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Abstract: We address the nonperturbative calculation of the inclusive decay rate of
semileptonic B(s)-meson decays from lattice QCD. Precise Standard-Model predictions are
key ingredients in searches for new physics, and this type of computation may eventually
provide new insight into the long-standing tension between the inclusive and exclusive
determinations of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements |Vcb| and |Vub|.
We present results from a pilot lattice computation for Bs → Xc lνl, where the initial b quark
described by the relativistic-heavy-quark (RHQ) formalism on the lattice and the other
valence quarks discretised with domain-wall fermions are simulated approximately at their
physical quark masses. We compare two different methods for computing the decay rate
from lattice data of Euclidean n-point functions, namely Chebyshev and Backus-Gilbert
approaches. We further study how much the ground-state meson dominates the inclusive
decay rate and indicate our strategy towards a computation with a more comprehensive
systematic error budget.
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1 Introduction

The study of the b-quark sector of particle physics remains an exciting arena of preci-
sion physics, in which intriguing tensions between observations and Standard-Model (SM)
predictions have been found [1–6]. Scrutinising these findings and better controlling and re-
ducing experimental and theoretical error budgets therefore remain a crucial task. Any such
anomaly could be an indicator of new effects: while new particles may be too heavy to be
produced with energies achievable by current experimental facilities, quantum effects could
leave detectable traces in flavour-physics processes. One of these long-standing tensions
involves the measured values of the CKM matrix elements |Vcb| and |Vub| between exclusive
and inclusive decays. Apart from leptonic decays, these can been determined through the
exclusive semileptonic decay of a B into a D(∗) (or π), or through the measurement of the
inclusive decay rate, respectively. For example, one of the most recent determination of
|Vcb| finds

|Vcb| = (42.19± 0.78)× 10−3 inclusive [7, 8],

|Vcb| = (39.36± 0.68)× 10−3 exclusive [9–13] .

Lattice computations provide crucial nonperturbative input to the exclusive determination
and the required techniques in this case are well established (see reviews [13, 14]). The ex-
isting results for the inclusive decay are based on perturbative QCD. First viable theoretical
proposals for how to accomplish the computation of the inclusive decay rate on the lattice
have appeared only recently [15]. The idea relies on the extraction of a forward-scattering
matrix element through analytic continuation of lattice results obtained in an unphysical
kinematical region. In [16] it was then proposed to address decay and transition rates of
multi-hadron processes through finite-volume Euclidean four-point functions provided that
a method to extract the associated spectral function exists.

In this paper, we present work towards an improved understanding of the calculation
of the inclusive decay rate by means of a pilot study of semileptonic decays of Bs mesons
into charmed particles, namely Bs → Xc lνl, following [17], where the extraction of the
spectral function is bypassed and the decay rate is evaluated directly. Preliminary work
has been presented in [18, 19]. In particular, we improve and compare two existing methods,
namely Chebyshev [17, 20] and Backus-Gilbert [21, 22] reconstructions. Our work uses the
relativistic-heavy-quark action (RHQ) [23–25] to simulate the bottom-valence quark at its
physical mass, while the strange- and charm-valence quarks are treated with a domain-wall
fermion action [26–29], and their masses are tuned to values close to the ones found in
nature.

The structure of this paper is as follows: in Sec. 2 we describe the theoretical framework,
extending the formalism introduced in [17]. We also address the ground-state limit and its
connection with the corresponding exclusive processes. In Sec. 2.3 we describe some details
of the lattice implementation. In Sec. 2.4 we report on our analysis strategies; to keep the
discussion fluent we refer to App. A, B and C for technical details. Finally, we discuss the
details of the simulation in Sec. 3 and present our results in Sec. 4. We summarise our
findings and discuss future prospects in Sec. 5.
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Figure 1. Feynman diagram for Bs → Xc lνl.

2 Theoretical framework

2.1 The inclusive decay rate

We start by reviewing the formalism to calculate the decay rate of inclusive semileptonic
processes [30, 31]. Here, we focus on the decay Bs → Xc lνl illustrated in Fig. 1, but
the formalism is more generally applicable to other channels such as, e.g., B → Xlνl or
D(s) → Xlνl. The final state Xc represents all possible charmed-meson final states allowed
by flavour, spin and parity quantum numbers. The ground-state contribution to Xc in the
vector channel is given by the Ds meson. The leading order weak Hamiltonian for the b̄→ c̄

process is given by

HW =
4GF√

2
Vcb
[
b̄Lγ

µcL
]
[ν̄lLγµlL] , (2.1)

where GF is the Fermi constant and Vcb is the CKM matrix element for the charged-current
flavour-changing quark transition. The electroweak quark current for this process is then
Jµ = b̄Lγ

µcL = b̄γµ(1− γ5)c, which we can also write as Jµ = Vµ −Aµ with Vµ = b̄γµc and
Aµ = b̄γµγ5c.

The differential decay rate for the inclusive process depends on three kinematical vari-
ables, i.e. one more than the corresponding exclusive decay due to the freedom in the mass
of the outgoing hadrons. Neglecting QED corrections it reads

dΓ

dq2dq0dEl
=
G2

F |Vcb|2
8π3

LµνW
µν . (2.2)

The lepton contribution is given in terms of the leptonic tensor

Lµν = pµl p
ν
νl
+ pνl p

µ
νl
− gµνpl · pνl − iϵµανβpl ,αpνl ,β , (2.3)

where pl and pνl are the four-momenta of the lepton and the neutrino, respectively. The
hadronic tensor Wµν is defined as

Wµν(pBs , q) =
1

2EBs

∫
d4x eiq·x ⟨Bs(pBs)| Jµ†(x)Jν(0) |Bs(pBs)⟩

=
1

2EBs

∑
Xc

(2π)3δ(4)(pBs − q − pXc)

× ⟨Bs(pBs)| Jµ†(0) |Xc(pXc)⟩ ⟨Xc(pXc)| Jν(0) |Bs(pBs)⟩ ,

(2.4)
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where in the second line we have inserted the sum
∑

Xc
|Xc(pXc)⟩ ⟨Xc(pXc)| over a complete

set of states, which is understood to include an integration over all possible momenta pXc

under a Lorentz invariant phase-space integral, and q = pBs−pXc = pl+pνl is the transferred
momentum between the initial and final hadronic states. Note that we will consider only
the case of the Bs meson at rest, i.e. pBs = (0, 0, 0), and will henceforth suppress the
corresponding momentum label. The hadronic tensor can be decomposed into five scalar
structure functions Wi ≡Wi(q

2, v · q) as

Wµν = −gµνW1 + vµvνW2 − iϵµναβvαqβW3 + qµqνW4 + (vµqν + vνqµ)W5 , (2.5)

where v = pBs/MBs = (1, 0, 0, 0) is the velocity of the initial Bs meson at rest, and q =

(q0, q) = (MBs − ω,−pXc). From now on, we will indicate with ω = EXc the energy of
the final-state hadron. The individual components of the hadronic tensor can be expressed
conveniently in terms of the structure functions,

W00 = −W1 +W2 + q20W4 + 2q0W5 , (2.6)

Wij = δijW1 + qiqjW4 − iϵij0kqkW3 , (2.7)

W0i =Wi0 = qi(q0W4 +W5) , (2.8)

where i, j, k refers to the spatial indices 1, 2, 3. We note that contracting the spatial indices
with the three-momentum components qi, we can invert these relations and find expressions
for the structure functions in terms of the hadronic tensor and q.

Integrating over the lepton energy El = pl,0 and assuming ml = 0 we obtain the
expression for the decay rate

Γ =
G2

F |Vcb|2
24π3

∫ q2
max

0
dq2

√
q2X̄(q2) , (2.9)

where the integration over ω is contained in

X̄(q2) =
2∑

l=0

X̄(l)(q2) , X̄(l)(q2) ≡
∫ ωmax

ωmin

dωX(l)(q2) , (2.10)

and where we defined

X(0)(q2) = q2W00 +
∑
i

(q2i − q2)Wii +
∑
i ̸=j

qiWijq
j ,

X(1)(q2) = −q0
∑
i

qi(W0i +Wi0) ,

X(2)(q2) = q20
∑
i

Wii .

(2.11)

Recalling that the Ds meson is the lightest final state in this inclusive decay process, and
imposing four-momentum conservation we obtain q2max =

(
M2

Bs
−M2

Ds

)2
/(4M2

Bs
), ωmin =√

M2
Ds

+ q2 and ωmax = MBs −
√
q2 for the integral limits. X(l) and X̄(l) depend only

on q2 and not on individual components of q, as can be seen after substituting Eqs. (2.6),
(2.7) and (2.8) into the expressions (2.11).
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Starting from the decomposition of the hadronic tensor Wµν =Wµν
V V +Wµν

AA−W
µν
V A−

Wµν
AV , the X(l) can also be rewritten in a way that exposes the V −A nature of the charged

current, namely
X(l) = X

(l)
V V +X

(l)
AA −X

(l)
V A −X

(l)
AV , (2.12)

and similarly for X̄(l).

2.2 Ground-state limit

In this section we consider a hypothetical world in which only the lowest-mass final state
Ds contributes to the inclusive decay, i.e.,

Wµν → δ(ω − EDs)
1

4EBsEDs

⟨Bs(pBs)|V †
µ |Ds(pDs)⟩ ⟨Ds(pDs)|Vν |Bs(pBs)⟩ . (2.13)

In this limit we can reconstruct the inclusive decay rate from lattice simulations of the
exclusive decay, allowing us to compute the ground-state contribution. We will also use
results in this limit to devise consistency checks of the inclusive-decay setup. The required
hadronic form factors f+(q2) and f−(q2) parametrising the corresponding matrix element

⟨Ds(pDs)|Vµ |Bs(pBs)⟩ = f+(q
2)(pBs + pDs)µ + f−(q

2)(pBs − pDs)µ , (2.14)

of the exclusive decay Bs → Ds lνl can be computed separately on the lattice using more
conventional methods [32–34].

