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ABSTRACT

We present global 3D radiation magnetohydrodynamical simulations of accretion onto a 6.62 solar mass
black hole with quasi-steady state accretion rates reaching 0.016 to 0.9 times the critical accretion rate, which is
defined as the accretion rate to power the Eddington luminosity assuming a 10% radiative efficiency, in different
runs. The simulations show no sign of thermal instability over hundreds of thermal timescales at 10 rg. The
energy dissipation happens close to the mid-plane in the near-critical runs and near the disk surface in the
low accretion rate run. The total radiative luminosity inside ∼20 rg is about 1% to 30% the Eddington limit,
with a radiative efficiency of about 6% and 3%, respectively, in the sub- and near-critical accretion regimes.
In both cases, self-consistent turbulence generated by the magnetorotational instability (MRI) leads to angular
momentum transfer, and the disk is supported by magnetic pressure. Outflows from the central low-density
funnel with a terminal velocity of∼0.1c are seen only in the near-critical runs. We conclude that these magnetic
pressure dominated disks are thermally stable and thicker than the α disk, and the effective temperature profiles
are much flatter than that in the α disks. The magnetic pressure of these disks are comparable within an order
of magnitude with the previous analytical magnetic pressure dominated disk model.

1. INTRODUCTION

X-ray binaries are among the most luminous X-ray objects
in the Milky Way and nonactive galaxies (Remillard & Mc-
Clintock 2006). Their total luminosity is scaled with the star
formation rate and total stellar mass of the host galaxy (Gil-
fanov 2004; Mineo et al. 2012). They are responsible for
the heating of the intergalactic medium during the epoch of
reionization in the early universe (Jeon et al. 2014). Powered
by accretion onto black holes or neutron stars, X-ray bina-
ries exhibit strong radiation and a variety forms of outflows
(Done et al. 2007). Thus, study of accretion helps us under-
stand how the radiation and outflow are generated, their inter-
actions with the environment, as well as fundamental proper-
ties of the central compact object.

However, the physics with accretion has not been fully un-
derstood. If the accretion rate is low, the accretion flow is
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believed to be hot and optically thin (Yuan & Narayan 2014).
With a moderate accretion rate, the X-ray spectrum of X-ray
binaries can be reasonably described with the standard ac-
cretion disk model (Shakura & Sunyaev 1973), in which the
viscous heat is balanced by local radiation, predicting an op-
tically thick geometrically thin multicolor disk. In the high
accretion regime, i.e., when it is close to or exceeds the rate
needed to power the Eddington luminosity, both advection
and outflow are expected to take place, and the disk could
be highly turbulent. In this case, no valid analytic models
exist to take into account all these issues. The slim disk
model (Abramowicz et al. 1988), which assumes advection
instead of radiation to be the dominant cooling mechanism,
is found to be stable at high accretion rates and has been
used for fitting the energy spectra of luminous X-ray binaries
(Watarai et al. 2001). However, the model is not complete
without considering the radiation driven outflow (Poutanen
et al. 2007), which has been ubiquitously observed in (ul-
tra)luminous X-ray binaries (Neilsen & Lee 2009; Middleton
et al. 2014, 2015; Pinto et al. 2016; Kosec et al. 2021).
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The magnetic field should play an essential role in trans-
porting the angular momentum (Balbus & Hawley 1991) and
possibly supporting the disk in addition to the thermal and
radiation pressure, though usually only the latter two are con-
sidered in analytical models. The standard disk model is
found to be thermally unstable if the radiation pressure domi-
nates (Shakura & Sunyaev 1976), while the slim disk is stable
when advection becomes the major cooling term. Begelman
& Pringle (2007) suggest that the disk could be supported
by the magnetic pressure, which saturates when the MRI is
sufficiently developed.

During the outburst of X-ray binaries, one also needs to as-
sume a hot corona to account for the observed hard, Comp-
tonized X-rays in addition to the soft thermal photons orig-
inated in the optically thick multicolor disk. The formation
of the corona has been discussed analytically, e.g., a mag-
netically driven corona (Galeev et al. 1979) or a radiation
evaporated corona (Meyer & Meyer-Hofmeister 1994; Esin
et al. 1997). Some observations suggest that the corona is
related to the jet base (Markoff et al. 2005). Massive nu-
merical simulations have shown the presence of hot gaseous
coronae (Morales Teixeira et al. 2018; Jiang et al. 2019a;
Kinch et al. 2020). Recently, X-ray polarization observations
with PolarLight (Long et al. 2022) and the Imaging X-ray
Polarimetry Explorer (Krawczynski et al. 2022) have placed
constraints on the corona geometry. Also, in order to incor-
porate the jet formation, one has to rely on numerical simu-
lations (Davis & Tchekhovskoy 2020).

It is challenging to resolve the thin disk with numerical
simulations in the subcritical regime. Hawley (2001) and
Hawley & Krolik (2001) performed global magnetohydro-
dynamic (MHD) simulations of the thin disk without consid-
ering any radiation effect. Hogg & Reynolds (2016, 2018)
added an artificial cooling function to approximate the radi-
ation transfer and keep the accretion disk thin. In the mean-
while, general relativity magnetohydrodynamic (GR-MHD)
simulations (De Villiers et al. 2003; Koide 2003; McKin-
ney & Gammie 2004; Shafee et al. 2008; Noble et al. 2009;
Schnittman et al. 2013) have been carried out to investigate
the accretion flow in the Kerr metric. The above simula-
tions mainly focused on the estimation of the accretion effi-
ciency and stress-to-pressure ratio of the thin disks. Ohsuga
(2006) conducted a 2D radiation hydrodynamic (RHD) sim-
ulation of an assumed α disk with radiation transfer taken
into account. Their simulation has a large mass input rate of
100 LEdd/c

2, such that the disk does not always stay in the
sub-Eddington thin disk state but displays super-Eddington
bursts. Recently, Morales Teixeira et al. (2018) presented
a global simulation for a subcritical thin disk with 3D GR-
RMHD codes in the magnetically arrested disk (MAD) state
with treatment of radiation transport. Fragile et al. (2018)
presented a 2D GR-RHD simulation of viscous Shakura-

Sunyaev thin accretion disk around a stellar mass black hole
employing M1 scheme for the radiation.

In recent years, more attentions have been paid to the sim-
ulation of systems with high accretion rates. The simula-
tions can be classified into three categories. The 2D simula-
tions can expand to large radii to study the large scale struc-
tures of the accretion flow owing to the fewer computational
resources that are needed. However, because of the anti-
dynamo theorem, the 2D simulations cannot sustain mag-
netorotational instability (MRI) turbulence self-consistently.
As a result, they are either purely RHD with a viscosity as-
sumption (Kawashima et al. 2009; Hashizume et al. 2015;
Kitaki et al. 2017; Ogawa et al. 2017; Kitaki et al. 2018,
2021) or RMHD with a mean field dynamo approximation
(Ohsuga et al. 2009; Ohsuga & Mineshige 2011; Sądowski
et al. 2015). The 3D GR-RMHD simulations are resource-
consuming; they can only resolve the innermost region of
the accretion flow, but offer a chance to study the impact of
black hole spin on the accretion; they use M1 scheme (Frag-
ile et al. 2014; McKinney et al. 2014; Takahashi et al. 2016;
Sądowski 2016; Wielgus et al. 2022) or variable Eddington
tensor (Asahina & Ohsuga 2022) to handle radiation trans-
port.

