40 75
71 0.84 0.841 0.841 0.027 10 1 40 100
72 0.833 0.833 0.834 0.028 10 1 60 25
73 0.836 0.836 0.837 0.026 10 1 60 50
74 0.836 0.837 0.837 0.026 10 1 60 75
75 0.836 0.837 0.837 0.026 10 1 60 100
76 0.828 0.828 0.829 0.027 10 1 80 25

Continued on next page
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Index r2:
OF-
None

r2:
OF1

r2:
OF2

Range
r2

max
depth

Max
Fea-
tures

Min
Sam-
ples
Split

No.
Trees

77 0.831 0.83 0.832 0.026 10 1 80 50
78 0.831 0.831 0.831 0.027 10 1 80 75
79 0.831 0.831 0.831 0.027 10 1 80 100
80 0.844 0.845 0.844 0.029 10 All 20 25
81 0.846 0.847 0.848 0.026 10 All 20 50
82 0.847 0.848 0.848 0.026 10 All 20 75
83 0.847 0.847 0.848 0.026 10 All 20 100
84 0.837 0.837 0.837 0.029 10 All 40 25
85 0.839 0.839 0.84 0.026 10 All 40 50
86 0.84 0.841 0.841 0.026 10 All 40 75
87 0.84 0.841 0.841 0.027 10 All 40 100
88 0.833 0.833 0.834 0.028 10 All 60 25
89 0.836 0.836 0.837 0.026 10 All 60 50
90 0.836 0.837 0.837 0.026 10 All 60 75
91 0.836 0.837 0.837 0.026 10 All 60 100
92 0.828 0.828 0.829 0.027 10 All 80 25
93 0.831 0.83 0.832 0.026 10 All 80 50
94 0.831 0.831 0.831 0.027 10 All 80 75
95 0.831 0.831 0.831 0.027 10 All 80 100

TABLE C.3: Results: Hyper-parameter Tuning: Linear SVR, Feature Set 7

Index r2: OF- None r2: OF1 r2: OF2 C epsilon

0 0.8031 0.8029 0.8027 0.1 0
1 0.8027 0.8027 0.8027 0.1 0.01
2 0.799 0.7989 0.799 0.1 0.1
3 0.8027 0.8025 0.8024 1 0
4 0.8025 0.8023 0.8023 1 0.01
5 0.7986 0.7985 0.7984 1 0.1
6 0.8026 0.8025 0.8026 10 0
7 0.8024 0.8023 0.8023 10 0.01
8 0.7985 0.7986 0.7985 10 0.1
9 0.8027 0.8026 0.8022 100 0
10 0.8023 0.8024 0.8023 100 0.01
11 0.7985 0.7986 0.7984 100 0.1
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TABLE C.4: Results: Hyper-parameter Tuning: Gaussian SVR, Feature Set 7

