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An Investigation into Data Driven Modelling of Rail Degradation due to Rolling
Contact Fatigue

by Christina Marie Riley

One of the major problems affecting the UK rail network is a family of defects known
as Rolling Contact Fatigue (RCF). RCF is a phenomena which arises from repeated
contact stresses at the wheel-rail interface resulting in cracks forming at the rail
surface, which if left unmanaged can lead to rail fracture. Management of RCF is
largely performed using re-profiling methods such as rail grinding and milling. The
objectives of such techniques are to restore rail profiles, remove minor cracks, and stall
cracks in their early stages of growth, and therefore these activities have typically been
performed cyclically at time (or traffic) based intervals. In recent years, the advances
in monitoring technologies has dramatically increased the data available to the
network operator, in particular Eddy Current technology, which is capable of
identifying the depths of RCF cracks in their early stages. This data set is previously
unexplored, and presents the opportunity for investigating modern data mining
methods to discover insights that may better inform RCF maintenance strategies. Real,
operational data however are often noisy, and if the noise is not accounted for can
have significant implications on the accuracy of subsequent analysis and modelling.

This thesis thus investigates the use of numerous data pre-processing techniques
which enable Eddy Current data to be reliably used for information extraction and
data-driven modelling. In particular, we address the difficulties in spatially aligning
low frequency, sparse data by incorporating data partitioning, cross correlation and
optimisation methods. Additionally, the successful preparation of the data enables
two main approaches to be explored. Firstly, simple analytical techniques are applied
to derive degradation patterns which can augment the current preventive and
corrective maintenance decision making processes. Secondly, we demonstrate a
methodology for developing a RCF prediction model using several machine learning
algorithms for regression analysis. Whilst the resulting models show excellent
function fitting capabilities, particularly in the case of ensemble, tree-based methods,
we also highlight the potential problems that may arise when using these methods.
Despite this, future developments of these models could present excellent
opportunities for modelling these complex relationships. At the same time, the data
processing and analytical techniques could be presently incorporated into existing
RCF management strategies.
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Chapter 1

Introduction

1.1 Motivation

Railway operators have endured unprecedented turbulence in recent years. The
height of the COVID 19 pandemic resulted in cessation of passenger traffic, followed
by the emergence of new working patterns and changed attitudes toward rail travel.
Over the 2019/20 - 2020/21 period there was a 78% reduction in passenger

journeys (Department for Transport, 2021), and a reduction of 41.8% for the 2021 /2022
period compared with 2019/20 (Network Rail, 2022), indicating a sustained reduction
in passenger uptake since restrictions were lifted. Yet there remains sustained pressure
to improve performance, with faster, higher capacity and heavier trains, whilst
simultaneously ensuring system reliability and safety at a reasonable cost to network
users. Maintenance budgets are tightening, and strategies must therefore balance
these conflicting aims to ensure optimum efficiency and long term viability of railway

operations.

Maintenance of Britain’s railway infrastructure is the responsibility of network owner
and operator Network Rail Infrastructure Limited (NRIL), who oversee the 20,000
miles of track, 30,000 bridges, tunnels and viaducts and the thousands of signals, level
crossings and stations (Network Rail, 2022). In 2021, the total amount spent on
maintenance and renewals accounted for 49% of overall expenditure (Network Rail,
2021b), £1,892m was spent on maintenance alone, £3,910m on renewals, with an
additional £288m spent on Schedule 4 performance regime payments (Network Rail,
2021b). !

The rails are a critical part of the track subsystem, subject to high and repetitive

vertical and longitudinal contact forces at the wheel-rail interface. These pressures

ISchedule 4 payments are aimed to compensate the train operator for loss of service where the
Infrastructure Manager (IM) take back possession of areas of the network, normally as a result of planned
maintenance works.



2 Chapter 1. Introduction

eventually result in the formation of defects, which can lead to rail breaks and
potential derailments if left unmanaged. There are few incidences more devastating in
recent years than the Hatfield crash of October 2000, where four people were killed
and 34 injured when a GNER train travelling from King’s Cross to Leeds was derailed
not far from Hatfield (ORR, 2006).

Images from the crash site (see Figures 1.1, 1.2a, 1.2b) exposed the catastrophic failure
of the high rail around Welham Curve, which shattered into some 200 pieces (ORR,
2006). The formal enquiry stated that the immediate cause was a result of the ‘fracture
and subsequent fragmentation of the high rail over a 35-metre length due to
substantial transverse fatigue defects in the rail head. These had their origins in gauge
corner cracks, a form of Rolling Contact Fatigue (RCF), which had developed in the
rail surface.” (ORR, 2006).

FIGURE 1.1: The Hatfield rail track site following the accident (Grassie, 2005)

Rolling Contact Fatigue (RCF) is a family of fatigue-driven damage phenomena,
characterised by small cracks forming in the running band of the rail. The cracks are
caused by repeated cyclic loading, in combination with frictional forces due to the
rolling/ sliding contact, which eventually exhaust the ductility of the rail steel (Magel
et al., 2004). Once the cracks reach a critical size, they have the potential to propagate
to downward turning transverse cracks that can cause the rail to break.

A key approach to managing RCF defects is re-profiling of the rail by grinding or
milling. These approaches generally have two aims; firstly to restore the rail profile
and optimal wheel/rail contact to reduce contact pressures, and secondly to remove
minor surface cracks and stall moderate cracks from propagating. In the years
following Hatfield, an enormous programme of measures (the ‘National Recovery

Programme’) to deal with widespread RCF included huge amounts of rail renewals
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FIGURE 1.2: Images from the Hatfield Crash Site (ORR, 2006)

and corrective grinding, much of which was likely to be over-compensatory due to a
lack of understanding of the phenomena (Merkert, 2005; Grassie, 2005). Premature
renewals and unnecessary grinding not only reduces the life of the rail though loss of
material and premature replacement, but additionally increases maintenance costs
and can cause disruptions to track availability.

Historically, the predominant forms of maintenance policy within the railway
industry have been reactive- e.g. where the rail is replaced when it has exceeded its
wear limits or critical defects have occurred, and time-based (typically based on
tonnage thresholds being reached). The outcome is generally that the replacement
comes too late when the system is run to failure, or the intervals are too conservative
due to historic failures such as Hatfield and insufficient understanding of how the
system degrades. Condition-Based Maintenance (CBM) policies are widely viewed to
be the most economical, aiming to maximise network availability whilst reducing the
risk of failure (Al-Douri et al., 2016). In CBM, system health is determined by
dynamically monitoring the conditions of the asset, and pre-empting faults before
they occur, so that interventions can be planned accordingly (Lin, 2005). Asset
degradation models provide a distinct advantage, since predicting future states and
understanding key drivers can assist in determining when and where the intervention
should be employed in a robust and repeatable manner (Fumeo et al., 2015). These
models may be based on the physical laws describing system behaviour or derived
from operational condition data (data-driven).

In conclusion, to balance the safety of network users, service reliability and shrinking
budgets, it is important that a robust methodology is developed based on evidence

and understanding of rail degradation to inform maintenance planning.
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1.2 Problem Statement

The work in this thesis addresses the balance between managing the safety of rail
users, with the pressing need for efficiency due to tighter budget constraints and
performance targets. Grinding is a critical strategy for managing RCF, but it is
expensive, may cause disruptions to railway operations and must be done effectively

rather than needlessly reducing rail life.

Ideally, in order to establish an optimised, CBM strategy for the planning of when and
where grinding is performed, two approaches can be explored. Primarily, the operator
can gauge a better understanding of the phenomena and its development across the
network by utilising monitoring data and analysing degradation rates. Secondly, the
development of physical or data-driven asset degradation models for predicting RCF
may assist in understanding and predicting possible future issues. Both approaches
provide a consistent approach for informing the decision making process and can

incorporate real asset data.

Currently there are two predominant strategies employed by Network Rail (NR) for

rail re-profiling, 1) Preventive, and 2) Corrective grinding.

Preventive grinding is performed in the first instance to ensure that the rail profile is
restored to its optimal shape, thus alleviating the contact stresses on the gauge corner.
Yet, the additional benefit of surface re-profiling is the removal of minor cracks, and
prevention of moderate sized cracks from propagating. The prevailing idea is that if
cracks are growing into the rail at a particular rate, then the loss of material by both
natural and deliberate means (wear and grinding, respectively) must at least reach this
rate in order to contain cracking (Grassie, 2005), this rate is termed by Kalousek (1997)
as the ‘Magic Wear Rate (MWR)'. This type of grinding involves cyclically removing
only a small amount of rail material with grinding trains that can travel at moderate
speeds. The current practice at NR is to grind curves after every 15 MGT of traffic, and
tangent track after every 45 MGT (Network Rail, 2018b). It is understood that this
strategy is derived from the studies conducted by the National Research

Council (NRC) of Canada on heavy haul lines in North America (Stanford et al., 2001).
However, the operational and environmental conditions observed at the time of this
study will differ considerably from the UK network today, and therefore these
strategies require updating based on the UK operational data.

Corrective grinding conversely is targetted at treating existing RCF sites or sections of
track before there is substantial risk of the rail breaking. Typically it is reactionary and
requires multiple grinding passes, machine milling, or in some cases re-railing. At NR,
EC and ultrasonic measurements are used to guide the planning of these activities.
The process varies between the network regions and is dependent on the Route Asset
Manager (RAM), but is typically based on an assessment of site risk carried out by
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experts. Determination of risk and rates of degradation are performed by observation
and expertise rather than through repeatable, objective analyses.

Over the past 20 years since the Hatfield crash, several physics-based RCF damage
evolution models have been developed, varying considerably in complexity and
applicability, as discussed by Krishna et al. (2021). Many of the widely used
approaches employ Multi Body Simulations (MBS) of railway vehicles to obtain the
dynamic wheel/ rail loads and kinematics for a range of running conditions.
However, these approaches, as far as is understood from the literature, and through
discussions with maintenance teams at NR, are rarely used to inform grinding

practices.

In recent years, the application of data-driven techniques has grown in popularity due
to the surge in availability of large data sets and advancements in computing power.
In data-driven approaches, the relationships between system input and output
variables are determined directly from the system experimental data. Contrary to
physical models, Data-driven Modelling (DDM) is not reliant on explicit modelling of
the underlying system, and can therefore capture complexities and patterns which
may otherwise be missed. Their appealing flexibility however can sometimes be their
downfall, as without a good understanding of the system under study and
preparation of the data, these methods can fall foul of modelling noise rather than
capturing the process of interest (Cios et al., 1998). Historically, RCF cracking is
detected using ultrasonic methods, but emerging technologies such as EC based
systems are able to detect cracks in their very early stages of development, and thus

generate larger data sets with the opportunity for data mining.

In summary, NR presently utilise two key grinding strategies, neither of which
capitalise on the availability of operational condition data or existing RCF initiation
models for various reasons that will be considered in Chapter 2. This work seeks to
advance these strategies through combining these elements with the objective of:

¢ Improving Safety: better planning of grinding can ensure interventions are

performed before defects become critical,

¢ Improving Efficiency: significant savings could be made by reducing

unnecessary intervention and increasing rail life,

¢ Improving Consistency: a consistent, evidence based approach across the
network that can be validated/ tested in future.

The proposal described in this thesis is the use of data mining techniques with RCF
condition data to provide insights which inform the decision making process for rail
grinding planning. The main body of work is divided into three parts:
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1. EC Data Processing: Due to issues with data quality, the first part of this thesis
discusses methods to clean, process and formulate the data mining problem
with a set of modelling data, which will enable subsequent parts 2 and 3,

2. Data Analysis: Presents two relatively simple, analytical approaches for using
the pre-processed EC RCF data (in particular degradation rates and degradation
based Key Performance Indicators (KPIs)) to augment existing preventive and

corrective interventions strategies,

3. Regression Analysis: illustrates the development and utilisation of Machine
Learning (ML) algorithms to mine the RCF condition data and generate a
suitable model for RCF prediction. Additionally, this section presents a method
for comparing these DDMs, and the observed damage with a simulation
generated using the software tool Track-Ex, which implements a simplified
version of the Whole Life Rail Model (WLRM).

This thesis presents a body of work that demonstrates the use of previously
unexplored rail condition data, a comprehensive and repeatable methodology for
processing this data so that it can be readily used to augment existing interventions
strategies through data analysis or can be used to build a RCF prediction model using
ML algorithms. This work has been conducted in conjunction, and with support from
the UK rail operator Network Rail Infrastructure Limited (NRIL) and the Engineering
and Physical Sciences Research Council (EPSRC) (Grant Number 18000134).
Operational and maintenance data provided by NR from the UK rail network is
utilised.

1.3 Research Aims

The objective of this research is the advancement of grinding planning with the focus
on analysing condition data and the application of data-driven modelling for RCF
prediction. The primary research question is stated as follows:

Can data-driven methods be used to build an effective data-driven RCF prediction
model to help inform grinding strategies?

To commence the body of work required to answer this question, a number of

sub-questions were formed:

1. What are the critical drivers for RCF initiation and degradation?

2. How are RCF cracks detected and monitored?
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1.4

What are the current grinding practices in use by Network Rail?

What existing models are available for RCF evolution modelling?

How can the available RCF condition data be formulated for regression analysis?
What insights can be gained from the RCF condition data?

Can regression analysis be used to build an effective RCF regression model?

How does a data-driven approach compare with existing physic-based models?

Outline of Thesis

This thesis is divided into two major parts, Part 1 (Chapters 2-3) introduces and

describes the problem domain, including the background literature on RCF, RCF

mitigation practices and RCF modelling. Part 2 (Chapters 4-7) includes exploratory

data analyses, pre-processing and regression modelling. The material is organised as

follows, with the relevant research sub-question number expressed in parentheses:

Chapter 2: RCF introduces the principles behind the RCF phenomena, the key
drivers and typical mitigation practices. There is a particular focus on the
techniques of grinding and milling, and eddy current technology for detection

(Q]‘_z)l

Chapter 3: RCF Modelling discusses existing RCF modelling techniques,
including physics-based and data-driven models in the literature. The chapter
concludes with the data-driven methodology and models being proposed (Q3),

Chapter 4: Experimental Data introduces the data sources central to this thesis,
alongside contextual exploration of patterns and relationships in the data, and
identification of the most appropriate methods for processing and formulating
the data for modelling (Q5),

Chapter 5: Data Pre-Processing presents a methodology for processing eddy
current data and integrating other relevant data sources to generate a modelling
dataset for use in subsequent analysis and regression modelling (Q4),

Chapter 6: Practical Applications of Data Analysis provides a simple approach
for segmenting the track for preventive grinding and outputs that can be used in
risk assessments for corrective grinding. The methodology is based on analyses
of the processed EC data (Q5),
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¢ Chapter 7: Regression Analysis with Machine Learning Algorithms A
selection of ML algorithms are trained using the fully processed and integrated
modelling data set with various parameter settings. The full results are
presented and the proposed model is selected. This model is compared with the

physics-based approach, Track-Ex (Q6-8).

¢ Chapter 8: Summary The conclusions, contributions and recommendations are

put forward in Chapter 8.
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Chapter 2
Rolling Contact Fatigue

In common with all transport systems, railways contain elements that must be
continuously maintained. In particular, as the primary interface between the vehicles
and track system, the rails are subject to a harsh operating environment with complex
and variable forces. Wear and rail defects are thus an inevitable consequence of these
conditions where the wheel and rail come into contact. A specific example is metal
fatigue, which is a condition that arises from the repeated cyclic loading of railway
vehicles on the rail. Fatigue is the progressive, localised , permanent structural change
that occurs in materials subjected to fluctuating stresses and strains that may result in
cracks or fracture after a sufficient number of fluctuations (Boyer, 1986). Fatigue in
rails is characterised by minor cracking at the wheel-rail interface which may
propagate due to sheer and bending stresses and ultimately lead to rail

failure (Cannon et al., 2003).

The defects that lead to fatigue failure are known collectively as Rolling Contact
Fatigue (RCF). Sub-surface initiated shells, surface initiated squats and head checking
all fall into this category, and are illustrated in Figure 2.1. The various terms for
different types of RCF can generally be characterised by their appearance and location

on the rail as depicted in Figure 2.2.

2.1 RCF Principles

Fatigue at the wheel-rail interface is distinguished by the high stress field produced by
the wheel-rail contact and cyclic contact stresses which are largely compressive due to
high axle loads (Fletcher et al., 2009). These stresses can cause localised areas of

damage (or cracking). The propensity and frequency of such cracks in the rail depend
on operational and environmental conditions such as track condition, track curvature,

traffic loading, vehicle type, maintenance interventions and climatic conditions. This
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study focusses on a particular type of surface initiated cracking typically developed as a
consequence of frictional rolling/ sliding contact that causes plastic flow of the surface
of the material. The initiation of such cracks are not normally associated with any
specific metallurgical, mechanical or thermal fault, but as a result of the rail material’s
inability to sustain the imposed operating conditions indefinitely (Cannon et al., 2003).
As the plastic deformation exceeds the fracture strain (or fracture point) of the

material, a surface crack is formed.

There are believed to be two main causes for surface initiated RCF; either due to
rolling contact accompanied with load and surface roughness; thus resulting in local
stress concentrations, or if the rolling contact is accompanied by interfacial shear and
slip (due to curving, braking and traction) which can result in plastic deformation of
the contacting surfaces and subsequent crack initiation and growth (Ekberg et al.,
2014). Further discussion on the generation of high frictional creep forces when

steering, braking and accelerating are described in Appendix A.

The process of RCF crack initiation and propagation can be summarised in three
distinct stages and are illustrated in Figure 2.3 (Burstow et al., 2009):

1. Phase 1: Crack Initiation/ Early Crack Growth Repeated cycles of rolling/
sliding contact between metals (such as the steel used in modern rails) instigate
a process known as ‘ratchetting’ or ‘cyclic creep’. Ratchetting (illustrated in
Figure 2.4) is the incremental accumulation of plastic strain, whereby the loads
that the material is subjected to are repeatedly above the yield of the material.
Eventually this process causes the material to fracture generating small surface
cracks at the head of the rail (Kapoor et al., 2002; Magel et al., 2004). This process
is estimated to take place over a period of 3-6 MGT (Magel et al., 2003).

2. Phase 2: Shallow Angle Crack Growth

There are several mechanisms under which cracks grow into rails: Firstly where
shallow angle crack growth is driven by shear stresses which occur at the wheel /
rail interface. In this case cracks typically propagate at an angle of 15 degrees to
the head of the rail and in the same direction of travel (traction direction). Crack
growth then slows as the distance from the surface stresses increases some 10-15
mm below the surface (Smith, 2002). In other instances, the presence of fluids
such as water or grease based lubricants play a crucial role (Shaulk, 2016):

¢ Hydraulic crack growth: whereby the fluid is trapped in the crack and
when the wheel drives over the crack it causes pressure on the fluid,

driving crack growth,

¢ The fluid entrapment crack growth mechanism is the mechanism where
the crack closes when the wheel passes over it and the fluid is entrapped



14

Chapter 2. Rolling Contact Fatigue

and pressurised. This causes high pressure at the crack faces and tensile
stresses at the tip of the crack causes the growth (Dollevoet, 2010),

¢ The squeezed film crack growth mechanism: a fluid is trapped in the crack
and growth in the direction of the load motion, the crack mouth opens
under tractive effort, drawing the fluid in where it expands under pressure
as the wheel passes over and the crack is closed (Bogdanski et al., 1999).

