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Abstract

Learning accurate numerical constants when developing algebraic models is

a known challenge for evolutionary algorithms, such as Gene Expression Pro-

gramming (GEP). This paper introduces the concept of adaptive symbols to the

GEP framework by Weatheritt and Sandberg (2016) [1] to develop advanced

physics closure models. Adaptive symbols utilize gradient information to learn

locally optimal numerical constants during model training, for which we inves-

tigate two types of nonlinear optimization algorithms. The second contribution

of this work is implementing two regularization techniques to incentivize the

development of implementable and interpretable closure models. We apply L2

regularization to ensure small magnitude numerical constants and devise a novel

complexity metric that supports the development of low complexity models via

custom symbol complexities and multi-objective optimization. This extended

framework is employed to four use cases, namely rediscovering Sutherland’s vis-

cosity law, developing laminar flame speed combustion models and training two

types of fluid dynamics turbulence models. The model prediction accuracy and

the convergence speed of training are improved significantly across all of the

more and less complex use cases, respectively. The two regularization methods
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are essential for developing implementable closure models and we demonstrate

that the developed turbulence models substantially improve simulations over

state-of-the-art models.

Keywords: Gene Expression Programming, Nonlinear optimization,

Regularization, Model complexity

1. Introduction

The development of physics models is at the core of most science and engi-

neering disciplines. With the goal of understanding physical systems, predicting

their future states and discovering governing laws, researchers have been devel-

oping physics models for centuries. The ability to predict the dynamics of a

system-of-interest allows the design of advanced technologies, from micropro-

cessors to spacecraft engines. Traditionally, such predictive models have been

conceived based on physical, mathematical and empirical insights [2]. Due to

high costs of physical and numerical experiments in the past, data was limited

and primarily used to verify and calibrate models [3].

The rapid increase in computational resources in the last decades, how-

ever, enabled the generation of large quantities of high-fidelity data. Additional

advances of machine learning (ML) algorithms, which are able to utilize big

datasets, motivated a paradigm shift from traditional model development to

data-driven modeling in various scientific fields [3]. The most frequently applied

ML models are deep neural networks (DNN) [4], which demonstrated remark-

able success on previously intractable problems, from computer vision initially

to protein folding more recently [5, 6]. While DNNs posses excellent predictive

capabilities on high-dimensional datasets, the trained models are difficult to in-

terpret and have been shown to generalize poorly to data outside of the training

distribution for nonlinear target functions [7]. Furthermore, the models result-

ing from DNN training or decision tree-based methods, another often applied

type of ML algorithm, are highly complex equations or algorithmic models. For

the application as closure models, i.e. the implementation in underdetermined

2



systems of equations, which are the focus of this work, these models are difficult

to use due to stability issues during the numerical solution of equation systems.

An alternative to such highly complex models are algebraic models, which

are typically the result of traditional model development. However, Schmidt

and Lipson [8] used genetic programming (GP) [9], which is an evolutionary al-

gorithm, to symbolically regress algebraic models from experimental data. This

data-driven approach yields interpretable and implementable models. Cranmer

et al. [10] showed that algebraic models derived via symbolic regression even

generalize better to out-of-distribution data than DNNs for different physical

problems.

Ferreira [11] developed with gene expression programming (GEP) an algo-

rithm that improves over GP by introducing a genotype-phenotype distinction

(see Section 2.1 for details), as inspired by natural evolution. While symbolic re-

gression via GP or GEP is popular due to a high flexibility in the resulting model

structure, the problem of not converging to accurate numerical constants in the

model equation is well known [12, 13]. Typically, a finite number of numeri-

cal constants are created before the training and other constants in the model

equation are only achieved by combining existing constants via mathematical

operators. Thus, converging to specific constants is challenging, especially since

evolutionary algorithms are fundamentally stochastic.

A different approach for the development of algebraic models was devised

by Brunton et al. [14], which performs linear regression on a library of equation

snippets with sparsity-enforcing regularization. This approach, which is termed

sparse regression, computes numerical constants accurately using a determin-

istic linear least squares solver. A considerable downside is, however, that the

possible model structures are limited to linear combinations of the equation

snippets in the library.

The goal of this paper is combining the advantages of symbolic and sparse

regression to develop data-driven closure models with flexible structures and

accurate numerical constants. We extend the GEP framework developed by

Weatheritt and Sandberg [1] to incorporate gradient information to optimize
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model constants. In the literature, both gradient-free and gradient-based meth-

ods for constant optimization in GEP exist. Li et al. [15] investigated random

and creep mutation operators that modify numerical constants during training.

Other gradient-free methods applied to this problem are hill climbing [16] and

differential evolution [17]. To improve over these stochastic methods, Zarne-

gar et al. [18] employed a linear least squares solver to calculate the values of

constants pre-multiplied to trained basis functions. Dominique et al. [19] de-

fined a special power operator, of which the exponent was determined using a

gradient-based nonlinear least squares solver.

A novelty of this paper is the introduction of so-called adaptive symbols,

which allow gradient-informed numerical constants in GEP in a general form,

i.e. at any position in the trained model equation. To determine the values of

adaptive symbols p during training, both a general optimizer to solve

p∗ = argmin
p∈Rn

J(p) , ‖p− p∗‖ < δ , δ > 0 (1)

for any objective function J : Rn → R and a nonlinear least squares optimizer

to solve Eq. (1) for

J(p) =
1

2

m∑
i=1

ri(p)
2 , r : Rn → Rm , m ≥ n (2)

are investigated [20]. Furthermore, we apply two regularization methods to

avoid overfitting the training data and incentivize the development of imple-

mentable models. Small magnitudes of numerical constants and a low complex-

ity of the evolved model equation are considered indicators for the numerical

stability of closure models. Thus, we implement L2 regularization [4] and de-

fine a model complexity metric, which is set as an additional objective function

similar to the approach for GP of Schmidt and Lipson [8].

This new gradient-informed and regularized GEP framework is applied to

four different use cases. First, we rediscover Sutherland’s viscosity law from

generic data as a proof-of-concept. Next, laminar flame speed models are trained

on data of unstretched premixed flames. Finally, we develop two types of models
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for turbulent flow. A subgrid-scale (SGS) model for large eddy simulations

(LES) of homogenous isotropic turbulence and a nonlinear eddy viscosity model

(NLEVM), including a turbulence production correction model, for Reynolds-

averaged Navier-Stokes (RANS) calculations of a three-dimensional flow around

a wall-mounted square cylinder are trained.

The structure of this paper is as follows. We briefly discuss the standard

GEP framework in Section 2.1 and then introduce the concept of adaptive sym-

bols and the optimization algorithms to determine their values in Section 2.2.

In Section 2.3, the regularization techniques that support generalizability and

implementability of the developed models are described. Section 3 is organized

such that each use case is introduced in detail with its modeling and training

strategies before the respective training results are analyzed. Conclusions are

drawn in Section 4.

2. Methodology

The novel contributions of this paper are the introduction of adaptive sym-

bols and the application of L2 regularization and a model complexity objective

function to GEP. The former is discussed in Section 2.2, while the latter is

described in Section 2.3. We start by outlining the utilized GEP framework.