Our simulations adopt the psuedo-Newtonian potential but
solve the full angular resolved transport equation without as-
suming the closure relation. Using the same codes, Jiang
et al. (2014a) performed simulations of a supercritical accre-
tion flow around a stellar mass black hole in cylindrical coor-
dinates. Similar simulations in the spherical coordinates have
been done for subcritical (Jiang et al. 2019a) and supercriti-
cal (Jiang et al. 2019b) accretion onto a supermassive black
hole. In this paper, we present results from 3D RMHD simu-
lations of accretion flows around a stellar mass black hole in
spherical coordinates with different initial conditions, which
lead to various accretion rates from sub- to near-critical ac-
cretion rates. We try to extract the accretion properties, such
as the radiative efficiency, outflow rate, disk structure, and
corona temperature, as a function of accretion rate, and an-
alyze the mechanism for angular momentum transfer under
different accretion rates.

The paper is organized as follows. We describe the simu-
lation setup in Section 2. The main features of the accretion
flow from simulations are presented in Section 3, including
the time variation (3.2), inflow and outflow rates (3.3), radia-
tion and advection luminosities (3.4), 2D disk structure (3.5),
and 1D radial (3.6) and vertical (3.7) disk structures. The re-
sults are discussed in Section 4 and summarized in Section 5.

2. SIMULATION SETUP

We adopt the ideal MHD with radiative transfer in the sim-
ulation, using the same equations as in Jiang et al. (2019b,
see their Eqs. 1–6). We carry out the simulations using the
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Figure 1. Initial torus and magnetic field configuration used in the
simulations. The left side shows the initial setup with single-loop
magnetic fields (XRB0.9), while the right side shows the case with
multiple loops (XRB0.01 and XRB0.8).

code Athena++ (Stone et al. 2019) and the method described
in Jiang (2021). We assume the psuedo-Newtonian poten-
tial (Paczyńsky & Wiita 1980) to mimic the effect of general
relativity around a Schwarzschild black hole

φ = −GMBH

r − 2rg
, (1)

where G is the gravitational constant and rg ≡ GMBH/c
2

is the gravitational radius. The Compton scattering effect is
treated based on the difference of radiation and gas temper-
atures. The interactions between gas and radiation are de-
scribed by a source term in the radiation transport equation,
as in Jiang et al. (2019b, see their Eqs. 4).

We carry out three runs of simulations, namely XRB0.01,
XRB0.8, and XRB0.9 around a 6.62 M� stellar mass black
hole. The fiducial parameters used in the simulation are listed
in Table 1. We initialize a hydrostatic rotating gas torus with
a density maximum at 120 rg, with different maximum gas
densities and temperatures. The shape of the gas torus is the
same as that in Jiang et al. (2019b) and Jiang et al. (2019a).
The inner edge of the torus is at 60 rg and we fill the re-
gion outside the initial torus with a density floor of 10−8 ρ0.
The initial parameters, including the maximum density ρi,
the maximum gas temperature Ti, and the ratio between the
radiation pressure PR and the magnetic pressure PB to the
gas pressure Pg, are summarized in Table 2. The three runs
assume different initial magnetic field configurations. Mag-
netic fields with a single loop are adopted in run XRB0.9,
while those with multiple loops are used in runs XRB0.01
and XRB0.8, see Figure 1 for illustration. The different
initial parameters and the different magnetic field configu-
rations lead to different mass accretion rates for the disks
formed near the central black hole.

The simulation covers the domain of (r, θ, φ) ∈
(4rg, 1600rg) × (0, π) × (0, 2π). The highest resolution
reaches ∆r/r = ∆θ = ∆φ = 0.012 near the disk mid-
plane. We use 80 discrete angles in each cell to resolve the
angular distribution of the radiation field.

3. RESULTS

The MRI creates turbulence in the initial mass torus and
transports angular momentum outwards. The mass is slowly
accreted onto smaller radii and forms an accretion disk self-
consistently. Due to the different initial magnetic fields and
thus different magnitudes of MRI and angular momentum
transfer rates, the three runs lead to distinct mass accretion
rates. XRB0.01 has a subcritical (∼10−2 Ṁcrit) accretion
rate with sub-Eddington emission; XRB0.8 and XRB0.9 are
near-critical (0.8–0.9 Ṁcrit)1 and sub-Eddington. After the
initial transition phase, the simulation converges to a quasi-
steady state, during which the net accretion rate is relatively
constant. If the standard deviation of net accretion rate dur-
ing a time span is less than 1/3 of the average, we define this
period as the quasi-steady state and perform the analysis in
it.

3.1. Resolution for MRI turbulence

To determine if the MRI turbulence is adequately built and
well-resolved, we calculate the quality factors Qθ and Qφ
following Hawley et al. (2011) and Sorathia et al. (2012).
The quality factor is defined as the ratio between the fastest
growing MRI mode λ = 2π

√
16/15|vA|/Ω and cell size

r4θ or r sin θ4φ, respectively, along θ or φ, where vA rep-
resents the Alfvén velocity for Bθ or Bφ. The statistical
properties of MRI turbulence do not change with grid resolu-
tion if Qθ ≥ 6, Qφ ≥ 25 or both are greater than 10 (Hawley
et al. 2013). We regard this as the condition for well-resolved
MRI turbulence.

We calculate the azimuthally averaged quality factor in the
three runs at radii from 6 to 20 rg. For XRB0.01, Qθ is al-
ways larger than 15 near the disk surface and reduces from 8
at 6 rg to 6 at 20 rg near the disk mid-plane. For XRB0.8,
Qθ is found to be greater than 15 everywhere. For XRB0.9,
Qθ reduces from 10 at 6 rg to 6 at 20 rg near disk mid-plane,
but is found to be smaller than 6 occasionally in some small
regions. Qφ is over 50 in all the runs. Thus Qθ ≥ 6 and
Qφ ≥ 25 are satisfied in the majority of the central disk, e.g.,
regions with grid refinement.