3. Phase 3: Branching Crack Growth At this stage the growth rate of a crack

accelerates rapidly until failure or intervention. The growth is driven by by bulk
bending and axial stresses in the rail due to wheel loads and residual stresses in
the rails from manufacturing processes. Eventually this causes the majority of
cracks to branch upwards, leading to surface shelling, with chunks of material
spalling from the rail surface. Alternatively, in some cases the cracks will turn
downwards and may develop into a transverse defect and ultimately a broken
rail (Magel et al., 2003).
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FIGURE 2.3: Phases of RCF crack development and growth (Burstow et al., 2009)
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2.1.1 Wear

The same shear stresses caused by loading forces, traction, slippage and friction at the
wheel/rail contact almost always cause wear in addition to Rolling Contact

Fatigue (Magel et al., 2014). Wear is the loss or displacement of material from a
contacting surface, and has historically determined the life of the rail due to the
gradual loss of rail cross section ultimately resulting in replacement. Today, however,
due to improved wear resistance of wheel and rail materials, rail life is now
dominated by RCF damage (head checks and squats) (Schmid, 2010).

In fact, these processes are often competing, since the process of crack initiation and
propagation are impacted by the rate at which material is worn from the surface. In
systems with high wear rates, it is possible to wear away the stressed surface layer
before it can develop cracks, or additionally to delay crack propagation by ensuring
that the cracks do not reach a critical size for branching. However, high wear rates
necessarily reduce component life, and therefore an optimum level of wear where
surface fatigue is controlled and component life is maximised is sought. This
optimum metal removal rate is known as the ‘Magic Wear Rate” (MWR), which is “the
rate of wear at which any rolling contact fatigue cracks that are in the initial stages of
development are removed either by natural or combination of natural and artificial
wear” (Magel et al., 2014). In most systems, due to the quality of the rail steels, the
natural wear rates are insufficient to manage crack growth. In these cases grinding
and milling can be used to artificially modify the wear rate of the material and control
the growth of cracking. Although different rail grinding strategies have evolved over
the years, it is generally agreed that the ideal approach is to grind the rail preventively
at the MWR (Magel et al., 2014). In North America preventive grinding of rails,
alongside improved metallurgies, contributed to a two-fold increase in system rail life
and a four-fold increase in system rail fatigue life over the last 25 years. (Magel et al.,
2005)

Figure 2.5 illustrates the combination of natural wear and minimum artificial wear

(grinding) that are needed to achieve the MWR. The frequency of grinding
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intervention needed to achieve this target varies depending on the specific conditions
contributing to crack initiation and propagation at the wheel-rail contact.
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FIGURE 2.5: Illustration of relationship between contact fatigue growth, natural wear
and Magic Wear Rates (Magel et al., 2014)

2.2 RCF Management Overview

2.2.1 Managing RCF

In recent years, largely due to the rise in axle loads, traffic density, speed and tractive
forces, and improved wear resistance of modern rail materials, infrastructure
managers have seen an increase in the occurrence and severity of RCF. There are
significant implications with regard to safety and cost to the IM, which has resulted in

numerous global efforts to develop effective management strategies.

These strategies vary between locations and Infrastructure Managers (IMs) since they
depend on operational conditions, but they can broadly be considered as design or
maintenance strategies applied to the vehicle or track side of the Wheel-Rail

Interface (WRI) (Magel et al., 2005):

¢ WRI Design:

— Wheel/ Rail Metallurgy:
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Rail materials are chosen in order to withstand the high static and dynamic
forces present at the wheel-rail interface. Modern rails are typically
composed of very high-quality steel alloys featuring a high percentage of
carbon (up to 0.7%) as compared with everyday construction

steels (Schmid, 2010). The most common rail material in Europe is R260
(previously named UIC 900A) which has 0.62% carbon and 0.7-1.2 %
manganese. International specifications divide rail treatments into: 1)
naturally hard rail grades and 2) hardened rail grades. The head hardened
rail grades were developed to improve wear resistance and strength.
However, increasing the wear-resistance of modern day rail steels has been
linked to the rise in RCF damage as a result of reduction in natural wear
that has assisted in managing RCF. Similarly, wheels are made of carbon
steel/ manganese alloy, which is normally obtained by processing and

continuous casting of scrap steel.

— Wheel/ Rail Profile Design:

The design of wheel and rail profiles are of central importance in railway
design since they govern the vehicle dynamic behaviour, the forces between
the wheel and rail, and the stresses imposed at either side of the interface.
Figure 2.7 illustrates a typical rail and wheel profile in a new(or restored)
condition, and also in a worn condition. Commonly used terms to describe

different elements of the wheel and rail profiles are provided in Figure 2.7.

Self steering is achieved through the coned shape of the wheel tread for a
given rail profile combined with solid axles. The conicity of a wheel tread is
defined as the tangent of the half angle y subtended at the apex of the cone
(See Figure 2.6), the cone angle is selected to enable self steering on a
selected rail profile at given inclination. The rails are inclined inwards to
ensure the wheel-contact is centred at the rail crown; the strongest part of
the rail, and additionally to assist with self-steering (in the UK inclination is
1 in 20). The exact parameters related to the wheel/ rail profiles, wheel
conicity and rail inclination however are not considered in isolation, rather
the correct, or optimal combination of these features is of primary

importance.

Over time, as the wheels pass over the rails, the profiles may vary as a
result of wear, both wheel and rail wear patterns will vary depending on
the traffic type and the route characteristics. The illustration shows extreme
cases of wear for both the wheel and rail. Wheel flange wear often occurs as
a result of vehicle with a stiff primary suspension or where the route has a
high proportion of tight curves, whereas tread wear tend to occur on a
route composed of tangent track. In either case the result is a modification

in the wheel conicity which affects vehicle stability, curving performance
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and contact forces. For the rail on the other hand, predominantly straight
track results in head-wear, whilst sharp curves tend to result in side wear.
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FIGURE 2.7: The Wheel/Rail Interface adapted from (Lewis, 2009)

- Suspension Bogies: Flexible bogie suspension improves the steering
capability of the running gear. As described in Appendix A, the reduction
in the bogie primary yaw stiffness can reduce yaw angles in curves which
will reduce lateral creep forces required to keep the vehicle in radial
alignment, and in turn reduce RCF initiation on the rails of shallow curves

and in wheels.

¢ WRI Maintenance:
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— WRI Monitoring: Improved and/ or more frequent defect detection can
reduce risk of rail failure. Techniques such as Eddy Current testing have
been developed in order to detect cracks in their early stages and therefore
a greater opportunity to monitor crack growth and intervene where

necessary,

— Friction Management:

Wear and damage is also influenced by the frictional characteristics of the
interface. Too high a frictional value, results in noise, increased energy
consumption, wear and damage to components, whereas too low a value
will result in lack of traction, reduced braking and wheel damage. Typical
values appear to range between 0.08 and 0.5 (Lewis, 2009). Lubrication of
the rail gauge-face/ wheel-flange can reduce wear by 95-100%, however
water entrapment has a significant influence on shallow growth through
fluid entrapment, and grease based lubrication may also influence crack
growth via this mechanism.

- Grinding/ Milling:
Grinding is a powerful tool for both preventing RCF development and
removing existing RCF (alongside milling), it further removes surface
damage to improve ultrasonic detection (Cannon et al., 2003). It is one of
the main strategies adopted by railways to combat RCF and is discussed

further in Section 2.4,

— Track Quality: Vertical and lateral track irregularities are often associated
with rapid rates of RCF development in rail adjacent to the
irregularity. (Attoh-Okine, 2016; Zarembski et al., 2016)

2.3 RCF Monitoring

Over the years, various systems have been developed to monitor the health of rails,
and substantial efforts are still being made in this field in order to improve detection
capabilities. Non Destructive Evaluation (NDE) methods are widely applied for the
inspection of rails since they can be carried out in-situ and in many situations the
equipment can be installed on trains and testing vehicles to minimise network
disruption. We focus on the methods in use at Network Rail for RCF detection, for a
more in-depth overview of other Non Destructive Testing (NDT) techniques in use,
see (Bombarda et al., 2021; InnoTrack, 2008).
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2.3.1 Ultrasonic Testing (UT)

Ultrasonic Testing (UT) technology is one of the most common methods applied in the
tields of rail crack detection, and is particularly effective at detecting internal

cracks (Xu et al., 2020). The technique uses high frequency beams of sound energy
which are transmitted into the rail, and the reflected or scattered energy of the
transmitted beam is then detected using a collection of transducers. The amplitude of
any reflections together with when they occur in time can provide valuable
information about the integrity of the rail. Since there is uncertainty in the direction
and location of defects, the energy is transmitted at several different incident angles in
order to maximise the Probability of Detection (PoD) of any detrimental features
present in the rail (Papaelias et al., 2008).

In many countries, this technique is typically employed on Sperry trains (UTU1 and
UTU2 models). The presence of detected defects by the UTU1 and UTU2 Sperry trains
is then confirmed through the deployment of portable ultrasonic inspection units
known as Sperry Sticks (InnoTrack, 2008). Verification of identified defects is required
due to the relatively high occurrence of false alarms. Ultrasonic Detection relies on the
fine-tuning of the test equipment by means of parameters such as the signal threshold
(amplitude of the signal) and the position of the time window (or acquisition time). If
the threshold is set too high then the system will miss cracks whilst if it set too low it

will generate many false alarms.

Additionally UT transducers must be in close contact with the track to achieve
ultrasonic transmission which limits the possible speeds of inspection. Another more
serious drawback of the technique is a phenomena known as ‘shadowing’ (Peterson,
2000; Cannon et al., 2003). In cases where there is shelling, or detail fractures on the
surface of the rail, the equipment may not be able to detect more serious sub-surface
cracks. Generally it is known that ultrasonic testing performs well in detecting deep
surface-braking and internal defects, however is less effective in detecting small
(<4mm) surface defects such as head checks and Gauge Corner

Cracking (GCC) (Papaelias et al., 2008). Technology such as pulsed Eddy Current
sensors have since been developed to detect these types of defects since they have

high sensitivity to rail surface cracking (InnoTrack, 2008).

2.3.2 Eddy Current Testing (ECT)

Eddy Current (EC) technology is currently one of the most effective ways of detecting
rolling contact fatigue across the railway network due to its high speed detection

capabilities and sensitivity to even the smallest near surface defects. At Network Rail,
Sperry EC technology are fitted to the rail inspection vehicle (Ultrasonic Test Units) or
pedestrian sticks. A pilot scheme was established in 2015 to replace the current visual
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inspection for RCF as eddy current technology provides a more reliable, accurate and
consistent means of identifying RCF. The Ultrasonic Test Units (UTUs) will provide
eddy current data along the route that the train takes, but the train borne inspection
process is not approved for use in S&C, and so pedestrian EC testing can be used to

record accurate data within these areas.

The Sperry Surface Crack Inspection System houses an eddy current roller search unit
(RSU), which contains ten sensors spaced across the width of the running surface of
the rail (illustrated in Figure 2.8), and is pressed down to ensure contact with the rail
surface. The sensors; known as probes or coils, are positioned at a predetermined
distance (lift-off) above the rail, increasing or decreasing the lift-off distance impacts
the system’s sensitivity and penetration capability. High sensitivity of the system can
lead to indications of deep damage from an array of very small cracks, which leads to
overestimation of damage severity. On the other hand, the depth of penetration is of
major importance, since cracks over a given size cannot be reliably sized (in the Sperry
System the maximum depth of detection is 5mm). Variation of these parameters
considerably effects the eddy current response, and thus must be considered when

evaluating the reliability of crack sizing.

£

(A) Sperry Eddy Current Roller Search Unit (B) Sperry Eddy Current Probe Con-
(RSU) figuration (Whitney, 2020)

FIGURE 2.8: Illustration of Eddy Current Measurement System

Eddy Current testing is based on the principles of electromagnetic induction, which
are illustrated in Figure 2.9 (Bhagi, 2011). A primary magnetic field is generated when
alternating current is injected into an induction coil. When the coil is placed over a
conductive sample, Eddy currents are induced in the material. Those Eddy Currents
generate a secondary magnetic field opposed towards the primary field. Any changes
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in the conductivity of the material being examined, such as near-surface defects or
differences in thickness, will affect the magnitude of the eddy current. This change, or
more specifically the coil impedance is detected using either the primary coil or the
secondary detector coil, forming the basis of the eddy current testing inspection
technique (Hwang et al., 2015). Crack lengths are calibrated prior to inspection using a
test setup that mimics eddy current rail inspections as closely as possible.
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FIGURE 2.9: Principle of Eddy Current Testing(left) and distortion of eddy current due
to crack, edge-effect, surface crack, and sub-surface void (right)., (Bhagi, 2011)

2.4 RCF Re-profiling

Rail grinding and milling are used in the rail industry to maintain the safety and
quality of the track by removing layers of the rail surface. Grinding is the most
common type of material cutting and surface generation process, which typically uses
an abrasive method for removing the rail material (Zhu et al., 2019). The metal is cut
through the action of a rotating grinding wheel including rubbing, plastic
deformation, cutting and chip formation (Zhang et al., 2020) as illustrated in

Figure 2.10 1. Though it is this mechanism of material removal that has raised some
concerns due to the levels of heat generated which may result in rail pre-fatigue or
burn of the rail surface (Yuan et al., 2021). In particular, Gu et al. (2015) found that
removal rate and surface quality is improved through the elevation of grinding
rotational speed, however the grinding temperature and hardness of rail will also

increase, causing surface burn to the rail.

In contrast, milling (shown in Figure 2.11) is a relatively new technique used in the

railway industry and can be described as a dry rotational cutting process. The method

Lother types of grinding are oscillating grinding, or high-speed grinding (HSG), see (British Standards
Institution, 2018; Popovicé et al., 2022)
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is capable of a much higher level of geometrical accuracy than grinding and can also
remove several millimetre defects in only one pass (Kubin et al., 2019).

The value of these techniques are two-fold, firstly grinding (or milling) can remove
shallow cracks, or prevent them from propagating. For example, if grinding is
performed frequently enough to stall cracks in their early stages of growth (Phase 2),
this reduces the chances of cracks turning down into the rail. Secondly, by re-profiling
the rail transversely, grinding can restore the rail to its original profile to improve
contact conditions and vehicle dynamics. The original wheel/ rail profiles are
designed such that contact stresses are minimised where possible and can move wheel
contact to areas of the rail less susceptible to RCF. Typically we divide grinding
philosophies adopted by IMs as preventive and corrective (Grassie, 2005), these
approaches are described in the following sub-sections, which include the current
methods in use at Network Rail.

I|Gr:in1:ling pressure

Grinding stone

_—wForward speed

Grinding area

FIGURE 2.10: Rotational Grinding of the rail (Zhou et al., 2019)

Specifically, Network Rail have a range of machinery available to use for rail
re-profiling depending on the particular application. For example, the Loram C21
series have a high output and are used for Single Pass (SP) preventive grinding. In
order to target specific rail head defects, corrective grinding is performed using the
Loram SPML series of Speno RPS32 which enable Multi-Pass (MP) grinding.
Currently milling is performed using a Strabag leased Road-Rail Vehicle (RRV) that is
not compatible with UK signalling systems and therefore requires mounting on two
locomotives, this results in reduced productivity due to logistics and access
restrictions. NR are in the process of acquiring a Schwearbau milling train which has
significantly greater cost per shift but superior capability. The fleet also includes
specific Switches and Crossings (SC) grinding equipment (Harsco), that are used
where it is not possible to manoeuvre the plain line machinery. Table 2.1 demonstrates
the relative capabilities of each vehicle model, note that the costs calculated are

approximate.
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FIGURE 2.11: Rail Milling Wheel (Kubin et al., 2019)

TABLE 2.1: Network Rail Intervention Equipment Capabilities

Model Removal Speed Cost Purpose

Depth

per pass per pass per shift

(mm) (m/hr) (£)
Strabag RRV Miller 0.75 420 17500 Milling
Schwearbau Miller 5 350 35000 Milling
Loram C21 Series (PL) 0.2 12872 18626 SP Grinding
Speno RPS32 (PL) 0.1 4022.5 12373.51 MP Grinding
Loram SPML Series (PL) 0.1 4022.5 12373.51 MP Grinding

Harsco (SC) - - - SC Grinding
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TABLE 2.2: Current Best Practice Single-Pass Preventive Grinding Intervals (Magel

etal., 2014)
Curvature Rail Grade Preventive Grinding Interval
Sharp Premium 14-23 (15-25MGT)
Mild Premium 27-45 (30-50 MGT)
Tangent  Intermediate 40-54 (45-60MGT)
Tangent Premium 91 (100MGT)

2.4.1 Preventive Action

Preventive rail grinding is a process of controlled artificial wear which seeks to restore
desired rail profiles and achieve the required depth of metal removal with minimal
grinding effort and steel wastage (Magel et al., 2003). In particular, and as already
noted, we often reference a concept known as the ‘Magic Wear Rate’, which is the
desired optimal metal removal rate achieved through the combination of natural and
artificial wear required to remove existing minor cracks and control crack growth.
Crucially here the objective is to prevent rail damage rather than correct for it, and
when applied effectively can be performed with a single pass of the grinding train,
and typically removes less metal than corrective actions. Preventive grinding is
generally understood to greatly improve logistics due to fewer passes and higher
machinery speeds, and is the most economical grinding strategy.

Numerous practices, particularly regarding how often to grind and how much metal
to remove at each cycle have been evolving since the late 1960s. Whilst initially
developed for removing corrugation in the rail, eventually philosophies of regular,
tonnage-based grinding emerged and established the process as being preventive

rather than corrective.

Kalousek et al. (1989) first proposed the use of a ‘Preventive Rail Grinding Strategy’
where the grinding cycles necessary to remove all initiating surface cracks are defined.
The idea was tested by Canadian Pacific Railway (CPR), by grinding up to 6 times per
year (i.e. at 10 MGT intervals), and field testing proved that this method would
control cracking and was considerably more economical than multi-pass grinding
strategies (Magel et al., 2003). Additionally in 1991, the Burlington Northern Santa
Fe (BNSF) line applied this strategy whereby grinding at intervals of 18-40 MGT were
introduced on curves and an interval of 35-60 MGT on tangent track (Magel et al.,
2003). The current single-pass preventive grinding intervals according to Zakharov

et al. (2001) are summarised in Table 2.2.

Additionally other strategies have been developed where there is heavy RCF on the
rail to start with and a more gradual approach to move towards a preventive strategy
is required, example of such programs are the ‘Preventive-Gradual Grinding
Strategy’ (Stanford, 2000) and the ‘Predictive-preventive’ (Harris et al., 2011).
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Outside of North America, Heyder (2014) carried out empirical studies on the
propagation of headchecks in the German railway network to better plan grinding
intervals. Zoeteman et al. (2014) studied the effect of various rail grinding regimes
over a period of 13 years on the Dutchrail network and showed that the interval
chosen for the grinding interventions is very crucial since the cracks grow at much

higher rates at the later stages of propagation.

2.4.1.1 Preventive Grinding at NR

Alongside other European IMs; and largely based on principles suggested in studies
conducted by the NRC on North American railway lines, Network Rail implement the
following cycles to re-profile rails with standard steel grad R260 to control HC defects:
a) after 15 MGT in curves, b) after 45 MGT in the tangent track (British Standards
Institution, 2018) (as illustrated in Figure 2.12). Depending on the track and traffic
characteristics, these cycles can be doubled for harder heat-treated rails (R350HT).

According to a senior RAM at NR this approach was introduced at NR circa 2004, and
has not been modified since. The implementation of the process is predominantly
manual since it relies on a look up being performed for each track section against a
curve register (which is currently performed by hand), and the latest information for
traffic is obtained. The grinding frequency is thus set according to the track curvature
and traffic for that section. Practically speaking, the process is not entirely precise due
to the logistics such as the inability to handle annual tonnages that are not constant
across each subdivision and staying on cycle on routes where sharp curves are miles
apart whereas the majority of sections are covered by mild curves (Harris et al., 2011).
It is also believed that the current grinding equipment may not be producing the
desired profiles which may prove the practice less effective, and it is not always

known whether the RCF cracks have been completely removed when grinding is
finished.