Index r2: OF- None r2: OF1 r2: OF2 C epsilon gamma

0 0.7316 0.7081 0.7153 0.1 0 0.001
1 0.7044 0.6577 0.6739 0.1 0 0.01
2 0.4513 0.3866 0.416 0.1 0 0.1
3 0.732 0.7082 0.7157 0.1 0.01 0.001
4 0.7042 0.658 0.6739 0.1 0.01 0.01
5 0.4517 0.3871 0.4166 0.1 0.01 0.1
6 0.7324 0.7098 0.7171 0.1 0.1 0.001
7 0.7067 0.6624 0.6785 0.1 0.1 0.01
8 0.4582 0.3951 0.4244 0.1 0.1 0.1
9 0.7936 0.7815 0.7851 1 0 0.001
10 0.8184 0.8055 0.8106 1 0 0.01
11 0.738 0.7021 0.7163 1 0 0.1
12 0.7938 0.7818 0.7853 1 0.01 0.001
13 0.8186 0.8057 0.811 1 0.01 0.01
14 0.7382 0.7022 0.7167 1 0.01 0.1
15 0.7968 0.7852 0.7884 1 0.1 0.001
16 0.8213 0.8085 0.813 1 0.1 0.01
17 0.7399 0.7037 0.7173 1 0.1 0.1
18 0.813 0.8052 0.8068 10 0 0.001
19 0.8552 0.8486 0.8546 10 0 0.01
20 0.839 0.8249 0.8299 10 0 0.1
21 0.8131 0.8055 0.8071 10 0.01 0.001
22 0.8553 0.8487 0.8549 10 0.01 0.01
23 0.8394 0.825 0.83 10 0.01 0.1
24 0.817 0.8091 0.8113 10 0.1 0.001
25 0.8579 0.8513 0.8564 10 0.1 0.01
26 0.8386 0.8224 0.8273 10 0.1 0.1
27 0.8274 0.8124 0.8213 100 0 0.001
28 0.8649 0.8571 0.8618 100 0 0.01
29 0.8186 0.8095 0.815 100 0 0.1
30 0.8277 0.8128 0.8218 100 0.01 0.001
31 0.8657 0.8578 0.8621 100 0.01 0.01
32 0.8197 0.8104 0.8157 100 0.01 0.1
33 0.8308 0.8179 0.826 100 0.1 0.001
34 0.8681 0.8601 0.8636 100 0.1 0.01
35 0.8235 0.8131 0.8188 100 0.1 0.1

TABLE C.5: Results: Hyper-parameter Tuning: kNN Uniform, Feature Set 7

Index r2: OF- None r2: OF1 r2: OF2 k weights

0 0.8396 0.8241 0.8309 5 uniform
1 0.8113 0.7905 0.7978 10 uniform
2 0.7765 0.7438 0.7605 20 uniform
3 0.7267 0.6888 0.7049 40 uniform
4 0.6695 0.6198 0.6435 80 uniform
5 0.6163 0.5635 0.5887 160 uniform
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TABLE C.6: Results: Hyper-parameter Tuning: kNN Distance, Feature Set 7

Index r2: OF- None r2: OF1 r2: OF2 k Weights

0 0.8592 0.8488 0.8521 5 distance
1 0.8466 0.8342 0.8365 10 distance
2 0.8243 0.8061 0.8123 20 distance
3 0.788 0.7632 0.771 40 distance
4 0.7392 0.7031 0.7167 80 distance
5 0.6853 0.6418 0.6593 160 distance

TABLE C.7: Results: Hyper-parameter Tuning: MLP, Feature Set 7

Index r2: OF- None r2: OF1 r2: OF2 Alpha Hidden Layer Sizes Max. Iterations

0 0.4293 -1.9888 -12.2598 0.0001 (10,) 500
1 0.555 -1.7061 -5.9686 0.0001 (10,) 1000
2 0.3714 -6.8149 -15.2392 0.0001 (50,) 500
3 0.3776 -414.0033 -261.6909 0.0001 (50,) 1000
4 0.066 -103.5081 -621.683 0.0001 (100,) 500
5 -0.1735 -564.3177 -216.8023 0.0001 (100,) 1000
6 0.5127 -605.6314 -1550.7774 0.0001 (150,) 500
7 0.3324 -579.5402 -139.7467 0.0001 (150,) 1000
8 0.6658 -10.9096 -3.4702 0.0001 (10, 10) 500
9 0.743 0.1233 -183.5286 0.0001 (10, 10) 1000
10 0.6282 -132.6529 -2702.4027 0.0001 (50, 50) 500
11 0.6383 -157.2431 -144.7607 0.0001 (50, 50) 1000
12 0.5695 -200.8833 -72.1203 0.0001 (100, 100) 500
13 0.5427 -668.3284 -1449.452 0.0001 (100, 100) 1000
14 0.5006 -134.6024 -124.0172 0.0001 (150, 150) 500
15 0.6077 -757.7507 -1211.1036 0.0001 (150, 150) 1000
16 0.8187 -7.2695 -17.0073 0.0001 (10, 10, 10) 500
17 0.8204 -0.7128 -18.9069 0.0001 (10, 10, 10) 1000
18 0.7699 -52.5498 -13.4315 0.0001 (50, 50, 50) 500
19 0.7827 -13.2516 -599.3989 0.0001 (50, 50, 50) 1000
20 0.7552 -21.021 -264.718 0.0001 (100, 100, 100) 500
21 0.8333 -0.7688 -51.0198 0.0001 (100, 100, 100) 1000
22 0.7807 -8.6755 -145.3774 0.0001 (150, 150, 150) 500
23 0.8128 -19.7202 -69.3327 0.0001 (150, 150, 150) 1000
24 0.3196 -7.8384 0.2327 0.001 (10,) 500
25 0.2437 -0.0301 -31.5949 0.001 (10,) 1000
26 0.0246 -78.7186 -2.3244 0.001 (50,) 500
27 0.3702 -6.6913 -658.8468 0.001 (50,) 1000
28 0.1315 -123.1272 -112.2057 0.001 (100,) 500
29 0.4038 -12.1274 -173.9801 0.001 (100,) 1000
30 0.5157 -363.3368 -2713.3598 0.001 (150,) 500
31 -0.6334 -157.8776 -651.4548 0.001 (150,) 1000