In order to compute the inclusive decay rate in this limit we now establish the relation
between the vector form factor f+(q2) and X̄V V =

∑2
l=0 X̄

(l)
V V defined in Eqs. (2.10) and

(2.11) using the decomposition in Eq. (2.12). Let us first decompose X̄V V = X̄
∥
V V + X̄⊥

V V

into longitudinal and transverse components in terms of the projectors Π⊥
µν = gµν−qµqν/q2

and Π
∥
µν = qµqν/q2, where

X
∥
V V = q2W1 + q2W2 ,

X⊥
V V = 2q2W1 ,

(2.15)

which, inverting Eq. (2.6)-(2.8) and considering q2 ̸= 0, can be expanded as

X
∥
V V = q2W 00

V V − q0
∑
i

qi(W
0i
V V +W i0

V V ) +
q20
q2

∑
i,j

qiW
ij
V V qj , (2.16)

X⊥
V V = (q20 − q2)

∑
i

W ii
V V +

∑
i,j

(
1− q20

q2

)
qiW

ij
V V qj (2.17)

=
∑
i

(
1− q20

q2

)(
q2i − q2

)
W ii

V V +
∑
i ̸=j

(
1− q20

q2

)
qiW

ij
V V qj .

Inserting the expression Eq. (2.13) into Eq. (2.16), we obtain

X̄
∥
V V =

MBs

EDs

q2|f+(q2)|2 . (2.18)
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Figure 2. Diagram of the four-point correlator. Two propagators used for the contraction are
depicted in the picture. The black one, Gb(xsrc, x1), is a propagator for the b quark from x1 to xsrc.
The green one, Σcbs(x1, xsrc), is a sequential propagator that propagates the s quark from xsrc to
xsnk, the b quark from xsnk to x2 and the c quark from x2 to x1.

In Sec. 4.4 we will use this relation to devise a cross-check of our method for the computation
of the inclusive decay rate by comparing with the exclusive decay to the ground state. Note
that because of the Dirac delta in (2.13) the integral over ω just selects the ground-state
energy for the Ds meson with a given momentum. This then implies that X̄(l) = X(l) up
to δ(ω−EDs). Further details on the ground-state limit can also be found in the Appendix
of [35].

2.3 Inclusive decays on an Euclidean space-time lattice

We now address the strategy for the computation of the inclusive decay rate on the lattice,
which follows [15, 17, 35]. The key quantity is the hadronic tensor in (2.4)

Wµν(q) =
1

2MBs

∫
dx4 eiq·x ⟨Bs| Jµ†(x)Jν(0) |Bs⟩ . (2.19)

The matrix element in Eq. (2.19) can be extracted from the time dependence of the Eu-
clidean four-point function

CSJJS
µν (q, tsnk, t2, t1, tsrc)

t2≥t1=
∑

xsnk,xsrc

〈
OS

Bs
(xsnk) J̃

†
µ (q, t2) J̃ν (q, t1)OS†

Bs
(xsrc)

〉
, (2.20)

where OS
Bs

is an interpolating operator with quantum numbers of the Bs meson and the
currents are projected onto three-momentum by a discrete Fourier transform J̃ν(q, t) =∑

x e
−iq·xJν(x, t). In this setup the Bs meson is created with zero momentum at source

position xsrc and annihilated at sink position xsnk. In Fig. 2 we show the corresponding
quark-flow diagram: the black line, Gb(xsrc, x1), is a propagator for the b quark from x1 to
xsrc whereas the green one, Σcbs(x1, xsrc), is a sequential propagator that propagates the s
quark from xsrc to xsnk, the b quark from xsnk to x2 and the c quark from x2 to x1.

The matrix element in Eq. (2.19) can be extracted in the window tsnk − t2 ≫ 0,
t1 − tsrc ≫ 0 and t2 > t1, where excited states of the Bs meson have decayed sufficiently.
By increasing the overlap of the operator OS

Bs
with the ground-state Bs state the size of

this window can be enlarged. This can be achieved by means of operator smearing, to be
detailed later. We use a superscript S in case of smearing and L in case of no smearing.
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Within the window we expect

CSJJS
µν (q, tsnk, t2, t1, tsrc) =

1

4M2
Bs

⟨0|OS
Bs
|Bs⟩⟨Bs|J̃†

µ (q, t2) J̃ν (q, t1) |Bs⟩⟨Bs|OS†
Bs
|0⟩ .

(2.21)

In order to extract the Bs forward-scattering matrix element in Eq. (2.19) we cancel the
smeared Bs wave function factors ⟨Bs|OS†

Bs
|0⟩ and ⟨0|OS

Bs
|Bs⟩ by constructing suitable ratios

with Bs meson two-point functions with zero momentum

CSL(t2, t1) =
∑
x2,x1

⟨OS
Bs
(x2)OL†

Bs
(x1)⟩

t2−t1≫0
=

1

2MBs

⟨0| OS
Bs
|Bs⟩ ⟨Bs| OL†

Bs
|0⟩ e−(t2−t1)MBs .

(2.22)

Our choice of ratio is

CSJJS
µν (q, tsnk, t2, t1, tsrc)

CSL(tsnk, t2)CLS(t1, tsrc)
−→

1
2MBs

⟨Bs| J̃†
µ(q, t2)J̃ν(q, t1) |Bs⟩

1
2MBs

| ⟨0| OL
Bs
|Bs⟩ |2

, (2.23)

where we cancel the residual factor | ⟨0| OL
Bs
|Bs⟩ |2/2MBs with its value obtained from fits

to the time-dependence of, e.g., the CLL two-point function. This leads us to define the
key observable

Cµν(q, t) =
1

2MBs

⟨Bs| J̃†
µ(q, 0)e

−ĤtJ̃ν(q, 0) |Bs⟩ , (2.24)

where we have used time-translation invariance t = t2 − t1. It is related to the hadronic
tensor defined in Eq. (2.19) through a Laplace transform

Cµν(q, t) =

∫ ∞

0
dω

1

2MBs

⟨Bs| J̃†
µ(q, 0)δ(Ĥ − ω)J̃ν(q, 0) |Bs⟩ e−ωt

=

∫ ∞

0
dωWµν(q, ω)e

−ωt ,

(2.25)

where

Wµν(q, ω) =
1

2MBs

∑
Xc

δ(ω − EXc) ⟨Bs| J̃†
µ(q, 0) |Xc⟩ ⟨Xc| J̃ν(q, 0) |Bs⟩ (2.26)

corresponds to the spectral representation of Cµν(q, t). By means of Eq. (2.23) we can
compute Cµν on the lattice from a combination of meson two- and four-point functions for
a finite and discrete set of Euclidean times t. The determination of the hadronic tensor
by means of inversion of the integral equation Eq. (2.25) therefore constitutes an ill-posed
inverse problem, similar to the extraction of hadronic spectral densities from Euclidean
correlators: while the reconstruction of Cµν from Wµν is straightforward, the other way
around is a very difficult task.

Fortunately, in order to compute the inclusive decay rate Eq. (2.9), we do not have to
compute the hadronic tensor itself, but only integrals X̄(l)(q2), where the hadronic tensor is
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smeared with the leptonic tensor integrated over the lepton energy, as defined in Eqs. (2.9)-
(2.11). In general, we can write

X̄(l)(q2) =

∫ ωmax

ωmin

dωWµν(q, ω)k(l)µν(q, ω) , (2.27)

where k(l)µν(q, ω) is a known kinematic factor that depends only on the energy and three-
momentum. Introducing a step function θ(ωmax−ω) and extending the limit of integration
as ωmax →∞ and ωmin → ω0, with ω0 ≤ ωmin we can rewrite

X̄(l)(q2) =

∫ ∞

ω0

dωWµν(q, ω)k(l)µν(q, ω)θ(ωmax − ω)

=

∫ ∞

ω0

dωWµν(q, ω)K(l)
µν(q, ω) ,

(2.28)

defining the kernel function K
(l)
µν(q, ω) = k

(l)
µν(q, ω)θ(ωmax−ω). Note that ω0 can be chosen

freely in 0 ≤ ω0 ≤ ωmin as there are no states below the ground state energy ωmin, as seen
from (2.26). For instance, for Bs → Xc lνl we expect ωmin = MDs for the contribution
from the vector channel at vanishing transferred momentum q. We will later exploit this
freedom in the choice of ω0.

Let us now discuss how to obtain X̄(l) from lattice data for Cµν(q, t). First we introduce
a smoothing of the kernel K(l)

µν by replacing the step function by a sigmoid of the form

θσ(x) =
1

1 + e−x/σ
. (2.29)

While we eventually have to take the limit σ → 0 in order to obtain the physical decay
rate, smoothing is useful to control and understand the systematic effects involved in the
strategy to compute the decay rate. Following [17], we now expand the smoothed kernel
K

(l)
σ,µν(q, ω) as a polynomial of e−aω (we will set a = 1 for simplicity) up to some order N ,

i.e.,

K(l)
σ,µν(q, ω) ≃ c(l)µν,0(q;σ) + c

(l)
µν,1(q;σ)e

−ω + · · ·+ c
(l)
µν,N (q;σ)e−ωN , (2.30)

with N coefficients c(l)µν,k(q;σ). In this way, the target quantity X̄
(l)
σ (q2), which now also

depends on the smearing parameter σ, can be computed as

X̄(l)
σ (q2) =

∫ ∞

ω0

dωWµν(q, ω)e−2ωt0K(l)
σ,µν(q, ω; t0)

≃ c(l)µν,0
∫ ∞

ω0

dωWµν(q, ω)e−2ωt0 + c
(l)
µν,1

∫ ∞

ω0

dωWµν(q, ω)e−2ωt0e−ω + . . .

+ c
(l)
µν,N

∫ ∞

ω0

dωWµν(q, ω)e−2ωt0e−ωN . (2.31)

The factor e−2ωt0 has been introduced, and compensated for in K
(l)
σ,µν(q, ω; t0) =

e2ωt0K
(l)
σ,µν(q, ω), in order to avoid the equal-time matrix element t1 = t2, see Eq. (2.20),

which contains contributions from the opposite time ordering corresponding to unphysical
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b̄scb̄ final states. We will discuss suitable choices for the free parameter t0 together with
the discussion of the analysis of actual simulation data. Inserting now Eq. (2.25) we arrive
at the compact expression

X̄(l)
σ (q2) =

N∑
k=0

c
(l)
µν,kC

µν(q, k + 2t0) , (2.32)

which relates Cµν(q, t), which can be computed on the lattice, to X̄(l)
σ (q2). The expression

is understood to be an approximation of X̄(l)
σ (q2) due the truncation to a finite value

N ; we use the same convention for all similar quantities that we address in the following
sections. Note that the order N of the polynomial approximation is now directly related
to the separation in Euclidean time of the two charged currents in the four-point function
in Eq. (2.20). What remains to be done towards the computation of the decay rate for a
given value of σ, is to carry out the phase-space integration in Eq. (2.9).