Whilst this approach is simple, and relatively straightforward to apply, it is based on
empirical data from studies completed outside of the UK network and assuming
heavy haul conditions. With the advance of monitoring capabilities and new sources
of data for detecting RCF severity, we propose that grinding intervals should be
informed using analysis of operational data and in particular the historical Eddy
Current Data. Instead of all curves and tangent sections being considered equivalent

in terms of their risk, the data could help to better categorise these sections.
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FIGURE 2.12: Current Preventive Grinding Strategy

2.4.2 Corrective Action

In the case of corrective methods, individual RCF cracks or sections of RCF are
detected and treated before there is a substantial risk of the rail breaking. Corrective
grinding typically involves several passes of the grinding machinery to remove rail
damage by RCEF. Corrective action includes the detection by ultrasonic means of
defects that have developed from RCF cracks, as well as the technique pioneered in
UK since late 2000 of classification by visual means (Grassie, 2005).

2.4.2.1 Corrective Grinding at NR

Formally the policy for treating RCF is in adherence with Standard
NR/L2/TRK/001/mod07 (Network Rail, 2018a), which assigns Minimum Action
Code (MAC) to RCF sites depending on the most recent EC measurements and the
track category. Minimum Action Codes define the maximum period in which the
intervention work must occur and may further impose speed restrictions where the

risk of rail failure is perceived to be high.

However, some routes found the guidance to be overly conservative, generating huge
numbers of sites which required remedial actions, speed restrictions and cause
considerable network disruption. Anglia have thus proposed an alternative risk-based
approach which is illustrated in Figure 2.13 (Wilson, 2018). At the beginning of each
year the routes are assigned a number of milling and corrective grinding shifts that

can be used and they are responsible for determining which areas are prioritised to
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maximise productivity and minimise risk. The process set out in the following
sub-sections is intended to determine which sites can be milled and which sites must
be replaced and is applied only to the highest criticality sites: Heavy (H), Severe (S) or
Very Severe (VS). The procedure outputs the sites to be milled and the sites for
re-railing, and these sites are subsequently input to a planning procedure to acquire

the appropriate track possessions.

Light (L) and Moderate (M) sites are considered instead for corrective grinding where
fewer passes may be applied, in this case a risk assessment is not applied and all sites

are put forward for corrective grinding.

1. Capture Data: The engineer completing the risk assessment must manually
gather all the relevant data sources for each track length across the route. The

data required includes:
¢ EC Data: Most recent 22 yard site data are extracted from the Rail Defect
Management System (RDMS),
e Wear Data: vertical and side wear data,
¢ Defect Data: Latest UTU Run, defines the number defects over the site,
¢ Track Data: Curvature, track type, rail age, UTU inspection frequency,
¢ Traffic Data: Freight/ Passenger Traffic,
¢ Track Geometry Quality: 220 yard standard deviation data,
2. Data Processing:
¢ Filter Sites: Retain only Heavy (H), Severe (S) and Very Severe (VS) EC
Sites,
¢ Integrate different data sources: Aggregate the supporting sources over
each EC Site,
3. Site Risk Assessment:
¢ Calculate Site Inspection Score: this score is based on the defect data, track
geometry data and vertical and side wear,

¢ Calculate Track Risk Score: this score is based on the line speed, curvature,
tonnage, UTU frequency and rail age,

¢ Calculate the Overall Risk Score: the final score is a weighted average of

the above parameters, the weightings are defined by track experts,

¢ Determine Minimum Action Code (MAC) for Site:, and the site scores are
assigned to a Minimum Action Code (MAC) in accordance with Table2.3,
these mappings are defined by track experts,
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4. Decision: Determine where to grind, mill or re-rail: The remaining rail is
calculated, which is the (remaining depth - maximum crack depth):

¢ If the remaining rail > 1 mm: Mill,

¢ If the remaining rail <1 mm,: Re-rail,

Current Anglia Process

Data Capture

Inspection Data Track Data

UTU Data

Lo EC 2 Track
Yard Site Data

Data Defect
Data

Data Processing

Filter Sites
(H, S, VS)

Data
Integration

Expert Driven Site Risk

Model
Calculate Calculate Track
Inspection Score Score
Determine
Overall Risk Expert Rule
Score
Decision
Determine MAC Expert Rule
Code
. Expert Rule:
[?ii(;dr?w\ill\llhisrgl Remaining Rail > 1 -> Mill
grind, ' Remaining Rail <=1 -> Rerail

FIGURE 2.13: Flowchart for Current Anglia Corrective Maintenance Process (Derived
from personal communication, Kevin Anderson- Network Rail Senior Asset Manager
for Anglia, June 6, 2019)

This risk-based approach is largely a manual procedure, which requires gathering of a
number of data sources, and additionally the reliance on track -experts to make
judgements on RCF risk based on these factors (also determined through expert
judgement). This thesis proposes an evidence based methodology for providing
information to track experts regarding the historic Eddy Current data and rates of
degradation with respect to rail damage and builds on the Anglia approach. This
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TABLE 2.3: Minimum Actions to be taken based on Anglia Risk Assessment (Wilson,
2018)

Defect Depth  Defect Class Minimum Action by Risk Score

60+ 59-53 52-47 46-40 39-33 32-26 26-0

0.1 <15mm Light RCF R26 R26 R26 R26 R52 R52 R52
1.6 < 3mm Moderate RCF R26 R26 R26 R26 R52 R52 R52
3.1 <4mm Heavy RCF 3K 3L 3L 3S 3S 3T 3T
41 <49mm  Severe RCF 3K 3K 3L 3L 3L 3S 3S
> 5mm Very Severe RCF  3C 3C 3K 3K 3L 3L 3L

TABLE 2.4: Minimum Action Codes from Table 28 (Network Rail, 2018a)

MAC Minimum Action to be taken Time Frame

R26  Retest (Visual & Ultrasonic) every 26 weeks
R52  Retest (Visual & Ultrasonic) every 52 weeks

3C Remove defect Within 13 weeks
3K Remove defect Within 26 weeks
3L Remove defect Within 52 weeks
3S Remove defect Within 2 years
3T Remove defect Within 3 years

could include simple processing of the Eddy Current data, or additionally the use of a

forecasting model to determine future levels of RCF damage.

2.5 Concluding Remarks

In this chapter we have described the phenomena of RCF in rails and subsequently
some techniques for managing it such as frequent monitoring, and rail re-profiling by
grinding or milling. The approaches used to treat RCF are generally divided into
preventive grinding or corrective grinding (or milling), and the approaches adopted
by NR have been discussed.

The current preventive strategy used by Network Rail is based on the track curvature
and tonnage passing over the track, and does not use RCF monitoring data to inform
this method of segmenting the track. The corrective strategy on the other hand uses
the latest Eddy Current data to determine where to intervene, however the basic
guidance is overly cautious and often disruptive to asset managers. In response to
this, Anglia have developed a risk assessment for prioritising the critical sites, which
again uses the latest Eddy Current data in addition to other parameters derived using
expert judgement. These approaches however do not employ information on real rail

degradation rates, rather they rely on expert judgement.
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Additionally it is observed that neither of the current strategies use any existing RCF
modelling approaches to inform their decisions, despite the availability of a software
tool known as Track-Ex which implements a simplified version of the WLRM. The
following chapter describes this method, along with some of the most commonly used
approaches for modelling RCF.

The proposals discussed in this research are aimed at augmenting these strategies by
using data mining and modelling techniques to determine patterns in the RCF
monitoring data (Eddy Current Data). In the case of preventive grinding, we focus on
deriving a new method of assigning scores to tangent and curved track sections based
on the measured data. With respect to the corrective strategy we propose a simple
method for using pre-processed data to determine rates of degradation to highlight
hotspots, and further to build a RCF prediction model using machine leaning
algorithms.
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Chapter 3

Modelling Techniques Applied to
RCF Mitigation

Mathematical models can generally be characterised as physical (or mechanistic) or
Data-driven (DD). The physical (or mechanistic) models are based on the physical
laws describing the behaviour of the asset, whereas data-based modelling is based on

the analysis of the data characterising the system under study (Solomatine, 2008).

This chapter focusses on RCF modelling, the predominant physics-based approaches,
their uses and limitations and the absence of data-driven modelling in the field of

modelling RCF for maintenance planning.

3.1 Physics Based Modelling Techniques

In recent years, numerous models have been developed for the prediction of RCF
evolution, and owing to the physical complexity of the phenomena it is still a topic of
extensive research. Predominantly, two different groups of RCF damage prediction
models exist (Dirks et al., 2015), the models in the first group are able to predict
successfully the probability of RCF for many wheel-rail contact conditions (Burstow,
2004; Ekberg et al., 2002), and the second group enable the calculation of actual crack
growth through the use of fracture mechanics. Additionally the former category can
be subdivided further, owing to more and less complex modelling of wheel/ rail
contact, as described by (Krishna et al., 2021) we divide the models into Engineering
models and Finite Element (FE) Models:

1. Engineering Models:

¢ Global Models: In these models, the entire contact patch is considered to
quantify damage, such models include an energy dissipation approach



34 Chapter 3. Modelling Techniques Applied to RCF Mitigation

known as the Whole Life Rail Model (WLRM) (Burstow, 2004) and methods
based on Shakedown Theory (Ekberg et al., 2002). Notably, these models
cannot predict the actual crack size, rather they are crack initiation models
which consider the risk of surface initiated RCF. However, there are some
works that have looked at combining these approached with fatigue-based
models relating RCF damage parameters with actual crack length, and
validating the results against Eddy Current

Measurements (Rodriguez-Arana et al., 2021). Additionally, ‘Finite Element
Models’ are able to predict crack growth through explicitly modelling the
individual cracks.

* Localised Models: These models discretise the contact patch surface area
into numerous elements and quantify the corresponding damage for each
element. Models such as the “‘Wedge” (Trummer et al., 2016) and "KTK’
models (Dirks et al., 2015) are considered to fall in this category. In
comparison with fracture mechanics approaches, the computational
demands are significantly reduced, enabling their incorporation with

vehicle dynamics simulations.

2. Finite Element Methods (FEM): In this group of techniques, crack growth is
explicitly modelled using fracture mechanics and detailed finite element
analyses. Fracture mechanics approaches use the concept of configurational
forces (Simha et al., 2008; Pletz et al., 2014) for crack growth predictions. Crack
initiation criteria and crack growth models, embedding sophisticated
FEM-based simulation models allow predictions of crack initiation and crack
growth based on the complex elastoplastic stress-strain material response.
However such approaches are not practical for railway maintenance planning,
since they involve long computation times, so that only a few loading cycles at
specific locations in the railway network can be calculated in practice (Trummer
etal., 2016).

Whilst finite element approaches are the most complete in their treatment of
wheel-rail contact and crack growth modelling, they are not practical since they
involve such long computation times. To support maintenance planning of entire
networks, it is necessary to be able to consider larger areas of track, and a range of
operational conditions, rather than a few loading cycles at specific locations.
Therefore, we limit our focus here to models in the first category, which are designed
to be used in tandem with Multi Body Simulations (MBS) of vehicle dynamics to
provide damage quantification for numerous operating conditions. The following
sections will first describe the principle of Shakedown theory and the resulting
damage models, followed by the energy dissipation approach known as the WLRM.
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3.1.1 Shakedown Theory

In operation, rails are subject to continuous loading of wheel passages, under these
circumstances the rail material is repeatedly loaded above the elastic limit of the
material. The behaviour of the material at the wheel-rail contact points can be
summarised using the theories of Elastic-Plastic Shakedown as described in Johnson

(1985). These material responses are described below and summarised in Figure 3.1:

1. Perfectly Elastic Response: In the case of sufficiently small loads, there is a

perfectly elastic response, such that the yield stress ¢, is never exceeded,

2. Elastic Shakedown: With increased loading, the yield strength 0y is exceeded,
resulting in a stabilised cyclic plastic flow allowing the material to ‘shakedown’

to a perfectly elastic response. This is possible below the elastic shakedown limit

(0EL),

3. Plastic Shakedown: Once 0y, is exceeded, plastic deformation may take place
with every cycle of load such that a closed cycle of plastic strain is obtained
(plastic shakedown) without any accumulated plastic deformation,

4. Ratchetting: Alternatively, the plastic cycle is an open loop, whereby repeated
increments of unidirectional plastic strain are accumulated: a condition known
as ‘ratchetting’. This is the region where RCF cracks form. The accumulation of
deformation continues until the material ductility is exceeded and the material

ruptures (rail break).
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FIGURE 3.1: Material Response: Elastic-Plastic Shakedown

Shakedown theorems are fundamental to the understanding of material response, as
they can describe whether plastic loading will result in continued plastic deformation
(ratchetting) or whether the material will shake down to an elastic state. In
particular, Ponter et al. (1985) discuss the derivation of shakedown limits for a
non-conforming rolling-sliding contact, and how these can be summarised in a
diagram known as a ‘Shakedown Diagram/ Map’. A ‘Shakedown Diagram’, as

illustrated in Figure 3.2 may be derived for any material, illustrating the variation in
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material response under different combinations of normal and shear loads within the
contact patch (Burstow, 2004). The y-axis is represented by a load factor known as the
normalised vertical load po/k: which is the ratio of maximum normal contact pressure
po, and the material ductility- which is represented by the shear yield strength k. The
x-axis represents the frictional forces in the contact using the friction coefficient (f) or
traction coefficient () (which is calculated as the ratio between the traction force (T)
and the normal force (N)), and the boundary curve (BC) separates the region where
ratchetting occurs.
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FIGURE 3.2: Shakedown Map (Krishna et al., 2021)

When applied to determine railway RCF, this approach is often used to describe
whether rolling contact conditions will result in the failure of the material due to RCF
or not. However, the shakedown diagram only presents the material’s response in
terms of the applied normal load and shear force coefficient (or traction coefficient, the
ratio of tangential to normal force). In many cases, conditions may vary so that they
require assessment against a number of shakedown limits. For example, the
shakedown diagram does not explicitly account for the effect of spin creep or creepage
so different shakedown limits would need to be used for varying contact

conditions (Burstow, 2004). Further, shakedown maps alone do not provide a means
for direct quantification of fatigue damage, rather whether RCF damage is occurring
or not. Subsequent approaches have derived different parameters from Shakedown
maps to assess the propensity for fatigue damage such as the ‘shakedown

exceedance’ (Burstow, 2003) and ‘surface initiated fatigue parameter’ representing the
effect of shear stress on the rail (Ekberg et al., 2002) which is illustrated in Figure 3.2.
In this approach a WP (i, v) is mapped to the diagram, and the surface fatigue index
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Flg,yf , is determined from the distance of this working point with the boundary curve
(BO).

3.1.2 The Whole Life Rail Model

The WLRM is based on the energy dissipated in the wheel-rail contact, which is
readily coupled with vehicle dynamics simulations and has been used widely within
the rail industry (Bevan et al., 2013; Bevan, 2020; Boyacioglu et al., 2018;
Rodriguez-Arana et al., 2021). Here, RCF damage is quantified from the energy
generated by the tangential forces in the contact patch arising from wheel/ rail
contact, which is assumed to shear the rail material.

The parameter, known as T, is commonly used in both wear and RCF damage
predictions (Bevan, 2020). It is the energy produced at the wheel-rail contact and
calculated from the sum of the products of the creepage and creep forces as defined in
equation below:

Ty = Txyx + Tyyy + Mzw, 3.1)

where Ty, T, and 1y, 7, are the tangential creep forces and the corresponding
creepages in the longitudinal and lateral directions respectively, and M, and w, are the
spin moment and the corresponding spin creepage respectively (Bevan et al., 2013).

Extensive analysis of RCF sites enabled significant advancements into the
understanding of crack initiation, and the subsequent development of a function
relating the energy generated in the contact patch (T+y) with RCF initiation risk, shown
in Figure 3.3. The function comprises of four major regions:

1. Ty < 15N, below this threshold there is insufficient energy to initiate RCF,

2. Above this limit there is a risk that RCF cracks will initiate. Fatigue is initiated at
15N (J/m) and reaches its peak at 65 N.

3. The model additionally estimates the interaction of wear which may remove
RCF defects, occurring at high values of Ty > 65N. The risk of wear is
considerably increased in this region, and equivalent to RCF at 175N,

4. Atvery high values of Ty > 175N, wear is the dominant surface damage

mechanism,

The ‘damage index’ is determined from the damage function, and is a

non-dimensional number representing the proportion of the fatigue life of the material
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FIGURE 3.3: WLRM Damage Function (Burstow, 2004)

exhausted by the contact condition, i.e. for a single load cycle (or wheel passage).
Failure occurs due to damage accumulation, and determination of the number of
cycles until failure (i.e. crack initiation) may be described using the Palmgren-Miner
Linear Damage Rule (Miner, 1945). The Linear Damage Rule states that failure occurs

when the cumulative damage caused by each loading cycle equals one.

More practically, the principles can be extended to determine the damage over a
specific site on the track, given knowledge of the accumulated traffic and contact
forces generated by each vehicle type. The total accumulated damage for each site

location (x,y) can be described by:

D(x,y) =) mn Y f(Fu0)im (3.2)

Where f(F,v) is the function relating damage resulting from wear and RCF to wear
number shown in Figure 3.3, i is the number of axles on each vehicle, n is the number
of vehicle types passing the site and m is the number of vehicles of each type passing

the site in one year.

The WLRM approach has been widely used within the rail industry due to its
simplicity, the ability to incorporate the effects of wear and the ease of coupling with
MBS software to generate results for numerous operating conditions. There are,

however some assumptions and limitations that must be noted when using the model:

¢ The form of the function shown in Figure 3.3 was tuned to six assessment sites
from the UK network, and therefore has been calibrated for rail steel grades at
these sites (R260), for specific wheel profiles (P8) and wheel steel grades
(R8T) (Burstow, 2004; Bevan, 2020),
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¢ The model assumes that the mechanisms driving RCF cracks operate in the
traction direction, such that T<y output the model is signed based on the direction
of the longitudinal creep forces, and only regions where the force is opposite to
the direction of travel are deduced to cause damage. Whilst studies have shown
this provides good correlation on the high rail of curves, the assumption results
in very low levels of predicted low rail damage (Boyacioglu et al., 2018),

¢ [t is further noted that the model is not intended to predict the length of cracks,
since it does not include many of the factors which govern crack growth; rather
the prediction of cracks as they initiate. So, whilst it may be fairly accurate when
cracks are small, as they develop the model may become less accurate.
Nevertheless, the model may be used as an indicator as to areas of the rail head
which are likely to see the largest cracks, since larger values of the damage index
indicate significant wheel-rail contact forces (Burstow, 2004).

Finally, whilst a significantly simpler approach than finite element methods, in order
to apply the method in practice, multi-body simulations for each scenario must be
conducted- which is not practical on a large scale and for engineers on a day to day
basis. Therefore, Network Rail have developed a software tool known as “Track-Ex’,
which simplifies this approach through the use of look-up tables known as Vehicle
Damage Matrices (VDMs), which present the wear number as a function of curve
radius and cant deficiency for each vehicle type (Dembowsky, 2013).

3.1.2.1 Track-Ex

Track-Ex is the Excel-based tool developed by Network Rail which incorporates the
empirically derived WLRM function to predict RCF on rails (Dembowsky, 2013). The
intention of Track-Ex was to provide a tool that was relatively easy to use and fast
when compared to full vehicle/ track simulation programs such as Multi Body
Dynamics (MBD) software VAMPIRE. Track-Ex enables users to quantify RCF and
Wear on a particular route given the expected traffic, route characteristics and
track-geometry measurements. Additionally, VAMPIRE is used to generate the forces
and geometry of the contact patch for multiple combinations of track and vehicle
characteristics. These are culminated in a series of tables known as Vehicle Damage
Matrices (VDMs), which act as look up tables for the model. Each VDM contains the
wheel/rail forces with respect to curvature and cant deficiency for a particular
combination of vehicle type, wheel/ rail profile, lubrication, vehicle type, and wheel/
rail friction condition, a basic illustration of these VDMs is shown in Figure 3.4.