Continued on next page
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Index r2: OF- None r2: OF1 r2: OF2 Alpha Hidden Layer Sizes Max. Iterations

32 0.492 -0.1767 0.2109 0.001 (10, 10) 500
33 0.7319 -4.1582 -16.3545 0.001 (10, 10) 1000
34 0.6717 -584.3937 -278.7636 0.001 (50, 50) 500
35 0.6718 -14.9049 -421.868 0.001 (50, 50) 1000
36 0.609 -147.4449 -7435.6625 0.001 (100, 100) 500
37 0.694 -194.3486 -45.0211 0.001 (100, 100) 1000
38 0.5482 -440.0282 -500.3461 0.001 (150, 150) 500
39 0.6868 -80.122 -24.9888 0.001 (150, 150) 1000
40 0.8295 -2.8777 -0.3529 0.001 (10, 10, 10) 500
41 0.8351 -2.3924 -0.2669 0.001 (10, 10, 10) 1000
42 0.751 -459.0997 -13.6008 0.001 (50, 50, 50) 500
43 0.801 -110.6572 -83.7297 0.001 (50, 50, 50) 1000
44 0.7693 -22.5649 -13.1217 0.001 (100, 100, 100) 500
45 0.676 -289.804 -569.7783 0.001 (100, 100, 100) 1000
46 0.5806 -150.1574 -24.358 0.001 (150, 150, 150) 500
47 0.7598 -9.9558 -13.2478 0.001 (150, 150, 150) 1000
48 0.3287 -1.2037 -234.9798 0.01 (10,) 500
49 -0.0261 -1.2438 -89.0473 0.01 (10,) 1000
50 0.0359 -82.2769 -1559.8811 0.01 (50,) 500
51 -0.2023 -36.203 -42.4132 0.01 (50,) 1000
52 0.5107 -163.6201 -1562.5629 0.01 (100,) 500
53 0.1888 -34.4618 -220.0302 0.01 (100,) 1000
54 0.4771 -388.7191 -44.1708 0.01 (150,) 500
55 -0.7727 -302.1465 -47.918 0.01 (150,) 1000
56 0.806 -70.336 -3.4946 0.01 (10, 10) 500
57 0.8106 -3.0067 -0.297 0.01 (10, 10) 1000
58 0.689 -255.3956 -93.0901 0.01 (50, 50) 500
59 0.7168 -102.9523 -203.3915 0.01 (50, 50) 1000
60 0.5254 -727.9897 -883.1918 0.01 (100, 100) 500
61 0.5366 -1004.3353 -136.2118 0.01 (100, 100) 1000
62 0.6643 -1111.6144 -7633.8232 0.01 (150, 150) 500
63 0.6501 -27.6218 -237.8633 0.01 (150, 150) 1000
64 0.821 -5.1139 -15.0293 0.01 (10, 10, 10) 500
65 0.7991 -23.4557 -0.4033 0.01 (10, 10, 10) 1000
66 0.7926 -1.1685 -1111.1431 0.01 (50, 50, 50) 500
67 0.8086 -17.9715 -179.9365 0.01 (50, 50, 50) 1000
68 0.7888 -63.4335 -38.1141 0.01 (100, 100, 100) 500
69 0.8048 -7.4766 -9.924 0.01 (100, 100, 100) 1000
70 0.7151 -1.8986 -30.2876 0.01 (150, 150, 150) 500
71 0.8307 0.2082 -13.1303 0.01 (150, 150, 150) 1000
72 0.5795 -1.4562 -133.985 0.1 (10,) 500
73 0.3377 -15.0185 -150.2155 0.1 (10,) 1000
74 -0.0241 -9.6804 -49.3126 0.1 (50,) 500
75 -0.109 -29.3162 -39.596 0.1 (50,) 1000