3.2. Simulation histories

We calculate the net mass accretion rate at radius r as

Ṁ =

∫ 2π

0

∫ π

0

ρvrr
2 sin θdθdφ. (2)

Histories of Ṁ at 10 rg for the three runs are shown in Fig-
ure 2. After an initial transition phase of 25–55 t0 in each
run, the accretion flows reach a quasi-steady state which lasts

1 Strictly speaking, XRB0.8 and XRB0.9 are also subcritical, but we refer
them to be near-critical to distinguish from XRB0.01.
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Table 1. Fiducial Simulation Parameters

Parameters Definition Value Physical meaning

MBH 6.62M� 1.32× 1034 g Black hole mass
rg GMBH/c

2 9.76× 105 cm Gravitational radius
κes 0.34 g−1 cm2 Electron scattering opacity
LEdd 4πGMBHc/κes 9.74× 1038 erg s−1 Eddington luminosity
Ṁcrit 10LEdd/c

2 1.08× 1019 g s−1 Critical accretion rate
ρ0 10−2 g cm−3 Fiducial density
T0 107 K Fiducial temperature
P0 Ridealρ0T0 1.39× 1013 dyn cm−2 Fiducial pressure
v0

√
RidealT0 3.73× 107 cm s−1 Fiducial velocity

t0 2rg/v0 5.23× 10−2 s Fiducial time
B0

√
P0 3.73× 106 G Fiducial magnetic field

E0 aRT
4
0 7.57× 1013 erg cm−3 Fiducial radiation energy density

F0 cE0 2.27× 1024 erg cm−2 s−1 Fiducial radiation flux

NOTE—We assume an accretion efficiency of 0.1 to relate the critical accretion rate with the Eddington limit. Rideal is the ideal gas constant
with a mean molecular weight µ = 0.6. aR = 7.57× 10−15 erg cm−3 K−4 is the radiation constant.

Table 2. Initial Simulation Parameters

Variables/Units XRB0.01 XRB0.8 XRB0.9

ri/rg 120 120 120
ρi/ρ0 0.05 6 10
Ti/T0 1.38 4.55 5.16
〈PR/Pg〉 5.22× 103 53.6 35.6
〈PR/Pg〉ρ 2.50× 102 22.1 19.2

〈PB/Pg〉 2.95× 10−2 2.10× 10−4 1.34× 10−3

〈PB/Pg〉ρ 1.18× 10−2 6.22× 10−5 3.97× 10−4

∆r/r 0.012 0.012 0.012
∆θ 0.012 0.012 0.012
∆φ 0.012 0.012 0.012
Nn 80 80 80

NOTE—The center of the initial torus is at ri. The initial density
and gas temperature at the center of the torus are ρi and Ti, re-
spectively. For any quantity a, 〈a〉 is the volume-averaged value
inside the initial gas torus, and 〈a〉ρ is the density-weighted aver-
aged value inside the torus. The grid size ∆r, ∆θ, and ∆φ are for
the finest grids at the center of the torus. The number of angles
for the radiation grid is Nn in each cell.

for 20–40 t0. We emphasize that the MRI turbulence in the
quasi-steady state should be well-resolved. For instance, al-
though the mass accretion rate in XRB0.8 seems steadier in
20–50 t0 than in 55–75 t0, the MRI turbulence quality factors
in the former interval are not high enough to justify a quasi-
steady state. The Keplerian rotation period of the Paczyński-

Wiita potential at radius r is (Jiang et al. 2014a)

tK = 1510
rg

c

(
r

40rg

)1/2(
r/2rg − 1

19

)
. (3)

Therefore, the duration of each run is equivalent to ∼800 or-
bits at 10 rg. Over hundreds of thermal timescales at 10 rg,
there is no sign of thermal instability for the three runs. The
mass accretion rates in the quasi-steady state have significant
fluctuations because of MRI turbulence. The average accre-
tion rates of the three runs are listed in Table 3. The standard
deviation of the net accretion rate in XRB0.01, XRB0.8, and
XRB0.9 is 9.4%, 21.2%, and 76.8%, respectively. In general,
the standard deviation in the quasi-steady state is larger when
the accretion rate is higher, while XRB0.9 has significantly
larger standard deviation due to rapid variations of the accre-
tion rate at times around 33 t0, 48 t0 and 68 t0, which are
caused by the variation of the magnetic field strength (see the
discussion later in this section). If we omit these time inter-
vals and only consider those with a relatively steady accretion
rate, the standard deviation becomes 12.8% and 53.3%, re-
spectively, during 40–45 t0 and 51–63 t0. The fluctuation of
accretion rate has a link with the topology of the initial mag-
netic field. For the runs XRB0.01 and XRB0.8, quadruple
magnetic fields with a net B̄r component are assumed. The
net B̄r near mid-plane will shear into toroidal magnetic fields
and quickly builds up a strong magnetic pressure, which will
escape from the mid-plane due to magnetic buoyancy. The
MRI turbulence shows less variability in these cases (Pessah
& Psaltis 2005; Das et al. 2018) than in the case where the
initial magnetic field has a single loop, i.e., in XRB0.9.
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Table 3. Mass rates, powers, temperatures, and other key properties of the accretion in the three runs.

Ṁ
Ṁcrit

LR
LEdd

Lk
LEdd

LR,BH
LEdd

Lk,BH
LEdd

Ṁw
Ṁcrit

ηR ηR,BH ξw θd Tc Tph
Taxis

K
vw
c

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

XRB0.01 −0.0158 0.0096 0 −0.00068 −0.034 0 6.1% 0.4% 0 20◦ r−0.57 r−0.59 3× 109

XRB0.8 −0.82 0.22 0.0023 −0.085 −1.6 0.021 2.6% 1.0% 2.5% 56◦ r−0.38 r−0.44 2× 109 0.122
XRB0.9 −0.9 0.34 0.0059 −0.091 −2.3 0.025 3.7% 1.0% 2.7% 73◦ r−0.48 r−0.29 8× 108 0.096

NOTE— Column 1: Run name. Column 2: Normalized net mass accretion rate. Column 3: Normalized radiation luminosity. Column 4: Normalized kinematic
luminosity. Column 5: Normalized radiation luminosity swallowed by the central black hole. Column 6: Normalized kinematic luminosity swallowed by the central
black hole. Column 7: Normalized wind mass loss rate. Column 8: Efficiency of radiation. Column 9: Efficiency of swallowed radiation. Column 10: Ratio of the
true outflow mass rate to the net accretion rate. Column 11: Half open angle of the effective absorption photosphere, or the central low-density funnel, measured
from the disk mid-plane. Column 12: Mid-disk temperature as a function of radius. Column 13: Radial temperature profile on the effective absorption photosphere.
Column 14: Corona temperature. Column 15: Maximum wind/outflow velocity.
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Figure 2. Histories of the spherically integrated mass accretion rate
in the three runs at 10 rg. Negative means gas flows towards the
black hole. The quasi-steady states are marked with blue shades.
The accretion flow shows no sign of thermal runaway over hundreds
of thermal timescales at 10 rg.