Before we close this section, let us list the explicit expressions for the kernels K(l)
σ,µν :

K
(0)
σ,00(q, ω; t0) = e2ωt0q2 θσ (ωmax − ω) , (2.33)

K
(0)
σ,ii(q, ω; t0) = e2ωt0(q2i − q2) θσ (ωmax − ω) , (2.34)

K
(0)
σ,ij(q, ω; t0)

i ̸=j
= e2ωt0qiqj θσ (ωmax − ω) , (2.35)

K
(1)
σ,0i(q, ω; t0) = −e2ωt0qiq0 θσ (ωmax − ω) , (2.36)

K
(2)
σ,ii(q, ω; t0) = e2ωt0q20 θσ (ωmax − ω) . (2.37)

For the parallel and perpendicular components at q2 ̸= 0, as defined in Sec. 2.2, we have

K
∥
σ,00(q, ω; t0) = e2ωt0q2 θσ (ωmax − ω) , (2.38)

K
∥
σ,0i(q, ω; t0) = −e2ωt0q0qi θσ (ωmax − ω) , (2.39)

K
∥
σ,ij(q, ω; t0) = e2ωt0

q20
q2
qiqj θσ (ωmax − ω) , (2.40)

K⊥
σ,ii(q, ω; t0) = e2ωt0(q2i − q2)

(
1− q20

q2

)
θσ (ωmax − ω) , (2.41)

K⊥
σ,ij(q, ω; t0)

i ̸=j
= e2ωt0qiqj

(
1− q20

q2

)
θσ (ωmax − ω) . (2.42)

All other index combinations vanish.

2.4 Data analysis

In the previous section we reduced the problem of computing the inclusive decay rate to
that of finding a suitable polynomial approximation for the kernel K(l)

σ,µν(q, ω; t0). Here we
describe two separate methods that we follow (and later compare in Sec. 4), for determin-
ing the expansion coefficients c(l)µν,k given lattice data for the ratio of correlation functions
in Eq. (2.23).

The analysis has to deal with the statistical noise from the data and also systematic
errors, e.g. those associated with the polynomial approximation. Here we consider data for
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a single lattice spacing and lattice volume, leaving discretisation and finite-volume errors
for future studies.

In principle, X̄(l)
σ (q2) as defined in Eq. (2.32), could be computed straightforwardly

from lattice data for Cµν(q, t). For a given order N , the coefficients c(l)µν,k in the power

series for the analytically known kernel K(l)
σ,µν(q, ω) could, for instance, be determined via

linear regression, allowing to construct X̄(l)
σ (q2) from the data for Cµν(q, t). The order of

the expansion is limited by the number of time slices in the window where Cµν(q, t) can be
extracted from the lattice data. Unfortunately, the exponential deterioration of the signal-
to-noise ratio with increasing Euclidean time separation t makes a meaningful signal for
the decay rate difficult to extract. What is needed is some form of regulator that provides
balance between statistical noise and systematic error due to the truncation. We proceed
with outlining two methods that achieve this: one based on Chebyshev polynomials and
the other based on the modified Backus-Gilbert method.

For the sake of readability we introduce the following notation

X̄(l)
σ (q2) =

∫ ∞

ω0

dωWµν(q, ω)e−2ωt0K(l)
σ,µν(q, ω; t0)

=
1

2MBs

∫ ∞

ω0

dωK(l)
σ,µν(q, ω; t0) ⟨Bs| J̃µ†(q, 0)e−ωt0δ(Ĥ − ω)e−ωt0 J̃ν(q, 0) |Bs⟩

= ⟨ψµ(q)|K(l)
σ,µν(q, Ĥ; t0) |ψν(q)⟩ ,

(2.43)

where we made use of Eq. (2.26) and defined |ψν(q)⟩ = e−Ĥt0 J̃ν(q, 0) |Bs⟩ /
√

2MBs . Note
that the kernel has been promoted to an operator, K(l)

σ,µν(q, Ĥ; t0).

2.4.1 Chebyshev-polynomial approximation

Chebyshev polynomials Tk(ω) defined on −1 ≤ ω ≤ 1 provide an optimal approximation
of functions under the L∞-norm. We provide a summary of basic properties in App. A.
For the case at hand we define shifted Chebyshev polynomials T̃k(ω), which are defined
in the interval ω0 ≤ ω ≤ ∞. Here, T̃k(ω) = Tk(h(ω)), and h(ω) = Ae−ω + B is a
map h : [ω0,∞) → [−1, 1], where expressions for the coefficients A and B can be found
in Eq. (A.23). The kernel function from the previous section can then be expanded up to
order N as

K(l)
σ,µν(q, ω; t0) =

1

2
c̃
(l)
µν,0T̃0(ω) +

N∑
k=1

c̃
(l)
µν,kT̃k(ω) , (2.44)

where T̃0(ω) = 1 by definition, and

T̃k(ω) =

k∑
j=0

t̃
(k)
j e−jω , (2.45)

with coefficients t̃(k)j defined and discussed in App. A.2. Making use of the Chebyshev

polynomials’ orthogonality properties, the coefficients c̃(l)µν,k are defined by projection as in
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Eq. (A.21),

c̃
(l)
µν,k =

∫ ∞

ω0

dωK(l)
σ,µν(q, ω; t0)T̃k(ω)Ωh(ω) , (2.46)

where the weight function Ωh(x) is defined in App. A. In this way, the expectation value of
the kernel operator is

⟨ψµ|K(l)
σ,µν(q, Ĥ; t0) |ψν⟩ = 1

2
c̃
(l)
µν,0 ⟨ψµ| T̃0(Ĥ) |ψν⟩+

N∑
k=1

c̃
(l)
µν,k ⟨ψµ| T̃k(Ĥ) |ψν⟩ . (2.47)

By construction, in particular thanks to the condition of Eq. (A.9), shifted Chebyshev
polynomials are bounded, |T̃k(ω)| ≤ 1. As we will discuss later, this a crucial ingredient in
the data analysis: in order to make use of this property, we divide the terms ⟨ψµ| T̃k(Ĥ) |ψν⟩
by a normalisation factor ⟨ψµ|ψν⟩ = Cµν(2t0). For a more compact notation we define

⟨K(l)
σ ⟩µν ≡

⟨ψµ|K(l)
σ,µν(q, Ĥ; t0) |ψν⟩
⟨ψµ|ψν⟩

, ⟨T̃k⟩µν ≡
⟨ψµ| T̃k(Ĥ) |ψν⟩
⟨ψµ|ψν⟩

, (2.48)

such that

⟨K(l)
σ ⟩µν =

1

2
c̃
(l)
µν,0⟨T̃0⟩µν +

N∑
k=1

c̃
(l)
µν,k⟨T̃k⟩µν , (2.49)

where in this case there is no summation on µ, ν. We refer to ⟨T̃k⟩µν as the Chebyshev
matrix elements, for which, thanks to the normalisation, |⟨T̃k⟩µν | ≤ 1. In terms of the
Chebyshev expansion the expression for X̄(l)

σ (q2) now reads

X̄(l)
σ (q2) =

∑
{µ,ν}

⟨ψµ|ψν⟩ ⟨K(l)
σ ⟩µν , (2.50)

and explicitly

X̄(0)
σ = C00(2t0)⟨K(0)

σ ⟩00 +
∑
i

Cii(2t0)⟨K(0)
σ ⟩ii +

∑
i ̸=j

Cij(2t0)⟨K(0)
σ ⟩ij , (2.51)

X̄(1)
σ =

∑
i

(
C0i(2t0)⟨K(1)

σ ⟩0i + Ci0(2t0)⟨K(1)
σ ⟩i0

)
, (2.52)

X̄(2)
σ =

∑
i

Cii(2t0)⟨K(2)
σ ⟩ii . (2.53)

The Chebyshev matrix elements can be constructed directly from the lattice data using

⟨ψµ| e−Ĥt |ψν⟩
⟨ψµ|ψν⟩

=
Cµν(t+ 2t0)

Cµν(2t0)
≡ C̄µν(t) . (2.54)
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Using the properties of shifted Chebyshev polynomials as detailed in App. A.2, we can
directly relate the matrix element ⟨T̃k⟩µν to the correlator C̄µν . In particular,

⟨T̃k⟩µν =
⟨ψµ| T̃k(Ĥ) |ψν⟩
⟨ψµ|ψν⟩

=
∑
Xc

⟨ψµ| T̃k(Ĥ) |Xc⟩ ⟨Xc|ψν⟩
⟨ψµ|ψν⟩

=
∑
Xc

k∑
j=0

t̃
(k)
j e−jEXc

⟨ψµ|Xc⟩ ⟨Xc|ψν⟩
⟨ψµ|ψν⟩

=
k∑

j=0

t̃
(k)
j C̄µν(j) , (2.55)

where we have inserted the identity I =
∑

Xc
|Xc⟩ ⟨Xc| and t̃

(k)
j are defined in (A.15).

Overall the full Chebyshev expansion of the kernel reads

⟨K(l)
σ ⟩µν =

1

2
c̃
(l)
µν,0⟨T̃0⟩µν +

N∑
k=1

c̃
(l)
µν,k⟨T̃k⟩µν

=

N∑
k=0

C̄µν(k)

N∑
j=k

c̃
(l)
µν,j

(
1− 1

2
δ0j

)
t̃
(j)
k ,

(2.56)

where we emphasise once more that the analytical expressions for the coefficients c̃(l)µν,j and

t̃
(j)
k are known and can be evaluated. Collecting the coefficients into

c̄
(l)
µν,k ≡

N∑
j=k

c̃
(l)
µν,j t̃

(j)
k

(
1− 1

2
δ0j

)
, (2.57)

we arrive at the compact expression

⟨K(l)
σ ⟩µν =

N∑
k=0

c̄
(l)
µν,kC̄µν(k) . (2.58)

While c̄(l)µν,k is known in terms of solvable analytical expressions, C̄µν(k) needs to be com-
puted on the lattice using Monte-Carlo methods. The resulting statistical error on C̄µν(k)

can lead to violations of the bound |⟨T̃k⟩µν | ≤ 1 when solving the linear system in Eq. (2.55).
This can however be avoided in a Bayesian analysis of the correlator data, imposing the
bound in terms of priors. One way to impose the constraint is to use a Gaussian prior on
some internal parameters ⟨τ̃k⟩µν ∼ N (0, 1) and convert it to a flat prior on the interval
[−1, 1] using the map f(x) = erf(x/

√
2) such that ⟨T̃k⟩µν = f(⟨τ̃k⟩µν). We refer to App. C

for a thorough discussion on the fitting procedure that we adopt.