Continued on next page
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Index r2: OF- None r2: OF1 r2: OF2 Alpha Hidden Layer Sizes Max. Iterations

76 -0.9485 -123.5031 -2179.1003 0.1 (100,) 500
77 -0.4502 -231.1833 -313.9783 0.1 (100,) 1000
78 -2.6537 -114.3072 -23.7173 0.1 (150,) 500
79 -0.5617 -202.3694 -452.4885 0.1 (150,) 1000
80 0.7261 -0.255 -59.1445 0.1 (10, 10) 500
81 0.7409 -31.8655 -0.4785 0.1 (10, 10) 1000
82 0.0973 -711.3337 -22.7863 0.1 (50, 50) 500
83 0.7077 -29.7202 -85.4751 0.1 (50, 50) 1000
84 0.6579 -252.4446 -4162.6416 0.1 (100, 100) 500
85 0.6842 -81.4526 -407.2311 0.1 (100, 100) 1000
86 0.6398 -16.4616 -2233.7242 0.1 (150, 150) 500
87 0.3272 -258.0383 -926.0689 0.1 (150, 150) 1000
88 0.8226 -0.9857 -0.4103 0.1 (10, 10, 10) 500
89 0.8198 -5.7326 -3.6511 0.1 (10, 10, 10) 1000
90 0.8076 -17.5496 -34.5109 0.1 (50, 50, 50) 500
91 0.8471 -40.2505 -16.1575 0.1 (50, 50, 50) 1000
92 0.7745 -21.2071 -67.7571 0.1 (100, 100, 100) 500
93 0.8538 -4.7274 -4.6426 0.1 (100, 100, 100) 1000
94 0.7714 -435.2678 -10.2135 0.1 (150, 150, 150) 500
95 0.852 -40.9399 -30.5603 0.1 (150, 150, 150) 1000
96 0.666 -5.2329 -1.2738 1 (10,) 500
97 -0.1259 -2.1599 -7.0442 1 (10,) 1000
98 0.3736 -40.007 -1.1572 1 (50,) 500
99 0.3539 -104.6447 -1.7128 1 (50,) 1000
100 -2.8161 -166.5673 -29.7467 1 (100,) 500
101 0.5703 -162.665 -248.2539 1 (100,) 1000
102 0.4807 -798.7156 -279.6352 1 (150,) 500
103 -0.4329 -411.6042 -1540.3234 1 (150,) 1000
104 0.7682 -4.3824 -456.8886 1 (10, 10) 500
105 0.7779 -10.2597 -1.3945 1 (10, 10) 1000
106 0.701 -51.028 -234.9006 1 (50, 50) 500
107 0.7659 -358.3651 -3253.9739 1 (50, 50) 1000
108 0.6968 -2.9608 -587.667 1 (100, 100) 500
109 0.7481 -629.9378 -65.9016 1 (100, 100) 1000
110 0.7468 -773.6747 -4921.2635 1 (150, 150) 500
111 0.7706 -332.196 -200.9633 1 (150, 150) 1000
112 0.845 -1.8165 -4.9732 1 (10, 10, 10) 500
113 0.8439 -3.9975 -17.2314 1 (10, 10, 10) 1000
114 0.8567 -706.5803 -30.7286 1 (50, 50, 50) 500
115 0.8616 -5.9103 -120.9103 1 (50, 50, 50) 1000
116 0.8609 -49.3807 -132.0867 1 (100, 100, 100) 500
117 0.8641 -67.9346 -858.9842 1 (100, 100, 100) 1000
118 0.8639 -23.88 -39.6984 1 (150, 150, 150) 500
119 0.8641 -31.6046 -14.6052 1 (150, 150, 150) 1000
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TABLE C.8: Results: Optimum Parameter Permutation Feature Importance (Rank
Sum)