2.1. Standard GEP framework

Weatheritt and Sandberg [1] developed the GEP framework employed in

this paper to enable tensor regression, i.a. for turbulence closure modeling. The

framework implements the GEP algorithm by Ferreira [11], which is a type of

evolutionary algorithm. As such, a population of candidate models, so-called

individuals, is evolved over numerous generations to minimize a specific training

objective. Fig. 1 (a) illustrates the corresponding flowchart. Initially, a popu-

lation of random individuals is created. In each generation, the fitness of each

individual according to the training objective is evaluated. If the set termination

criterion is not fulfilled, individuals compete based on their fitness for selection
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to the mating pool. Possible termination criteria are a minimum fitness in the

population, a specified number of generations or a maximum training runtime.

Next, offspring are created by applying genetic operators, such as mutation or

crossover, to individuals in the mating pool. Finally, the offspring update the

population by replacing unfit individuals.

Initialize population

Contains A?

Evaluate fitness

Termination? End training

Update population

Create offspring

Select mating pool

Optimize A values

For each individual:

No (a)

Yes

(b)

YesNo

Figure 1: Flowchart of the GEP framework without (a) and with (b) the extension to handle

adaptive symbols (A).

Structurally, individuals in GEP consist of multiple genes and each gene

is encoded as a linear string of symbols, which is referred to as its genotype.

Typical symbols are input variables, mathematical operators and numerical con-

stants. To evaluate the fitness of an individual, the genotype of each gene is

translated to a nonlinear expression tree, which can be interpreted as an alge-

braic equation. This equation is referred to as the gene’s phenotype. Then,

these phenotypes are linked to yield the complete algebraic model, i.e. the in-

dividual’s phenotype, and the training objective is calculated. Fig. 2 shows the

translation of an individual with two genes for the input variables x1 and x2,

addition and multiplication operators and the numerical constants z1 and z2.

In comparison to genetic algorithms (GA) [21] and GP, the advantage of GEP

6



+

∗

+

x1 x1

x2

∗

z1 ∗

z2 x1
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* z1 * z2 x1

Gene 1:

Link:

Gene 2:

(x1 + x1) · x2 + z1 · z2 · x1

Expression treeGenotype Phenotype

Figure 2: Translation from genotype to phenotype of exemplary individual consisting of two

genes (blue, green) and one link (black).

results from the distinction between the genotype and the phenotype. While

genetic operators are applied to the genotype, the phenotype of an individual

determines its fitness. This distinction allows easy genetic manipulations and

complex functional expressions. In contrast, genes in GA are implemented as

linear strings only, which limits their functional expressivity, and genes in GP are

represented as expression trees only, which complicates genetic manipulation.

2.2. Adaptive symbols and numerical optimizers

The concept of adaptive symbols is introduced in GEP to generate algebraic

models with accurate numerical constants and to determine these constants

efficiently, i.e. based on gradient information instead of stochastic processes.

Adaptive symbols are devised as a new type of symbol that are, in addition to

standard symbols like input variables, mathematical operators or fixed numeri-

cal constants, available to the GEP algorithm to build and mutate the genotype

of individuals in the population.

In the genotype, adaptive symbols behave precisely like standard symbols,

so that the same genetic operators can be applied. In the phenotype, however,

adaptive symbols act as placeholders. When one or more of these placeholders

are detected prior to an individual’s fitness evaluation, a process is started to

determine the optimal numerical constants at the placeholder positions (see Fig.

1 (b)). In this process, an iterative gradient-based optimizer is employed with

the goal of minimizing the specified training objective. The resulting constants,

i.e. the adaptive symbol values, are inserted at the placeholder positions and the
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fitness of the individual is calculated. Finally, each adaptive symbol stores its

value as an initial value for next generation’s fitness evaluation. The following

aspects further define the concept of adaptive symbols:

1. Adaptive symbols can occur at any position in the phenotype.

2. Values of adaptive symbols are unique for each individual, not across the

population.

3. The number of adaptive symbols per individual is user-defined.

4. One adaptive symbol can be selected to the genotype multiple times.

5. All instances of one adaptive symbol share the same value in the pheno-

type.

As an example, data generated from the canonical function f(x1, x2) =

0.196x21 + 0.616x2 + 3.142 could be approximated using the input symbols x1

and x2, the operators + and ∗ and two adaptive symbols p1 and p2 with the

genotype

+ * p1 * x1 x1 + * * p1 p2 x2 p2

that translates to the phenotype

p1 · x21 + p1 · p2 · x2 + p2 ,

where the numerical optimizer would calculate p1 = 0.196 and p2 = 3.142.

Numerical optimizers

Determining the locally optimal adaptive symbol values p∗ is generally a

nonlinear optimization problem, as any training objective J depends on the

candidate model and adaptive symbols can occur at any position in the candi-

date model. Such a problem requires an iterative solution of Eq. (1) and we

investigate two types of numerical optimizers.

First, a general optimizer is applied to solve Eq. (1) for any objective func-

tion J : Rn → R, which provides a high flexibility for defining the training ob-

jective. Specifically, we select the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
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algorithm [22, 23, 24, 25] based on the results of a preliminary study. The

algorithm improves over the standard gradient descent algorithm by utilizing

curvature information and is computationally efficient by approximating instead

of calculating the inverse Hessian matrix of J . This approximation is updated

at every iteration based on the observed change of gradients [20].

The second type of investigated optimizers are nonlinear least squares opti-

mizers, as most ML training objectives are formulated to minimize the square

errors between the model predictions and the training data. Eq. (2) defines such

a training objective J , where the residual function r describes the dependency

of these prediction errors on the adaptive symbol values p. The mathematical

structure of least squares problems can be exploited to approximate the Hessian

matrix of J based on the Jacobian matrix of r, which is considered to be an

often accurate approximation [20]. The Levenberg-Marquardt (LM) algorithm

[26, 27], which is applied in the studies in Section 3, combines this approxima-

tion of the Hessian with additional regularization to control the iteration step

size. The BFGS and LM algorithms are implemented in the GEP framework

via the SciPy package for Python [28].

2.3. Regularization and model complexity

Regularization is applied in ML in general to prevent a trained model from

overfitting the training data. In other words, the model is incentivized to not

memorize the training data points but approximate the underlying data gener-

ating function, so that the error on testing data from the same data distribution

is close to the training error. For the development of closure models in partic-

ular, the experience of previous studies is that implementing complex models

with large numerical constants to close underdetermined systems of equations

can lead to instabilities when solving these systems numerically [29]. To control

the magnitudes of adaptive symbol values and the complexity of the evolved

algebraic models, L2 regularization and a model complexity objective function

are added to the GEP framework.

L2 regularization is the most frequently used regularization technique and
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drives model parameters towards small magnitudes [4]. Therefore, the square

L2 norm of the parameter vector p ∈ Rn is multiplied by a scalar regularization

parameter λ and added to the training objective J to yield the extended training

objective

Ĵ = J + λ · ‖p‖22 = J + λ ·
n∑
i=1

p2i , (3)

where the number of parameters n corresponds to the number of unique adap-

tive symbols in the phenotype of the evaluated individual. The regularization

parameter λ is user-defined and balances fitting the training data with reducing

adaptive symbol magnitudes. Due to the nature of L2 regularization, deter-

mining p∗ that minimizes Ĵ remains a least squares problem to which both

investigated optimizers can be applied.