A particular functionality of the software is to perform a ‘Route Fleet Analysis’ (RFA)
which calculates the damage on a route for each vehicle type present in the fleet, scales

the damage by the number of such vehicles in the fleet and aggregates (based on total
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FIGURE 3.4: Illustration of Vehicle Damage Matrices (VDMs) (Burstow, 2013)

traffic) the damage into a Grand Damage Index (GDI). The Damage Index for a
particular location (x, y) is calculated using the formula:

max max
DI(x,y) = E My E Paon,n (%, Y) A [praon,n (%), Ty (x)] (3.3)

where (x,y) are the coordinates of any point of the rail, and the damage is calculated
considering m vehicles of n different types with wh wheelsets on each vehicle. The
parameter h describes a function with elliptic shape over the contact patch, with its
maximum damage (d[y, T, ] value) at the centroid. The approach is summarised in
Figure 3.5:

1. Determine Single Axle T,: For each vehicle type, determine the Single Axle T,,
via the appropriate VDM,

2. Determine Single Axle Damage d[jy, ,(x), T, , (x)]: Convert to a Fatigue

7 = Ywhn
Damage Index using the Damage Function,

3. Calculate Scaled Damage: Sum the damage across the number of axles i for this
vehicle over the entire site which determines the approximate dissipated energy,
and multiply by the annual tonnage for this vehicle,

4. Calculate Total Damage: Sum the scaled damage over all vehicle types in the

site.

Whilst there are studies that indicate the approach indicates good correlation with

measured values; particularly on the high rail, it appears that for every day rail
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maintenance decisions and preventive/ corrective maintenance planning the track
engineers on the routes do not use Track-Ex. It is believed that this may be for a

number of practical and technical reasons:

¢ Initial Conditions: Assumes that the rails are new at the beginning of the
analysis, and thus does not reflect the current condition of the rail. The output
therefore is not useful at distinguishing how bad the rails are currently vs. for

instance how they will look in a year, in order to make decisions,

* No Indication of Rail Condition: Following from the previous point, the model
does not provide any real time information regarding the rail condition, i.e. the
wear and actual EC data/ number of defects to understand the current state of
the rail. Rail engineers would then have to extract this information to make any

decisions,

¢ Assumption of Linear Damage Accumulation: The model assumes that
damage accumulates linearly based only on traffic. Therefore, for a section of
track; assuming that the traffic does not vary much from year to year, the
resulting damage predictions will be similar from run to run. The model cannot
inform the user, given the current rail condition, what the estimated damage will
be after a given interval, nor can it include the effects of grinding or rail renewal

within a given prediction period,

* Low/ Tangent Rail Predictions: The model predicts very low instances of
damage on the low rail, and none on tangent rails,

¢ Output Parameter: Note that the output is an indicator of RCF damage initiation
based on the estimated contact forces, it does not reflect the length or depth of
cracks (whilst there may be correlation), it is therefore difficult to compare with
real data. Thus, there is no indication of risk once a crack has initiated, and the
degradation is constant regardless of any other operational parameters other
than expected vehicle traffic. For example, it has been shown that once a crack
has initiated, higher degradation rates are anticipated in some locations
compared with others, despite similar traffic. Other parameters such as wear,
ultrasonic defect data and rail age contribute to degradation and should also be
considered in the maintenance decision,

¢ Usability: The software is difficult to use and apply on multiple track sections,
since it requires gathering different data sources and some of the track geometry
files are very large. Additionally track geometry files often have sections missing
which means analysis would be to be re-run using other files to determine the

damage on a particular section of track.
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However, it is understood that the major value of the model is understanding of the
impact of specific vehicle types and supporting vehicle design. For instance it is used
within the Vehicle Track Access Calculator (VTAC), which Train Operating
Companies (TOCs) and Freight Operating Companies (FOCs) can use to determine
the access charges they will incur for specific vehicles. The objective here is to
incentivise the operating companies to opt for more ‘track-friendly” vehicles. It is also
an effective model for inference, enabling designers to understand the effect of
varying individual parameters such as rail type, vehicle type, track curvature, track
deficiency and traffic on RCF initiation.

3.2 Data-Driven Modelling Techniques

In contrast to the physics-based approaches, data-driven modelling does not require
an explicit understanding of the physical principles that drive the phenomena under
study. Rather, data-driven or empirical modelling is based on the analysis of the data
characterising the system under study. A model can then be defined on the basis of
connections between the system state variables with only a limited number of
assumptions about the physical behaviour of the system. Data-driven

Modelling (DDM) covers a wide range of domains such as statistics, probability, data
mining, machine learning and artificial intelligence. In this thesis, we propose an
approach for developing a data-driven model, which utilises machine learning
algorithms and RCF Eddy Current data provided by Network Rail to predict RCF.
The fundamentals of machine learning, and model development are addressed in the

following sections.

Note that for the purposes of predicting RCF evolution, as far as we know there are no
known, comparable strictly data-driven models (whilst it is understood that many of
the models do utilise some empirically derived relationships, the fundamentals of the
models are founded in physics). The DD models which are closely related to this work

however are summarised below, and the reader is referred to the references below:

e Statistical:

- Rail Life/ Break Prediction Modelling: Rail failure modelling using real
data to estimate distribution parameters (Dick et al., 2003; Palese, 2000;
Ben-Gera et al., 2016; Chattopadhyay, 2009; Kumar, 2006),

- Correlating track parameters to visual RCF damage: Study uses statistical
correlation analyses to relate parameters such as curve radius, rail profile
and traffic type to damage using visual RCF inspection data (Magel, 2011),

¢ Probabilistic:
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— Determining the probability of crack initiation: using Monte Carlo
simulation, (Kulkarni et al., 2006; Jianxi et al., 2011),

- Maintenance Scheduling: Determine optimal preventive maintenance
strategy using Markov chains, with parameters estimated from actual
inspection and repair data from a railway line in Norway, (Hokstad et al.,
2005),

— Modelling Multi stage deterioration using Markov chains (Amari et al.,
2006)

* Machine/ Deep Learning:

— Economic Impact of prediction of broken rail using logistic
regression (Schafer, 2008),

- Rail Failure Prediction using logistic regression and decision trees (Sourget,
2006),

— Modelling of Squats:

+ Squat risk model: A defect based risk model is presented in (Jamshidi
et al., 2016),

+ Squat defect classification: Classification is achieved by means of a
Convolutional Neural Network (CNN) trained on the rail video data,
in combination with crack growth data collected from ultrasonic
measurements (Jamshidi et al., 2017),

+ Squat decision support tool: (Jamshidi et al., 2018) propose a decision
support approach which takes into account both the actual conditions
of the rails (using axle box acceleration measurements and rail video
images) and prior knowledge of the track. The approach provides an
integrated estimation of the rail health conditions using expert based
systems in order to support the maintenance decisions for a given time
period. This estimation of rail health conditions facilitates grinding
planning of those segments that are prone to critical conditions using
Mixed Integer Linear Programming (MILP),

+ Squat defect classification: Gao et al. (2018) use shallow machine
learning techniques to combine data from three inspection systems,
ultrasonics, eddy current based, and video data to provide optimal

detection and classification of squat type defects,

- Fumeo et al. (2015) propose a novel algorithm for the prediction of
Remaining Useful Life (RUL) of train axle bearings,

— Defect Prediction from UT data: Random Forests and Artificial Neural
Networks are used for defect prediction Guler (2014); Moridpour (2016);
Sharma et al. (2018),

- Predictive Maintenance Scheduling Policies (Lopes Gerum et al., 2019).
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3.2.1 Machine Learning

Machine Learning is a multidisciplinary field branching from artificial intelligence,
which combines elements of statistics, probability, computer and cognitive science. It
is recognised as an algorithmic approach that constructs systems that can learn from
data to make inferences and predictions around a particular phenomena. Or, as
Arthur Samuel once described it as the “field of study that gives computers the ability to

learn without being explicitly programmed”.

Fundamentally, machine learning revolves around the presentation of an optimisation
problem (Brunton, 2019). Depending on the specific task, broadly we seek to
determine the optimal function describing the input data subject to specified
objectives and constraints by use of such algorithms. The three critical components of
all machine learning algorithms are effectively summarised by Domingos (2012):

* Representation: How do we represent the problem such that it is interpretable
by a computer? For example: instances, hyperplanes, decision trees, sets of rules,

neural networks and graphical models.

¢ Evaluation: Objective/ Scoring/ Cost Function, how does one determine
between a good regressor/ classifier and a bad one? This evaluation method

provides a performance metric for model predictions.

¢ Optimisation: Search method, how do we find the highest scoring regression
function/ classifier? The choice of optimisation technique is key to the efficiency
of the learner (how quickly one converges to a solution), and helps determine
the outcome in the case that multiple optima exist. Examples of each of these
components are illustrated in Figure 3.6.
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Table 1: The three components of learning algorithms.

Representation Evaluation Optimization

Instances Accuracy/Error rate | Combinatorial optimization
K-nearest neighbor Precision and recall Greedy search
Support vector machines | Squared error Beam search

Hyperplanes Likelihood Branch-and-bound
Naive Bayes Posterior probability | Continuous optimization
Logistic regression Information gain Unconstrained

Decision trees K-L divergence Gradient descent

Sets of rules Cost /Utility Conjugate gradient
Propositional rules Margin Quasi-Newton methods
Logic programs Constrained

Neural networks Linear programming

Graphical models Quadratic programming
Bayesian networks
Conditional random fields

FIGURE 3.6: The Three Components of Machine Learning (Domingos, 2012)
3.2.2 Categories of Machine Learning

There are two main classifications of machine learning algorithms: Supervised Learning
Algorithms and Unsupervised Learning Algorithms.

Supervised Machine Learning (SML) relies on the use of domain experts to assign
labels to the input data in order to ‘teach’ the learning scheme of the relationship
between the input data and an output variable or class. The ML algorithm generates a
mapping between the inputs and outputs which is iteratively updated in accordance
with the objectives of the algorithm. This annotated data set is known as the ‘training
set’, and the ultimate objective is to develop a function that is capable of generalising
on a much larger “‘unseen’ set of data (Shetty et al., 2022). More formally, we aim to
find a mapping function from a set of input variables (X) and an output variable (Y):
Y = f(X). The function is learned through use of an algorithm and a dataset which
comprises of labelled examples (x;,y;)~,. Where the output Y is discrete the aim is to
classify the data into groups: Classification, whereas predicting a continuous output is

determined using Regression.

Unsupervised problems are unlabelled, such that the output is unknown. The learning
scheme thus aims to determine patterns or classifications within the data (Lechevalier
et al., 2014). The predominant application of unsupervised learning is a technique
known as clustering, which identify inherent groupings within the unlabelled data
and subsequently assign labels to each data value (Marshland, 2014). Other
algorithms include Association Rules Algorithms which tend to identify rules that
accurately represent relationships between attributes (Alloghani et al., 2020), and
Dimensionality Reduction Algorithms such as Principal Component Analysis which aims
to reduce the number of features in a dataset (Campesato, 2020).
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Figure 3.7 shows the most commonly used machine learning algorithms today for

supervised and unsupervised tasks.
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FIGURE 3.7: Broad Classification of Machine Learning Algorithms

3.2.3 Model Validation

A central requirement when building these computational models is to develop an
approach which has high prediction capabilities for the input samples, but should also
generalise well to previously unseen data. Poor generalisation can be characterised by
over-training. If the model over-trains, it just memorizes the training examples and it
will not be able to give correct outputs also for patterns that were not in the training
dataset. These two crucial demands are conflicting and are also known as the
bias-variance dilemma (Mitchell, 1999). This trade-off is illustrated in Figure 3.8 which
demonstrates the relationship with model complexity; or the capacity of a model to
represent associations between model inputs and outputs. The complexity of different
models can be compared by their number of parameters and the way these
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parameters interact in the model (eg, linear, non-linear). Models with high complexity
often tend to be too sensitive to the dataset used for training, and where different data
sets drawn from the same population are used for training, have a high error variance.
Models with high complexity and consequently high error variance tend to over-fit,
and therefore their generalisation capability is limited. In contrast, low-complexity
models may be biased to learning simpler associations between inputs and outputs
that might not be sufficient for representing true associations. Developing an optimal
model requires a trade-off between bias and variance by controlling model
complexity. Techniques such as bagging and boosting can also be used to control the

bias and variance of a model (Maleki et al., 2020).

Total Error

Variance

Error
Optimal Model Complexity

Model Complexity

FIGURE 3.8: The Bias- Variance Trade-off

In order to manage the problem of over-fitting to the training data, the data are often
partitioned into training, validation and test sets, and a performance measure (such as
Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square

Error (RMSE) or the R?) is used to reflect the model error when applied to data in
these sets. The error made by a model when applied to the data in the training set is
referred to as the training error, and the error made by a model when applied to data in
a test set is referred to as test error. The test error is used as an estimate for the

generalisation error (i.e., the error of the model when applied to unseen data).

Additionally the machine learning algorithm, as described above typically transforms
a problem into an optimisation problem and uses different methods to solve this
problem. The optimisation function is composed of multiple hyper-parameters that
are set prior to the learning process and affect how the machine learning algorithm fits

the model to data. Notably these differ from the internal model parameters, such as
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the neural network’s weights, which can be learned from the data during model
training (Claesen, 2015). In order to determine a set of hyper-parameter values which
achieve the best performance on the data, a process known as hyper-parameter
optimisation or tuning is adopted (Wu et al., 2019). Predominantly there are two kinds
of hyper-parameter optimisation methods, i.e., manual search and automatic search
methods. Manual search requires users to have more professional background
knowledge and practical experience, however as the search space grows this becomes
more and more difficult to manage, hence the development of automatic search
methods such as grid search. Grid search is an exhaustive search technique where the
machine learning model is trained with each combination of possible values of
hyper-parameters on the training set and evaluates the performance according to a
predefined metric on a validation set. Finally, grid search outputs hyper-parameters

that achieve the best performance.

Thus the validation data set seeks to tune the model hyper-parameters, whereas
model testing is used to estimate the performance of the final model on unseen data. It
is generally good practice to ensure that the data in the test set are not used during
training or model fine-tuning since this will lead to biased estimates, however in the

case of small data sets this is sometimes not possible.

There are many methods for splitting the data into appropriate training, validation
and testing subsets, but the most commonly used techniques are:

* Random: Selecting a proportion of samples for training and retaining the
remaining ones (holding out) as a validation set. Usually, we repeat this process
many times and the final estimation of the model performance is the average
performance on validation sets of all the iterations; the best-known method used
for this type of repartitioning of the data is probably the bootstrap as proposed
by Efron (1994).

¢ Cross-Validation (CV): is a data resampling method to assess the generalisation
ability of predictive models and to prevent over-fitting, and has two types which
are hold-out cross-validation and k-fold cross-validation (Schaffer, 1993).

Irreducible error, also referred to as Bayes error, is another type of error resulting from
the inherent noise in the data. Irreducible error is the lowest possible error achievable
for a given task using the available data. This error is independent of the model being
used and often cannot be mathematically calculated. It is often estimated by the error
made by a group of humans with the domain expertise for the task at hand. The
resulting estimate is considered as an upper bound for irreducible error.
Understanding these error types is important for developing and evaluating ML
models.
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3.2.4 Application of ML Algorithms for RCF Prediction

In this study, a central objective is to determine whether a useful RCF prediction
model can be generated using ML algorithms and operational Eddy Current data
which represents rail damage due to RCF. In particular, we seek to find a function
which relates a set of independent variables X; such as track curvature or cumulative
tonnage, with a target variable Y (or RCF damage parameter) derived from the Eddy
Current data representing observations collected along the track over time. The task
we present is a Supervised Learning Problem, since we have a set of observations with
features (independent variables) and corresponding labels (a target variable). The
target variable in its original form is a continuous measurement of crack depth (mm)
corresponding to a measurement date and 1 yard section of rail (this is further
described in Chapter 4). It is possible, using discretisation, to transform the
continuous target variable and generate a set of classes which presents a classification
task. Whilst the transformation may be helpful with regard to interpretability and
simplification of the learning task, in most cases however it introduces some loss of
information or discretisation noise (Rajbahadur et al., 2021). We therefore focus this

study on the Supervised Regression Problem.

Whilst numerous machine learning algorithms exist, this study focusses on a few of
those most prominent within the literature for solving the regression

problem (Caruana, 2006; Alzubi et al., 2018; Dey, 2016), These algorithms are
introduced here and a more in-depth discussion is presented in Appendix B:

1. Linear Regression (LR): Linear regression is one of the simplest and most
commonly used machine learning algorithms. It is a mathematical approach
which investigates the relationship between a dependent (target) and
independent variable(s) (predictor). The approach is to fit a line (linear
regression) or curve(polynomial regression) to the data points so as to minimise
the distances of data points from the curve or line. The most common method of
solving this problem is to use the method of ‘Least Squares’, whereby we fit
coefficients which minimise the least squares difference between the regression

function and the observations.

2. Random Forest (RF):

The random forest (RF) is a methodology derived from decision trees. A
decision tree is a non-parametric supervised learning algorithm which has a
hierarchical, flowchart-like tree structure, consisting of a root node, branches,
internal nodes and leaf nodes and can be used to solve regression or
classification problems (Breiman, 1984). Each of the internal nodes represents a
test on an attribute, for example in the case where we attempt to determine

animal type based on attributes such as the number of legs, one of the internal
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nodes may represent ‘Does the animal have more than 2 legs?’. Each branch
represents the outcome of the test, and each leaf node cannot be divided further
and consequently holds a class label e.g. ‘Rabbit’, “Dog’ etc. Different criteria can
be used to select the predictors and decision rules which define the nodes and
leaves, resulting in numerous different tree constructor algorithms which aim to
build an optimal tree. Trees can capture highly complex interaction structures in
the data and; if grown sufficiently deep, have relatively low bias. On the other
hand, they are noisy, high variance estimators which benefit from averaging to
prevent over-fitting to the training data. Methods such as random forests use the
output of multiple independent decision trees to reduce the overall
generalisation error (Hastie et al., 2009).

Support Vector Regression (SVR): Support Vector Machines (SVMs) can be
used for classification as well as regression problems, and the method has
increased in popularity due to its good generalisation performance, the ability to
determine a global minima, and sparse representation of solution. The principles
of the support vector machine are based on the structural risk
minimisation(SRM). This induction method seeks to minimise an upper bound
of the generalisation error, which consists of the sum of the training errors and a
confidence interval, rather than the empirical risk minimisation (ERM) principle
which minimises the training error (Vapnik, 2006; Cao, 2003). In practice the
algorithm builds an n-dimensional hyperplane which partitions the data subject
to an optimisation function and constraints. In addition where the data are
non-linearly separable, the data may be transformed to a higher dimensional
feature space using a kernel transformation enabling greater flexibility to the
algorithm.

K-Nearest Neighbours (KNN): is a non-parametric method, also known as an
instance-based or lazy learning technique which can be used for classification or
regression, and is particularly useful where there is little or no prior knowledge
about the distribution of the data (Hart, 1968). The KNN rule simply retains the
entire training set during learning and assigns to each observation a class or
value represented by the majority label or average value of its k-nearest
neighbours in the training set. The Nearest Neighbor rule (NN) is the simplest
form of KNN when K = 1.