Rank Feature Label Importance Rank Perm

0 EC LAG: Lagged Damage Index 1.150 7
1 ACTRAFF: Freight Trains 0.262 382
2 ACTRAFF: Freight Tonnes 0.187 584
3 WEAR SEG RATES: Vertical Wear Avg. Max Seg 0.034 762
4 WEAR RATES: Field Wear Max. 0.033 838
5 WEAR SEG RATES: Vertical Wear Avg. Mean Seg 0.025 931
6 ACTRAFF: Passenger Tonnes 0.034 933
7 WEAR RATES: Gauge Face Remaining Min. 0.033 1004
8 WEAR RATES: Gauge Wear Avg. 0.035 1053
9 WEAR SEG RATES: Gauge Wear Avg. Max Seg 0.231 1151
10 ACTRAFF: Passenger Trains 0.034 1152
11 EC: No Segment Measurements 0.016 1179
12 ACTRAFF: Total Tonnes 0.028 1331
13 WEAR SEG RATES: Field Wear Avg. Mean Seg 0.018 1332
14 WEAR SEG RATES: Gauge Wear Avg. Mean Seg 0.179 1384
15 TRACK: Dist. to SC 0.015 1417
16 WEAR RATES: Rail Depth Remaining Min. 0.016 1439
17 WEAR SEG RATES: Head Width Remaining Avg. Mean Seg 0.015 1556
18 WEAR SEG RATES: Field Wear Avg. Max Seg 0.013 1566
19 WEAR RATES: Gauge Face Remaining Avg. 0.018 1580
20 WEAR SEG RATES: Gauge Face Remaining Avg. Mean Seg 0.012 1585
21 WEAR SEG RATES: Rail Depth Remaining Min. Mean Seg 0.022 1586
22 WEAR RATES: Field Wear Avg. 0.023 1606
23 WEAR RATES: Head Width Avg. 0.459 1618
24 EC: Time Since First EC Meas. 0.013 1623
25 ACTRAFF: Total Trains 0.033 1701
26 TRACK: Dist. to Station 0.008 1704
27 WEAR RATES: Head Width Remaining Avg. 0.411 1825
28 WEAR SEG RATES: Rail Depth Remaining Min. Max Seg 0.013 1881
29 WEAR: Gauge Face Remaining Avg. 0.012 2036
30 Time Since Last Measurement 0.008 2114
31 TRACK: Rail High/ Low 0.005 2138
32 WEAR: Gauge Wear Avg. 0.007 2146
33 WEAR: Gauge Face Remaining Min. 0.010 2258
34 WEAR RATES: Gauge Wear Max. 0.007 2267
35 WEAR: Vertical Wear Max. 0.005 2274
36 WEAR: Head Width Avg. 0.009 2300
37 WEAR RATES: Vertical Wear Avg. 0.005 2368
38 TRACK: EMGTPA 0.004 2536
39 TRACK: Max Line Speed 0.003 2576
40 WEAR: Field Wear Avg. 0.005 2609

Continued on next page
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Rank Feature Label Importance Rank Perm

41 WEAR: Gauge Wear Max. 0.004 2662
42 TRACK: Dist. to Tunnel 0.002 2689
43 EC: Linear Distance 0.004 2692
44 WEAR RATES: Vertical Wear Max. 0.003 2714
45 WEAR: Field Wear Max. 0.003 2764
46 WEAR: Head Width Remaining Avg. 0.002 2770
47 TRACK: Cant 0.003 2780
48 TRACK: Curvature 0.003 2838
49 WEAR: Vertical Wear Avg. 0.002 2968
50 TRACK: Track Category 0.002 3058
51 TRACK: Tunnel 0.001 3068
52 WEAR SEG RATES: Gauge Face Remaining Avg. Max Seg 0.002 3109
53 WEAR: Rail Depth Remaining Min. 0.002 3154
54 WEAR SEG RATES: Head Width Remaining Avg. Max Seg 0.003 3258
55 TRACK: Rail Side 0.002 3306
56 TRACK: Station 0.000 3558