2.4.2 Backus-Gilbert

A different approach to determine the polynomial approximation of the kernel is given by a
variant of the Backus-Gilbert method [36] proposed in [21, 37]. In this work we generalise
this approach further to allow the use of more general polynomial bases, and avoid some
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of the numerical technicalities that arise in the original version [21]. We briefly present
the idea below and refer to App. B for a more detailed discussion. Note that we adopt a
different notation with respect to the original works (we use F instead of W for the final
functional to avoid confusion with the hadronic tensor).

The central idea is to address the reconstruction of the (smeared) kernel K(l)
σ,µν of the

form

K(l)
σ,µν(q, ω; t0) =

N∑
k=0

g
(l)
µν,kP̃k(ω) , (2.59)

where P̃k(ω) =
∑k

j=0 p̃
(k)
j e−jω are a basis of functions defined on [ω0,∞), and g

(l)
µν,k ≡

g
(l)
µν,k(q, σ; t0) is a set of coefficients to be determined. In order to compute them, the

strategy is to minimise the functional

F
(l)
µν,λ[g] = (1− λ)A

(l)
µν [g]

A
(l)
µν [0]

+ λB(l)
µν [g] , (2.60)

where

A(l)
µν [g] =

∫ ∞

ω0

dωΩ(ω)

[
K(l)

σ,µν(q, ω; t0)−
N∑
k=0

g
(l)
µν,kP̃k(ω)

]2
(2.61)

is the L2-norm of the difference between the target kernel function and its reconstruction,
weighted with a smooth function Ω(ω), and

B(l)
µν [g] =

N∑
j,k=0

g
(l)
µν,jCov[C̄P

µν(j), C̄
P
µν(k)]g

(l)
µν,k (2.62)

is the variance of the corresponding channel X̄(l)
µν , with C̄P

µν(k) =
∑k

j=0 p̃
(k)
j C̄µν(j). The

functional F (l)
µν,λ encodes the information about both systematic and statistical error, whose

interplay is controlled by the parameter λ ∈ [0, 1), which in principle can be chosen by hand.
The values of the coefficients g(l)µν,k(λ) for each λ are given by the variational principle, i.e.

g
(l)
µν,k(λ) ↔

∂F
(l)
µν,λ

∂g
(l)
µν,k

= 0 . (2.63)

We can now devise a method to find the optimal λ∗. Following [37], we can simply evaluate
the functional F (l)

µν,λ at its minimum i.e. F
(l)
µν (λ) = F

(l)
µν,λ[g(λ)], which then becomes a

function of λ, and require that λ∗ maximises F (l)
µν (λ),

dF
(l)
µν (λ)
dλ

∣∣∣∣
λ∗

= 0. It is clear that this

choice corresponds to A(l)
µν [g∗]/A

(l)
µν [0] = B

(l)
µν [g∗], i.e. an optimal balance between statistical

and systematic errors. This is the prescription we follow and take g∗(l)µν,k ≡ g
(l)
µν,k(λ

∗).
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Following the steps for the Chebyshev approach we get for the kernel

⟨K(l)
σ ⟩µν =

N∑
k=0

g
∗(l)
µν,k⟨P̃k⟩µν , (2.64)

⟨P̃k⟩µν =
⟨ψµ| P̃k(Ĥ) |ψν⟩
⟨ψµ|ψν⟩

=

k∑
j=0

p̃
(k)
j

⟨ψµ| e−jĤ |ψν⟩
⟨ψµ|ψν⟩

= C̄P
µν(k + 2t0) . (2.65)

In particular, considering the domain [ω0,∞), we focus on two choices:

• exponential Backus-Gilbert: P̃k(ω) = e−kω and Ω(ω) = 1 (and set g(l)µν,0 = 0 by hand,
as in the original proposal [21]);

• Chebyshev Backus-Gilbert: P̃k(ω) = T̃k(ω), i.e. the shifted Chebyshev polynomials
with Ω(ω) = 1/

√
ea(ω−ω0) − 1 being the weight that enters in the definition of the

scalar product as in (A.13).

3 Numerical setup

We perform a pilot study using a 243 × 64 lattice with 2+1-flavour domain-wall fermion
(DWF) [38, 39] gauge-field ensembles with the Iwasaki gauge action [40] taken from the
RBC/UKQCD Collaboration [41] at lattice spacing a ≃ 0.11 fm and pion mass Mπ ≃
330MeV. The correlation functions analysed in this paper have been generated with the
Grid [42–44] and Hadrons [45] software packages. Part of the fits in the analysis have been
performed using lsqfit [46, 47].

We use the same simulation parameter RBC/UKQCD is using in the heavy-light meson
projects on exclusive semileptonic B(s) meson decays [34, 48–50]. In particular, the valence-
strange quark is simulated using DWF, whereas the valence-charm quark is simulated by
using the Möbius DWF action [28, 29]. Their masses are tuned such that mesons containing
bottom, charm and strange valence quarks have masses close to the physical ones. The
bottom quark has been simulated at its physical mass using the Columbia formulation of
the relativistic-heavy-quark (RHQ) action [24, 25], which is based on the Fermilab heavy
quark action [23]. In particular, this formulation allows to reduce the b-quark discretisation
effects of order O((m0a)

n), O(pa) and O((pa)(m0a)
n) by tuning three nonperturbative

parameters, one of them being the bare mass m0.
For the computation we average over 120 statistically independent gauge configurations,

and on each configuration the measurements are performed on 8 different linearly spaced
source time planes. We use Z2 wall sources [51–53] to improve the signal. We induce
10 different momenta in the four-point functions in Eq. (2.20) using twisted boundary
conditions [54, 55] with the same momentum in all three spatial directions. Considering
q = 2πθ/L in lattice units we have θ ≡ (θ, θ, θ), where θ indicates the twist. We choose

them such that all the momenta are linearly spaced in q2: θk = 1.90
√

k
3 for k = 0, 1, . . . , 7,

where the factor 1.90 is determined by the value of q2max = 1.83 in lattice units. We also

take θ = 1.90
√

1
9 and θ = 1.90

√
2
9 to increase the resolution in q2 for small momenta.
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Figure 3. Speed-of-light plot for the Ds meson. The numerator is the energy of the ground state
mass for a given momentum as extracted from a fit to the data. The denominator is given by either
the lattice dispersion relation or the continuum one, where the Ds mass has been determined from
a fit to the data.

We compute two-point functions for both Bs and Ds. As discussed in Sec. 2.3, for
Bs we consider three cases at zero momentum CLS

Bs
(t, tsrc), CSL

Bs
(t, tsrc) and CSS

Bs
(t, tsrc)

with different smearing combinations, as indicated by the superscripts “L” (local) and “S”
(smeared). The smeared-smeared CSS

Bs
(t, tsrc) is also used to determine the renormalisation

constant together with the three-point functions. The sources are smeared gauge-invariantly
using Jacobi iteration [56, 57] using the same parameters as in RBC/UKQCD’s study of
exclusive semileptonic decays in [50, 58, 59].

The Ds correlators are relevant mainly for the analysis of the ground-state limit in
Sec. 4.4. We consider again three different combinations of smearing at source and sink and
we induce momenta for the c quark with the available twists. We show the speed of light
from the fitted masses of the Ds for the smallest momenta, comparing with the continuum
dispersion relation and the lattice dispersion relation in Fig. 3. The latter shows excellent
agreement with the fitted energies.

We also compute three-point correlators for the Bs → Ds lνl process

CSS
BsDs,µ(q, tsnk, t, tsrc) =

∑
xsnk,x

⟨OS
Bs
(xsnk)Vµ(x, t)OS†

Ds
(xsrc)⟩ . (3.1)

Following the analysis of [34, 48, 49], we extract its form factors and compare with our
inclusive results. The momentum is carried by the charm quark through twisted boundary
conditions, q = 2πθ/L. We use a source-sink separation of tsnk − tsrc = 20 in lattice units.
The corresponding quark-flow diagram is depicted in Fig. 4.

We now move to the four-point correlators defined in Eq. (2.20), which are the building
blocks in the computation of inclusive processes. We use the same source-sink separation
as for the three-point functions, i.e., tsnk− tsrc = 20 in lattice units. The current J†

µ is fixed
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Figure 4. Three-point correlator diagram for the exclusive channel Bs → Ds lνl.

at the time slice t2 = tsrc + 14, such that the time dependence is enclosed in 0 ≤ t ≤ 14

with t = t2 − t1. For this choice we find ground state saturation at the points where we
insert the currents. In practice, referring to Fig. 2, the contractions are performed between
a b-quark propagator Gb(x1, xsrc) and a sequential propagator Σcbs(x1, xsrc). For the latter,
we first propagate the s quark to point xsnk, starting from a Z2 wall source at tsrc; we then
use it as a sequential source at fixed tsnk with zero momentum to propagate the b quark.
The b quark is propagated to point x2, and it is then used again as a source with a specific
choice of gamma matrix corresponding to the current J†

µ(x2) and the momentum insertion
to propagate the c quark.

As before, the momentum q induced through twisted boundary conditions is carried
by the c quark. Given that we are dealing with (V − A) currents, we consider all possible
combinations of J†

µ(x2) and Jν(x1), i.e. V †
µVν , V

†
µAν , A

†
µVν , A

†
µAν . However, in the limit of

massless leptons the combinations A†
µVν and V †

µAν do no contribute to the total decay rate.
Indeed, these terms are related to the structure function W3 as WAV

ij +W V A
ij = iϵij0kq

kW3,
as can be seen analysing parity in Eq. (2.7), which does not contribute to the total decay
rate for ml = 0.