Histories of the azimuthally averaged profiles (space-time
diagrams) as a function of θ for the three runs are displayed in
Figure 3, for the density ρ, gas temperature T , and azimuthal
magnetic field component Bφ at 20 rg. When the simula-
tion enters the quasi-steady state at 20 rg (marked between
two vertical black lines), there is a clear positive correlation
between the disk scale height and mass accretion rate. The
photosphere for effective absorption (green curves) and elec-
tron scattering (blue curves), which are integrated from the
rotational axis, are shown on top of the density profile; their
heights are also scaled with accretion rate. High temperature

coronae (108−109 K) can be seen above the electron scatter-
ing photosphere, consistent with the previous global simula-
tion (Jiang et al. 2019a, 2014a) and local shearing box simu-
lation (Jiang et al. 2014b). For the run XRB0.9 that has single
loop magnetic fields initially,Bφ repeatedly flips its direction
near the disk mid-plane every 10 t0 after the disk enters the
quasi-steady state, which is roughly ∼30 Keplerian rotation
periods at 20 rg. The magnetic buoyancy drives matter with
a strong magnetic field up from the disk mid-plane, forming
the so-called butterfly diagram. The butterfly diagram has
been observed in previous global simulations (Jiang et al.
2014a, 2019b,a) and local shearing box simulations (Stone
et al. 1996; Miller & Stone 2000; Davis et al. 2010; Shi et al.
2010; Simon et al. 2012; Jiang et al. 2013, 2014b; Salvesen
et al. 2016a,b), believed to be related with a dynamo process
of the MRI (Brandenburg et al. 1995; Blackman 2012). The
butterfly diagram is not seen in runs XRB0.01 and XRB0.8
that have quadruple magnetic fields initially, because their
magnetic fields have a net radial component near the disk
mid-plane, and this component always transfers to Bφ in the
same direction by MRI.

In XRB0.9, when the magnetic field flips its sign and
reaches a minimum strength, the disk shrinks to a small scale
height, suggesting that the disk is magnetic pressure sup-
ported in this near-critical case. Details about the disk pres-
sure will be discussed in Sections 3.6 and 3.7. Meanwhile,
when the magnetic field strength reaches a maximum value,
the angular momentum transport of MRI turbulence is en-
hanced and the accretion rate shows a sudden increase (see
Figure 2 and Figure 3).

3.3. Inflow and outflow rate

We calculate the time-averaged net mass accretion rate as
a function of radius using the following equation,

〈Ṁ〉 =
1

∆t

∫ 2π

0

∫ π

0

∫ t2

t1

ρvrr
2dt sin θdθdφ , (4)

where ∆t = t2 − t1 is the time duration of the quasi-steady
state. The radial profiles for the three runs are shown in Fig-
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Figure 3. Space-time diagrams of azimuthally averaged density (left column), gas temperature (middle column) and azimuthal magnetic field
component (right column) at 20 rg for the three runs. The two black vertical lines in each panel indicate the start and end of the quasi-steady
state, respectively (see Figure 2). The green and blue lines in the density diagrams indicate the position of effective absorption and electron
scattering photospheres, respectively, measured from the rotational axis.

ure 4. The net mass accretion rate keeps roughly constant up
to 20 rg for the run XRB0.01 and up to 26 rg for XRB0.8 and
XRB0.9; these are the radial ranges where the quasi-steady
state is obtained. According to Eq. (4), we are averaging over
cells with both inward and outward-moving gases. There-
fore, the net mass accretion rate can be divided into the two
components. We calculate the mass outflow rate by integrat-
ing cells with vr > 0 and the mass inflow rate over those with
vr < 0. The mass outflow and inflow rates are also shown in
Figure 4 with blue and red curves. We note that the outflow
defined in this way contains true outflows that will escape to
infinity, failed outflows (Kitaki et al. 2021) that will eventu-
ally fall back onto the accretion disk at larger radii, and tur-
bulence inside the accretion disk. The turbulent fluctuations
are the dominant component, more than an order of magni-
tude higher than the other two components. Both the mass
outflow and inflow rates are much larger than the net mass
accretion rate Ṁ . The outgoing gas emerges outside the in-
nermost stable circular orbit (ISCO) and the mass loss rate
increases quickly with radius. We find the mass inflow and
outflow rate are significantly smaller than in the AGN case
as expected by Jiang et al. (2019b). Note that our simula-
tion does not take into account the effects of general relativ-
ity thus the central black hole is non-rotating. Therefore, the
outflows seen near the ISCO are driven by the radiative and
magnetic force but with no contribution from the Blandford-
Znajec (BZ) mechanism (Blandford & Znajek 1977).

3.4. Luminosity and advection

To estimate the total radiative flux and the kinetic energy
carried away by the true outflow, which is the outflow that can
escape to infinity, we make the integration through a cylindri-
cal surface. The radius of the surface is set as the outer radius
of the quasi-steady disk, such that the accretion flow within it
has reached the quasi-steady state. The total radiative lumi-
nosity LR, kinetic luminosity Lk, and true outflow mass flux
Ṁw are calculated as

LR =

∫ r0

0

2πFR,zrdr +

∫ z0

−z0
2πFR,rr0dz ,

Lk =

∫ r0

0

2πvz

(
1

2
ρv2

)
rdr +

∫ z0

−z0
2πvr

(
1

2
ρv2

)
r0dz ,

Ṁw =

∫ r0

0

2πρvzrdr +

∫ z0

−z0
2πρvrr0dz ,

(5)
where r0 and z0 are the radius and half height of the cylindri-
cal surface, and FR is the radiation flux. We integrate through
both the upper and lower sides of the disk. Only positive FR,r

and vr are considered in the integration in order to exclude
the inflow component of the turbulent disk. For Lk and Ṁw,
we only include cells where the sum of kinetic and gravi-
tational energy is positive, which implies that the gas will
escape to infinity and be a true outflow. The time-average is
done during the quasi-steady state.

To find the suitable half height for the integration, we raise
z0 to see how it affects the radiative and kinetic luminos-
ity. The radiative luminosity LR saturates at 400–1000 rg,
while the kinetic luminosity Lk saturates at 1500 rg for the
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Figure 4. Time-averaged radial profiles of the mass accretion rate normalized to the critical rate. In each panel, the solid black lines are the
net mass accretion rates, the solid blue and red lines are the mass outflow and inflow rates, respectively. The black dashed lines indicate the
location of ISCO (6 rg). The black dotted lines indicate the outer radius of the quasi-steady disk.

three runs. Thus, these z0 are used for integration. The
radiation and outflows at these heights are mainly coming
from the innermost quasi-steady area, according to the large
scale stream lines of velocity and radiation flux. The lumi-
nosities calculated in this section only represent the lower
limits of their true values, because the integrated radiative
and mechanical luminosities for these runs increase expo-
nentially with radius beyond the quasi-steady region. In
the wind, radiative and internal energy may convert to me-
chanical energy and drive more gases to escape to infinity.
Thus, we also try to include cells where the total energy
Et = 1

2ρv
2 + γP

γ−1 +ρφ+ ER

3 is higher than zero. Lk and Ṁw

will increase by a factor of about 2 if we consider the possible
conversion of energy. On the contrary, an inverse conversion
of energy may lower Lk and Ṁw. We define the lower limit
of the radiative efficiencies as ηR = −LR/(Ṁc2). The ra-
tio of true outflow rate to net accretion rate that goes through
ISCO is calculated as ξw = −Ṁw/Ṁ . The luminosities and
efficiencies of the three runs are listed in Table 3.