TABLE C.9: Results: Optimum Parameter Permutation Feature Importance (Rank
Sum)

Rank Feature Label Importance Rank Perm

0 EC LAG: Lagged Damage Index 1.150286144 7
1 WEAR RATES: Head Width Avg. 0.459241017 1618
2 WEAR RATES: Head Width Remaining Avg. 0.41063942 1825
3 ACTRAFF: Freight Trains 0.262325291 382
4 WEAR SEG RATES: Gauge Wear Avg. Max Seg 0.230935483 1151
5 ACTRAFF: Freight Tonnes 0.18671328 584
6 WEAR SEG RATES: Gauge Wear Avg. Mean Seg 0.178563982 1384
7 WEAR RATES: Gauge Wear Avg. 0.035241281 1053
8 ACTRAFF: Passenger Tonnes 0.034041771 933
9 ACTRAFF: Passenger Trains 0.033865358 1152
10 WEAR SEG RATES: Vertical Wear Avg. Max Seg 0.033776004 762
11 WEAR RATES: Gauge Face Remaining Min. 0.033175556 1004
12 ACTRAFF: Total Trains 0.032964674 1701
13 WEAR RATES: Field Wear Max. 0.032604228 838
14 ACTRAFF: Total Tonnes 0.028270902 1331
15 WEAR SEG RATES: Vertical Wear Avg. Mean Seg 0.025332224 931
16 WEAR RATES: Field Wear Avg. 0.022567379 1606
17 WEAR SEG RATES: Rail Depth Remaining Min. Mean Seg 0.021675632 1586
18 WEAR SEG RATES: Field Wear Avg. Mean Seg 0.017611201 1332
19 WEAR RATES: Gauge Face Remaining Avg. 0.017500694 1580
20 EC: No Segment Measurements 0.016002492 1179
21 WEAR RATES: Rail Depth Remaining Min. 0.015930605 1439

Continued on next page
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Rank Feature Label Importance Rank Perm

22 WEAR SEG RATES: Head Width Remaining Avg. Mean Seg 0.015183835 1556
23 TRACK: Dist. to SC 0.014960523 1417
24 WEAR SEG RATES: Rail Depth Remaining Min. Max Seg 0.013095835 1881
25 EC: Time Since First EC Meas. 0.013086222 1623
26 WEAR SEG RATES: Field Wear Avg. Max Seg 0.013024735 1566
27 WEAR SEG RATES: Gauge Face Remaining Avg. Mean Seg 0.011862748 1585
28 WEAR: Gauge Face Remaining Avg. 0.011645132 2036
29 WEAR: Gauge Face Remaining Min. 0.010038739 2258
30 WEAR: Head Width Avg. 0.00861301 2300
31 Time Since Last Measurement 0.00834261 2114
32 TRACK: Dist. to Station 0.0081018 1704
33 WEAR RATES: Gauge Wear Max. 0.007496382 2267
34 WEAR: Gauge Wear Avg. 0.006849703 2146
35 TRACK: Rail High/ Low 0.005498174 2138
36 WEAR: Vertical Wear Max. 0.004819856 2274
37 WEAR: Field Wear Avg. 0.004818404 2609
38 WEAR RATES: Vertical Wear Avg. 0.0048003 2368
39 TRACK: EMGTPA 0.004046726 2536
40 WEAR: Gauge Wear Max. 0.003663432 2662
41 EC: Linear Distance 0.003621293 2692
42 WEAR RATES: Vertical Wear Max. 0.00331394 2714
43 WEAR: Field Wear Max. 0.003212358 2764
44 TRACK: Max Line Speed 0.003168275 2576
45 TRACK: Cant 0.003156201 2780
46 TRACK: Curvature 0.002952025 2838
47 WEAR SEG RATES: Head Width Remaining Avg. Max Seg 0.002595615 3258
48 WEAR: Head Width Remaining Avg. 0.002441929 2770
49 TRACK: Dist. to Tunnel 0.002355197 2689
50 TRACK: Track Category 0.002255606 3058
51 WEAR: Vertical Wear Avg. 0.002211824 2968
52 WEAR SEG RATES: Gauge Face Remaining Avg. Max Seg 0.001810954 3109
53 WEAR: Rail Depth Remaining Min. 0.001709049 3154
54 TRACK: Rail Side 0.001515992 3306
55 TRACK: Tunnel 0.001011634 3068
56 TRACK: Station 0.000311488 3558
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Korifi, R., Le Dréau, Y. and Dupuy, N. (2014). Comparative study of the alignment method on
experimental and simulated chromatographic data, Journal of Separation Science
37: 3276–3291. Publisher: Wiley-VCH Verlag.