The local vector and axial-vector currents used in our lattice calculation receive a finite
renormalisation. We use the almost nonperturbative prescription of [60], whereby

Vµ = ρbcV

√
Zcc
V Z

bb
V (Vµ)bare and Aµ = ρbcA

√
Zcc
V Z

bb
V (Aµ)bare . (3.2)

The subscript “bare” indicates the bare, unrenormalised heavy-light vector or axial-vector
current. Zcc

V is the vector-current renormalisation constant for domain-wall fermions. Due
to the approximate chiral symmetry of domain-wall fermions, Zcc

V = Zcc
A up to residual

chiral-symmetry-breaking effects. The renormalisation constants Zbb
V and Zcc

V are computed
from the charge of the heavy-light mesons, and are defined as

Zbb
V =

CSS
Bs

(tsnk, tsrc)

CSS
BsBs,0

(tsnk, t, tsrc)
and Zcc

V =
CSS
Ds

(tsnk, tsrc)

CSS
DsDs,0

(tsnk, t, tsrc)
, (3.3)

where both the two- and three-point functions are zero-momentum projected. The results
for Zbb

V = 9.085(50) and Zcc
V = 0.80099(21) are reported in Fig. 5. The coefficient ρbcV/A is

expected to be close to unity and can be computed in perturbation theory. Here we set it
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Figure 5. Determination of renormalisation Zbb
V (left) and Zcc

V (right) from the ratio of two- and
three-point functions defined in Eq. (3.3).

to its tree-level value, i.e. ρbcV/A = 1. This is sufficient for the qualitative study aimed at
here, where no attempt is made at taking the continuum limit.

For all the three-point and four-point functions we always average over the spatial
directions given that the momentum is the same in all three directions. Note in particular
that for the four-point correlators we have to average separately over J†

i Ji and J†
i Jk with

i ̸= k, which can be seen from Eq. (2.7).

4 Results

In this section we present and discuss the main results of our work. We first discuss
how well the kernels K(l)

µν,σ are approximated by the polynomials and then discuss the
reconstruction via Chebyshev and Backus-Gilbert methods. Eventually we combine various
analysis steps for a prediction of the inclusive decay rate. Towards the end of this section
we compare our results with the ground-state contribution. We emphasise that the work
presented here focuses on a qualitative understanding of the methods aiming at developing
reliable techniques, which in future work can be used to make phenomenologically relevant
predictions.

4.1 Polynomial approximation of the kernel

In this section we discuss the key aspects of the polynomial approximation. The two ingredi-
ents to optimise the approximation are the choice of the starting point of the approximation
ω0, and the value of t0 in (2.54). In particular, we choose t0 = 1/2 in lattice units, such
that the exponential growth of the term e2ωt0 in the kernels (2.33)-(2.37) is minimal, and
the number of data points we can use is maximised. We study two values of ω0, i.e. ω0 = 0

and ω0 = 0.9ωmin for each momentum q2. Note that this section deals purely with the
approximation of the kernel with no connection to the data; for the Backus-Gilbert method
this means that we set λ = 0.

In Fig. 6 we highlight some of the key features of our approach and in Fig. 7 we show
the approximation for different kernels K(l)

µν,σ with l = 0, 1, 2. The plots are for the smallest
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Figure 6. Comparison between Chebyshev and Backus-Gilbert (with exponential basis) approach
with N = 9 at ω0 = 0 (left) and comparison between Chebyshev approach with different values of
ω0 (right) for kernel K(0)

00 at q2 = 4.77GeV2. The solid blue line shows the target kernel function
with a smearing σ = 0.02.

and one of the largest q2 computed, respectively. Here we illustrate the case of σ = 0.02,
which smoothes the step function only mildly. Later we will also discuss the case of larger
values of σ.

Some comments are in order. First of all, we point out that with the current data set,
the polynomial order N = 9 is the maximum value available. This depends on the size
of the lattice and the choice of tsrc, t2 and tsnk in the four-point correlator. In particular,
setting a = 1, the available time slices are 2t0 ≤ t < t2 − tsrc, which in our case correspond
to 1 ≤ t < 14. On top of that, we need to make sure that t ≪ t2 − tsrc, i.e. t1 − tsrc ≫ 1:
the choice N = 9 corresponds to a separation t1 − tsrc = 4. Of course, with an improved
data set N could be chosen larger and the differences between the two approaches would
reduce further.

We also notice that the kernel with l = 0 is the most delicate to treat, as it is the one
that shows the sharpest drop to zero at the threshold. Note also that for the case l = 0 we
plotted only K(0)

00 as all the other kernels are the same up to a constant factor. Secondly,
as shown in Fig. 6 (left) the results for Chebyshev and Backus-Gilbert agree very well and
the quality of the approximation seems comparable.

The quality of the approximation varies with ω0: as shown in Fig. 6 (right), starting
the approximation as close as possible to ωmin gives the best result, as the nodes of the
interpolation (the points where the target function and its polynomial reconstruction meet)
are denser in the allowed phase space in energy (the grey shaded area). This is most evident
in the case of large q2, as ωmin is moved further away from 0. This is then the region where
we expect larger deviations for the values of X̄(l)(q2) between the two choices of ω0. Note
also that a value slightly below ωmin (e.g. 0.9ωmin) safeguards against statistical fluctuations
in the Ds-meson mass.
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Figure 7. Polynomial approximation at order N = 9 of the kernel K(l)
µν,σ(q, ω; 2t0), for l = 0

(first row), l = 1 (second row) and l = 2 (third row) with t0 = 1/2 and σ = 0.02. The left
column shows the case of the smallest q2 = 0.26GeV2, whereas the right column shows one of the
largest momentum q2 = 4.77GeV2. The grey area corresponds to the kinematically allowed range
ωmin ≤ ω ≤ ωmax for the given q2. The solid lines show the target function; the dashed lines show
the approximation with the Chebyshev approach, whereas the dotted ones show the approximation
with Backus-Gilbert with an exponential base and λ = 0.

4.2 Chebyshev polynomials and Backus-Gilbert in practice

We now discuss the quality of the data analysis as outlined in Sec. 2.4. Focusing first on the
Chebyshev-polynomial approach, the correlator data are traded with the fitted Chebyshev
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matrix elements as

C̄fit
µν(k) =

k∑
j=0

ã
(k)
j ⟨T̃j⟩µν , (4.1)

where the coefficients ã(k)j are given by the power representation of the Chebyshev polyno-
mials, see App. A. Following (2.58), the kernel with fitted Chebyshev matrix elements can
be written as

⟨K(l)
σ ⟩µν =

c̃
(l)
µν,0

2
+

N∑
k=1

c̃
(l)
µν,k⟨T̃k⟩µν =

N∑
k=0

c̄
(l)
µν,kC̄

fit
µν(k) . (4.2)

An example of the Chebyshev matrix elements obtained from the fits can be seen in Fig. 8,
where we compare two different extractions according to the starting point of the approxi-
mation ω0. The plots show the distribution of each order of the Chebyshev matrix elements
obtained through the fitting procedure described in C: each histogram plots values obtained
for all the 1000 bootstrap bins. We show the axial channel AiAi, as its signal turns out to
be particularly clean. In Fig. 9 we show results for the AiAj channel, with i ̸= j, which is
found to be the noisiest channel. Here, only few terms can be determined meaningfully by
the lattice data. Higher-order terms just follow the flat prior distribution in [−1, 1].

In both cases we observe that a larger number of Chebyshev matrix elements can
be determined meaningfully for ω0 = 0 than for ω0 = 0.9ωmin. For example, in the
AiAi channel the distribution of the former is close to the prior distribution, which is flat
between −1 and +1, for N = 9, whereas the latter start flattening at N ≳ 7. A possible
explanation is as follows: as can be seen from (A.27), ã(k)j |ω0=0 = e−0.9ωminkã

(k)
j |ω0=0.9ωmin .

The additional exponential factor largely cancels the ground-state exponential decay in the
correlation function in Eq. (4.1). Hence, the polynomial approximation has less structure
to describe and higher-order terms become less relevant. Nevertheless, in both cases the χ2

of the fits are acceptable and the reconstruction of the data as in Eq. (4.1) gives comparable
results.

We now move to the Backus-Gilbert case, for which we have so far only considered the
limit λ = 0. In this limit the coefficients of the polynomial approximation are determined
without reference to the data. We then consider the case λ ̸= 0 and, by visual inspection
of Fig. 10, find that the polynomial approximation of the kernel function gets worse. The
effect of non-zero λ can be understood as a correction to the optimal coefficients, as outlined
in Sec. B.2. In particular, if we rewrite the coefficients as g∗(l)µν,k = γ

(l)
µν,k + ϵ

∗(l)
µν,k we have

⟨K(l)
σ ⟩µν =

N∑
k=0

g
∗(l)
µν,kC̄µν(k) =

N∑
k=0

γ
(l)
µν,kC̄µν(k) +

N∑
k=0

ϵ
∗(l)
µν,kC̄µν(k) , (4.3)

where γ(l)µν are the coefficients for λ = 0 and ϵ∗(l)µν,k is a correction which takes care of reducing
the noise coming from the statistical error.
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Figure 8. Histogram of the Chebyshev matrix elements ⟨T̃k⟩AiAi
for k = 1, 2, . . . , N with N = 9

for two values ω0 = 0 (blue) and ω0 = 0.9ωmin (orange) at q2 = 0.26GeV2. The matrix element
⟨T̃0⟩AiAi = 1 by definition and is therefore not shown. This channel is one of the most precise: we
find that in both cases the fitting procedure is able to determine the matrix elements up to order
N ≃ 7, after which the distribution of the bootstrap bins remains flat.

4.3 The inclusive decay rate

In this section we present the main results of our work. In Fig. 11 we show the results of
X̄(q2) for all the simulated values of q2. For each simulation point we show the results
of three studied approaches, i.e., Chebyshev polynomials, exponential Backus-Gilbert and
Chebyshev Backus-Gilbert, all of them for both ω0 = 0 and ω0 = 0.9ωmin. We find that all
sets of three points for a given value of ω0 agree very well. However, sets with different ω0

start deviating as we increase the value of q2. As discussed in the previous section, this can
be understood in terms of the polynomial approximation of the kernel: as q2 increases, the
phase space in ω shrinks, and the two approximations start differing increasingly. Our data
indicates that the approximation improves as ω0 → ωmin. In order for the approximations
for different ω0 to be comparable the order of the polynomial needs to be increased for lower
ω0. It is also conceivable that other systematics like finite-volume or cutoff effects play a
role here. These effects are beyond the scope of this work but will have to be addressed in
future work.