Model complexity

The complexity of a model describes the capability of its model class F to

approximate a wide range of functions by adapting its parameters p [4]. One

example of a model class are univariate polynomials of degree d

Fd(x) =

d∑
i=0

pix
i . (4)

If we assume that exemplary training data is generated by a quadratic func-

tion, the complexity of any linear model in F1 is too low to accurately fit the

training data. On the other hand, the complexity of a polynomial of degree

five is considered too high, as training a model in F5 will likely overfit the

training data. Thus, controlling the model complexity is another regularization

technique to improve generalizability. Additionally, a low complexity naturally

increases a model’s interpretability and, as discussed above, is beneficial for the

implementability of closure models.

Quantifying model complexity, however, is not a straightforward task, as no

universally accepted metric exists. In GP, published metrics can be classified

as calculating either the structural complexity or the functional complexity of
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a model. Structural complexity metrics analyze the genotype of an individual,

which is an expression tree in GP, and measure, for example, the number of tree

nodes or the sum of subtree nodes [8, 30]. In contrast, the functional complex-

ity of a model depends on its phenotype, i.e. the resulting algebraic equation.

Vladislavleva et al. [31] estimated the order of nonlinearity of models to mea-

sure complexity and Vanneschi et al. [32] devised a curvature-based metric.

Furthermore, metrics from statistical learning theory were investigated, such

as the Vapnik-Cervonenkis dimension or the Rademacher complexity [33, 34].

Complexity metrics in GP are either used to extend the objective function to a

weighted composite function [35] or set as an additional objective function [30].

In GEP, to the authors’ knowledge, only Ferreira [36] studied model com-

plexity and applied a metric based on the count of expression tree nodes. As

structural complexity metrics are computationally inexpensive and successful at

preventing ineffective symbols in the model equation, we also define a structural

model complexity metric, but one that is based on the symbol complexity of

expression tree nodes. Therefore, each symbol s in the set of symbols S avail-

able to the GEP algorithm is assigned a user-defined complexity value cs. The

complexity of an evolved model is then calculated as

Jc =
∑
s∈L

cs , (5)

where L is the list of symbols in the individual’s expression tree. The ability

to define custom symbol complexities, in contrast to counting the number of

symbols, which is equivalent to cs = 1 ∀ s ∈ S, allows incentivizing specific

model structures. For example, setting c+ = 1 and cexp = 3 for the symbols

s+(x1, x2) = x1 + x2 and sexp(x) = exp(x) supports the usage of linear over

nonlinear operators. While Ferreira [36] extended the training objective via a

weighted sum approach to account for model complexity, we apply Eq. (5) as

a second objective function. In comparison, our multi-objective approach does

not require weighting the training error and the model complexity metric, which

is difficult to estimate before the training, and enables the analysis of models
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of different complexity selected from the Pareto front (see Fig. 9 and 10) after

the training. We utilize the multi-objective optimization extension to the GEP

framework by Waschkowski et al. [37].

3. Results

The application of the presented adaptive symbol concept (see Section 2.2)

and regularization methods (see Section 2.3) to four different use cases is dis-

cussed in the following. While all cases employ adaptive symbols, we investigate

different optimizers and regularization techniques in each use case.

First, we compare the performance of the BFGS and LM optimizers when

rediscovering Sutherland’s law in Section 3.1. Next, laminar flame speed models

are developed for unstretched premixed flames and the advantages of the model

complexity objective function Jc are explored (see Section 3.2). In Section 3.3,

the impact of L2 regularization on the development of SGS models for LES

of homogenous isotropic turbulence is demonstrated. Lastly, we combine the

two regularization techniques and compare the two optimizers when training

NLEVMs for RANS calculations of a wall-mounted square cylinder flow (see

Section 3.4). Table 1 presents an overview of the use cases.

Table 1: Overview of studied use cases.

Use case Optimizers Regularization

Sutherland’s law BFGS, LM -

Laminar flame speed modeling BFGS Jc

Subgrid-scale modeling BFGS, LM L2

Nonlinear eddy viscosity modeling BFGS, LM L2, Jc

All results are compared to the standard GEP framework and a maximum

training runtime is set as the termination criterion, unless otherwise stated. As

optimizing the values of adaptive symbols increases the computational training

costs, we aim to ensure an unbiased comparison between training runs with vary-
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ing numbers of adaptive symbols by providing equal computational resources

to all runs. In other words, training runs with no or few adaptive symbols are

able to evolve their population for more generations, while runs with higher

numbers of adaptive symbols can benefit from more gradient-informed numer-

ical constants. In the following, the details of each case and its modeling and

training strategies are presented before the respective results are discussed.

3.1. Sutherland’s law

Sutherland’s law [38] models the dynamic viscosity µ of dilute gases as

µ = µ0

(
T

T0

) 3
2 T0 + C

T + C
, (6)

where µ is solely a function of the temperature T . The Sutherland temperature

C is a gas-specific constant and µ0 and T0 are reference values. Sutherland’s

law is derived from kinetic gas theory and assumes an idealized intermolecular-

force potential [39]. In computational fluid dynamics (CFD) simulations of

compressible flows, Eq. (6) is commonly applied as a closure model to describe

the linear dependency of the viscous stresses of Newtonian fluids on the strain

rate tensor.

We utilize Sutherland’s law as a canonical example to discuss the benefits of

adaptive symbols and analyze the two selected optimizers. We aim to rediscover

first Eq. (6) and then its normalized version µ̂ = µ/µ0 for air with C = 110.4 K

and µ0 = 1.716× 10−5 kg/(m s) at T0 = 273.15 K. The training data for µ and

µ̂ is generated according to Eq. (6) at 100 uniformly spaced data points in a

range from T = 250 K to T = 1750 K.

Modeling and training strategies

Three strategies to rediscover Sutherland’s law are investigated. We compare

the standard training approach of using five random numerical constants (RNC)

drawn from a uniform distribution U(−1, 1) to using five adaptive symbols with

values determined by either the BFGS or LM optimizer.
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The remaining symbols and hyperparameters are unchanged across the dif-

ferent training approaches. The single input symbol is T and the mathematical

operators are +, −, ×, ÷ and (·) 3
2 . The integer values 0, 1 and 2 are provided

as additional numerical constants. In every training run, a population of 1000

individuals consisting of two genes each is evolved to minimize the mean squared

error (MSE) between the predicted (normalized) viscosities and their training

data values. For each of the three strategies and both µ and µ̂, we perform

the training with five different random initializations of the population. The

maximum runtime per training run is set to 0.25 CPU hours. An overview of

all training settings is provided in Table B.6.

Analysis and discussion

Table 2: Accuracy and training time (mean ± SD) for rediscovering Sutherland’s law in its

standard (µ) and normalized form (µ̂) using the standard training strategy (RNC) or adaptive

symbols with different optimizers (BFGS, LM).

Strategy
µ µ̂

Acc. Time [CPU s] Acc. Time [CPU s]

RNC 0/5 – 0/5 –

BFGS 0/5 – 4/5 355.7± 209.4

LM 5/5 217.4± 185.0 5/5 113.1± 73.0

The results of training models for µ and µ̂ to rediscover Sutherland’s law

using the three introduced training strategies are presented in Table 2. The

accuracy describes the ratio of rediscoveries to randomly initialized training runs

and the reported time is the mean training time for successful rediscoveries and

its standard deviation (SD).