Kowalski, Paweł & Smyk, R. (2018). Review and comparison of smoothing algorithms for
one-dimensional data noise reduction, 2018 International Interdisciplinary PhD Workshop
(IIPhDW), pp. 277–281.

Krishna, V. V., Hossein-Nia, S., Casanueva, C., Stichel, S., Trummer, G. and Six, K. (2021). Rail
RCF damage quantification and comparison for different damage models, Railway
Engineering Science .

Kubin, W., Daves, W. and Stock, R. (2019). Analysis of rail milling as a rail maintenance
process: Simulations and experiments, Wear 438-439: 203029.

Kulkarni, S. S., Sun, L., Moran, B., Krishnaswamy, S. and Achenbach, J. D. (2006). A
Probabilistic Method to Predict Fatigue Crack Initiation, International Journal of Fracture
137(1-4): 9–17.

Kumar, S. (2006). A Study of the Rail Degradation Process to Predict Rail Breaks, PhD thesis, Lulea
University of Technology.

Kutner, M., Nachtsheim, C. and Neter, J. (2004). Applied Linear Regression Models,
Irwin/McGraw-Hill series in operations and decision sciences, McGraw-Hill/Irwin.

Lazarevic, Aleksandar & Kumar, V. (2005). Feature bagging for outlier detection, Proceeding of
the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining - KDD
’05, ACM Press, Chicago, Illinois, USA, p. 157.

Lechevalier, D., Narayanan, A. and Rachuri, S. (2014). Towards a domain-specific framework
for predictive analytics in manufacturing, 2014 IEEE International Conference on Big Data (Big
Data), pp. 987–995.

Lewis, R & Olofsson, U. (ed.) (2009). Wheel-Rail Interface Handbook, Woodhead Publishing.

Li, C. (2019). Preprocessing Methods and Pipelines of Data Mining: An Overview,
arXiv:1906.08510 [cs, stat] . arXiv: 1906.08510.

Lin, Chang-Ching & Tseng, H.-Y. (2005). A neural network application for reliability
modelling and condition-based predictive maintenance, The International Journal of Advanced
Manufacturing Technology 25(1-2): 174–179.

Liu, H., Hussain, F., Tan, C. and Dash, M. (2002). Discretization: An enabling technique, Data
Mining and Knowledge Discovery 6(4): 393–423.



REFERENCES 239

Lo, J. T.-H., Gui, Y. and Peng, Y. (2012). Overcoming the Local-Minimum Problem in Training
Multilayer Perceptrons with the NRAE Training Method, in D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum,
J. Wang, G. G. Yen and M. M. Polycarpou (eds), Advances in Neural Networks – ISNN 2012,
Vol. 7367, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 440–447. Series Title: Lecture
Notes in Computer Science.

Lopes Gerum, P. C., Altay, A. and Baykal-Gürsoy, M. (2019). Data-driven predictive
maintenance scheduling policies for railways, Transportation Research Part C: Emerging
Technologies 107: 137–154.

Magel, E. E. (2011). Rolling contact fatigue: a comprehensive review, Technical report, U.S.
Department of Transportation. Federal Railroad Administration.