Multi Layer Perceptron (MLP): The Multi Layer Perceptron (MLP) is a type of
neural network designed to approximate any continuous function and solve
problems which are not linearly separable. It is an extension of its predecessor,
the feed forward network and is generally applied to problems of pattern
classification, recognition, prediction and approximation. It consists of three
types of layers: the input layer of source nodes, an output layer of neurons (or
computation nodes) and one or more hidden layers. The input signal is
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processed by the input layer, and the required prediction or classification task is
performed by the output layer. In between exist an arbitrary number of hidden
layers, which enable the modelling of complex function forms. The training of
an MLP is accomplished using the back-propagation algorithm (Rumelhart,
1987). As with a feed-forward network, the data first flows in the forward
direction from input to output layer, fixing the network parameters and
determining an error signal. This is followed by the backward phase, where the
error signal is propagated through the network and adjustments are made to the
network to minimise the error (Haykin, 2000).

In general, once the learning problem has been defined; regardless of learning

algorithm, the basic architecture of a supervised learning approach (or pipeline)

consists of:

. Data Collection and Preparation: The primary task of in the machine learning

process is to collect the data believed to be pivotal in predicting the underlying

process,

. Data Processing: Preparation of the data to ensure it is in a suitable format for

the given learning algorithm, data cleaning, transformation and integration

across differing sources,

. Feature Selection/ Generation: Numerous features may be available following

the extraction of data, the most relevant must be selected and new features

which may act as better predictors may be formed as functions of the raw data,

. Choice of Algorithm: Certain machine learning algorithms are more suited to a

particular class problem, selecting the best machine learning algorithm for the
problem at hand is imperative in getting the best possible results. The various
ML algorithms considered in this study are discussed in Appendix B.

. Selection of Model hyper-parameters: Each machine learning algorithm

comprises of model hyper-parameters which control the learning process and
affect how the machine learning algorithm fits the model to data. They are
considered as external parameters, and differ from the internal parameters such
as model weights which are learned by the model during training (Claesen,
2015),

. Define Training/Test Data: The data must be partitioned into training and

testing sets to enable model validation,

. Model Training: a supervised learning algorithm iteratively calculates a

relationship between the input features and output through optimising of a cost

function,
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8. Model Evaluation: The trained model makes predictions on the test data and
are evaluated using performance metrics such as the Mean Absolute Error,
Residual Sum of Squares (RSS), and Coefficient of Determination (r?) amongst
many others.

Although shown sequentially here, in practice the approach is iterative, for example
preliminary model building may inform additional data processing steps that are
required to learn effectively from the data. Development of the model presented in
this thesis follows this development process, the first two steps are addressed in
Chapters 4 and 5, and the final steps are covered in Chapter 7.

3.3 Concluding Remarks

There are many physics based models in the literature, we have described only the
approaches that could be practically applied to making predictions on a network level
for maintenance planning. Track-Ex is an empirically based software tool developed
by NR which uses MBS simulations to determine contact forces along the rail, and the
WLRM damage function to estimate the resulting damage. It is a powerful approach,
but it is apparent that it is not used widely by route engineers for maintenance
planning due to both technical and practical reasons. Data-driven methodologies, in
particular machine learning algorithms offer an alternative solution to RCF modelling
where rail condition data is available. In the literature, however, particularly in the
case of utilising Eddy Current monitoring data, there are very few studies in this area
with work predominantly focussing on track geometry data, video data and
prediction of squat type defects. This thesis thus seeks to develop a purely data-driven
methodology using machine learning algorithms which combines the key drivers for
RCF initiation that may be incorporated into practical strategies for rail maintenance.
In order to reach this goal, the phenomena under study must be thoroughly
understood, as must the Eddy Current data and supporting data sources including
their characteristics and limitations. A data pre-processing methodology must be
devised to prepare the data for modelling and further analysis. Finally, the resulting
data should be analysed and a regression model developed using the proposed
machine learning algorithms and validated against a suitable test set. These elements
are all described in subsequent Chapters 4-7.
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Chapter 4

Experimental Data

4.1 Data Sources

Central to this study is infrastructure data, captured in a multitude of systems and
databases ranging in age, quality, and interoperability. For historical reasons,
advances in technology and the intended usage of the information, many of these
databases are not readily comparable, and some data streams are not contained in
relational databases at all. Since data engineering and management is a discipline in

itself, it is not always possible to efficiently manage growing sources of data.

Study of the literature and existing physics-based RCF modelling has culminated in a

selected range of data sources to be utilised in this study, these are as follows:

¢ Eddy Current Data: the Eddy Current data provides the response data at the
core of this study, as described in Section 2 EC technology captures RCF cracks
in their very early stages of growth. The Sperry Roller Search Unit, is onboard
the UTU, however is an entirely independently operating system to the
ultrasonics and other systems on the UTU. The data is collected and processed in
real-time, retaining only the yards of track locations where cracks are detected in

order to reduce the size of the data set,

* Track Data: defines spatial characteristics of the study route, the data is
comprised of homogenous track sections containing information such as track
curvature, cant, line speed, track category, amongst others. The data has been
collected from a table known as the Track Summary table (used as input to the
Track Model), which is constructed from information contained in several

databases:

— Curvature: is measured in units (1/m) since it is calculated from the curve
radius. Curvature is known to be a key driver of RCF, due to the steering
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forces required to guide the vehicles around the track, in particular on the
high rail of a curve. Note: There are some locations where the track
curvature is noted to be absolute 0, it is likely that this indicates missing

data as opposed to zero curvature,

- Track Cant (Super-elevation): is difference in elevation between the two
rails. Cant is designed into the track system, it helps the train to steer
around curves, keeping the wheel flanges from contacting the rail surface
which reduces friction and wear, canting also allows part of the lateral
acceleration to be provided by gravity, thus reducing the lateral forces on
the contact patch. It has been observed that by ensuring the rail is in a cant
deficiency, where the resultant force exerts on the outside rail more than the
inside rail, the RCF damage is reduced on most curves. Cant is measured in
(mm), as the amount of super-elevation required to bring the resultant force

into balance.

- Equivalent Mega Gross Tonnes per Annum (EMGTPA): is used to
represent the forces applied to rail by traffic, and represents the scaled

volume of traffic,

- Maximum Line Speed: higher vehicle speeds impose larger contact forces
on the WRI,

— Locations of Features the positions of discontinuous features such as S&C,
Stations, Tunnels are collected to account for potential variation in the
occurrence of RCF due to factors such as traction and braking, and different

maintenance practices in these areas,

- Rail Profile Type: refers to the rail profile, types include BS113A
Flatbottom, BS110 Flatbottom, UIC 60 Flatbottom,

- Rail Alloy: the specific rail materials, most commonly across the network
the rail is a medium manganese alloy of British origin and also a wear
resistant medium manganese variant, however there are some instances of
High Performance Rail being installed in recent years along with older

compositions.

— Track Category: each line of route is assessed on three key factors: the
speed required on the line, the annual tonnage, the equivalent tonnage (as
described above, it is a measure of the annual tonnage carried over a
section of track but accounts for variations in track damage caused by
different types of rolling stock). The track is assigned a category from 1A to
6 based on a function related to EMGTPA, Category 1A is the highest
(>125mph), and Category 6 is the lowest (<20mph). Figure 4.1 shows the

track category matrix.

¢ Wear Data: wear and RCF are inextricably linked, in particular due to some of

the positive effects wear can have on the initiation and propagation of RCF
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cracks. NR utilise the KLD labs supplied laser rail profile measuring unit, which
is mounted upon the UTU. Profile measurements such as vertical wear (head
wear), gauge wear, and field wear are captured by the device and data is
uploaded to a NR network drive following each recording run,

Traffic Data: is extracted from the Actual TRAFFic (ACTRAFF) database to
represent the cumulative forces applied to the rails due to passenger and freight
vehicles. The data supplied indicates the passenger and freight tonnage and
number of trains travelling between two points on the network for a unique 4
week period. DeltaRail were responsible for collecting this data, and utilised
records of traffic movements through signals and freight charging. Reportedly
the data only covers 85% of the network, but it is more accurate than other traffic
datasets such as Net Traffic (NETRAFF) on the track that it does cover. The
ACTRAFF data additionally provides information on the breakdown of vehicle
types for each period. Note that the contract for collecting ACTRAFF data was
halted in 2019 and is awaiting a replacement methodology, thus there is no
traffic data available from 2019. Data for later periods must be estimated.

Track Geometry Data: is captured by the Track Recording Vehicles (TRVs),
using an unattended track geometry measuring system with 47 sensors to record

data on how far the track is deviating from its ideal geometry,

Defect Data: the presence of other defects and flaws in the rail are believed to
affect the likelihood of RCF initiation and risk of propagation. Ultrasonic sensors
fitted to the Ultrasonic Test Unit to find flaws in the rail is NR’s predominant
method for detecting severe defects,

Interventions Data: maintenance actions applied to the rail will have a
significant impact on the level of rail damage detected by the EC RSU. For
example, rail replacements should entirely remove any traces of RCF, whereas
grinding and milling are intended to remove surface cracking and reduce
propagation, and so may be observable in subsequent measurements as a
reduction in the degradation rate or as an improvement (negative degradation-
i.e. the condition of the rail is better than in the previous measurement). The

sources of interventions data are from the following:

— ELLIPSE DATA: ELLIPSE is a system for managing and recording asset
maintenance activities. It is used by the maintenance function for the key
purposes of acting as an asset register, a work bank managements tool, a
means of scheduling work and allocating resources, a record of work
carried out, and to record asset condition and associated condition
monitoring data. The system tracks the majority of in-house maintenance:
activities such as tamping and stone-blowing are captured, most machine
grinding and milling are captured, however it is likely that there is some
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missing data since this work is completed externally. The grinding and
milling reports issued by the contractor are presented as individual PDF
files,

— Route Data: grinding databases captured by the routes independently are
also obtained. Entries have a start yardage, end yardage and a

measurement date. Note that we only have data from Anglia in this study,

— Integrated Network Model (INM): the rail replacement year is taken from
the INM. The INM is the geospatial view of the railway network, and is the
complete record of the track and its components, and is the most reliable
source for rail replacement data. Once rails are replaced the routes must
trigger a procedure to update the network model (INM).
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The RAM [Track] shall specify the ruling track category for each line on each
section of route.

FIGURE 4.1: The Track Category Matrix (Network Rail, 2018a)

4.2 Study Routes

The UK rail network is divided into five regions, Eastern, North West and Central,
Scotland, Southern and Wales & Western. These fives regions encompass the 14 major
routes, each of which are responsible for operations, maintenance and minor renewals.

This study focusses on track lengths from the Anglia and Wessex Routes from Eastern
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and Southern regions respectively, chosen due to their priority, amounts of RCF and
the size of data set. Note that any main-line railway location on Network Rail owned,
or maintained, infrastructure can be uniquely identified by a combination of
Engineers Line Reference (ELR), Track ID (Track ID (TID)) and mileage. Two lengths
of track were selected for this study, the first is Track Length 1: Anglia LTN1 2100 and
Track Length 2: Wessex BML1 2100, the details of these track lengths are as follows:

* Track Length 1 (TL1): Region: Eastern, Route: Anglia, ELR: LTN1, TID: 2100,
One of the motivations for selecting a track length from the Anglian route is due
to the maintenance team contributions with regard to understanding of current
rail maintenance practices. Additionally, the track length is part of the Great
Eastern Mainline (GEML), a 114.5-mile (184.3 km) major railway line on the
British railway system which connects Liverpool Street station in central London
with destinations in east London and the East of England. It is a major route for
freight services from Felixstowe, Tilbury and other locations, and therefore will
experience unique operating conditions with regard to loading and vehicle
types.
The line of interest is defined by ELR LTN, the London Liverpool to Norwich
Line. The line consists of LTN1 and LTN2, but only the former is included in this
study. LTN1 runs from London Liverpool Street to Trowse Junction (just outside
of Norwich), and we study the down-fast (2100) line only (i.e. moving from
London to Trowse). LTN1 2100 is 113 miles long, with areas of track which have
high “Track Category” which makes it an ideal candidate for study due to the
quantity of RCF condition data that is available since tracks with a higher

category are measured more frequently.

The line is defined in Table 4.1 and illustrated in Figure 4.2, note that freight

traffic is diverted to Felixstowe at Ipswich.

e Track Length 2 (TL2): Region: Southern, Route: Wessex, ELR: BML1, TID: 2100
The second line under study is part of the South Western Main Line (SWML), a
143 mile major railway line between Waterloo station and Weymouth on the
south coast of England. The line predominantly acts as a passenger line, serving
many commuter areas such as south western suburbs of London and the

conurbations based on Southampton and Bournemouth.

Operating speeds on much of the line are relatively high, with large stretches
cleared for up to 100 mph (160 km/h) running. The London end of the line has
as many as eight tracks plus the two Windsor Lines built separately, but this
narrows to four by Wimbledon and continues this way until Worthing Junction
west of Basingstoke, from which point most of the line is double track. A couple
of miles from the Waterloo terminus, the line runs briefly alongside the Brighton
Main Line west branch out of London Victoria, including through Clapham
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Junction - the busiest station in Europe by railway traffic. Tourist special
services to a lesser frequency use the line, such as the Cathedrals Express.

The second line in this study is the Bournemouth Main Line (BML), consisting of
BML1, BML2 and BML3. This study covers BML1 between London Waterloo
and Northam Short Mile (Mount Pleasant). Once again BML1 2100 was selected
since it is a long, continuous fast line spanning 75 miles, it thus has a reasonable
amount of Eddy Current data for analysis. It has also been mentioned following
conversations with track experts as experiencing high levels of RCF, likely due
to the shear quantity of traffic passing through some of the major UK stations

such as Clapham Junction.

Figure 4.3, includes this line (termination just short of Southampton Central,
which then merges with BML2), and is described in Table 4.1.
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Additionally, according to the track summary data, TL1 consists of 86 curves and

52.6% of the segments are tangent, whereas for TL2 there are 77 curves with 65.4% of

the track segments being tangents. Figure 4.4 shows a comparison of the distribution

of curve radii for both track lengths, TL1 has considerably more curved sections with

curve radii between 1000 and 2000 m.
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TABLE 4.1: Study Route Line Definitions, reference data :
Route Track Length 1 Track Length 2
Region Eastern Southern
Route Anglia Wessex
ELR London Liverpool to Norwich Bournemouth Main Line 1
Line 1 (LTN1) (BML1)
TID 2100: Down-Fast 2100: Down-Fast
Start London Liverpool Street: 00 mi ~ Waterloo: 00.00 mi
End Trowse Junction: 113.68 mi Northam Short Mile: 77.68 mi

Major Stations

Bethnal Green: 1.10 mi,
Stratford: 4.03 mi,

Ilford: 7.28 mi,

Romford: 12.30 mi,

Chelmsford: 29.6 mi

Colchester: 51.52 mi,

Ipswich: 68.59 mi (Major Freight
Junction - Felixstowe),

Diss: 94.79

Clapham Junction: 3.74 mi,
Wimbledon: 7.19 mi,

Woking: 24.27 mi,

Basingstoke: 47.61 mi,
Winchester 66.39 mi,
Southampton Airport Parkway:
74.66 mi
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FIGURE 4.4: Comparison of Track Curve Radii Distribution for TL1 and TL2
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4.3 Eddy Current Data

The Sperry Eddy Current system automatically detects rail that contains RCF and will
initially divide the RCF into 1 yard sections. Rail without RCF is not reported. Each 1
yard section containing RCF is analysed automatically and the following information
is reported (Network Rail, 2018c):

* ELR, Track ID, GPS coordinates, single mileage (for individual yards) or start

and finish mileages (for grouped sites),
¢ The maximum crack depth of the deepest crack,
¢ Category of RCF in accordance with Table 4.2,
¢ The rail affected (left or right rail),

¢ The maximum depth measured by each of the 10 eddy current probes. The
probes are numbered 0-9 from the gauge across to the field side of the rail, as

pictured in Figure 4.5,

¢ Measurement Date.

The data are initially processed and filtered on board the Roller Search Unit, these are
then uploaded by Sperry into the RDMS following an inspection. The planned and
maximum intervals between EC inspections are set according to Track Category
(shown in Table 4.3 which corresponds to Table 11 from (Network Rail, 2018c)). In the
case of existing RCF sites, a follow up assessment is prescribed in accordance with
Table 10 in (Network Rail, 2018c) (not shown here), which indicates for example that
some Severe and Very Severe sites must be reassessed as frequently as 6 weekly (42

days).

TABLE 4.2: Network Rail RCF Severity Categories, Table 9 from (Network Rail, 2018c)

Crack Depth (mm) Severity Category
01<x<15 Light

16<x<3 Moderate

31 <x<4 Heavy
41<x<49 Severe

Indicated 5mm deep (>5mm but beyond Very Severe
measurement capability)
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FIGURE 4.5: Sperry RSU Probe Layout (Whitney, 2020)

TABLE 4.3: Network Rail Planned and Maximum Intervals Between Inspections using
Eddy Current Testing, Table 11 from (Network Rail, 2018c)

Track Category Planned Interval Maximum Interval

1A 8 weekly 18 weeks
1 8 weekly 18 weeks
2 16 weekly 36 weeks
3 26 weekly 60 weeks
4 26 weekly 60 weeks
5 26 weekly 60 weeks
6 52 weekly 130 weeks
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4.3.1 Response Variable

In order to answer the central questions driving this study, a suitable response variable
is required. Since the Eddy Current Data does not track the progression of individual
cracks, it is not possible to directly study rates of propagation of specific cracks.
Instead, the Roller Search Unit (RSU) captures the deepest crack detected over 1 yard
for each of the 10 probes. So, instead of considering the crack data as individual
events, the output data is an indicator that describes the degree of damage in each
yard of track. Figure 4.6 shows a three-dimensional illustration of a set of raw Eddy
Current data for the left and right rails. The x axis represents the spatial domain
(linear distance (yards)), the y dimension time (days) since the first inspection in the

dataset, and the z axis is the maximum probe measured crack depth (mm).
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FIGURE 4.6: Spatio-Temporal [llustration of 1 Yard Maximum Crack RCF EC Data

For this study the network is divided into 11 yard segments and the 1 yard cracking
data are aggregated over these track segments. Cracks are summed according to their
severity category (defined in Table 4.2) to generate

Lis,y M(s ), His 1), S(s .4, V S(s 1), Tot (s 1) which represent the total number of Light,
Moderate, Heavy, Severe, Very Severe and Total cracks in each segment s at time ¢
(spatio-temporal grid cell (s, t)). Additionally, a custom damage index is generated for
each segment which is a function of crack density and severity, DI2 = weighted sum
of cracks where each weight is dependent on the severity of the crack, the weights are
doubled with severity such that the resulting damage index DI2 can distinguish
between cracks of differing severities. DI2 is thus calculated as follows:

s+1 s+1 s5+1 s+1 s+1

DI2=Y L+2() M)+4()_ H)+8()_ S)+16()_VS) (4.1)

This method of spatial discretisation is important in the realm of data-driven
modelling and can lead to improved predictive accuracy of models trained on this
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data (Cao Feng et al., 2014; Liu et al., 2002; Yang, 2007). Discretisation is applied for
the following purposes:

1. Reducing Noise due to positional uncertainties,

2. Enables the integration of multiple data sources. To formulate data-driven tasks,
leveraging of other significant data sources is important, especially where data is
captured in numerous systems operating at different ranges and frequencies.
Spatial discretisation assists with this problem and any discrepancies in position

aCross sources,

3. Reducing the problem sample space: spatial discretisation bounds the sample
space and hence reduces problem complexity, instead of predicting a response
variable for 1 yard, we increase the interval to 11 yards.

4.4 EC Preliminary Data Exploration

This section presents a summary of preliminary analyses performed on the raw Eddy
Current data for TL1 and TL2. It aims to facilitate a general understanding of the data
under study. The raw data is extracted directly from the Rail Defect Management
System (RDMS).