In the previous section we have seen that the shape of the kernel, and hence, the
quality of approximation, varies substantially for different l and q2. The degree to which
this impacts the combined result X̄(q2) depends on the magnitude of each contribution, as
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Figure 9. Histogram of the Chebyshev matrix elements ⟨T̃k⟩AiAj with i ̸= j for k = 1, 2, . . . , N

with N = 9 for two values ω0 = 0 (blue) and ω0 = 0.9ωmin (orange) at q2 = 0.26GeV2. The results
for ⟨T̃k⟩AiAj

are less well constrained than the ones for AiAi shown in Fig. 8. The minimum of the
χ2 is determined almost entirely by the uniform priors.

illustrated in Fig. 12. The plots indicate that the largest contribution originates from the
channel with l = 2. The underlying kernel is, at least for smaller values of q2, relatively
smooth (Fig. 7). We therefore expect less sensitivity to the systematics of the polynomial
approximation in this kinematical region but more care is needed for larger q2.

We now address the stability against the order of the polynomial N . Starting from the
Chebyshev approach, we study the saturation in Fig. 13. We start from the fit with N = 9.
The plot shows the result where the first k Chebyshev matrix elements (cf. legend) are taken
from the fit, and the remaining N − k are replaced by a flat distribution. −1 ≤ ⟨Tj⟩µν ≤ 1

with j = k+1, . . . , N . We can see that the signal is dominated by small orders; for ω0 = 0,
the signal is saturated at around N ≃ 5, whereas for ω0 = 0.9ωmin saturation starts at
N ≃ 3. This is also compatible with the previous discussion on the fit of the Chebyshev
matrix elements, cf. with Fig. 8 and Fig. 9.

In order to estimate higher-order contributions, which are not constrained by our data,
we study how the results change after adding more terms in the Chebyshev distributions
on top of the N = 9 available. In this way we obtain an estimate of the approximation
up to N = 50, as in Fig. 14. We show in particular the case of distributions with random
values in Z2 = {−1, 1} for ⟨T̃k⟩µν beyond k = 9; the case with uniform distribution with
values in [−1,+1] gives similar results with slightly smaller errors. In both cases, the extra
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Figure 10. Polynomial approximation of the kernel K(l)
µν,σ(q, ω; 2t0), for l = 0 (first row), l = 1

(second row) and l = 2 (third row) with t0 = 1/2 and σ = 0.02 in the case of Backus-Gilbert with
exponential basis and λ ̸= 0. The value of λ has been chosen to be λ∗ for each plot, which gives
equal weight to the statistical and systematic errors.

terms contribute to the final error only mildly: these observations suggest that the results
obtained do not suffer from huge systematic error from the polynomial approximation. A
more complete study is however required for a reliable estimate of the underlying systematic
effects.

Concerning the Backus-Gilbert method, we investigate the stability around the chosen
value of λ∗, obtained with the prescription of Sec. 2.4.2. We focus in particular on the
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l=0

∑
{µ,ν} X̄
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µν (q2). The solid black lines separate the contributions from l = 0 (bottom), l = 1
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channel X̄(2)
AiAi

as it is the one responsible for the largest contribution. The plot is shown
in Fig. 15. We can see that for small q2 the value of X̄(q) is stable, which implies that
statistical and systematic errors are well balanced. For larger q2 the situation is more
delicate: this can be understood in terms of the reduced phase space in ω, as shown for
example in Fig. 10. A first attempt at mitigating the induced systematic effect could
be to identify the region where the two Backus-Gilbert approaches with different bases are
consistent, to identify (where possible) a plateau, and to estimate a value inside such region.
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and for case q2 = 0 for both values of ω0 as a function of k (right), where k is the number of
Chebyshev matrix elements taken from the fit.
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Figure 14. Saturation of Chebyshev polynomial approach, where N = 9 is the reference case, and
for N = 50 higher-order terms are sampled from a Z2 distribution.

In the r.h.s. plot of Fig. 15 we see, however, that this is not always the case: there is no
clear plateau region for λ. Interestingly, the statistical error of the Chebyshev approach
turns out more conservative in this case, and compatible with the result one would obtain
from Backus-Gilbert. More generally, apart from the absence of a plateau region in some
cases, both choices of polynomial basis are consistent between themselves and with the
Chebyshev-polynomial approach.

Coming back to the decay rate, to extract the final result we perform a polynomial
fit of degree two on X̄(l)(q2)/(

√
q2)2−l. The final result is then obtained integrating these

results in the physical range in q. Since this is a qualitative study, we don’t report any final
number; however, the result obtained here seems to be in the right ballpark if compared
with the Bs meson decay rate. Furthermore, all the approaches give compatible results,
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and the final statistical error is of order 5%.
We now address similarities and differences between the two approaches. The calcula-

tion of X̄(q2) aims to improve accuracy by combining the naive polynomial approximation
with a correction term δX̄(q2) that accounts for variance reduction, i.e.,

X̄(q2) = X̄naive(q2) + δX̄(q2) , (4.4)

where X̄naive(q2) would correspond to (2.32). The correction term is specific to the adopted
strategy and is given by:

• δX̄CHEB(q2) =
∑N

k=0 c̄µν,kδC̄µν(k), for the Chebyshev polynomials technique, where
δC̄µν(k) = C̄µν(k)− C̄fit

µν(k);

• δX̄BG(q2) =
∑N

k=0 ϵ
∗
µν,kC̄µν(k), for the Backus-Gilbert method, which corrects the

coefficients of the polynomial approximation as in (4.3).

In both cases, δX̄(q2) can be interpreted as a noisy zero that does not impact the naive
calculation but helps with variance reduction. This is represented in Fig. 16, which shows
the statistical error on X̄ with and without the correction term. The reduction in statistical
error is substantial. Additionally, the magnitude of the correction varies depending on ω0,
where larger values result in a greater increase in |δX̄(q2)| as q2 increases.

To conclude this section we discuss some of the aspects we neglected for the purpose
of this study. In particular, all the results presented here have been obtained with kernels
smeared by a sigmoid with a fixed σ = 0.02. Eventually however, one will first have to
first take the infinite-volume and continuum limits, followed by an extrapolation to σ → 0.
Exemplarily though, we show the σ dependence at finite lattice spacing and volume in
Fig. 17. There, one sees that for our setup and statistical precision the dependence on
σ is mild. There is an indication that it might be more pronounced for larger q2. We
argue that here the extrapolation in σ is quite delicate and could lead to misleading results.
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Indeed, increasing values of sigma would result in kernel functions quite different from the
target ones; on the other side, differences in small values of σ will not be captured by a
polynomial approximation with small value of N , as small deviations would be noticeable
only for higher degrees of approximations.

4.4 The inclusive decay rate in the ground-state limit

We now study the ground-state limit of the inclusive approach as discussed in Sec. 2.2,
which provides for a cross-check of the inclusive-decay analysis strategies. The four-point

– 27 –



0.0 0.2 0.4 0.6 0.8 1.0

q2 (GeV2)

0

1

2

3

4

X
‖ V
V

(G
eV

2
)

exclusive expected

exclusive ω0 = 0.9ωmin

inclusive ω0 = 0.9ωmin

Figure 18. Ground-state limit. The “exclusive” labels refer to the data built from the three-point
correlators as in Eq. (4.5), whereas the “inclusive” label refers to the full inclusive data analysis
starting from the four-point correlation functions. The analysis has been performed using the
Chebyshev approach.

function representing the ground state can be constructed with input from lattice data
for the exclusive decay Bs → Dslνl. In particular, restricting the discussion to the vector
channel V V , the ground-state correlator

CG
µν(t) =

1

4MBsEDs

⟨Bs|V †
µ |Ds⟩⟨Ds|Vν |Bs⟩e−EDs t , (4.5)

can be constructed from lattice data for the ratio of three-point and two-point functions

RBsDs,µ(t; q) =
√

4MBsEDs

√√√√CSS
BsDs,µ

(q, tsnk, t, tsrc)C
SS
DsBs,µ

(q, tsnk, t, tsrc)

CSS
Bs

(tsnk, tsrc)C
SS
Ds

(q, tsnk, tsrc)
, (4.6)

which converges toMµ ≡ ⟨Ds|Vµ|Bs⟩ for t≫ tsrc and t < tsnk. The matrix element can be
decomposed into form factors

Mµ = f+(q
2)(pBs + pDs)µ + f−(q

2)(pBs − pDs)µ . (4.7)

Recalling that we assume pBs = 0, we then extract f+(q2) from a constant fit to the
combination

Rf+(t; q)
q ̸=0
=

1

2MBs

(
RBsDs,0(t; q) + (MBs − EDs)

∑3
i=1RBsDs,i(t; q)∑3

i=1 qi

)
, (4.8)

which converges to f+(q
2) as RBsDs,µ(t; q) → Mµ. We consider only the three smaller

momenta to test the approach, as the signal-to-noise deteriorates rapidly with larger q2.
The result of the inclusive analysis for the channel X̄∥

V V is reported in Fig. 18. In
particular, we compare the expected value (2.18) from the extracted values of f+(q2) with
the inclusive analysis performed using the mock data CG

µν and the real data Cµν . Note
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that for the mock data the normalised correlator corresponds simply to C̄G
µν(t) = e−EDs t

by construction.
We find excellent agreement between the results from the conventional analysis for

exclusive decay on the one side, and the one based on ground-state saturation, but using
the full analysis chain adopted for the inclusive decay, on the other side. This provides a
strong test of the analysis method for inclusive decay discussed in this paper. The results
for the full inclusive decay on the other hand differ significantly from the exclusive case:
while future studies will have to establish to which extend this could be down to systematics
like finite-volume or cutoff effects, the magnitude of the effect makes appear likely to be to
a large part due to contributions from the tower of finite states contributing to the inclusive
decay. In particular, the deviation is expected to be larger for smaller q2, as the available
phase space in ω is larger and may include more excited states.

5 Conclusions and outlook

In this work, we have presented a full and flexible setup for studying inclusive semileptonic
decays in lattice QCD, focusing in particular on B(s) mesons. We incorporate and compare
Chebyshev polynomials and the Backus-Gilbert method, both of which enable efficient and
accurate calculations of the total decay rate. In particular, we improved the Chebyshev
polynomial technique through the use of a generic set of shifted polynomials in e−ω, and
we refined the statistical analysis with a bootstrap method, fully accounting for the bounds
[−1, 1]. We also showed how the result depends on the number of Chebyshev matrix ele-
ments and presented a possible way to take the limit N → ∞ to address the systematics
associated with the polynomial approximation. On the Backus-Gilbert side, we introduced
a generalisation of the method of [21] to allow for the use of arbitrary bases of polynomials.