Magel, E. E., Sawley, K. J. and Sroba, P. S. (2005). A Practical Approach to Controlling Rolling
Contact Fatigue in Railways.

Magel, E., Kalousek, J. and Sroba, P. (2014). Chasing the Magic Wear Rate, Ajaccio, Corsica,
France, p. 116.

Magel, E., Roney, M., Kalousek, J. and Sroba, P. (2003). The blending of theory and practice in
modern rail grinding, Fatigue & Fracture of Engineering Materials & Structures 26(10): 921–929.

Magel, E., Sroba, P., Sawley, K. and Kalousek, J. (2004). Control of Rolling Contact Fatigue of
Rails, p. 29.

Maleki, F., Muthukrishnan, N., Ovens, K., Reinhold, C. and Forghani, R. (2020). Machine
Learning Algorithm Validation: From Essentials to Advanced Applications and Implications
for Regulatory Certification and Deployment, Neuroimaging Clinics 30(4): 433–445.
URL: https://www.neuroimaging.theclinics.com/article/S1052-5149(20)30059-9/fulltext

Marshland, S. (2014). Machine Learning: An Algorithmic Perspective, CRC press.

Merkert, R. (2005). The restructuring and future of the British Rail system, White Paper 586,
University of Leeds.

Miner, M. A. (1945). Cumulative Damage in Fatigue, Journal of Applied Mechanics
12(3): A159–A164.

Mitchell, T. M. (1999). Machine learning and data mining, Communications of the ACM
42(11): 30–36.

Moridpour, S. (2016). Application of artificial neural networks in predicting the degradation of
tram tracks using maintenance data | Semantic Scholar.

Müller, M. (2007). Dynamic time warping, Information Retrieval for Music and Motion 2: 69–84.

Nargesian, F., Samulowitz, H., Khurana, U., Khalil, E. B. and Turaga, D. (2017). Learning
Feature Engineering for Classification, Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence
Organization, Melbourne, Australia, pp. 2529–2535.



240 REFERENCES

Network Rail (2018a). Management of rail defects, Module 07, Standard NR/L2/TRK/001/mod07.

Network Rail (2018b). Rail Profile Management, Module 10, Standard NR/L2/TRK/001/mod10.

Network Rail (2018c). Visual inspection, ultrasonic and eddy current testing of rails: Module
06, Technical Report NR/L2/TRK/001/mod06.

Network Rail (2021a). Introduction to RCF Prediction.

Network Rail (2021b). NRIL Regulatory Financial Statements: for the year ended 31 March
2021, Technical report.

Network Rail (2022). Network Rail Factsheet 2021, Technical report.

Ng, T. M. . A. (2007). CS229 lecture notes.

ORR (2006). Train Derailment at Hatfield: A Final Report by the Independent Investigation
Board, Technical report.

Palese, Joseph W & Wright, T. W. (2000). Risk Based Ultrasonic Rail Test Scheduling on
Burlington Northern Santa Fe, p. 35.

Papaelias, M., Roberts, C. and Davis, C. (2008). A review on non-destructive evaluation of
rails: State-of-the-art and future development, Proceedings of The Institution of Mechanical
Engineers Part F-journal of Rail and Rapid Transit - PROC INST MECH ENG F-J RAIL R
222: 367–384.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python, Journal of
Machine Learning Research 12: 2825–2830.

Peterson, M. L. (2000). Assessment of rail flaw inspection data, AIP Conference Proceedings, Vol.
509, AIP, Montreal (Canada), pp. 789–796. ISSN: 0094243X.

Pletz, M., Daves, W., Yao, W., Kubin, W. and Scheriau, S. (2014). Multi-scale finite element
modeling to describe rolling contact fatigue in a wheel–rail test rig, Tribology International
80: 147–155.

Ponter, A. R. S., Hearle, A. D. and Johnson, K. L. (1985). Application of the kinematical
shakedown theorem to rolling and sliding point contacts, Journal of the Mechanics and Physics
of Solids 33(4): 339–362.
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