Training with five adaptive symbols and employing the LM optimizer allows

to identify the correct µ and µ̂ equations in all training runs. In contrast, using

the BFGS optimizer, the GEP framework is only able to learn Sutherland’s law

in its normalized form.
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Sutherland’s law can be simplified to µ = C1T
3
2 /(T+C), where the combined

constant is C1 = 1.458× 10−6 kg/m/s/K
1
2 . For the normalized version µ̂, C1

changes to 8.496× 10−2 /K
1
2 . Thus, the difference in the order of magnitude

between C1 in the numerator and C = 110.4 K in the denominator is reduced

significantly for µ̂, which enables rediscoveries using the BFGS optimizer and

speeds up the training with the LM optimizer.

The standard training approach utilizing RNCs is not capable of rediscov-

ering Sutherland’s law in any training run, despite evolving populations for up

to 798 generations (in contrast to a maximum of 114 generations with the LM

optimizer). One issue that we identified is a conflict between model structure,

constants and fitness. The fittest model resulting from the training with RNCs

to rediscover µ̂ is

µ̂ = 1.469× 10−3 K−1 · T + 0.86 (7)

with a fitness value of J = 0.82×10−2. This model has a structure and constants

that are less similar to the simplified version of Sutherland’s law than

µ̂ = 7.925× 10−2 K−
1
2 · T 3

2 /T , (8)

which is the least fit model resulting from the five training runs (J = 2.1×10−2).

Adaptive symbols are capable of resolving this conflict and demonstrate sig-

nificant performance advantages on this canonical example. In particular, the

least squares-specific LM optimizer robustly determines accurate numerical con-

stants across varying orders of magnitude. While the results of the standard

training approach could potentially be improved by modifying the RNC sam-

pling distribution, adapting GEP hyperparameters or normalizing the training

data differently, the concept of adaptive symbols simplifies the training proce-

dure and adds flexibility to the GEP framework.

3.2. Laminar flame speed modeling

The laminar flame speed SL is an important characteristic of a given fuel-

air mixture in combustion engines. SL describes the rate of propagation of the
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flame surface in premixed combustion processes as a result of chemical reactions,

mass diffusion and heat conduction. Numerical simulations of premixed com-

bustion engines require an accurate description of the combustion processes and

typically use empirical or analytical laminar flame speed models. The accuracy

of these models affects the numerical prediction of the combustion behavior and

the emission of pollutants significantly, which in turn influences the potential

for improving the combustion processes. Therefore, obtaining accurate lami-

nar flame speed models that apply to the wide range of operating conditions

observed in industrial premixed combustion engines is a key challenge.

Among the most widely used SL models is the Gülder model [40], which is

an empirical model fitted to experimental data. Metghalchi and Keck [41] intro-

duced an empirical power-law expression that accounts for the temperature and

pressure dependency of SL and captures dilution effects. In contrast, Göttgens

et al. [42] proposed a physics-based approach to derive an analytical expression

for SL based on rate-ratio asymptotics. The constants in this analytical ex-

pression have been fitted to a wide range of fuels, such as hydrogen, methane,

ethylene, ethane, acetylene, propane, ethanol, n-heptane, iso-octane and pri-

mary reference fuel [42, 43, 44, 45]. Due to the physics-based approach, the

asymptotic model extrapolates reasonably outside the temperature and pressure

ranges of the calibration data and thus can be readily implemented in combus-

tion engine simulations [44, 46, 47]. One general limitation of the asymptotic

model is its applicability to lean equivalence ratios only, although more complex

extensions have been proposed to include rich mixtures [47, 48].

In this section, we utilize numerical data of a well-validated chemical mech-

anism for methane-air mixtures to develop advanced data-driven laminar flame

speed models. This mechanism consists of 79 species and 1055 reactions and

we perform one-dimensional unstretched premixed flame simulations using the

FlameMaster software package [49] to generate a dataset of SL values that covers

a wide range of temperatures T (300 to 1200 K) and pressures p (1 to 40 bar)

at lean-to-stoichiometric equivalence ratios φ (0.5 to 1.0). Extra data points

at φ = 0.0 are added to prevent unphysical non-zero flame speeds. The com-

16



plete dataset of size m = 9945 is non-dimensionalized using quantities from

the asymptotic analysis of the flame structure, which is essential for developing

models that generalize outside the training data distribution.

Modeling and training strategies

The gradient-informed GEP framework is applied to develop analytical mod-

els ŜL = f
(
T̂ , p̂, φ̂

)
, where ·̂ denotes non-dimensionalized quantities. We utilize

ten adaptive symbols, which are optimized with the BFGS algorithm1, and com-

pare the performance to the standard training approach with random numerical

constants (RNC). The available mathematical operators are +, −, ×, exp, log

and
√
·. The evolved models are evaluated using the normalized MSE between

the model predictions and the simulation data

J =
1

m

m∑
i=1

(
ŜL,i,GEP − ŜL,i,data

ŜL,i,data

)2

. (9)

Additionally, in the second part of the SL modeling analysis, we investigate

setting the model complexity metric Jc (see Eq. (5)) as a second objective

function. All others details on the modeling and training settings are listed in

Table B.6.

Analysis and discussion

Initially, the SL models are trained without regularization. Fig. 3 shows

the convergence of the normalized MSE objective function for training with

adaptive symbols (BFGS) and RNCs. Note that the solid lines represent the

minimum error across three randomly initialized training runs and the shaded

areas indicate the respective variation. Utilizing adaptive symbols is clearly

beneficial compared to the standard training approach, as the normalized MSE

is reduced by an entire order of magnitude. Additionally, the variance in the

1The LM optimizer without L2 regularization tends to converge to very high numerical

constants for regression problems (see Section 3.4) and this section’s goal is investigating the

impact of the model complexity metric independent from L2 regularization.
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Figure 3: Convergence of normalized MSE of SL models from standard (RNC) and gradient-

informed (BFGS) training without regularization (shaded areas represent variation due to

random initialization).

training performance across different random initializations is reduced substan-

tially. The fittest SL models resulting from the two training approaches are the

following:

ŜRNC
L = 0.91 · φ̂2 · (1.10 · p̂+ 2.10) · exp(p̂ · φ̂− T̂ +

√
1618.18 · T̂ )

· (p̂+ φ̂+
√
T̂ − log(p̂) + 0.43 · log(|φ̂+

√
T̂ − 0.09|) + 0.33) ,

(10)

ŜBFGS
L = T̂ · φ̂ · (486.95 · (p̂− 1.30) · (T̂ − 0.035) ·

√
p̂− 10.13)

· (−12.49 · p̂+ 221923.13 · T̂ 2 + 22.94 · (log(|φ̂− 0.029|)− T̂ )

+ log(φ̂) + 153.58) · (log(|(p̂+ φ̂) · log(φ̂)|)− 2.07) .

(11)

We observe that both SL models contain nested terms of the nonlinear operators

exp, log and
√
·, which is considered unphysical and could impair the prediction

accuracy when applying the models outside the training data.