4.4.1 EC Data Overview

A summary of the range of both study routes is provided in Table 4.4, the ‘Distance
Range’ begins from the Route Origin (London Liverpool Street and London Waterloo
for TL1 and TL2 respectively), the measurement time range relates to the period of EC
inspections!. As previously described the frequency of inspection depends on the
Track Category and the previously measured condition of the rail; if cracks require
monitoring then they are measured at a higher frequency.

It appears that although Track Length 1 (TL1) covers a longer distance than Track
Length 2 (TL2), there are more cracking events detected in TL2. This may be a result of
the EC measurement frequency (more inspections will result in more cracks being

found), or that TL2 has higher propensity for RCF cracking.

The distribution of damage by severity is fairly consistent between the two routes as
illustrated by Figure 4.7a and Figure 4.7b, with more than three quarters of the cracks
observed being of Light and Moderate Severity. In both cases, the RCF severity

1EC inspections were introduced to the UK network predominantly in 2015, although the system was
piloted in some regions in earlier years.
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TABLE 4.4: Raw EC Data Overview

TL1: LTN1, 2100 TL2:BML1, 2100
Total Observations 118188 134933
Distance Range 576 - 200337 yards 501 - 136938 yards

Measurement Time Range 2015-10-07 - 2022-08-31  2015-09-09 - 2021-07-08

category with the third highest presence in the data is ‘Very Severe’, this is likely
because 5mm is the maximum readable depth for the equipment, so all cracks deeper
than this are also regarded as ‘Very Severe’. Many cracks will be reported as 5mm
depth but will in fact cover a wider range of depths greater than 5mm. Further, for
both track lengths, the category with the lowest number of measured cracks is ‘Severe’.
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FIGURE 4.7: Distribution of Cracks by Severity by Percentage
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4.4.2 EC Damage Over Time

A summary of how damage is progressing with time is presented in this section,
Table 4.5 and Table 4.6 summarise the number of L, M, H, S, VS and Total cracks found
per year. The table also includes the total number of inspections carried out, and the
total yards covered by the eddy current monitoring system each year for the Left
Hand Rail (LHR) and Right Hand Rail (RHR); these quantities assist with explaining
the considerable variation in the number of cracks each year. An increase in total
cracks per year could be a result of increased levels of damage to the rail due to
increased traffic, reduced interventions, etc.., or it could simply be a result of more
inspections being carried out; generally speaking, more inspections result in more
cracks being detected. Noticeably, TL2 has a greater number of inspections carried out
per year than TL1. To account for this feature of the data, Figure 4.8a and Figure 4.8b
illustrate the rail cracks detected per year in each severity category as a percentage of
the total distance covered by the EC monitoring system that year. For both lengths of
track an overall trend of decreasing RCF cracking over time is observed. This
downward trend may be a result of improvements in intervention practices and RCF
management, or due to reduced inspection frequencies or changes in the detection

method (such as threshold modifications).

TABLE 4.5: Number of cracking events by year: Track Length 1 (TL1)

Year L M H S VS Total No. Dist. Dist.
Inspec- LHR RHR
tions

2015 3350 4495 683 164 513 9205 4 248954 249902

2016 13018 8087 1559 598 2365 25627 12 827189 889463

2017 5088 3334 547 208 924 10101 8 389137 381301

2018 7785 4407 673 220 848 13933 10 617215 645290

2019 11959 7508 1231 538 1744 22980 12 888431 918732

2020 5212 4529 724 327 875 11667 8 552337 553642

2021 6193 5429 1100 461 1695 14878 12 702039 723898

2022

4058

3475

872

301

1091

9797

10

522107

489210
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Percentage of EC Inspection Distance

Percentage of EC Inspection Distance
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TABLE 4.6: Number of cracking events by year: Track Length 2 (TL2)

Year L M H S VS Total No. Dist. Dist.
Inspec- LHR RHR
tions

2015 6428 4026 896 411 1899 13660 15 296951 289296

2016 7965 5074 923 332 609 14903 30 496217 592013

2017 3592 2769 537 193 345 7436 12 245949 235789

2018 13438 15279 3927 1559 3591 37794 31 663490 621644

2019 15077 14980 3544 1282 2744 37627 34 752637 782539

2020 4883 4060 1080 477 995 11495 19 301505 280635

2021 5633 4194 986 382 823 12018 25 508908 508526

4.5 EC Data Properties

Following the preliminary analyses, a number of notable properties were uncovered

from the EC data, these are described in the following section.

4.5.1 Presence of Space and Time

Eddy Current RCF cracking data have both temporal and spatial dimensions, broadly
data with these characteristics are known as Spatio-Temporal (ST) data. ST data are
found largely in fields such as climate and environmental science, crime, medical
research and transportation, and their scope are increasing exponentially. The data
differ from traditional numeric or categorical data due the complexity of ST data
types, the presence of dependencies between instances (autocorrelation) and the
variation of statistical properties with space and time (heterogeneity). Many widely
used statistical data mining techniques, such as linear regression, rely on the
assumption of independent and identically distributed (i.i.d) measurements, and
therefore may have limited applicability when modelling ST data (Hamdi et al., 2021).

According to Tobler’s first law of geography, “Everything is related to everything else,
but near things are more related than distant things” (Tobler, 1970). For instance, the
weather 1 mile away is likely to be more similar than 10 or 100 miles away. Yet it is an
observation that can equally be extended to the temporal dimension, for example the
weather tomorrow is likely to be similar to the weather today, more so than the
weather a week or a month ago. These phenomena are referred to as spatial and
temporal dependence, or are termed spatio-temporal autocorrelation when they occur
in both dimensions. Spatio-temporal data samples further tend not to follow an
identical distribution across the entire spatial and temporal domains, known as
heterogeneity, or non-stationarity. Instead, different geographical regions and moments

in time may have distinct distributions. Heterogeneity can further arise where data is
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available from different sources and on different spatiotemporal scales (Amato et al.,
2022).

Since many statistically based techniques; such as Linear Regression, assume
independence among observations and identical distributions (the i.i.d assumption), the
application of these techniques may not be well suited for this type of data. Hence,
whilst analysing these data it is important to consider the effect of autocorrelation and

variations in statistical properties and how these factors may impact the analysis.

Figure 4.11 represents a spatio-temporal density plot for RCF cracking. The xy axes
represent the spatial and temporal domains respectively, markers indicate the location
of observations, and the depth of background colour indicates the density of
observations (darker blue = high density, lighter blue = low density). The data exhibit
areas of densely clustered cracks, and further areas of no cracking, this is intuitive
since neighbouring segments have similar characteristics which drive crack formation.
Further, in the temporal domain the condition of the track segment at time ¢ 4- 1, will
be related to the condition of the segment at time ¢t. The obvious exception to this,

however, is where interventions have occurred.
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FIGURE 4.11: Distribution of EC Crack Segments: Left Rail
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4.5.2 Inspection Frequencies
There are two predominant challenges with respect to the frequency of data collection:

* Low Inspection Frequencies: The time between inspections can vary from a few
weeks up to 6-12 months between measurements. The interval depends on the
category of track and the previous measurements at the site. Sparse
measurements in the temporal domains make it difficult to ascertain temporal
patterns and presents challenges when assessing the effectiveness of rail
interventions.

¢ Irregularly spaced measurements in space and time: Controlled or synthetic
environments enable data to be collected such that sensors are placed at regular
spatial intervals, and that data is sampled at regular time intervals (i.e. every
hour, every day, every week at the same time). This provides opportunities for
leveraging novel formulations for spatio-temporal data mining (Atluri et al.,
2017). For example, data instances can be expressed as 2D- time series data
(vector representation, for each sequence), 3D- cross-sectional data (matrix
representation at each time), 4D- spatio-temporal data (tensor representation).
Where intervals are irregular, estimation of missing data is required to formulate
instances as above, and therefore the data must be represented as points.

Figure 4.12 shows the yards covered by the UTU, with green indicating that the
Eddy Current equipment has successfully tested the track, and red representing
testing failure. The figure also demonstrates how measurements are distributed
in the temporal and spatial dimensions:

— Temporal: There are some measurements which occur close together
(approximately 6 weeks), whereas others have gaps >250 days, for example
in 2017 and 2020. TL1 is predominantly “Track Category’ 1 and 2 and
therefore has a planned EC measurement interval of 8 weeks (56 days), and
maximum of 18 weeks (126 days) and so this is unusual. After discussions
with NR staff (Personal Communication, Brian Whitney- Network Rail-
Track Technical Expert, 2022) it is understood that this is largely a result of:
a) the gradual addition of the Sperry RSU to all UTUs, which has only
occurred more recently, gaps in the data are likely because the monitoring
was carried out using a UTU with no EC system, or b) during the
COVID-19 pandemic and due to social distancing rules, ultrasonic and EC
operators were unable to work alongside each other, ultrasonics were seen

as the priority and therefore EC measurements were not taken.

- Spatial: In the spatial dimension three regions with differing inspection
frequencies are distinguishable, 0-100,000 yards, 100,000-120,000 yards, and
120,000-210,000 yards with a degree of overlap, these overlapping sections
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may cause some difficulties in the analysis particularly if they are spatially

misaligned.
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FIGURE 4.12: EC Tested/ Untested: Left Rail

4.5.3 Prevalence of Zeros/ Sparse Data

Notably, the majority of track sections present no cracking at all, and therefore there
are large areas of the track with no data. Additionally, where cracks are not detected,
this data is not reported by the system, it must be inferred by the lack of data, which
could also be attributed to absence of measurements at the position/time, or system

failure in this section, as opposed to no RCF.

The regions in the Figure 4.11 without scatter points indicate either missing
observations (the track was not monitored) or a lack of RCF (the track was monitored
and no RCF was detected). Some cases can be cross-checked with the UTU tested data
shown in Figure 4.12. The red points indicate where the UTU has travelled but the EC
testing failed, the green points represent successful recordings, and the yellow points

represent the overlaid EC observations.
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4.5.4 Interventions

Since EC data is collected directly from the operational environment, not only will it
represent a system of rail degradation due to RCF, but also will be subject to changes
from maintenance interventions such as re-profiling and rail replacement. When
observing a segment of track it may appear as if the track is degrading, and then
spontaneously it improves. It is assumed from the data that this is a result of grinding,
milling, spot replacements or full track renewal, however care must be taken since this

could also result from poor spatial alignment and other sources of noise.

Figure 4.13a and 4.13b show the 1D time series for the left and right rail at position
11,176 yards, with interventions represented by vertical lines, the rail surface damage
by the green series, and vertical wear by the blue. The left rail has no recorded
measurements at this location, but the right rail presents low levels of RCF. Following
interventions such as grinding or milling, it is anticipated that the levels of RCF would
reduce, or at least show decreasing degradation rates, and the vertical wear would
increase. On the other hand, after rail replacement it is expected that RCF and vertical
wear would dramatically change. The rail replacement data states that a replacement
occurred at this location in 2019, although it is not known when in 2019 that this
occurred. In this study all rail replacements are allocated to January 1st of the year.
The effect of rail replacement on the damage indicator DI2 at any point in 2019 is
difficult to detect since there are only measurements from 2017 and 2020. The wear
data on the other hand shows four measurements in 2019 with large drops in vertical
wear between measurement 1 and 2, and also between 3 and 4. It is therefore likely
that the replacement also occurred in the later half of 2019. Grinding data is also
presented, with data from the Anglia grinding database represented in yellow, and the
work order grinding data in grey. However there doesn’t appear to be any consistent
effect on the wear or RCF data, in fact in some instances the vertical wear appears to

reduce following a recorded grinding.
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FIGURE 4.13: Illustration on the effect of rail replacement for TL1 at 11176 Yards

Additionally, Figure 4.14a and 4.14b illustrate a section of rail where there is reported
milling in mid-2019. Once again it is difficult to detect a significant change in the RCF
data due to temporal frequency and relatively low levels of damage, however the wear
data confirms (through a spike in vertical wear) that rail has very likely been milled as
stated. The reliability of the grinding data must again be questioned, since there is no

obvious correlation between the wear or RCF data and the occurrence of grinding.

In summary, there are some high levels of variation in the temporal patterns of the EC
data which is likely as a result of interventions, and some measurement/ processing
noise. The interventions data further appears to be inconsistent and of low temporal
resolution, which is problematic if the analyses rely on this data. There are instances
where re-railing is indicated but the wear/ RCF data does not support this, and
vice-versa instances where a significant improvement is observed in the rail RCF
damage and/ or vertical wear but is not recorded in the intervention data. There is the

possibility of using a combination of wear and RCF data to infer the occurrence of
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FIGURE 4.14: Illustration on the effect of Rail Milling for TL1 at 52591 Yards

re-railing, as this does in some cases seem to be apparent, however the additional
problem is the varying temporal frequencies of the wear and RCF data, and any

spatial misalignments between the measurement sources.

4.5.5 Noise

Georeferencing errors result in misalignments between cross sectional eddy current
data, such that RCF cracks are reported to change location between measurement
runs. The other challenge is the misalignment of data from different sources:
information such as track curvature, cant, traffic density, locations of S&C and
interventions data for instance all have different sources for determining their position
on the track. Thus the problem is not only that RCF cracks will not align between
runs, but that RCF cracks cannot be accurately positioned on the track.
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Figure 4.15a and Figure 4.15b illustrate the geo-spatial misalignment between cross
sections of EC data measured on separate occasions, for a subset of TL1 data. In most
cases, the cross sectional peaks are clearly identifiable (shown in green), in particular
for the right hand rail. However there are some instances, such as 2015-12-02,
2016-05-20, 2016-12-21 and 2017-10-26 where the data is sparse and therefore difficult
to ascertain identifiable features to align. The 2016-03-23 cross section is clearly
spatially shifted from some of the preceding and following cross sections, and should
be moved some 500 yards farther down the track. These figures also indicate the
localised regions of spatio-temporal correlation in the data, illustrating the similarities
in cross-sections, and the clusters of RCF in space, the cross-sectional correlation can
be utilised when re-aligning the data. Failure to re-align the data may result in highly
anomalous results, especially when generating rates of change.

Further, there are numerous processing stages performed by the Sperry system
on-board the UTU which generate the raw data made available for this study. Over
the years, thresholds such as the lift-off distance (introduced in Section 2.3.2) which
represent the distance of the probes above the rail in order to optimise for penetration
ability vs. sensitivity to cracks may have changed which may present some
inconsistencies over time. Additionally, there are reports of occasions where other
conductive materials, such as remnants from ground rail interfere with the Eddy

Current measurement system.
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4.5.6 Modifiable Area Unit Problem (MAUP)

Scale effects in space and time are a challenging issue in spatio-temporal data analysis
and mining (Venkateswara Rao, 2012). MAUP affects result when point-based
measures are aggregated into districts, the resulting summary values are influenced
by both the shape and scale of the aggregation unit.

As described in Section 4.3 the EC data in raw form can be represented by a point

(d, s, t) where d represents the maximum crack depth over a 1 yard track section s,
detected at time t. Whilst the temporal granularity will remain unchanged due to the
temporal irregularity and low frequency of measurements, the data in the spatial
domain are numerous, and the data at the 1 yard level of granularity are likely to
result in high levels of noise and thus will be difficult to analyse. In the spatial domain
therefore, aggregation is applied. However, the aggregation window will be constant
and as low as practical to ensure minimum bias but also enabling a sufficient

reduction in noise and the ability to integrate the data reliably with other sources.

4.6 Concluding Remarks

This chapter has introduced the data under study, some preliminary analyses, but
most significantly the challenges and properties displayed in the Eddy Current data.

The Eddy Current data has dimensions in the spatial and temporal dimensions, and
thus may present characteristics such as spatial and temporal dependencies
(autocorrelation), and variation in statistical properties in space and time
(heterogeneity). These features must be considered, particularly when making
inferences using models that assume independence amongst observations, and further
the use of validation schemes that also may make independence assumptions.
Additionally, the data are irregularly spaced in time and space which means that
learning instances for presentation to machine learning algorithms must be
represented as 1D points rather than using novel representations that are available to
spatio-temporal data such as time series (2D), rasters (3D) or tensors (4D). The
irregularity may also cause issues with regard to correcting for other issues such as
noise and misalignments. Some of the most significant problems with the Eddy
Current data however include the presence of noise and interventions, which are
directly addressed in the following chapter using alignment methods, smoothing and
outlier detection. Spatial misalignment in particular presents an issue for analysing
degradation rates, and therefore will inhibit any meaningful analysis and generate
unreliable models if used in its raw form. Additionally the presence of interventions,

and the inconsistent, unreliable data on rail replacements, grinding and other rail
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maintenance activities mean that assumptions may be required for estimating when

interventions have occurred in order to determine degradation rates.

In order to successfully implement a data driven methodology, it is fundamental that
these challenges are addressed. The following chapter summarises the various
pre-processing techniques that have been employed to satisfy these goals and ensure
the data is suitable for extracting useful insights.
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Data Pre-Processing

Data pre-processing is a critical step in ensuring that the data are provided in a
suitable quantity, structure and format for data mining. Data mining is a process of
extracting knowledge from real data sets, which in reality are often scattered, noisy
and even incomplete. The quality of these data can have a significant influence on
subsequent analyses and data mining models, and thus various pre-processing steps
have been developed to ensure the data meet the input requirements of the model,
improve the relevance of the prediction target, and make model optimisation
simpler (Li, 2019).

The proposed pre-processing methodology for the Eddy Current, Wear, Track,
ACTRAFF and Defect data is depicted in Figure 5.1. Specifically, Eddy Current data
processing is addressed in Section 5.1, whereas the additional data sources are covered

in Section 5.2.
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FIGURE 5.1: Data Pre-Processing Methodology

5.1 EC Data Processing

As described in Chapter 4, there are several characteristics of the Eddy Current Data
which make the application of data mining techniques difficult and unlikely to yield
useful results if applied directly. The purpose of this section is to describe some of the
proposed techniques for addressing these problems, the raw data is denoted: Py, the
discretised data: Psq, and the final processed modelling data set is: Pyy,,.» where w is
the applied smoothing window. The full processing methodology is illustrated in

Figure 5.1, here we describe the Eddy Current Data processing steps:



5.1. EC Data Processing 85

1. Data Extraction: The 1 Yard Historic EC Data are extracted from RDMS, we
denote this dataset: P,;q,

2. Data Cleaning: This step includes:

¢ Conversions: Converting discrete data to categorical data types,

* Missing Values: Identifying Not a Numbers (NaNs), which are values
which are missing or undefined, determining a method of filling these
values and also removal of duplicates,

¢ Check Ranges: Ensuring data ranges are reasonable,

¢ Date Compression: EC recording runs performed on consecutive dates for
different lengths of track are combined in order to generate longer
‘continuous’ lengths of track data for analysis, and to reduce any difficulties
with overlapping data when calculating rates. In order to combine signals
that should be considered as occurring on the same date to improve the
ease of analysis a time window must be chosen. We know that in most
instances, the same site will not be reassessed more frequently than
approximately 6 weeks (42 days), using this knowledge, and a preliminary
look at the data 20 days was selected for this data set since it picked up the
majority of clearly anomalous cases, however this may change depending
on the input data set,

¢ Timescale: Timestamps are converted to a continuous daily time scale, the
earliest date in the dataset represents the first inspection for this sample,
and is thus denoted 0 days. All the other dates are converted with reference

to this first inspection date.

3. Data Discretisation: As noted in Section 4.3.1, the locations of cracks are
described by linear yardage that assume a continuous value between the origin
and total track length. i.e, cracks can be detected at 10 yards, 10.5 yards, 10.2
yards etc. Discretisation is applied in order to reduce the sample space, and
hence problem complexity, and enable integration of independently collected
data sources (such as the track spatial characteristics, etc.) using a common
spatial reference frame. Thus each observation will represent an 11 yard
spatio-temporal cell, containing Light, Moderate, Heavy, Severe and Very Severe
cracks, which can be mapped to other spatial and temporal parameters. Note
that the spatial dimension is regular but the temporal domain is irregular. 11
yards represents the lowest resolution for which other data sources are available,
it is commonly used to discretise the NR network, and therefore is selected for
ease of integrating with other data sources which are required for subsequent

analysis.