The two methods have been shown to be compatible, and the final results for the de-
cay rate are in agreement. We compared how the two techniques deal with the variance
reduction of the final observable: the Chebyshev polynomials’ approach relies on trading
the data with Chebyshev matrix elements that fully account for the bounds, whereas the
Backus-Gilbert method achieves the same goal by modifying the coefficients of the poly-
nomial approximation to reduce the statistical error. We also studied the ground-state
limit, which offered a cross-check of the inclusive analysis technique and outlined the effect
of excited states in the inclusive decay with respect the corresponding exclusive process
Bs → Ds lνl.

Overall, our work provides a solid foundation for future studies with these techniques.
However, there are still several areas that require further investigation, including systematic
errors associated with the polynomial approximation, finite-volume effects, discretisation
errors, and the continuum limit. We intend to address these issues in future works, repeat-
ing the computations on more ensembles and also addressing similar processes involving
Ds mesons, which offer a more controlled environment. Additionally, we plan to explore
alternative observables such as hadronic and lepton moments to compare with experimen-
tal data and to gain a deeper understanding of the ground state limit, which may provide
useful insight on the physics contributing in such processes.
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A Chebyshev polynomials

We summarise here important properties of the standard Chebyshev polynomials relevant
for this work and in particular the generalisation for the shifted version extensively used in
the analysis. We refer to other sources [61] for more details.

A.1 Standard polynomials

The standard Chebyshev polynomials of the first kind are defined as

Tk : [−1, 1]→ [−1, 1] , Tk(x) = cos
(
k cos−1(x)

)
, k ∈ N . (A.1)

They are orthogonal with respect the scalar product∫ 1

−1
Tr(x)Ts(x)Ω(x) dx =

π

2
δrs (1 + δr0) , (A.2)

where Ω(x) = 1/
√
1− x2 is a weight function. Their polynomial expansion in xk is given

by

Tn(x) =
n∑

k=0

t
(n)
k xk , (A.3)

with 
t
(n)
0 = (−1)n/2 if n even

t
(n)
k = 0 if n− k odd

t
(n)
k = (−1)(n−k)/2 2k−1 n

n+k
2

(n+k
2

n−k
2

)
if k ̸= 0 and n− k even

. (A.4)

A useful property involves the representation of xn in terms of the standard Chebyshev
polynomial

pn(x) ≡ xn = 21−n

n∑′

k=0
n−k even

(
n

n−k
2

)
Tk(x) , (A.5)
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where the prime indicates that the first term is halved.

A.1.1 Expansion in Chebyshev polynomials

Chebyshev polynomials provide the best approximation of the function f : [−1, 1] → R to
any given order N in terms of the L∞-norm. In other words, the minmax error, i.e. the
maximum difference between the target function and the reconstructed one, is minimised.
In particular, for the functions considered in this work, it is guaranteed that the Chebyshev
approximation converges when N →∞. The polynomial approximation reads

f(x) ≃ 1

2
c0T0(x) +

N∑
k=1

ckTk(x) , ck =
2

π

∫ 1

−1
dx f(x)Tk(x)Ω(x) , (A.6)

where we recall that T0(x) = 1 by definition. The coefficients are given by the projection
of the target function f on the basis of Chebyshev polynomials.

A.2 Shifted Chebyshev polynomials

In general, for the purpose of this work we consider generic functions f(x) defined in an
interval [a, b], which we want to approximate with Chebyshev polynomials in e−x. To this
end we can define shifted polynomials T̃n(x) with x ∈ [a, b], such that their domain matches
the one of the target function. The relation to the standard polynomials is given by

T̃k(x) = Tk(h(x)), (A.7)

where h : [a, b] → [−1, 1] is an invertible function that maps the new domain into the
domain of the standard Chebyshev polynomials,

h(x) = Ae−x +B . (A.8)

The coefficients A and B can be determined by imposing h(a) = −1 and h(b) = +1, for
which one obtains

A = − 2

e−a − e−b
, B =

e−a − e−b

e−a + e−b
. (A.9)

The orthogonality relation for the shifted polynomials reads∫ b

a
dx T̃r(x)T̃s(x)Ωh(x) =

∫ b

a
dxTr(h(x))Ts(h(x))Ωh(x) (A.10)

where Ωh(x) is the new weight for the shifted T̃k, which depends on the map h. To show
that this recover the original integral in Eq. (A.2), we set x = h−1(y) and dx = 1

h′(h−1(y))
dy

and get ∫ h(b)

h(a)
dy Tr(y)Ts(y)

Ωh(h
−1(y))

h′(h−1(y))
; (A.11)

choosing then

Ωh(x) = Ω(h(x))|h′(x)| , (A.12)
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we finally obtain ∫ b

a
dx T̃r(x)T̃s(x)Ωh(x) =

∫ 1

−1
dy Tr(y)Ts(y)Ω(y) . (A.13)

We can also generalise the polynomial expressions and their properties. The polynomial
representation reads

T̃n(x) =
n∑

j=0

t
(n)
j h(x)j =

n∑
j=0

t
(n)
j (Ae−x +B)j =

n∑
j=0

t
(n)
j

j∑
k=0

(
j

k

)
AkBj−ke−kx . (A.14)

We can expand this sum explicitly and re-sum it in order to isolate the coefficients of e−kx.
We obtain

T̃n(x) =
n∑

k=0

t̃
(n)
k e−kx , t̃

(n)
k = Ak

n∑
j=k

(
j

k

)
t
(n)
j Bj−k =

(
A

B

)k n∑
j=k

(
j

k

)
t
(n)
j Bj . (A.15)

In a similar way we can generalise the power representation as

p̃n(x) ≡ h(x)n = 21−n

n∑′

j=0
n−j even

(
n

n−j
2

)
T̃j(x) , x ∈ [a, b] . (A.16)

Using

p̃n(x) = (Ae−x +B)n =

n∑
k=0

(
n

k

)
AkBn−ke−kx , (A.17)

and starting from p̃0 = 1 we can work out iteratively the general expression for e−nx as

e−nx =
1

An

[
p̃n(x)−

n−1∑
k=0

(
n

k

)
AkBn−ke−kx

]
. (A.18)

We can finally collect the numerical coefficients and rewrite everything in terms of the
shifted Chebyshev polynomials as

e−nx =
n∑

j=0

ã
(n)
j T̃j(x) . (A.19)

The set of coefficients {ã(n)0 , ã
(n)
1 , ..., ã

(n)
n } can be easily found numerically for each value of

n.

A.2.1 Expansion in Chebyshev polynomials with exponential map

We have now all the elements necessary to proceed with the polynomial approximation of
a generic function in e−x. For the purpose of this work we will restrict ourselves to the case
f : [x0,∞)→ R. In particular, the approximation is now

f(x) =
1

2
c̃0T̃0(x) +

N∑
k=1

c̃kT̃k(x) , c̃k =
2

π

∫ ∞

ω0

dx f(x)T̃k(x)Ωh(x) . (A.20)
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The coefficients can be rewritten more explicitly as

c̃k =
2

π

∫ π

0
dθ f(h−1(cos θ))(cos kθ) =

2

π

∫ π

0
dθ f

(
− ln

(
cos θ −B

A

))
cos(kθ) . (A.21)

The last equality follows from setting y = h(x) and inverting

x = h−1(y) = − log

(
y −B
A

)
. (A.22)

In this case, the coeffients A and B are given by

A = −2ex0 , B = 1 . (A.23)

A.2.2 Matrix relations

In this subsection we illustrate some useful properties that arise when setting x0 ̸= 0,
assuming the domain of the target function in [x0,∞). We then explicitly consider B = 1

and A = −2e−x0 to simplify the treatment, but the following discussion can be generalized
trivially. We start expressing (A.15) in matrix notation

T̃0(x)

T̃1(x)
...
...

T̃n(x)


=



t̃
(0)
0 0 · · · · · · 0

t̃
(1)
0 t̃

(1)
1 0 · · · 0

...
...

. . . . . .
...

...
...

. . . 0

t̃
(n)
0 t̃

(n)
1 · · · · · · t̃(n)n





1

e−x

...

...
e−nx


, (A.24)

and (A.19) as 

1

e−x

...

...
e−nx


=



ã
(0)
0 0 · · · · · · 0

ã
(1)
0 ã

(1)
1 0 · · · 0

...
...

. . . . . .
...

...
...

. . . 0

ã
(n)
0 ã

(n)
1 · · · · · · ã(n)n





T̃0(x)

T̃1(x)
...
...

T̃n(x)


. (A.25)

It is clear that these (n + 1) × (n + 1) matrices t̃ with (t̃)ij = t̃
(i)
j and ã with (ã)ij = ã

(i)
j

are one the inverse of the other, i.e. ã = (t̃)−1 and vice versa. From (A.15) we can further
decompose t̃(n) as

t̃ = APt , (A.26)

where Akk = Ak = (−2ex0)k is a diagonal matrix, Pjk =
(
j
k

)
is the lower triangular Pascal

matrix and the matrix t follows from (A.4). This expression makes it easy to see the effect

of x0: considering Akk

∣∣∣∣
x0 ̸=0

= ex0kAkk

∣∣∣∣
x0=0

it follows that

(t̃)nk

∣∣∣∣
x0 ̸=0

= t̃
(n)
k

∣∣∣∣
x0 ̸=0

= ex0n t̃
(n)
k

∣∣∣∣
x0=0

, (ã)nk

∣∣∣∣
x0 ̸=0

= ã
(n)
k

∣∣∣∣
x0 ̸=0

= e−x0n ã
(n)
k

∣∣∣∣
x0=0

.

(A.27)
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B Generalised Backus-Gilbert

In this appendix we reformulate and generalise the modified Backus-Gilbert approach pro-
posed in [21, 37]. The idea is to provide a more general framework which allows for the use
of an arbitrary basis and to explore the properties and numerical advantages of different
choices.