Thus, we add the model complexity metric Jc as a second objective function

and specifically set the symbol complexity values for s ∈ {exp, log,
√
·} from

the unity default value to cs = 5, which disincentivizes the usage of these op-

erators. To further reduce the normalized MSE of the developed models, the
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Figure 4: Overview of SL predictions over equivalence ratio φ of gradient-informed and regu-

larized model (BFGS-MC) and asymptotic model (ASYM) with target simulation data (SIM)

as reference at various pressure and temperature values.

maximum training runtime is increased from 72 to 120 CPU hours. The re-

sulting SL model, which is selected as the optimal trade-off between the two

objective functions (see Section 3.4 for details on the selection process), yields

a normalized MSE value of 4.80 × 10−3 compared to 6.63 × 10−3 for Eq. (11)

and reads as follows:

ŜBFGS-MC
L = (T̂ + 0.008) · (φ̂− 0.071) · (1.27 · p̂− 27.48 · T̂ − 1.18) · 106

· (2.16 · p̂+ 55.94 · T̂ + 61.26 · φ̂− log(p̂)− 3.89) ·
√
T̂ ·
√
φ̂

· (T̂ + φ̂− 0.034) .

(12)

While the overall expression length is similar compared to Eq. (10) and (11), no

nested nonlinear operators occur in Eq. (12). An overview of the SL predictions

of the developed model (BFGS-MC) at representative p and T values in com-

parison to the asymptotic model (ASYM) by Göttgens et al. [42] is presented

in Fig. 4. The prediction accuracy of ŜBFGS-MC
L improves noticeably over the

asymptotic model, in particular towards high equivalence ratios. Therefore, we

summarize that the gradient-informed GEP framework distinctly outperforms
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the standard training approach for this use case and derives a model exceeding

the popular asymptotic model. Additionally, model complexity regularization

with custom symbol complexities allows steering the model development towards

desired model structures.

3.3. Subgrid-scale modeling

Large eddy simulations are one of the most important methods for turbulence

simulation and have been widely applied in various areas, e.g. in aerospace

engineering. LES obtain large-scale flow structures by solving filtered Navier-

Stokes equations, while the effects of subgrid-scale structures on the large-scale

structures are approximated by SGS models [50, 51, 52, 53]. As current models

do not universally produce accurate predictions, improving the modeling of the

SGS terms remains a focus of LES studies.

For this use case, we consider incompressible turbulence for which the filtered

continuity and momentum equations [53, 54] are

∂ũi
∂xi

= 0 , (13)

∂ũi
∂t

+
∂ũiũj
∂xj

= − ∂p̃

∂xi
− ∂τij
∂xj

+ ν
∂2ũi
∂xjxj

+ F̃i , (14)

where ·̃ denotes filtered variables and is defined for the velocity u as

ũ(x, t) =

∫
D

G(r, x)u(x− r, t)dr , (15)

where D is the entire flow domain and G is the filter function which satisfies

the normalization condition
∫
G(r, x)dr = 1. The SGS stress tensor τij in Eq.

(14) is defined as τij = ũiuj − ũiũj .
In this section, we apply the gradient-informed GEP framework to develop

improved SGS models. The high-fidelity dataset for training and testing is

obtained from a direct numerical simulation (DNS) of three-dimensional forced

incompressible isotropic turbulence [55]. The DNS velocity field is calculated on

a uniform grid of size 10243 and the Taylor Reynolds number is Reλ ≈ 260. To
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extract the filtered velocity field, we apply a top-hat filter in three dimensions.

The top-hat filter in one dimension is

f̃i =
1

2nf

fi−nf/2 + 2

i+
nf
2 −1∑

j=i−nf
2 +1

fj + fi+nf/2

 , (16)

where the filter width can be expressed as ∆ = nf∆x. We choose nf = 16 in this

case such that about 5% of the turbulence kinetic energy is filtered, as discussed

by Xie et al. [55]. Furthermore, coarse-graining that yields 163 different datasets

with 643 coarse grid points each is applied to the filtered DNS data. We select

a total dataset of 8 × 643 grid points and 70% of points are randomly selected

for training and the remaining 30% for testing.

Modeling and training strategies

For this use case, we compare the BFGS and LM optimizers in combination

with L2 regularization for modeling the anisotropic SGS stress tensor τAij . Fol-

lowing Li et al. [56], we model τAij as a function of the filter width ∆ and the

local filtered strain and rotation rate tensors S̃ij and Ω̃ij . We assume a linear

dependency on ∆ and utilize the integrity basis proposed by Pope [57] to model

τAij as

τAij = (∆|S̃|)2 ·
4∑
k=1

gk
(
I1, . . . , I4

)
V kij , (17)

where |S̃| =
√
S̃mnS̃mn is an inverse time scale. The basis tensors V kij and the

invariants I l are only functions of S̃ij and Ω̃ij non-dimensionalized by |S̃|. The

definitions of V kij and I l are available in [56]. The scalar functions gk are the

modeling target of the GEP framework.

During training, the MSE between the predicted anisotropic SGS stress ten-

sor τA,GEP
ij and the DNS training data value τA,dataij is minimized. Therefore, a

population of 100 individuals with four adaptive symbols per scalar function is

evolved. Table B.6 lists the remaining modeling and training settings.
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Figure 5: Convergence of MSE of SGS models in λ hyperparameter study evaluated on training

(solid) and testing (dashed) data.

Analysis and discussion

First, we perform a hyperparameter study to identify an appropriate order

of magnitude for the L2 regularization parameter λ in Eq. (3). We utilize the

BFGS optimizer and explore λ ∈ {10−2, 10−3, 10−4, 10−5, 10−6}. The maximum

training runtime is set to 13.89 CPU hours.

Fig. 5 shows the MSE of SGS models regularized with different λ values

during training. There is approximately a constant factor between the train-

ing and testing MSE across all λ values, displayed as solid and dashed lines,

respectively. Improvements on the training dataset result in improvements on

the testing dataset, which suggests that no overfitting occurs. Furthermore,

we observe that starting with λ = 10−5 the MSE increases with increasing λ

value. L2 regularization incentivizes parameters of small magnitude and thus,

restricts the search space for adaptive symbol values. From λ = 10−4, the search

space gets too restricted and the optimal numerical constants cannot be learned,

which results in deteriorating model performances. However, comparing the re-

sults based on λ = 10−5 and λ = 10−6 indicates that a limited amount of L2

regularization, i.e. a small restriction to the parameter search space, improves

the convergence speed significantly.
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In the following, we select λ = 10−5 and compare the BFGS and LM opti-

mizers, both with and without L2 regularization, to the standard GEP training

approach. We analyze the convergence of the MSE and the correlation coeffi-

cient Cc in Fig. 6 for the different approaches evaluated on the testing dataset.

The correlation coefficient measures the average componentwise correlation be-

tween the predicted and the high-fidelity anisotropic SGS stress tensors τA,GEP
ij

and τA,dataij and is calculated as

Cc =
1

6

3∑
i=1

3∑
j=i

〈(
τGEP −

〈
τGEP

〉)
�
(
τdata −

〈
τdata

〉)〉√〈
(τGEP − 〈τGEP〉)2

〉
�
〈

(τdata − 〈τdata〉)2
〉 , (18)

where 〈·〉 indicates averaging over the dataset, � represents componentwise

multiplication and τ is a short notation for τAij .
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Figure 6: Convergence of MSE (left) and Cc (right) of different SGS models evaluated on

testing data.