To discretise the data, the track is first divided into equally sized segments (11

yard segments) and the Eddy Current observations with common time stamps
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are aggregated over each spatial segment (s, s + 1), where s represents the index
for the starting linear position of a segment, and s + 1 the end position. The
aggregations applied to observations at time ¢, over spatial segment (s, s + 1) are
as follows:

(a) Maximum Crack Depth- DI;,y: Maximum Crack Depth (mm) of cracks in
segment (s,s + 1))

(b) Total No. Cracks in Segment, DIy,:: Total number of all cracks in segment
(s,s +1)):

(c) Damage Indicator, DI2 is a weighted sum of cracks where each weight is
dependent on the severity of the crack, this is intended to generate larger
damage values where the severity is high in order to distinguish between
high density and severity:

s5+1 s+1 s5+1 s5+1 s5+1

DI2=Y L+2()_M)+4()_H)+8()_S)+16()_VS) (5.1)

where L, M, H, S, VS represent the total number of observations in each of
the Light, Moderate, Heavy, Severe and Very Severe categories.

For example a row of data may look like:
TABLE 5.1: Example of Discretised EC Data

Start End |[L M H S VS Sum Max. Depth (mm) DI2
11 22 |1 3 0 4 O 8 42 39
22 33 |12 3 1 2 1 9 5 44

The resulting discretised dataset is denoted as Pseg,

. Alignment: A major shortcoming affecting the EC measurements is geospatial

misalignment. Largely this is historical due, in-part to some manual operations
with regard to synchronising GPS signals with mileposts. Data cross-correlation
is utilised to perform alignment between Eddy Current runs. Care must be taken
with alignment parameters due to the temporal frequency of EC signals which
results in potentially large run-run variations causing large shifts to be
recommended to maximise total signal cross-correlation. The methodology is
described further in Section 5.1.1,

. Outlier Analysis: The Local Outlier Factor (LOF) is a distance-based approach

in which the density of regions in the data are computed, and the instances in
the low density regions are declared as outliers. Data points with high LOF have
more sparse neighbourhoods and typically represent stronger outliers, unlike
data points belonging to dense clusters that usually tend to have lower LOF
values Lazarevic (2005). The methodology is described further in Section 5.1.2,
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6. Smoothing: Also known as curve fitting, or low pass filtering, smoothing is
intended to detect trends in the presence of noisy data, and includes techniques
such as clustering, regression and binning (Alasadi, 2017). The outcome is
essentially noise reduction, which, in its simplest form eliminates the extreme
evaluates of the signal, giving in effect the reduction of average magnitude of
the signal (Kowalski, 2018). Smoothing improves data quality by replacing the
noisy irregular signal with the new smoothed signal which probably better
describes the measured phenomena. The methodology is described further in
Section 5.1.3,

7. Feature Engineering: In machine learning, a sufficiently descriptive feature set
is critical for the explanatory or predictive power of a model. Feature
engineering is the practice of constructing suitable features that lead to
improved predictive and explanatory performance (Nargesian et al., 2017).
Additional features derived from the EC data are described in Section 5.1.4,

5.1.1 EC Alignment

Georeferencing errors in the Eddy Current equipment are known to result in spatial
misalignment between recording runs. For instance, consider subsequent damage
measurements Dsi,t]., which represents an observation occurring in spatial cell s; at

measurement time ¢;, and D which corresponds to the subsequent observation in

Sistjv1
time recorded in spatial cell si.] In the presence of spatial misalignments between
recording runs, these observations may have in fact occurred in different spatial cells.
If this is occurring repeatedly in the data, it will introduce misleading patterns and
results which are calculated from analyses and learning algorithms based on these

data.

5.1.1.1 Theory

Techniques developed in the realm of signal processing have been utilised in many
domains to re-align signals. These techniques depend on the assumptions regarding
the nature of the misalignment, and differing measures for determining signal
similarity. For example, temporal signals can be aligned using techniques such as
dynamic time-warping, which assume shifts and distortions in time to determine the
optimal alighment between two sequences under certain restrictions (Miiller, 2007).
However in this case, we have spatial cross-sections of data corresponding to different
measurement times, which are believed to be constantly shifted in space, rather than

non-linearly distorted.
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A basic measure of similarity between two signals as a function of the space or
time-lag between them is cross-correlation. The cross correlation of the discrete time
signals X/[m] and X*[m] for a spatial or time lag 7 is expressed as:

Ryl = 3 X0 [m] X[+ 1] 52)

m=—oo

The maximum (peak) cross-correlation occurs when the lag between the two signals is
zero, and indicates the initial shift between the two signals. When the lag between the
signals is zero, the positive peaks of signals X/[m] and X*[m] are aligned, and thus
maximally contributing to Ry;yx. Similarly, when the negative peaks of signals X/ [m]
and X*[m] align, they also make a positive contribution to Ry;y«. Thus, the maximum
of the cross-correlation function will occur when the two signals overlap, and will
depend on the magnitude of the two signals, i.e., the peak-to-peak magnitude, or
energy, of both signals (Potas et al., 2015).

The selected approach uses a ‘naive implementation” of cross-correlation analysis to
align multiple signals, where, rather than calculating the cross-correlation between all

signals, the relative shifts are estimated with respect only to a Reference signal, Xg.

5.1.1.2 Application to EC Data

For each track length TL1 and TL2 a methodology is applied to align multiple Eddy
Current signals, which will be termed spatial cross-sections or signals interchangeably.
Note that we refer here to the discretised 11 yard Eddy Current data (Pscg).

Rather than the simple illustrated case of aligning two cross sections of data, the aim
here is to align N EC signals. Assuming that these each of these N signals is shifted
with respect to the others, it is not possible to estimate the set of absolute drifts

01,02, ...,0n. Rather, the relative drift of the jth and kth signal §x = 6; — J is estimated.
Thus, in this study we estimate the relative shifts of the N — 1 remaining signals with

respect to a selected reference signal, Xg.

The reference signal, Xg will determine the alignment of all other signals, and
therefore it is important that it carries sufficient information to enable effective
alignment performance. The alignment procedure here includes a method for
determining a suitable reference signal which involves calculating various signal

characteristics such as the damage variation and the number of peaks in the signal.

Additionally the procedure must address the problem that each signal covers different
portions of the track length. Some may cover 0-50000 yards, whilst others only cover
20000 - 50000 yards. The data are zero-padded, and this will result in low
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cross-correlation between these signals in the regions where one signal is assumed to

be zero.

To account for this the signals are divided into spatial clusters before alignment, and

each shift is constrained using a maximum shift threshold, A.

The parameters for these procedures, such as the optimum reference signal Xgx*, the
optimal number of partitions (clusters) required to divide the data x*, and the optimal
maximum shift Ax must be estimated empirically from the data in order to maximise
the quality of the resulting alignment of all signals. A popular measure in the
literature for establishing the alignment accuracy between two signals is the Pearson’s
Cross Correlation coefficient (r) (Korifi et al., 2014). Given paired data

(x1,Y1), s (Xn, Yn) consisting of n pairs, ry, is defined as:

Ty = %g\il[(xi __ J—C) (Zl - y)] - (53)
VI (= 02 2 (3 — 9)2

where 7 is the sample size, x;, y; are the individual observations indexed with 7, X and

i are the sample means for x and y (Berman, 2016).

In this study; to determine the quality of the alignment between the N signals, the
average of the Pearson’s coefficient for each signal with reference to the X is
calculated, (0 = }_ R;j/N). The reference signal and maximum shift threshold are
selected to maximise this Performance Indicator (o). The optimum number of clusters
k* can subsequently be determined by maximising the average of our performance
indicator p across the clusters, i.e. (}.;_; p/x).

The full procedure for aligning Eddy Current cross sectional data is described below
and in Figure 5.6. Note that we assume for each cluster the shift is constant across the
cluster, and further that the left and right rail shifts are the same:

1. Select input data for alignment: the data is first segmented into clusters of
observations which cover similar portions of the track. For this study the
procedure will be followed using 1, 2, 3, 4, 5 and 6 as the total number of clusters
x, this level of segmentation should be sufficient to maximise alignment

accuracy:

* Choose number of sub-sections (clusters) from « = [1,2,3,4,5, 6]

¢ Use the K-Means clustering algorithm to compute clusters in the data based
on the linear distance of each observation, an illustration of the resulting

clusters where ¥ = 3 are shown in Figure 5.2.

The following steps (2 and 3) are performed for each total number of clusters
x =1[1,2,3,4,5,6], and each cluster i € [0, ..x]
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FIGURE 5.2: Data Segmented for Alignment: 3 Clusters

2. Identify 3 ‘Best’ Reference Signals [X;,, Xg,,, Xg,]: the Reference signal must

contain sufficient information to enable effective signal alignment,

¢ Compute Signal KPIs: Key Performance Indicators (KPIs) are derived for

each signal in cluster i in order to determine the ‘best’ signal for using as a

reference, these are as follows:

— Total No. Signal Peaks: a peak or local maximum is defined as any

sample whose two direct neighbours have a smaller amplitude, the

basis of using this as an indicator of a ‘good’ reference signal is that a

signal with a high number of peaks is easier to align. In this study,

based on some basic analyses, a peak is determined to exceed a
threshold of DI = 3, and separated by 300 track segments (3,300 yards),

- Difference between Start and End Positions: a reference signal should

span a reasonable distance,

— Observation Count: A reference signal should have a large number of

observations which can be aligned to,
- Signal Variances: Var(X;), Var(Xa), ...

Var(Xy), a signal with very low

variation is difficult to align to since the algorithm will find it difficult

to distinguish signal characteristics,

* Scale Data: Scale the performance indicators between [0, 1] using a

maximum value scaler,

* Rank Signals: Determine the rank of each signal based on the 4 parameters

in order of importance: [Total No. of Peaks, Signal Variance, Difference between

start and end yardages, Observation count],

¢ Assign 3 Reference Signals for cluster i: the top three ranked signals

Xp1;, Xp2,, Xps; are selected for input to the alignment procedure,
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3. Align Signals in Cluster i, for each of the 3 reference signals:

¢ Compute Shifts: For each maximum shift:
A € [50,100,200, 300,400, 500, 600, 700, 800, 900, 1000], and
Xp, € [X,gli, Xp2,/ Xﬁgi}, the objective is to determine the N — 1 spatial shifts
01, ...0n—1 which optimise the left and right rail cross correlation functions

between signals X; and X;:

o [(X5 = X))(X; — X))
rj,k - S V2 S e
\/25:1 (Xj — Xj)? oo (Xi — Xi)?

(5.4)

where j represents the index of the reference signal, and k the index of the

remaining N — 1 signals to align, subject to the constraints:

(sleft <A
N (5right <A (55)

N (sleft = 5right

where Jj.f+ and Jy;¢p¢ are the calculated left and right hand shifts. These
constraints reflect the limit on the upper bound for the spatial shift of the
signal, and ensure that both the left and right rails are shifted by the same

amount,

¢ Shift each Signal shift each of the N — 1 signals in time by calculated shifts
41, ...0n—1, and calculate the resulting vector of correlation coefficients for
the left and right rails: R[i, X, A] : 751, ...r5 n—1 Where B € [1,2,3]

4. Calculate the performance for each set of parameters: [x, A, i, Xg]: For each
number of clusters, cluster index, reference signal and maximum shift, the
Pearson’s Cross Correlation coefficient is calculated between the reference signal
and each of the remaining n — 1 signals for each rail independently. These
coefficients are mean averaged to determine an indicator for the left and right
rails pj.r; = Zi\;l Ry, p /N and pyigns = 2}121;11 Rk”.ght /N, which are then summed
to generate a joint performance indicator p. Figures 5.3a and 5.3b illustrate these

results for x = 4 and k = 5 respectively.

5. Select Parameters which Maximise )}, p/x: Select parameters [«, A, X,.] for
the final alignment. Table 5.2 indicates the parameters which maximise p, and
Table 5.3 subsequently indicates the average performance over the total number
of clusters ) 7, p/x.

6. Final Alignment of Data: The final results indicate that the data should be
segmented into 3 clusters (x = 3) (see Table 5.3), alongside corresponding
parameters for each cluster i € [0, 1,2] as highlighted in Table 5.2.
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FIGURE 5.3: Illustration of Performance Indicators for Alignment Parameters: X B and
A for each Clusteri € 1, ..x

Figure 5.4 and 5.5 illustrate the outcome of the alignment process for * = 3,

i = 0 for the left and right rail respectively, where the optimal maximum shift,
A* for this cluster is 100, and the reference signal is 52 (which corresponds to the
signal measured on 2017-10-04). From the figures, the success of the alignment
procedure is clearly visible for signals dated 2016-03-23 and 2021-08-04.

TABLE 5.2: Performance Indicators for Optimal Alignment for x € [2,3,4, 5]

Total Cluster  Max. Ref. Sig- Ry Ryight: 0
Clusters Number Shift A nal Xg Left Rail Right

K i Rail

1 0 100 2 0.14 0.15 0.29
2 0 150 0 0.32 0.39 0.70
2 1 200 2 0.10 0.22 0.32
3 0 100 2 0.16 0.46 0.62
3 1 300 2 0.1 0.27 0.37
3 2 100 0 0.41 0.43 0.83
4 0 100 0 0.41 0.43 0.83
4 1 250 1 0.10 0.25 0.35
4 2 100 1 0.17 0.46 0.63
4 3 100 2 0.05 0.13 0.18
5 0 300 1 0.23 0.20 0.43
5 1 300 0 0.12 0.32 0.43
5 2 100 0 0.40 0.43 0.84
5 3 150 2 0.25 0.46 0.71
5 4 100 2 0.05 0.13 0.18
6 0 250 2 0.25 0.16 0.41
6 1 250 2 0.18 0.35 0.52
6 2 100 0 0.40 0.43 0.84
6 3 100 2 0.25 0.46 0.71
6 4 100 2 0.05 0.13 0.18
6 5 100 0 0.07 0.03 0.10
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TABLE 5.3: Performance Indicators: Optimal no. Clusters

Total Clustersk Y1 ,p Y/ ,p/x

1 0.29 0.29
2 1.02 0.51
3 1.82 0.61
4 2.00 0.50
5 2.59 0.52
6 2.75 0.46

5.1.2 OQutlier Detection

Outlier detection refers to the problem of finding patterns in data that do not conform
to expected normal behaviour (Chandola, 2009). It is important in this case to
distinguish between noise removal, which aims to immunize a statistical model
estimation against outlying observations, from novelty detection, which aims at
detecting emergent patterns in the data. For example, errors due to measurement,
processing and geolocation may be classed as noise, and on the other hand,
observations that are subjected to an intervention, or very severe cracking events are
considered as outliers in the traditional definition, but they are also interesting
patterns that have significance in isolation as compared with other sources of noise. In
this instance, we wish to identify noise which will otherwise influence subsequent

statistical analyses.

5.1.2.1 Theory

Many outlier detection methods work on the principle that being an outlier is a binary
property, however approaches such as the Local Outlier Factor assign to each
observation a degree of being an outlier, which increases the information available for
each observation, rather than discarding it (Breunig, 2000). The Local Outlier

Factor (LOF) is a distance-based approach in which the density of regions in the data
are computed, and the instances in the low density regions are declared as outliers.
Data points with high LOF have more sparse neighbourhoods and typically represent
stronger outliers, unlike data points belonging to dense clusters that usually tend to
have lower LOF values (Lazarevic, 2005).

The approach requires a single parameter, k (or the minimum points) which indicate the
number of nearest neighbours used in defining the local neighbourhood of the
observation. For each observation x, the calculation of the Local Outlier Factor (LOF)

is as follows (Sugiyama, 2016):
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¢ Calculate k-distances: The distances between points using a distance function
such as Euclidean or Manhattan are determined to find the k-nearest neighbours
of point x,

¢ Calculate the Reachability Distance: The maximum distance between two

points (x,x’) and the k-distance of that point.

RDy(x, x') = max(x — x®, x — x") (5.6)

where X (k) is the kth nearest neighbour of x in x;! ,,

¢ Calculate the Local Reachability Density: For each point, determine the LRD
which is a measure of the density of k-nearest points around a point x which is
calculated by taking the inverse sum of all of the reachability distances of all the
k-nearest neighbour points. When x is isolated from surrounding samples, the

local RD takes a small value,

1
LRDy(x) = _ 5.7
) L RO ) o7
¢ Calculate the LOF: The ratio of the average of the LRDs of k number of
neighbours of x and the LRD of x:
1yk (i)
_1 LRD
Loau):k2“1 Kt) (5.8)

LRDy(x)

The intuition behind the calculation of the LOF is that if the density of the neighbours
and x are almost equal, then these points are similar. If the density of the neighbours is
much lower than the density of x, then x is an inlier, i.e. insider the cluster. Whereas, if
the density of the neighbours is much higher than x, then x can be considered an
outlier. Overall, if LOF;(x) takes a large value, then x is regarded as an outlier and it is
at the discretion of the analyst to determine a LOF threshold if outliers are to be
removed. Typically, a contamination parameter c is defined, which indicates the

estimated proportion of outliers present in the dataset.

5.1.2.2 Application

To reduce the impact on subsequent analyses, we aim to identify the most significant
local spatio-temporal outliers. These outliers are removed from the data set before
performing regression analyses. The process implemented is described below:

1. Select Input Data: The input data set is the aligned output from the previous
processing step 5.1.1,
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2. Select Model Parameters:

* No. Neighbours/ Min Points (k): As suggested in the practical guidelines,
a k value between 10 and 20 is suitable for many applications (Breunig,
2000). For this study, k = 10 is selected due to the sparsity of the data, the
higher the k value the more local points are required for an observation to
be considered an inlier, and therefore the lower bound of this

recommendation was selected,

¢ Contamination: a contamination of 3% is utilised to remove the most

severe outliers,

* Features: Linear Distance, Measurement Date, Rail Side, Damage Indicator
(D1I2) are selected,

3. Calculate the LOF for each observation,

4. Remove 3% of data with highest LOF.

From a dataset of 17,184 observations, 52 points are removed using this method.
Figure 5.7a and 5.7b indicate the spatio-temporal locations of the aligned observations,
with the colour and size of the point representing the LOF Score (Note that the colour
scale is log normalised in order to show more clearly the anomalous points). There is
not an obvious pattern in the locations of these outliers, but there is a degree of
clustering of moderate outliers for the left rail at approximately 125,000 yards.
However, many of the more significant outliers tend to occur before 2019, which may
be a result of how measurement procedures have improved since then. Further, as
illustrated in Figure 5.8 many of the observations with high outlier scores have lower
damage scores, and all of the points removed from the data set correspond to damage
values: DI2 < 50. It is therefore, unlikely that we are removing any potentially

significant observations of ‘unexpected hotspots’.
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FIGURE 5.8: Illustration of LOF variation with Damage Score, n = 10
5.1.3 EC Spatial Smoothing

Noise reduction can be performed using methods such as filtering, smoothing and
prediction (estimation), but the choice of method is dependent on the application. In
the case of the EC data, we wish to smooth the EC cross sectional data in the spatial
domain, to reduce localised noise particularly with the aim of calculating rates of

change between measurements.

Smoothing improves data quality by replacing the noisy irregular signal with the new
smoothed signal which may better describe the measured phenomena. Methods
include mean filters, median filters, Kalman filters and Gaussian filtering. Due to
computational efficiency, and applicability to the target data- spatial data where
ordering must be preserved, a mean filter is applied here.