Advection of radiative and kinetic energy is an important
cooling mechanism for accretion flows with high accretion
rates. To evaluate the level of advection, we calculate the ra-
diative energy LR,BH and kinetic energy Lk,BH that are swal-
lowed by the central black hole. The integration is computed
through a spherical surface at ISCO as

LR,BH =

∫ 2π

0

∫ π

0

FR,r (6rg)
2

sin θdθdφ , and

Lk,BH =

∫ 2π

0

∫ π

0

vr

(
1

2
ρv2

)
(6rg)

2
sin θdθdφ ,

(6)

over cells with negative FR,r and vr to only include the in-
flow part. The swallowed radiative fraction of the accretion
flow is defined as ηR,BH = LR,BH/(Ṁc2). The swallowed
power and its fraction in the three runs are listed in Table 3.

The radiative efficiencies for outward radiation calculated
in the three runs are around a few percent, comparable to
the values reported in Jiang et al. (2014a, 2019b). When the
mass accretion rate approaches the critical value, the advec-
tion of radiative energy becomes more important; ηR,BH rises
from 0.4% in the sub-critical case to 1.0% in the near-critical
case. Correspondingly, the radiative efficiency drops from
6.1% to ∼3% since more radiative energy is swallowed by
the black hole. The drop of radiative efficiency with increas-
ing mass accretion rate is a result of increasing advection
and outflows at the same time (ξw increases slightly from
XRB0.8 to XRB0.9). Since the radiation pressure increases
with increasing accretion rate, more gases are lost via true
outflows. In XRB0.01, where the mass accretion rate is the
lowest among the three runs, no true outflows can be de-
tected. On the other hand, the efficiency of swallowed ki-
netic power is always around 20%, with a weak correlation
with accretion rate.

3.5. Spatial structure of the disk

We calculate the time and azimuthally averaged distribu-
tions of the density ρ, radiation energy ER and gas temper-
ature Tgas in the inner region of the disk, and overlay them
with the streamlines of density weighted flow velocity, radi-
ation flux, and magnetic fields, respectively in Figure 5. We
also calculate the electron scattering and effective absorption
optical depth radially from the outer edge (about 1600 rg)
of the simulation box, and identify the photosphere locations
where the optical depth reaches unity. Note that here the def-
inition is different from that in Section 3.2, where the inte-
gration starts from the rotational axis.

The accretion flow near the disk mid-plane is dominated
by inflows in all runs, while strong outflows are formed in-
side the low-density funnel (regions encircled by the effec-
tive absorption photosphere) with a velocity of ∼0.1c ex-
cept for the low accretion rate case XRB0.01 that has no
true outflow. We define the point where the radial veloc-
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ity vr changes its sign at the axis as the stagnation point.
The stagnation points where outflows are launched are lo-
cated at about 20 rg, which is similar in the super-Eddington
AGN case (Jiang et al. 2019b). The disk becomes thicker
as the accretion rate increases, which results in a narrower
funnel. The effective absorption photosphere also thickens
with increasing accretion rate; its half opening angle mea-
sured from the disk mid-plane increases from 20◦ to 70◦

when the accretion rate rises from sub- to near-critical. As
already mentioned in Section 3.2, high temperature coronae
can be seen above the effective absorption photosphere in-
side the low-density funnel region. The temperature of coro-
nae are roughly anti-correlated with the accretion rate. The
corona size shrinks when the accretion disk thickens as a re-
sult of narrower funnels.

The radiation energy density peaks near the disk mid-
plane. However, in the case XRB0.01 where the accretion
rate is low, it has a relatively lower density in the mid-plane
but peaks at the disk surfaces. Similar distributions have
been seen in previous simulations (Jiang et al. 2019a). In
the runs XRB0.8 and XRB0.9, where the radiation luminos-
ity is ∼0.1 LEdd, the lab frame radiation flux inside the disk
is dominated by the advection term vrER, while above the
disk region the flux flows out roughly vertically at its local
radius. In the low accretion rate run XRB0.01, the photons
flows out nearly radially through the low density funnel. We
show the vertical profiles of the radiation flux divergence in
Figure 6, to examine the location of the energy dissipation.
The energy dissipation is enhanced near the disk surface in
the run XRB0.01, but near the disk mid-plane in the other
two. In other words, the energy dissipation mainly happens
inside the disk when the accretion rate is close to the criti-
cal value, but near the disk surface when the accretion rate is
low. The energy dissipation is not uniform vertically inside
the disk in all the three runs, which is different from the as-
sumption of the Shakura & Sunyaev (1973) model that the
dissipation rate is independent of the distance from the mid-
plane.

The magnetic field structure is determined by the initial
magnetic field topology. In the runs with multiple mag-
netic field loops (XRB0.01 and XRB0.8) initially, net radial
magnetic field near the disk mid-plane are induced. In the
run with a single magnetic field loop (XRB0.9) initially, net
poloidal magnetic fields are produced and thread through the
disk. However, we emphasize both magnetic fields are able
to produce magnetic pressure supported disks. The details of
disk pressure profile will be discussed below in Section 3.6
and Section 3.7.

3.6. Radial profiles of the disk

We calculate the time-averaged radial profile of any quan-
tity a as

〈〈a〉〉 =

∫ 2π

0

∫ θ2
θ1

∫ t2
t1
adt sin θdθdφ

∆t
∫ 2π

0

∫ θ2
θ1

sin θdθdφ
, (7)

where ∆t = t2 − t1 is the time duration of the quasi-steady
state, and θ1,2 correspond to the range of bound gas, which
has a total energyEt = 1

2ρv
2 + γP

γ−1 +ρφ+ ER

3 lower than 0.
The time- and mass-weighted radial profile of any quantity a
is defined as

〈〈a〉〉ρ =

∫ 2π

0

∫ θ2
θ1

∫ t2
t1
aρdt sin θdθdφ

∆t
∫ 2π

0

∫ θ2
θ1
ρ sin θdθdφ

. (8)

First, we show the radial profiles of vertical effective op-
tical depth and electron scattering optical depth in the left
two panels of Figure 7. The vertical optical depth at a spe-
cific radius r is defined as τ =