Fig. 6 (left) shows that all training approaches converge to a similar MSE

value within the training runtime of 8.3 CPU hours. This can be explained by

the simple model structure of the fittest SGS models. Using the LM optimizer

with L2 regularization, the resulting model for τA,GEP
ij is

τA,GEP
ij = (∆|S̃|)2 ·

(
−0.01V 1

ij − 0.1V 2
ij + 0.07V 3

ij − 0.11V 4
ij

)
, (19)

where the scalar functions gk are constant. Thus, determining accurate nu-

merical constants is the key challenge for this use case. Consequently, utilizing
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adaptive symbols and numerical optimizers significantly increases the conver-

gence speed, although the BFGS optimizer without L2 regularization appears

to converge to suboptimal constants until close to the maximum training time.

The general observations are that the least squares-specific LM optimizer out-

performs the BFGS optimizer and that L2 regularization further speeds up

training convergence, which is in line with the results of Section 3.1 and the λ

hyperparameter study. Furthermore, Cc values of close to 0.9 in Fig. 6 (right)

support that the resulting models are highly correlated with the high-fidelity

data and that, for example, not only the error in one component of τA,GEP
ij is

reduced, which might cause unphysical predictions.

Figure 7: Contours of SGS stress component τA23 at arbitrary domain slice: (a) fDNS, (b)

DMM, (c) GEP.

In order to investigate the suitability of Eq. (19) as a closure model, i.e.

ensuring accurate predictions and numerical stability, we perform an LES of

homogeneous isotropic turbulence with the developed SGS model. The LES

grid is of size 1283 with a filter width of ∆ = 16∆x and the numerical methods

are described in [56]. We compare the LES results based on τA,GEP
ij with the

filtered high-fidelity DNS data (fDNS) and the predictions of an LES applying

a standard SGS model, the dynamic mixed model (DMM) [58].

Fig. 7 displays the τA23 contours of the different simulations at an arbitrary

slice in the flow domain. The SGS model developed with the gradient-informed

GEP framework captures fine-scale structures similar to the fDNS data and

predicts stress intensity levels accurately. In contrast, the DMM models more
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dissipation which leads to larger τA23 structures of lower intensity.

In summary, adaptive symbols, especially when employing the LM optimizer,

and a moderate level of L2 regularization significantly increase the convergence

speed when developing models with a simple structure such as in Eq. (19). The

developed SGS model is easily implementable in an LES solver and was demon-

strated to substantially improve τAij predictions over a standard SGS model.

3.4. Nonlinear eddy viscosity modeling

RANS calculations remain the primary tool to perform CFD simulations of

turbulent flows of industrial interest. In contrast to spatial filtering in LES,

Reynolds averaging allows calculating time-averaged flow fields, which is com-

putationally more efficient and often sufficient for industrial applications. For

an incompressible flow with constant density, the Reynolds-averaged continuity

and momentum equations are

∂ui
∂xi

= 0 , (20)

uj
∂ui
∂xj

= − ∂p

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj
− u′iu′j

)
, (21)

with the mean velocity ui, the density-corrected pressure p and the kinematic

viscosity ν. The Reynolds stress tensor u′iu
′
j describes the impact of turbulent

fluctuations on the averaged flow field and can be deconstructed into an isotropic

( 2
3kδij) and an anisotropic term (2kaij), where k is the turbulence kinetic energy

and δij is the Kronecker delta.

The anisotropy tensor aij is modeled as aij = −νtk Sij by linear eddy viscosity

models (LEVM), such as the popular k-ω SST model [59], which solves two

additional transport equations for k and ω, the specific dissipation rate, to

calculate the eddy viscosity νt. The mean strain rate Sij is calculated from

Sij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. To improve the well-known shortcomings of LEVMs,

e.g. predicting flows with separation or curvature inaccurately [60], NLEVMs

assume a nonlinear dependency of aij on Sij and the mean rotation rate Ωij =

1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
.
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In this section, we develop NLEVMs for a wall-mounted square cylinder flow

using the GEP framework with adaptive symbols and the introduced regulariza-

tion techniques. In addition to modeling aij , we evolve a turbulence production

correction model R, as proposed by Schmelzer et al. [61]. This second model

extends the production term of k in the turbulence transport equations and

ensures the consistency of k between its transport equation and its high-fidelity

data values.

This section’s use case is a complex three-dimensional flow around a square

cylinder with a height-to-width ratio of h/d = 4 at a Reynolds number of

Red = 11, 000. The resulting flow features include horseshoe vortices around

the cylinder, upwash from the boundary layer, downwash over the cylinder tip

and a von Kármán vortex street [62]. As high-fidelity data for developing the aij

and R models, we utilize a well-validated hybrid RANS/LES dataset generated

by Weatheritt and Sandberg [63]. Following the results of Haghiri et al. [64], who

split the flow domain of this case into a near-body region and a downstream

region and showed that the NLEVM developed for the downstream region is

responsible for nearly all prediction improvements, we extract the training and

testing data from the downstream region starting at x/d = 2. As a compromise

between low computational cost and avoiding overfitting, 105 data points are

selected for training while the remaining data points are set aside for testing.

In order to calculate ω and R values from the high-fidelity data, we employ the

k-corrective frozen RANS approach [61], which solves the turbulence transport

equations with frozen ui, k and aij high-fidelity data values.

Modeling and training strategies

For developing aij and R models, we utilize adaptive symbols and both L2

and model complexity regularization. We analyze the performance of the BFGS

and LM optimizers and make a comparison to unregularized training and the

standard GEP training approach. The modeling approach for the turbulence
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production correction R is

R = 2kaRij
∂ui
∂xj

, (22)

where aRij is modeled similar to aij based on the integrity basis derived by Pope

[57], which is defined for the anisotropy tensor as

aij =

10∑
k=1

gk
(
I1, I2, ..., I5

)
V kij . (23)

In contrast to Section 3.3, all five scalar invariants I l and ten basis tensors V kij

are included to capture the complexity of this use case. The mean strain and

rotation rates Sij and Ωij are non-dimensionalized by ω before calculating I l

and V kij according to the definitions in [57]. The scalar functions gk are learned

by the GEP framework.

The training objective is minimizing the MSE between the predictions of

the aij and R models and the corresponding training data values. For L2 reg-

ularization, the MSE objective function is extended according to Eq. (3). The

regularization parameter is determined via a hyperparameter study to λ = 10−7

(see Appendix A). For model complexity regularization, Eq. (5) is set as a sec-

ond objective function. To further support the development of low complexity

models, the numerical constant 0 is assigned a symbol complexity of c0 = 0, as,

for example, multiplication with 0 reduces complexity beyond the calculated Jc

value. All other symbols S \ {0} have a symbol complexity of unity.

During training, a population of 100 individuals is evolved for a maximum

training runtime of 240 CPU hours. The optimal number of adaptive symbols

is a trade-off between functional expressivity and computational cost, as one

adaptive symbol is insufficient to approximate a function with multiple distinct

numerical constants, but more adaptive symbols complicate the optimization

problem. In Appendix A, we identify five adaptive symbols per scalar function

gk to be an optimal trade-off. The remaining modeling and training settings

are listed in Table B.6.
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Analysis and discussion
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Figure 8: Convergence of MSE relative to LEVM of aij (dashed) and R (solid) models trained

without regularization for NLEVM case (shaded areas represent variation due to random

initialization).