The mean filter is one of the simplest smoothing methods (Kowalski, 2018), and the
output value is calculated by computing the average of all samples from a given

window. Its” formula has the following form:

Z?:fn Xjti
47 Tone 1 59
Where x; is a sample of the input signal, 21 + 1 is the window length, z; represents the

output value, and j is the current index of the output value.
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5.1.3.1 Application

The mean filter is applied to each spatial cross-section of data X;, X», ... Xy for the left
and right rail independently, utilising the window sizes, w = [5,10, 15,20, 25, 50]1. The
window sizes are arbitrarily chosen to provide a reasonable range of windows without
reducing the magnitude of signal peaks too considerably. Note that a window size of 5
applied to the 11 yard data means that damage is averaged over 55 yard intervals
across the data, whereas a window size of 10 applied to 11 yard data corresponds to
averaging over a 110 yard interval. Figure 5.9 illustrates the effect of spatial smoothing
on the 11 Yard damage signal for recordings collected on a particular date. The effects
of peak truncation are apparent as the smoother window is widened especially where
the window exceeds 15 segments and the 11 yard damage is concentrated over a small
distance. Additionally Table 5.4 shows the effects of the smoothing window size on
key signal parameters such as the minimum and maximum damage, the damage
variance and mean damage. Each of the parameter values reduce sharply to begin
with, however as the smoothing window increases the reduction in value levels off.
When developing a regression model, a suitable smoothing parameter will be selected
in Chapter 7. The appropriate degree of smoothing should balance the effects of
model accuracy, correct data representation and model computation time.

! Although these are the windows illustrated here, for the final analysis carried out in Chapter 7, addi-
tionally windows w = [2,4, 6,8, 10,12, 14] were tested to increase the resolution for smaller window sizes
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TABLE 5.4: Data Characteristics after Smoothing

Rail Side Window Min. Dam- Max Dam- Variance Mean
age age
Left 0 0 176 389.07 14.21
Left 2 0 176 231.97 10.35
Left 4 0 164 142.8 7.38
Left 5 0 166.4 121.95 6.58
Left 6 0 166 106.84 5.97
Left 8 0 150 85.89 5.1
Left 10 0.1 134.6 71.61 4.5
Left 12 0.08 128.58 61.24 4.05
Left 14 0.07 123.07 53.3 3.7
Left 15 0.07 117.93 50.01 3.56
Left 20 0.05 104.25 37.85 3.01
Left 25 0.04 91 29.99 2.65
Left 30 0.03 76.03 24.61 2.39
Left 40 0.025 69 17.94 2.04
Left 50 0.02 69 14.01 1.82
Right 0 0 176 607.15 18.96
Right 2 0 176 394.2 14.84
Right 4 0 168.5 263.59 11.46
Right 5 0 161.6 228.99 10.46
Right 6 0 156.67 202.92 9.67
Right 8 0 150.5 164.78 8.48
Right 10 0 125.6 138.62 7.63
Right 12 0 108.5 119.85 6.97
Right 14 0 95.07 105.98 6.45
Right 15 0 89.93 100.37 6.23
Right 20 0.05 70.3 80.07 5.38
Right 25 0.04 73.04 66.89 4.79
Right 30 0.03 63.83 57.55 4.36
Right 40 0.025 59 45.14 3.75
Right 50 0.02 59 37.44 3.33

5.1.4 EC Feature Engineering

Once the aligned and smoothed data sets are generated, additional features are

calculated to improve resultant analyses and regression modelling. These features are

a result of iterative analyses and prior subject knowledge.

As previously described, the eddy current data are spatio-temporal, presenting

characteristics such as autocorrelation and heterogeneity amongst others (see

Section 4.5). Spatio-Temporal Data Mining (STDM) is a particular branch of data

analytics which explicitly models this type of data. In the literature, the benefit of

using STDM is to capitalise on novel formulations and methods that arise from these

data due to their dimensions (Atluri et al., 2017). However, predominantly these

studies assume regular gridded data, such that observations are available for each
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(s,t) cell in the dataset. For the EC data presented here, this is clearly not the case and
without the use of estimation or interpolation techniques, these approaches cannot be
taken advantage of. An alternative to using ST models whilst still accounting for the
natural ordering, and relationships within this type of data is to construct a feature set
that represents the ST variation in the data.

Further, due to rail maintenance, either through grinding, milling or re-railing, the
data does not represent a process of pure degradation, since there are restorative
processes occurring. As described in Chapter 4 obtaining reliable and sufficiently
detailed interventions data is a problem since we cannot determine accurately where
the track segment is degrading naturally or there has been some other process that has
modified the rate of degradation. It is therefore necessary to determine when these
interventions have occurred, and generate new temporal features describing a
degenerative process only, without the inclusion of data which has experienced

improvements.

¢ Track Segment Damage Rates Rates of deterioration are useful in identifying
hot spots, and also may provide increased insight. Rates of change can be
calculated for each track segment s between two subsequent inspections [t,
t + 1]. For instance, take observation DI;; 1 and DI, ;, where s is the track
segment, [t — 1, t] is the measurement interval, then the rate of change is
calculated:

DIs; — DI
(Tst) = (Tsp-1)

RateDI;; = (5.10)

¢ Lagged Damage Variables: To represent the autocorrelation in the data, it is
assumed that rail damage in a segment of track is dependent on previous
measurements of rail damage. These Lagged Damage Variables are continuous
features which represent the Damage Index: DI2 from the previous inspection
for the spatial cell (track segment),

¢ Time Since Intervention The EC RCF cracking data does not represent a system
of solely rail degradation due to RCF, but is influenced by the presence of
maintenance activities. These improvements in rail condition (a reduction in the
damage indicator : DI2), are visible from the data set (See Figures 4.13 and 4.14
from Chapter 4),

In order to model the degradation process, in this study it is assumed that an
improvement in the rail condition indicates an intervention and therefore should
not be represented in the dataset. For each rail and track segment, the rate of
change of DI2 between subsequent measurements is calculated, the measurement
time: T, is then converted to an Intervention Time Tj,;. Clearly, if an intervention

is detected over an interval: [t,t + 1] the precise Tj,; is unknown. However, in
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the absence of reliable interventions data it is assumed in this study that; in this
case, the T;,,;= 0 days, and subsequent measurements (where degradation
occurs) are re-indexed accordingly with reference to this measurement. All
records in the data set represent a system of degradation, note that where there
are less than 2 measurements on a track segment, rates cannot be obtained and

therefore these records are removed.

¢ High/ Low Rail Indicator: The high rail, due to super-elevation in curves, is
hypothesised in many studies to have higher rates of RCF due to increased
contact forces experiences at the leading outer wheel-set when curving. An
indicator for whether the rail is the low or high rail can be determined using
curvature and rail side information (from the EC data: it is assumed that the left/

right indicator is consistent for all EC inspections over a single length of track).

If RailSide = Left and Curvature < 0 = High/Low = Low
If RailSide = Left and Curvature > 0 = High/Low = High
If RailSide = Right and Curvature < 0 = High/Low = High
If RailSide = Right and Curvature > 0 = High/Low = Low

If Curvature > 0 and Curvature < abs(le — 4) = High/Low = Tangent,
le-4 is currently set as an arbitrary tangent/ curve boundary

If Curvature = 0 = High/Low = Unknown, this category represents 0
curvature, it has previously been mentioned in conversations that curvature
is this category is most likely non-zero (Personal Communication, Julian
Williams, Network Rail- Principal Analyst Whole Life Cycle Costing, 2022).

5.2 Additional Data Sources Processing

The points below describe the processing stages for each of the supporting data
sources utilised in the study, each data source must be cleaned and discretised as a
tirst step, followed by generation of additional required features, and then integrated
with the Eddy Current data. The approach for data integration depends on the
spatio-temporal nature of the data source. For data sources with space and time
attributes, the features must be mapped to each EC observation, whereas for spatial
data, such as track characteristics and segment wear rates, these features can be
mapped to the EC spatial cell. Table 5.5 contains a final set of the parameters included
in the study, and an indication of the data type.

The resultant data is a modelling dataset Py, ., for varying smoothing window size w.

e Wear Data
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. Data Extraction: The wear data is extracted directly from the NR network

drive containing csv files for each recording run. The wear parameters of
interest are: Vertical Wear (Max. Average), Gauge Face Wear (Max.,
Average), Field Wear (Max., Average), Head Width Remaining (Max.,
Average), Gauge Face Remaining (Max., Average) and the Estimated Rail
Depth (Minimum),

. Basic Processing: cleaning such as removal of duplicate entries is required

for the wear data, note that where a duplicate is detected the most recent
entry is retained in the data set,

. Discretisation and Aggregation: the wear data are mapped to the 11 yard

track segments, where an 11 yard track segment overlaps with two wear

segments the average of the wear values in both wear spatial cells are used,

. Calculate Deterioration Rates: the average deterioration rates are then

calculated for each of the wear parameters,

e ACTRAFF Data

1. Data Extraction: The ACTRAFF parameters selected are the Period ID,

Start Yards, End Yards, Total Tonnes, Passenger Tonnes, Freight Tonnes,
Total No. Trains, No. Passenger Trains and No. Freight Trains,

. Basic Processing: Missing periods are interpolated using an average of the

periods either side of the missing period,

. Estimation: As previously stated, the ACTRAFF data is not available from

approximately 2019, however this varies depending on track location. The
future traffic must therefore be extrapolated in order to leverage ACTRAFF
data in the study. A basic estimate is employed for determining Passenger,
Freight and Total Traffic. These estimates are based on discussions with
Network Rail staff, Network Rail published reports (as stated) and
assumptions that traffic from the years pre-pandemic were roughly
constant between corresponding periods from year to year. We know that
following the pandemic (as stated in Chapter 1) that there was a
considerable reduction in traffic on the network. The estimates used are as

follows:

— Where the estimated date is pre-COVID, the period estimate from the
previous year is utilised, i.e. 2018-2019 year,

— Where the estimated date is from April 2020 - April 2021, we employ a
75% reduction in traffic for each period from pre-pandemic levels (78%
reported in (Department for Transport, 2021)),

— For April 2021-April 2022, a 50% reduction is used (41.8% reported in
(Network Rail, 2022)),
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- For April 2022- April 2023, a 25% reduction is used based on the
assumption that uptake improves again by approximately 25%.

An illustration of these estimates is provided in Figure 5.10 for TL1.

Discretisation and Aggregation:, the ACTRAFF data are discretised into 11
yard segments, where an 11 yard segment overlaps two ACTRAFF
segments the traffic data closest to the start yardage of the 11 yard segment
are used (i.e. the data to the left)

e Defect Data: A number of studies have concluded that the existence of rail

surface defects intensifies the deterioration of tracks, and has the potential to

result in rail failure due to increased vertical dynamic forces of wheelsets onto

rails (Zhang et al., 2022). Therefore, as a key risk factor, the presence of other

defects detected using ultrasonics/ visual monitoring practices is incorporated

into the feature set. There are two key features generated for each observation, 1)

the total number of defects detected on the section s over the course of

monitoring 2) the existence of a defect on the section s since the last

measurement date t — 1 (binary).

1.

Data Extraction: Historic defect data are extracted from the RDMS,

2. Basic Processing:

3. Data Discretisation and Aggregation: The total number of defects are

summed over each spatial cell,

¢ Track Summary Data:

1.

Data Extraction: the primary parameters of interest include track cant,
curvature, maximum line speed, tonnage, track category, rail material, track

type, location of S&C, stations and tunnels,
Basic Processing: Conversion of categorical data types,
Feature Generation:

— Centripetal Force F.pripetal,
Fcentripetal = mo* (5.11)

where m is the tonnage and v is the maximum line speed.
— Cant Deficiency Cp (in mm),

_11.82x 02

Cp=—"% Ca (5.12)

where V is the maximum line speed, R is the curve radius and C,4 is the
cant applied, the 11.82 is defined for normal gauge and takes into
account g (gravitational acceleration), S (the cross-level standardised
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reference for rail heads centreline distance (mm)) and the speed unit
conversion from m/s to km/h, see (Constantin, 2015; Cope, 1993) for a
full description,

Distance to Features: traction and braking forces are related to the
generation of frictional (creep) forces responsible for RCEF, it is therefore
hypothesised that where trains are likely to be braking or accelerating
more frequently will experience more instances of RCF. The distance of
each cell from the nearest Stations, Tunnels, Switches and

Crossings (SC) is therefore calculated,

Time since Rail Replacement: the track summary data includes the
INM values for when each segment of rail was replaced. Since the data
is only available at a yearly resolution, the replacement is assumed to

have occurred on the 1st January of that year,

4. Discretisation and Aggregation: the track summary data are discretised
and mapped to the 11 yard track segments, where the 11 yard segment

overlaps with 2 TS segments:

— for the continuous value parameters (such as curvature, speed, cant)

the average value is used,

— for the feature distances- the minimum values are used, i.e we assume

the worst case,

— for discrete binary parameters such as the location of tunnels and

stations one segment will indicate 0- no station, and the other 1- a
station present, the aggregated value always assumes 1,

— for discrete parameters such as the age of the rail, the value which

covers the greatest proportion of the cell is used.
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TABLE 5.5: Features

Feature Type
Track Characteristics
Curvature (1/m) Continuous Spatial
Cant (mm) Continuous Spatial
Cant Deficiency (mm) Continuous Spatial
Line Speed (mph) Continuous Spatial
EMGTPA (MGT) Continuous Spatial
Station Indicator Binary Spatial
Linear Distance to Station (Yards) Continuous Spatial
S&C Indicator Binary Spatial
Linear Distance to S&C (Yards) Continuous Spatial
Tunnel Indicator Binary Spatial
Linear Distance to Tunnel (Yards) ~ Continuous Spatial
Track Category Discrete Spatial
Wear Data
Vertical Wear Average (mm) Continuous ST
Vertical Wear Max. (mm) Continuous ST
Gauge Face (GF) Wear Average Continuous ST
(mm)
Gauge Face (GF) Wear Max. (mm)  Continuous ST
Field Wear (FW) Average (mm) Continuous ST
Field Wear (FW) Max (mm) Continuous ST
Head Width Remaining Avg. (mm) Continuous ST
Head Width Remaining Min. (mm) Continuous ST
GF Remaining Avg. (mm) Continuous ST
GF Remaining Min. (mm) Continuous ST
Estimated Rail Depth Min. (mm) Continuous ST
ACTRAFF
Total Tonnes (MGT) Continuous ST
Passenger Tonnes (MGT) Continuous ST
Freight Tonnes (MGT) Continuous ST
Total Trains (MGT) Continuous ST
Passenger Trains (MGT) Continuous ST
Freight Trains (MGT) Continuous ST
Defect Data
Total Defects Discrete ST
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FIGURE 5.10: ACTRAFF Projected Passenger and Freight Tonnes over TL1

5.3 Concluding Remarks

This chapter presents the essential pre-processing tasks that are required to ensure the
data is suitable for further analysis, and additionally is formulated such that it can be
used as training data for a machine learning algorithm. The Eddy Current data is
extracted directly from the RDMS which represents the maximum crack depth
measured (mm) over a 1 yard section of the network at a particular measurement date.
This data are mapped to the 11 yard network whereby a damage index is constructed
which represents the density and severity of RCF cracking over an 11 yard section. As
shown in Chapter 4, the data are often misaligned in space between recording runs,
and therefore a novel process for re-aligning Eddy Current signals is developed using
cross correlation methods. Further, to address noise in the EC data, outliers are
removed using a density based parameter known as the Local Outlier Factor (LOF)
and smoothing is applied to reduce the effects of localised noise in the spatial domain.
The spatial smoothing parameter is varied such that the effect of modifying this
window can be assessed when developing a ML model for RCF prediction (see
Chapter 7). As the smoothing window is increased, the signal converges to the global
average and is thus easier to predict, however this would not be a very useful model
and therefore we must determine a balance between model accuracy and correct data
representation. Subsequently, additional features such as Lagged Damage Indicators;
which reflect the known autocorrelation in the data, rate variables and parameters
reflecting the estimated time since an intervention are generated. Finally, the
processed Eddy Current data are integrated with supporting data sets such as track
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characteristics, wear, defect and cumulative traffic parameters to generate a final

modelling data set with representative features for mining information.

The benefits of processing the data are two-fold, firstly without too much complex
analysis the processed data set could now be used by maintenance teams to conduct
practical analysis of the Eddy Current Data. The focus of Chapter 6 is specifically
aimed at using the processed data to augment the current strategies for preventive
and corrective RCF intervention measures introduced in Chapter 2. Secondly, the
comprehensive cleaning and preparation of the data ensures the best possible
outcome with regard to building representative data-driven models for RCF
prediction. Without a thorough pre-processing methodology, it is unlikely that any
resulting models would yield results that were accurate or reliable. The RCF

regression modelling work is presented in Chapter 7.
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Practical Applications of Data
Analysis

Chapter 5 provides a summary of the techniques applied to the raw Eddy Current and
supporting data sources to generate a modelling data set which is suitable for data
mining applications. This chapter uses that data and expands on the preliminary
analyses provided in Chapter 4 to demonstrate simple methods which capitalise on
the processed data (Py,») and could be used to supplement existing maintenance

strategies. The section is structured as follows:

* Rate Analyses: an introduction to damage rates of change is presented,
including terminology and parameters which form the foundations for

application within preventive and corrective maintenance strategies,

¢ Preventive Applications: describes an approach for the use of pre-processed EC
data in determining a revised method for segmenting the track into categories

with similar damage properties,

¢ Corrective Applications: utilises the pre-processed EC data to identify RCF hot
spots and rank these according to custom Key Performance Indicators (KPIs).

Note that all of the following analysis is performed using the processed data set Py,,0

(i.e. no smoothing is applied).

6.1 Rate Analyses

After cracking events are mapped and aggregated over 11 yard segments, as indicated

in Section 5.1.4, the rate of change for each spatial segment can be calculated. For each
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track segment s, rates of change of DI2, VS, S, M, H, L can be calculated between two
subsequent inspections [t, t 4 1]. For example, take two observations DI;; 1 and DI,
where s is the 11 yard segment, [t — 1, t] is the measurement interval, and DI
represents the measured damage (either DI2, VS, S, M, H, L). Then the rate of change
can be calculated:

DIsy — DI
R, = . . 6.1
" (Tor) — (Top1) (6.1)

Note that where R, > 0 (positive rate), this represents degrading rail condition,
whereas R, < 0 (negative rate) indicates an improvement in rail condition. In this
section, when discussing the degradation rate, we refer only to rates which are greater
than or equal to 0, i.e. R > 0. Figure 6.2a and 6.2a illustrate the monthly rate of
change for damage index DI2 corresponding to the left and right rail, respectively. The
positive rates are indicated by yellow-red tones, and negative rates are represented by
green- blue tones. Comparatively the right rail appears to experience higher rates of
degradation than the left rail, with more points exceeding rates of 60 units. Table 6.1
and Figure 6.1 illustrate the distribution of track curve radius for the TL1 track section.
A negative curve radius represents a Left Hand (LH) curve, whereby the RHR would
act as the high rail, and a positive curve radius (Right Hand (RH) curve) results in the
LHR acting as the high rail. There are considerably more track segments where the
RHR acts as the high rail and has a curve radii in the range 1000-2000 m (1281)
compared with 705 for the LHR. This region is known to be where RCF is induced,
and may be a factor explaining the prevalence of higher rates in the RHR.

TABLE 6.1: Distribution of Curve Radii for TL1

Curve Radius  No. 11 Yard Segments

<-3000.0 529
(-3000.0, -2000.0] 513
(-2000.0, -1500.0] 494
(-1500.0, -1000.0] 787
(-1000.0, -500.0] 217

(-500.0, -0.01] 0
Tangent Track 9992
(0.01, 500.0] 46
(500.0, 1000.0] 89
(1000.0, 1500.0] 292
(1500.0, 2000.0] 413
(2000.0, 3000.0] 1130

> 3000 1002

Additionally, Table 6.2 demonstrates the distribution of monthly degradation rates for
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