∫ π
0
κρrdθ, where κ is the

effective or electron scattering opacity. The optical depth in-
creases with increasing disk radius (except for the effective
optical depth of XRB 0.8) because of larger surface density,
and increases with increasing net mass accretion rate. The
optical depth is larger than 102 measured vertically when
the accretion rate is close to the critical value in the runs
XRB0.8 and XRB0.9 and is∼10 in the low accretion rate run
XRB0.01. Except for the innermost region near the ISCO
in the run XRB0.01, the disks are always optically thick
vertically. We also compare the radial advection timescale
of the accretion disk, τr = r/vr, with the estimated ver-
tical escape timescale, τz = H/vtran,z , for the three runs
XRB0.01, XRB0.8, and XRB0.9 within 10◦ of the disk mid-
plane, where H is the scale height of the effective absorption
photosphere, vtran = FR/ER is the effective energy trans-
port speed, and vtran,z is the vertical component. The ratio of
τz/τr is shown in the right panel of Figure 7. When the verti-
cal escape timescale exceeds the radial advection timescale,
photons will be trapped with the inward gas flow. We note
here the vtran is actually higher than the photon diffusion
speed because of the existence of other transport mecha-
nisms, such as magnetic buoyancy. The photon trapping ef-
fect becomes important when the mass accretion rate is close
to the critical rate as in runs XRB0.8 and XRB0.9, and this
effect is greatly enhanced in disk regions inside 10 rg. The
photon trapping is not important in the run XRB0.01.

We show the mass-weighted radial profiles of the gas pres-
sure Pg, isotropic radiation pressure PR = ER/3, and mag-
netic pressure PB in Figure 8. The magnetic pressure is
comparable to or dominant over the radiation pressure in the
range from ISCO to 20 rg. This is similar to the simulation
result for a supermassive black hole (Jiang et al. 2019a). The
gas pressure is 2–3 orders of magnitude lower than the radi-
ation pressure in all runs, consistent with a previous cylin-
drical simulation (Jiang et al. 2014a). We also show the
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Figure 5. Time and azimuthally averaged spatial structures of the accretion flow in the three runs. Top row: density (color maps) and
mass-weighted flow velocity (streamlines). The white solid and dashed lines represent the photosphere for effective absorption and electron
scattering, respectively. Second row: radiation energy (color maps) and radiation flux (streamlines). Third row: gas temperature (color maps)
and magnetic fields (streamlines).
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Figure 6. Time-averaged vertical profiles of the radiation flux di-
vergence at 10 rg for the three runs.

magnetic pressure contributed by the time-averaged mag-
netic field over the quasi-steady period, i.e., the non-turbulent
component (the blue dashed lines in Figure 8). In the run ini-
tially with net poloidal magnetic fields (XRB0.9 with single-
loop magnetic fields), the non-turbulent magnetic pressure
contributes less than 10%, suggesting that the magnetic pres-
sure is dominated by the turbulent component. For the other
two runs (XRB0.01 and XRB0.8 with multi-loop magnetic
fields), the total magnetic pressure is dominated by the non-
turbulent component.

Radial profiles of the stress that may account for angular
momentum transfer are also shown in Figure 8. We cal-
culate the turbulent component of Maxwell stress Sm =

〈〈−BxBφ〉〉 + 〈〈Bx〉〉 〈〈Bφ〉〉, where Bx = Br sin θ +

Bθ cos θ; the mean magnetic field component of Maxwell
stress Sm̄ = −〈〈Bx〉〉 〈〈Bφ〉〉; and the Reynolds stress Sh =

〈〈ρvxvφ〉〉 − 〈〈ρvx〉〉 〈〈vφ〉〉, where vx = vr sin θ + vθ cos θ.
Here, the angular momentum carried by the mean inflow in
the accretion disk is subtracted for the Reynolds stress. We
have SR =

〈〈
P rφR sin θ + P θφR cos θ

〉〉
for radiation stress.

The Maxwell stress is slightly higher than the Reynolds stress
for angular momentum transfer and its magnitude during the
quasi-steady state is scaled with the vertical component of
the magnetic flux, see Figure 5. Similar phenomena have
been found in various simulations (Hawley et al. 1995; Bai &
Stone 2013; Fromang et al. 2013; Simon et al. 2013; Béthune
et al. 2017; Zhu & Stone 2018; Jiang et al. 2019b). In the run
XRB0.9 with net poloidal magnetic field, the turbulent com-
ponent of Maxwell stress is larger than the mean component
by an order of magnitude. For the other two runs XRB0.01
and XRB0.8, there are large mean azimuthal magnetic fields
because of shearing of initial radial fields near the disk mid-
plane. So the mean field component of Maxwell stress is
larger than or comparable to the turbulent component. The
radiation stress plays an unimportant role in all three runs,
in particular when the accretion rate is quite low, which is in
contrast with the AGN simulation (Jiang et al. 2019a).

The effective α parameter as a function of radius is shown
on the bottom row in Figure 8. The α parameter is found in
the range of ∼0.03–0.2, and has a similar value in the three

runs. This is similar to the previous simulation in cylindrical
coordinates (Jiang et al. 2014a). The radiation stress has a
negligible contribution to the effective α because the disk is
optically thick and the mean free path of photons is small.
As a result, the anisotropic component of the radiation field
needed to produce angular momentum transfer is greatly sup-
pressed.

3.7. Vertical profiles of the disk

Figure 9 shows the vertical (poloidal) structures of the ac-
cretion flow at 10 rg in the three runs. The vertical density
profiles of these three runs are similar, all peak at the disk mid
plane and decrease towards the disk surface. The density de-
creases following an exponential relation ρ ∝ e−|z|, slower
than a Gaussian profile ρ ∝ e−z2 predicted for the isothermal
case, and it is less concentrated on the disk mid-plane com-
pared to the sub-Eddington accreting AGNs in Jiang et al.
(2019a).

For the near-critical runs XRB0.8 and XRB0.9, the gas
temperature and radiation temperature are in thermal equilib-
rium near the disk mid-plane. They peak at the mid-plane and
decrease towards the disk surface. Above the disk surface,
the radiation temperature continues to decrease, but the gas
temperature starts to increase and is significantly higher than
the radiation temperature in the funnel region. For the sub-
critical run XRB0.01, the gas temperature is always higher
than the radiation temperature, and the radiation temperature
peaks near the disk surface. This is because the effective
optical depth of the disk is low (< 10, see Figure 7). The ra-
diation and gas have not reached local thermal equilibrium.

Although the radiation pressure is comparable to the mag-
netic pressure, the factor that supports the disk is actually the
negative gradient of pressure from the disk mid-plane to the
disk surface. In XRB0.01, the slope of the magnetic pressure
is significantly higher than that of the radiation pressure; in
XRB0.8, the former is higher by at least a factor of 2 than the
latter; in XRB0.9, the former is higher by a factor of 2 than
the latter near the disk mid-plane, but they become compara-
ble at large angles. Thus, the disk is mainly supported by the
magnetic pressure gradient near the disk mid-plane, which is
similar to that found in the sub-Eddington simulation for an
AGN (Jiang et al. 2019a). The radiation pressure gradient
becomes important when the accretion rate approaches the
critical value, in particular at large scale heights.