First, we develop aij and R models without regularization. Fig. 8 shows

the convergence of the MSE, relative to the linear k-ω SST model, of the differ-

ent training approaches, where shaded areas represent variation resulting from

different random initializations. All training approaches improve both models

over the LEVM and the relative improvement is larger for the turbulence pro-

duction correction model R. Utilizing adaptive symbols is clearly advantageous

in comparison to the standard training approach (RNC) and, in line with the

results of Sections 3.1 and 3.3, the LM optimizer yields lower MSE values than

the BFGS optimizer.

Table 3 presents the performance of the resulting aij and R models on the

training and testing datasets. Additionally, the respective model complexity Jc

and the maximum adaptive symbol magnitude maxi(|pi|) are listed, which are

both not regularized in this first study. Comparing the errors on the training

and testing datasets shows that no overfitting occurs. However, the model

complexity values of the developed models are too high to allow interpretation.

For example, the following is the aij model developed using the BFGS optimizer,
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Table 3: Training and testing MSE relative to LEVM, model complexity Jc and maximum

absolute adaptive symbol value maxi(|pi|) of aij and R models trained without regularization

for NLEVM case.

Model Strategy Train. MSE Test. MSE Jc maxi(|pi|)

aij

RNC 0.8056 0.8049 330 –

BFGS 0.7858 0.7849 140 1.09× 102

LM 0.7226 0.7224 180 3.71× 1014

R

RNC 0.6305 0.6189 320 –

BFGS 0.5886 0.5789 166 4.24× 102

LM 0.5581 0.5497 210 3.06× 1013

which is the least complex trained model and has additionally been simplified

using the SymPy package [65]:

aBFGS
ij = (306.79 · I3 + (0.88− 175.64 · I2) · (−I1 + I3 + 0.12)− 1.86) · V 1

ij

+ (I2 − 0.02) · (I5 + 109.19) · V 2
ij − (−I1 + I2 + I3 + 2.54) · V 3

ij

+ (I1 − 15.42) · (I1 + I2 + 0.08) · (84.03 · I2 − 84.03 · I4 + 6.74) · V 4
ij

+ (I3 · (I1 + I3) + 12.91) · V 5
ij + I3 · (I2 + 263.97) · (I4 + 41.48) · V 6

ij

− 191.44 · (I1 − 1) · V 7
ij + (5.15 · I1 + I2 + 36.44) · V 8

ij

+ (I3 + I5 − 3.07) · V 9
ij + (I4 + 2.13) · V 10

ij .

The standard training approach (RNC) yields the models with the highest

complexity values Jc. In order to approximate a certain numerical constant, the

combination of multiple random numerical constants and mathematical opera-

tors is generally required. This increases the search space of possible expressions

and complicates symbolic regression. The gradient-informed GEP framework

derives an accurate numerical constant with a single adaptive symbol. However,

we notice that the LM optimizer converges to extraordinarily high pi values. Ta-

ble 3 shows that the LM-optimized models do not overfit the training data, but
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numerical constants on the order of O(1013) will likely cause stability issues of

the numerical solver that applies the trained models.
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Figure 9: MSE relative to LEVM and model complexity Jc of aij models developed with

regularized training approaches for NLEVM case (markers represent different random initial-

ization).

To develop interpretable and implementable closure models, we apply L2

regularization when optimizing adaptive symbol values and add the model com-

plexity metric defined in Eq. (5) as a second objective function. Fig. 9 and 10

show the performance of the developed aij and R models on the two objective

functions. Note that the marker symbols represent training runs with different

random initializations and that only the Pareto front is plotted, i.e. models

that are not outperformed by any other model in the training run population.

The advantages of utilizing adaptive symbols compared to the standard train-

ing approach (RNC-MC) are significant, as lower prediction errors and Jc values

are achieved for both models. We notice that the LM optimizer improves over

the BFGS optimizer especially towards higher Jc values, where more adaptive

symbols in the expression tree are likely and thus, the optimization problem is

more complex. In comparison to unregularized training, the complexity values

of the gradient-informed models reduce from a minimum of 140 to a maximum
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Figure 10: MSE relative to LEVM and model complexity Jc of R models developed with

regularized training approaches for NLEVM case (markers represent different random initial-

ization).

of 81, while the relative MSE values are slightly increased (by 0.076 for aij and

0.035 for R).

One benefit of multi-objective optimization is that the trade-off between the

objective functions can be done after the training. We select three candidate

models of increasing complexity for aij and R, which are highlighted in light

green, yellow and dark green in Fig. 9 and 10. Table 4 demonstrates that,

in addition to avoiding overfitting and reducing model complexity, the adaptive

symbol values are on the order ofO(101) across the varying Jc values. Therefore,

we conclude that the two regularization techniques are effective.

For a detailed analysis, the models LM-L2-MC-6 (a6ij) and LM-L2-MC-30

(R30) are selected as a compromise between prediction accuracy and model

complexity. The respective model expressions are the following:
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Table 4: Training and testing MSE relative to LEVM, model complexity Jc and maximum

absolute adaptive symbol value maxi(|pi|) of aij and R models trained with regularization for

NLEVM case.

Model Strategy Train. MSE Test. MSE Jc maxi(|pi|)

aij

LM-L2-MC-21 0.8360 0.8352 38 1.15× 101

LM-L2-MC-6 0.8118 0.8109 44 1.27× 101

LM-L2-MC-14 0.7985 0.7978 59 1.30× 101

R

LM-L2-MC-26 0.6325 0.6212 40 1.37× 101

LM-L2-MC-30 0.6120 0.6012 50 1.86× 101

LM-L2-MC-19 0.5929 0.5828 68 1.64× 101

a6ij = (160.48 · I3 − 1.41) · V 1
ij + (89.48 · I2 − 1.41) · V 2

ij

− 6.95 · V 4
ij + 159.33 · V 7

ij + 111.25 · V 9
ij ,

(24)

R30 = 2k ·
((
−101.10 · I1 + 236.20 · I2 + 7.19

)
· V 1

ij

−
(
5.86× 104 · I1I2 − 1.09× 104 · I2

)
· V 6

ij

) ∂ui
∂xj

,
(25)

which reduce the number of basis tensors V kij from ten in unregularized training

to merely five and two, respectively, and contain mostly constant and linear

terms. Interestingly, despite a maxi(|pi|) value of 18.6 and applying model

complexity regularization, the LM-L2-MC-30 model achieves constants on the

order of O(104) by combining multiple adaptive symbols, which signals the

importance of the multiplied tensor V 6
ij .