B.1 The method

The problem we want to address is the evaluation of a generic observable O of the form

O =

∫ b

a
dω ρ(ω)K(ω) , (B.1)

where K(ω) is a function we will refer to as kernel and ρ(ω) is the spectral function related
to a given correlation function

C(t) =

∫ b

a
dω ρ(ω)e−ωt . (B.2)

While typically the range of integration is a = 0 and b =∞, here we chose to leave it generic
to keep the discussion general. The idea to address the computation is to approximate the
kernel in polynomial up to some degree N , i.e. K(ω) =

∑N
j=0 gje

−ωj , such that the target
observable can be estimated as

O ≃
N∑
j=0

gj

∫ b

a
dω ρ(ω)e−ωj =

N∑
j=0

gjC(j). (B.3)

For example, a typical problem consists in the extraction of the spectral density of a correla-
tor, in which case one would consider the kernel to be a smoothed Dirac delta K(ω) = δσ(ω)

with a finite width σ, as for example a Gaussian.
The approach consists of weighting the two functionals A[g] and B[g] against each

other, where the first one provides a measure for the systematic effects coming from the
polynomial approximation, and the second one provides a measure for the variance σ2O of the
observable O, in particular, B[g] = σ2O = giσijgj , where we defined σij = Cov[C(i), C(j)].
This is equivalent to solving a minimisation problem with constraints. We can then define
a new functional Fθ as

Fθ[g] = A[g] + θ2B[g] , (B.4)

and determine the coefficients by variational principle ∂Fθ[g]
∂gj

= 0 at different values of θ2.
The value θ2 = 0 corresponds to addressing exclusively the polynomial approximation, as
prescribed by the choice of A[g], whereas the choices θ2 →∞ would correspond to dealing
purely with the variance minimisation and would result in gj = 0. Note that we can
map θ2 = λ

1−λ for simplicity, such that λ ∈ [0, 1) and θ2 → ∞ for λ → 1. Furthermore,
any relative normalisation term between the two functionals can be reabsorbed into θ2.
Depending on the choice of the basis, the coefficients gj may grow over different orders of
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magnitude and numerical instabilities may appear. This can be addressed in practice by
using arbitrary precision arithmetic.

We now discuss in detail how to generalise the modified Backus-Gilbert [21] for a generic
basis of functions, starting from the construction of A[g]. Following the original paper we
can generalise the L2-norm of the difference between the target function and the polynomial
reconstruction using an arbitrary family of basis function Pk(x) =

∑k
j=0 p

(k)
j xj defined in

an interval x ∈ [p−, p+]. As for the Chebyshev, we will deal in general with a shifted version
of this family of polynomials in e−x defined in a generic interval [a, b]

P̃k(x) =
k∑

j=0

p̃
(k)
j e−jx , x ∈ [a, b] , (B.5)

where P̃k(x) = Pk(h(x)) and h(x) = Ae−x+B is an invertible map that satisfies h(a) = p−
and h(b) = p+. The interval [a, b] has to match the range of integration of the observable
O in (B.1). The functional A[g] now reads

A[g] =

∫ b

a
dωΩ(ω)

K(ω)−
N∑
j=0

gjP̃j(ω)

2

. (B.6)

With respect to the original version we now have introduced a generic weight Ω(ω); note
that we start the approximation at P̃0(ω) (as long as Ω(ω) can be integrated in [a, b]).

If we consider only the A[g] term, the solution of the system by variational principle is
given by

A · g = K ←→ g = A−1 ·K (B.7)

where

Aij =

∫ b

a
dωΩ(ω)P̃i(ω)P̃j(ω) , (B.8)

Ki =

∫ b

a
dωΩ(ω)P̃i(ω)K(ω) , (B.9)

and g is a vector of parameters.
With this setup, the convenient choice consists in picking a set of (shifted) orthogonal

polynomials

⟨P̃i, P̃j⟩ =
∫ b

a
dxΩ(x)P̃i(x)P̃j(x) ∝ δij , (B.10)

with Ω being the actual weight that defines the scalar product. The advantage is immedi-
ately clear, as the matrix A becomes

Aij = ⟨P̃i, P̃j⟩ , (B.11)

and the coefficients are given by

gi =
1

⟨P̃i, P̃i⟩

∫ b

a
dωΩ(ω)P̃i(ω)K(ω) . (B.12)
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Since the matrix A is now diagonal, the inverse required to compute Eq. (B.7) is analytically
known. Furthermore, the solution is now equivalent to the projection on the polynomial
basis.

We can now include the B term, i.e. the covariance matrix of the data. Note that in
general we now need to consider a linear combination of the correlator at different time
slices according to the polynomial basis, i.e.

CP (k) =

∫ b

a
dω ρ(ω)P̃k(ω) =

∫ b

a
dω ρ(ω)

k∑
j=0

p̃
(k)
j e−jω =

k∑
j=0

p̃
(k)
j C(j) , (B.13)

such that

B[g] =
∑
i,j

gi σ
P
ij gj , σPij = Cov[CP (i), CP (j)] . (B.14)

The full functional is then

Fθ[g] = A[g] + θ2B[g] (B.15)

and the final solution is

gθ = F−1
θ ·K (B.16)

with

Fθ = A+ θ2B , (B.17)

where Bij = σPij . If A is diagonal (and possibly proportional to the identity), the inversion
of the matrix Fθ may be better conditioned and possible numerical instabilities arising from
an ill-conditioned matrix A may be avoided.

On top of that we could also implement some constraints that our approximation has
to fulfil. In particular, following what was done for the spectral function in [21, 37], we
can require that the polynomial approximation preserve the (weighted) area of the target
function, i.e.

∫ b

a
dωΩ(ω)

N∑
k=0

gk P̃k(ω) =

∫ b

a
dωΩ(ω)K(ω) . (B.18)

This can be expressed as

RT · gθ = r , (B.19)

where

Rk =

∫ b

a
dωΩ(ω)P̃k(ω) , r =

∫ b

a
dωΩ(ω)K(ω) . (B.20)
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Taking into account these constraints, the solution becomes

gθ = F−1
θ ·K + F−1

θ ·Rr −RT · F−1
θ ·K

RT · F−1
θ ·R

. (B.21)

The final observable then reads

Oθ ≃
N∑
j=0

gθ,jC
P (j) , (B.22)

for a given value of θ. The choice of θ is in principle arbitrary. A common choice is to take
the value θ∗ that gives equal weight to the A and B functional, A[gθ∗ ] = B[gθ∗ ], i.e. an
equal weight to statistical and systematic error. For a given choice of θ, it is important to
make sure that the value of the final observable is stable for small changes in θ, in order to
make sure that the procedure did not introduce any bias.

To conclude, note that this recovers the method first proposed in [21] if we consider
the following substitutions

P̃j(ω) → e−(j+1)ω ,

Ω(ω) → 1 ,

θ2 → λ/(1− λ) ,
F [g] → (1− λ)F [g] .

B.2 A different perspective

The previous reformulation in Sec. B.1 allows us to rely on arbitrary polynomials for the
approximation. In this general picture it is useful to consider a different perspective to
the method: we can reduce the problem to finding a suitable correction to the optimal
coefficients, i.e.

gj = γj + ϵj ,

where γj are the coefficients of the polynomial approximation coming purely from the
functional A[γ], i.e. γ = A−1K as in Eq. (B.7), and ϵj a correction that takes into account
the data. We can then rewrite the functional as

Fθ[g] = Fθ[γ + ϵ] = Fθ[γ] + δFθ[ϵ] , (B.23)

and explicitly

δFθ[ϵ] =

∫ b

a
dωΩ(ω)

[
N∑
k=0

ϵkP̃k(ω)

]2
+ θ2

(
2γiσ

P
ijϵj + ϵiσ

P
ijϵj
)
. (B.24)

The minimisation of δFθ[ϵ] gives

ϵθ = −θ2
(
A+ θ2σP

)−1
σPγ , (B.25)

which is equivalent to the previous approach. It is then clear that ϵj are by construction
coefficients that should not modify the quality of the polynomial approximations but take
care of the reduction of the statistical noise. In practice, this will of course depend on the
choice of θ.
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C Fit strategy

We discuss the general strategy for the Bayesian fit used in the analysis. We consider only
linear fits, as these are the ones directly relevant for this work. To keep the discussion very
general we consider a linear model in the form

y(p, x) =
M∑
α=1

pαXα(x) , p = (p1, p2, · · · , pM ) , (C.1)

where Xα(x) are known coefficients (which in principle can depend on x) and pα are M
parameters we want to determine.

C.1 MAP with bounds

We address the fits using Bayesian statistics, in particular using a maximum a posteriori
(MAP) probability estimate, which relies on an augmented χ2 with Gaussian priors. On
top of that, we implement generic bounds on the parameters. The way we address this is
by “wrapping” the parameters in a function pα = f(πα) which encodes the desired bounds.
In this case, the fit is performed on the new parameters πα, and the prior is introduced
accordingly. The augmented χ2 reads

χ2
aug =

N∑
i,j=1

(
yi −

M∑
α=1

f(πα)Xα(xi)

)
Cov−1

ij

(
yj −

M∑
α=1

f(πα)Xα(xj)

)
+

M∑
α=1

(πα − π̄α)2
σ̄2α

.

(C.2)

Note that the prior distributions refer to the internal parameters πα and are assumed to
be Gaussians. This allows to deal with a more generic distribution for the parameters pα,
depending on the shape of the wrapping function f . The parameters are found as usual by
imposing ∂χ2

aug

∂πγ
= 0; note that in this case the problem is no more linear due to the presence

of f .

C.2 MAP with bootstrap

As outlined in the sections above, the presence of a “wrapping” function on the parameters
pα implies that their distribution is in general non Gaussian. This is obvious from the fact
that we assume the internal parameters πα to be Gaussian and that the wrapping function
implements some bounds, therefore limiting the domain of pα. Instead of fitting the central
value of the data and estimating their error from the inverse of the curvature matrix (the
Hessian of the χ2 with respect to the parameters), it is then more convenient to adopt a
bootstrap approach, such that the procedure automatically takes into account any deviation
from Gaussianity. In practice, one would then fit all the bootstrap bins and reconstruct the
distribution of the parameters, treating the error accordingly.

The approach we adopt consists in assuming a normal distribution for the internal pa-
rameters π ∼ N (µ, σ) such that pα = f(πα) is distributed according to our prior knowledge
of the parameters. In practice, considering a set of Nb bootstrap bins with corresponding
data ybi , we perform Nb fits to the data where each time we use a different prior value
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π̄bα sampled from the normal distribution N (µ, σ). This ensure that the correct prior is
assumed for pα. For example, in the case where the data contains little information and
min(χ2

aug) ≃ min(χ2
prior), the fit give back the prior information we encoded by hand.
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