If the magnetic pressure gradient contributes significantly
to supporting an accretion disk vertically, one may expect
to see the undulatory Parker instability (Tao & Blaes 2011).
To check that, we extract the square of the magnetic Brunt-
Väisälä frequency (Blaes et al. 2011) expressed as

N2
mag ≡ g

(
− g

c2t
− d ln ρ

dz

)
, (9)
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Figure 7. Time-averaged radial profile of vertical effective optical depth (left), electron scattering optical depth (middle), and the ratio between
the vertical escape timescale and radial advection timescale (right) for the three runs. The vertical dashed line marks the position of the ISCO
at 6 rg. The horizontal dotted line marks the place where the vertical escape timescale is comparable to the radial advection timescale (i.e. the
location where photon trapping is important).

where g = Ω2 |z| is the approximated acceleration due to the
gravity of the central black hole, ct ≡ [Γ1 (Pg + PR) /ρ]

1/2

is the adiabatic sound speed, and Γ = 4/3 is the adiabatic in-
dex. We show the vertical profiles of N2

mag/Ω
2 for the three

runs in Figure 10. The values are negative at both sides near
the mid-plane for the runs XRB0.01 and XRB0.8, suggest-
ing the presence of undulatory Parker modes. We empha-
size that the presence of Parker instability is not inconsistent
with the disk being in a quasi-steady state, because the disk
is not absolutely steady and the magnetic pressure is aver-
aged over time. For the run XRB0.9, the values are negative
only in a very limited vertical range, probably because the
radiation pressure gradient has a non-negligible contribution
in this run. For the run XRB0.8, we display a snapshot of
density at the time 65 t0 in Figure 11. We zoom in the re-
gion near the mid-plane at radius 14–20 rg to show the den-
sity fluctuations caused by Parker instability inside the disk.
Ordered magnetic fields are apparent in low density regions
while the turbulent component dominates the high density
ones. The magnetic field strength, which is shown by the
color of the stream lines, is anti-correlated with gas density.
This is a clear signature of magnetic buoyancy (Blaes et al.
2011; Jiang et al. 2014a, 2019b).

The vertical profiles of the Maxwell and Reynolds stresses
have a similar shape; both peak near the disk mid-plane and
decline toward disk surfaces. The turbulent component of
Maxwell stress has a small dip at the disk mid-plane in the
run XRB0.01 because of the subtraction of the mean field
component. The vertical profile of the radiation stress is dif-
ferent and shows a bimodal distribution. This is because the
anisotropy of radiation determines the radiation stress, which
reaches its maximum when the optical depth is close to unity.
A similar bimodal distribution is also seen in sub-Eddington
simulations around an AGN (Jiang et al. 2019a), although the
radiation stress in our case is not important.

4. DISCUSSION

4.1. Angular momentum distribution

The angular momentum distribution reflects how the mat-
ter is transferred into the central compact object. We plot the
density-weighted rotation velocity as a function of radius for
the three runs in Figure 12. The disk motion is close to Kep-
lerian outside the ISCO. These results are similar to those ob-
tained with simulations in the cylindrical coordinates (Jiang
et al. 2014a). The radial rotation velocities are marginally
super-Keplerian in all runs; this is because we have included
the motion of outflows. We show the vertical profiles of ro-
tation velocity at 10 rg in the right panel of Figure 12. Near
the disk surface, where the outflow forms, the flow becomes
super-Keplerian as the gravitational force cannot balance the
centrifugal force. The gas motion is highly super-Keplerian
for the run XRB0.8, and close to Keplerian for XRB0.9, con-
sistent with the presence of outflows seen in Figure 5. The
difference of XRB0.8 and XRB0.9 is caused by the different
initial magnetic field but not the increasing mass accretion
rate, because the trend is opposite to that from XRB0.01 to
XRB0.8. In the run XRB0.01, there is no true outflows, and
the motion above the scattering photosphere is dominated by
the inflow of low density and low angular momentum ini-
tial density floor (see Figure 5). Below the scattering pho-
tosphere but above the effective absorption photosphere, the
accretion gas dominates. This is the reason why the accre-
tion flow is sub-Keplerian at high scale heights. The domi-
nance of the Maxwell and Reynolds stresses over the radia-
tion stresses in the three runs suggests that MRI plays an im-
portant role in angular momentum transfer (Balbus & Haw-
ley 1998).

4.2. Comparison with theoretical disk models

Radiation produced inside the disk is released locally (Fig-
ure 5). The disks are nearly Keplerian in the bound gas region
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Figure 8. Time-averaged radial profile of pressure, stress and effective α for the three runs. Top row: mass-weighted radial profile of gas
(green), radiation (red) and magnetic (blue) pressures. The blue dashed line shows the magnetic pressure due to the mean magnetic field. The
black solid line indicates the magnetic pressure quoted from Begelman & Pringle (2007). Middle row: radial profile of Reynolds (green),
radiation (red) and Maxwell (blue) stresses. The blue dashed line shows the Maxwell stress of the mean magnetic field. Bottom row: radial
profile of the effective α parameter due to Reynolds (green), radiation (red), Maxwell (blue) stresses and the total (black). The vertical dashed
line marks the position of the ISCO at 6 rg.

(Figure 12). These satisfy the standard disk model assump-
tions. Contrary to the frequently-made assumption that it is
constant throughout the disk, the ratio of vertically-integrated
r–φ stress to vertically-integrated pressure (frequently called
α), drops almost an order of magnitude from the ISCO re-
gion, where it is ∼0.2, to 20 rg, where it is ∼0.03 (Figure 8).
The scale height of a radiation pressure dominated α disk is
determined by H = κesṀ

4πc

∣∣d ln Ω
d ln r

∣∣ in regions away from the

innermost radius, as described in Shakura & Sunyaev (1973).
The disk scale height near the innermost radius is smaller by
a factor 1− (rin/r)

1/2. With Ṁ = 0.0158Ṁcrit, 0.82Ṁcrit,
and 0.9Ṁcrit respectively for the runs XRB0.01, XRB0.8,
and XRB0.9, the corresponding disk scale height predicted
by the α disk model is H = 0.23rg, 12rg, and 14rg in the
same order, independent of disk radius. However, the disks
simulated in this work are thicker than the prediction of the
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Figure 11. Snapshot of density for the run XRB0.8 at the time 65 t0
overlayed with magnetic field lines.