Lastly, we investigate the suitability of the models in Eq. (24) and (25)

as closure models. The models are implemented in the CFD software Open-

FOAM [66] to extend the baseline k-ω SST model. We run a steady-state

RANS calculation on the numerical grid of the hybrid RANS/LES simulation

that generated the high-fidelity data [63]. Fig. 11 shows the wall-normal profiles

of the mean streamwise velocity u1 and the turbulence kinetic energy k, non-

dimensionalized by the freestream velocity uf , on the centerline at x/d = 3. We
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Figure 11: Wall-normal profiles of mean streamwise velocity (left) and turbulence kinetic

energy (right) on centerline at x/d = 3 of NLEVM case.

compare the two developed models (LM-L2-MC-6-30) to the high-fidelity hybrid

RANS/LES data, the baseline LEVM and the NLEVM developed by Haghiri

et al. [64] for the downstream region (HAG). In addition to clear improvements

over the LEVM, the LM-L2-MC-6-30 models predict the u1 profile slightly more

accurately than the HAG model. However, the most noticeable advancement of

the LM-L2-MC-6-30 models is predicting the turbulence kinetic energy on level

with the high-fidelity data. While some inaccuracies in the k profile remain due

to the unsteady nature of the flow features in this use case, the improvements

compared to the HAG model are substantial.

We summarize that adaptive symbols lead to significant improvements in

unregularized and regularized training with the GEP framework for this complex

three-dimensional flow. The two introduced regularization techniques allow the

development of implementable and more interpretable aij and R models, which,

for the first time, yield steady-state RANS predictions for k on level with the

high-fidelity data.
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4. Conclusion

The concept of adaptive symbols is introduced in this paper to advance the

development of physics closure models from high-fidelity data. The fundamen-

tally stochastic GEP framework by Weatheritt and Sandberg [1] is extended via

adaptive symbols to incorporate gradient information in order to learn accurate

numerical constants. A general, i.e. objective function independent, optimizer

(BFGS) and a specific nonlinear least squares optimizer (LM) are compared to

determine locally optimal adaptive symbol values. Furthermore, two regular-

ization methods are implemented to support the development of interpretable

and implementable closure models, which is typically associated with numerical

constants of small magnitude and model expressions of low complexity. We add

L2 regularization to the objective function for the gradient-based optimization

and define a novel structural model complexity metric, which allows assigning

custom symbol complexities in order to incentivize the usage of certain symbols.

The model complexity metric is set as an additional objective function, so that

candidate models of varying fitness and complexity can be compared after the

training.

The gradient-informed GEP framework is applied to four use cases to redis-

cover Sutherland’s law (see Section 3.1), develop laminar flame speed models

(see Section 3.2) and train two types of turbulence models for LES (see Section

3.3) and RANS calculations (see Section 3.4). All use cases demonstrate signif-

icant improvements in prediction accuracy and training convergence speed for

more and less complex optimization problems, respectively. While the BFGS

optimizer provides more flexibility for defining the objective function, the proof-

of-concept use case of rediscovering Sutherland’s law already demonstrates the

advantages of the LM optimizer for least squares objective functions. How-

ever, developing NLEVM for RANS calculations shows that the LM optimizer

can converge to extraordinarily high numerical constants without regulariza-

tion. L2 regularization is effective at maintaining small magnitude constants

and even speeds up training convergence for developing SGS models for LES.
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The model complexity objective function reduces the expression length of the

developed NLEVM and allows identifying the optimal trade-off between pre-

diction accuracy and model complexity. Furthermore, setting custom symbol

complexity values is shown to be useful to prevent an excessive usage of nonlinear

mathematical operators when developing laminar flame speed models. Finally,

the implementability of the developed turbulence models, enabled by the in-

troduced regularization methods, is demonstrated by running LES and RANS

calculations, which yield promising predictions that outperform state-of-the-art

turbulence models.

We consider the concept of adaptive symbols and the two regularization

techniques important extensions to the GEP framework to progress towards de-

veloping more accurate and generalized closure models while ensuring their im-

plementability. Future research will focus on utilizing adaptive symbols not only

in training on high-fidelty data but also in simulation-driven training, which in-

vokes the numerical solver to evaluate candidate models. This approach ensures

consistency between the training and prediction environments of the developed

models, which is a frequent issue in the practial application of data-driven clo-

sure models [67]. However, simulation-driven training is generally expensive

and gradient-based optimization requires even more objective function evalua-

tions than the gradient-free standard training approach. Identifying low-order

approximations to the numerical solver could be one path to drastically reduce

computational costs and enable the development of consistent models with ac-

curate numerical constants.
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Appendix A. Hyperparameter studies for NLEVM use case
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Figure A.12: Convergence of MSE relative to LEVM of R models trained with varying number

of adaptive symbols per scalar function for NLEVM case (shaded areas represent variation

due to random initialization).

Two hyperparameter studies are performed to determine the optimal number

of adaptive symbols per scalar function np and the L2 regularization parameter

λ for the NLEVM use case in Section 3.4. We focus on the development of

R models, which present a higher potential for improvement compared to aij

models (see Fig. 8), and limit the maximum training runtime to 60 CPU hours

in order to reduce the computational costs. The other modeling and training

settings are unchanged from Table B.6.

To identify the optimal np value, we employ the BFGS optimizer, which is

expected to require more adaptive symbols than the LM optimizer due to the

performance disadvantages observed in Sections 3.1 and 3.3. Fig. A.12 shows

the convergence of the MSE relative to the baseline LEVM, which applies no

turbulence production correction, for training with np ∈ {1, 3, 5, 7} adaptive

symbols per scalar function. While np = 1 is clearly not sufficient to reduce the

error to the level of the other approaches, utilizing three adaptive symbols per

scalar function achieves the minimum MSE value. However, the orange shaded

area indicates a high dependency on the random initialization for the np = 3
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training runs. This dependency is significantly reduced for np = 5 and np = 7.

Since np = 7 does not further improve the MSE value compared to np = 5, we

select five adaptive symbols per scalar function as the optimal trade-off between

training performance and reliability.

Table A.5: Training and testing MSE relative to LEVM, model complexity Jc and maximum

absolute adaptive symbol value maxi(|pi|) of R models trained with varying L2 regularization

parameter λ for NLEVM case.

λ Train. MSE Test. MSE Jc maxi(|pi|)

0.0 0.5644 0.5558 186 8.55× 1017

10−9 0.5790 0.5700 170 8.72× 101

10−7 0.5874 0.5770 164 1.12× 101

10−5 0.6166 0.6052 194 6.97× 100

10−3 0.6162 0.6048 226 2.18× 10−1

For the L2 regularization parameter study, the LM optimizer is selected, as

unregularized NLEVM training with this optimizer leads to very high adaptive

symbol values (see Table 3). We explore λ ∈ {0.0, 10−9, 10−7, 10−5, 10−3} and

Table A.5 lists the training and testing MSE values, the model complexities Jc

and the maximum adaptive symbol magnitudes maxi(|pi|) of the resulting R

models. Interestingly, a small amount of L2 regularization, realized by setting

λ = 10−9, is sufficient to yield p values below 102. Increasing the regulariza-

tion parameter to λ = 10−7 results in a similar testing error and reduces the

maxi(|pi|) value by nearly one order of magnitude. While the even larger val-

ues of λ = 10−5 and λ = 10−3 reduce the maxi(|pi|) value further, both MSE

values and the model complexity increase. Thus, we choose λ = 10−7 for the

regularized training in Section 3.4.

Appendix B. Modeling and training strategies
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Mécanique 347 (2019) 845–855.

[4] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT press, 2016.

[5] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep

convolutional neural networks, Advances in Neural Information Processing

Systems 25 (2012) 1097–1105.

[6] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
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