α disk model. The scale height of effective absorption pho-
tosphere is proportional to the disk radius and it will exceed
the model prediction at radius >10 rg. The thicker disk is
consistent with that obtained from analytic analysis (Begel-
man & Pringle 2007) and numerical simulation (Sądowski
& Narayan 2016). The standard disk model also ignores the
magnetic field and assumes that the disk is gas or radiation
pressure supported, and is predicted to be thermally unstable
in the case when the radiation pressure dominates (Shakura
& Sunyaev 1976). We find that these disks are actually mag-
netic pressure supported (Figure 9). Begelman & Pringle
(2007) assume a saturated magnetic pressure PB ∼ ρcsvK
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Figure 12. Radial (left) and vertical (right) profiles of the density-
weighted rotation velocity vφ scaled with the Keplerian velocity vK.
The black dashed line in the left panel marks the position of ISCO
at 6 rg.

according to the saturated Alfvén velocity (
√
csvK), where

cs is the gas sound speed and vK is the Keplerian velocity.
As one can see in Figure 8, their PB roughly matches the
simulated pressure in XRB0.01 and XRB0.9, and is lower
than that in XRB0.8 by a factor of a few. The radiation effi-
ciency is found to be ∼3–6%, comparable to the prediction
of standard disks.

Strong outflows with a velocity of ∼0.1c are seen in runs
XRB0.8 and XRB0.9. Outflows are not included in both stan-
dard and slim disk models. However, radiation driven out-
flows are expected when the luminosity is high, especially
when it approaches the Eddington limit (Shakura & Sunyaev
1973; Watarai & Fukue 1999).

4.3. Disk properties as a function of accretion rate

The three runs allow us to picture the evolution of accre-
tion flow at different mass accretion rates. We list some key
properties of the disk in Table 3 as a function of ṁ. The
thickness of the disk (θd) is defined as the half opening an-
gle of the effective absorption photosphere, which is also the
half opening angle of the central low-density funnel. The
radiative temperature at mid-plane (Tc) and on the effective
photosphere (Tph) as a function of radius are fitted with a
power-law function in the range of 10–20 rg with a correction
for zero torque at the innermost radius, i.e., T (r) ∝ rpf1/4,
where f = 1 − (6rg/r)

1/2 and p is the power-law index.
We also show the angular distribution of outflow velocity and
mass load, which is the mass loss rate per unit solid angle, in
the funnel region for the two runs XRB0.8 and XRB0.9 in
Figure 13. The maximum wind velocity (vw) is summarized
in Table 3 except for the run XRB0.01. These relations may
help develop a semi-analytic accretion disk model that takes
into account both advection and outflows.

As the accretion rate increases, the accretion disk becomes
thicker at a given radius, and the radial profile of radiation
temperature becomes flatter both at the mid-plane and on the
effective absorption photosphere. The mid-plane tempera-
ture profile in the run XRB0.9 seems not to follow such a



3D-RMHD SIMULATIONS FOR SUB- AND NEAR-CRITICAL ACCRETION 15

trend but becomes steeper than XRB0.8, because it cannot be
well described by the radial model. The temperature profiles
are all flatter than that predicted by the standard accretion
disk (p = −0.75), but close to that predicted by slim disk
(p = −0.5) except for Tc in XRB0.8 and Tph in XRB0.9,
which may be a result of strong advection in the accretion
flow. We adopt the gas temperature at 10 rg on the rotational
axis as an estimation of the corona temperature (Taxis). The
corona cools with increasing accretion rate, with a tempera-
ture of 3 × 109 K, 2 × 109 K, and 8 × 108 K, respectively,
in XRB0.01, XRB0.8, and XRB0.9. The radiation efficiency
depends weakly upon the accretion rate. It decreases by a
factor of 2 when the accretion rate increases from 1% to
80-90% of the critical value. Also, as the accretion rate in-
creases, more outflows are launched, and thus the outflow to
net inflow rate increases with increasing accretion rate. The
outflow velocity is ∼0.1c and does not seem to vary with
accretion rate. For the two near-critical runs (XRB0.8 and
XRB0.9), the outflow velocity decreases with increasing in-
clination angle (θ), while the mass load increases with it. As
a result, an observer along the funnel edge sees more out-
flows than along the rotational axis.
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Figure 13. Angular distribution of the outflow velocity and mass
load in the runs XRB0.8 and XRB0.9.

4.4. Outflows

In Table 3, we show that in the near-critical run XRB0.8
and XRB0.9, the rate for true outflows that will escape to in-
finity is ∼0.02 Ṁcrit. The ratio of true outflow rate to net
mass accretion rate is ∼3%. In the large-scale RHD simula-
tions for supercritical accretion (Kitaki et al. 2021), they find
that the true outflow rate is 2.4 Ṁcrit given a supercritical net
mass accretion rate of 18 Ṁcrit (converted according to our
definition). Their ratio of true outflow rate to net mass ac-
cretion rate is ∼13%, which is consistent with the trend we
show in Table 3 that the ratio will grow with the increasing
net accretion rate.

5. CONCLUSIONS

In this paper, we present results with 3D global RMHD
simulations of accretion onto a 6.62M� black hole, with dif-
ferent initial magnetic configurations and consequently dif-

ferent accretion rates from a few percent to ∼ Ṁcrit. Main
results are summarized below.

Outflows start from the ISCO and the mass loss rate in-
creases rapidly with radius. We see no outflow when the
accretion rate is about 10−2 Ṁcrit. The true outflow to net
accretion rate is around 2.5% when the net accretion rate
reaches near the critical rate. The ratio of true outflow rate to
the net mass accretion rate increases with the mass accretion
rate. The peak velocity of the outflow is about 0.1 c and the
mass load of the outflow is peaked near the disk surface.

In the near-critical accretion flow, the energy dissipation
occurs mainly inside the disk, while in the sub-critical case,
the energy dissipates mainly at the disk surface. The radial
velocity is over 10 times the vertical photon diffusion speed
in the runs XRB0.8 and XRB0.9, meaning photon trapping is
important in the near-critical accretion flow. The ratio of ra-
dial velocity to the vertical photon diffusion speed increases
with increasing accretion rate, indicating the photon trapping
effect is more obvious when the mass accretion rate is higher.
The radiation efficiency is a few percent and depends weakly
upon the accretion rate. It decreases by a factor of 2 when
the accretion rate increases from 1% to 80-90% of the criti-
cal value.

The disk is dominated by the magnetic pressure. The mag-
netic pressure is larger or comparable to the radiation pres-
sure. The negative vertical gradient of magnetic pressure is
significantly larger or at least larger by a factor of 2 than the
radiation pressure within a few scale heights from the mid-
plane, indicating the disk is magnetic pressure supported ver-
tically. The value of magnetic pressure can be roughly de-
scribed by the saturated magnetic pressure as presented in
Begelman & Pringle (2007). The Maxwell and Reynolds
stresses are the main sources of angular momentum transfer,
which is in contrast with the AGN case, where the radiation
stress plays an important role Jiang et al. (2019a).
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