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Abstract

The A → Z(∗)h decay signature has been highlighted as possibly being the
first testable probe of the Standard Model (SM) Higgs boson discovered in 2012
(h) interacting with Higgs companion states, such as those existing in a 2-Higgs
Doublet Model (2HDM), chiefly, a CP-odd one (A). The production mechanism
of the latter at the Large Hadron Collider (LHC) takes place via bb̄-annihilation
and/or gg-fusion, depending on the 2HDM parameters, in turn dictated by the
Yukawa structure of this Beyond the SM (BSM) scenario. Among the possi-
ble incarnations of the 2HDM, we test here the so-called Type-II, for a twofold
reason. On the one hand, it intriguingly offers two very distinct parameter re-
gions compliant with the SM-like Higgs measurements, i.e., where the so-called
‘SM limit’ of the 2HDM can be achieved. On the other hand, in both con-
figurations, the AZh coupling is generally small, hence the signal is strongly
polluted by backgrounds, so that the exploitation of Machine Learning (ML)
techniques becomes extremely useful. Ours approach in this respect is a three-
prong one. Firstly, we adjust ML models to analyze all possible High Energy
Physics (HEP) data types, so as to maximize the amount of input information.
Secondly, unlike most ‘black-box’ ML approaches currently in use in the HEP
community, we exploit a (linear) Centered Kernel Alignment (CKA) similar-
ity metric to analyze the learned representations in the hidden layers, thereby
enabling an interpretative element of our results. Thirdly, we emphasise that
the proposed ML models are generic and can thus be adopted in other physics
problems. Concerning the one at hand, by using such advanced ML implemen-
tations, we ultimately show that the sensitivity of LHC searches in the l+l−bb̄
(l = e, µ) final state can significantly be improved with respect to traditional
cut-and-count analyses and/or simpler ML algorithms. This is true for all dis-
tinctive kinematical configurations involving the A → Z(∗)h decay, i.e., below
threshold (mA < mZ + mh), at its maximum (mZ + mh < mA < 2mt) and near
the onset of tt̄ pair production (mA ≈ 2mt), for which we propose Benchmark
Points (BPs) for future phenomenological analyses.
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1 Introduction

The Higgs boson discovered at the LHC in 2012 by both the ATLAS and CMS collabora-
tions [1, 2] is very much consistent with the one embedded in the SM, when it comes to
the innumerable measurements performed of its properties (i.e., mass, Yukawa and gauge
couplings, spin, CP quantum numbers). Yet, the so-called SM limit, whereby a Higgs boson
state of an enlarged Higgs sector can play the role of the SM one, exists in a variety of BSM
scenarios.

Amongst the latter, we concentrate here on the 2HDM [3], being the simplest BSM
realization of the Higgs mechanism of Electro-Weak Symmetry Breaking (EWSB) employing
the only Higgs field multiplet structure revealed by Nature so far, i.e., the doublet one. Such
a BSM scenario is rather varied in its Higgs sector as, after EWSB, it contains five physical
Higgs states. These are the A (massive, neutral and CP-odd), the H± (massive, charged
and with mixed CP) states alongside two massive neutral CP-even ones, h and H (with,
conventionally, mH > mh). Either of the latter two can be the aforementioned SM-like
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Higgs state with a mass of 125 GeV or so, i.e., the h (in which case one speaks of a ‘normal
mass hierarchy’ scenario) or the H (in which case one speaks of an ‘inverted mass hierarchy’
scenario). Herein, we assume the first configuration, such that mh = 125 GeV (with all h
couplings being SM-like). A 2HDM is phenomenologically appealing also for another reason,
it can easily comply with the strong limits from EW Precision Observables (EWPOs), as it
suffices to set the H± mass somewhat degenerate with those of the A and/or h/H states.
Finally, the 2HDM can dispense of large Flavour Changing Neutral Currents (FCNCs) by
simply invoking a Z2 symmetry between the two Higgs doublet fields, which can prevent
these from occurring at tree-level. In turn, this implies well-defined Yukawa structures
(which we will describe in detail below), depending on how the two Higgs doublets couple
to fermions, which go under the name of Type-I, -II, lepton-specific and flipped [3].

Amongst all these, we concentrate here on the Type-II case. We do so as this realization
of the 2HDM is the most challenging one phenomenologically. In fact, it implies a lower
bound on the charged Higgs mass around 600 GeV, as per constraints coming from b → sγ
transitions [4]. As mentioned, the EWPOs then require also the A and/or H states to
be rather heavy. In fact, in the 2HDM Type-II, two different regions over the (cos(β −
α), tan β) plane1 can realize the aforementioned SM-like configuration (see, e.g., Refs. [5–
8]). According to the analysis of Refs. [9, 10] (see also Ref. [6]), in the first one, the so-called
‘alignment limit’, whereby cos(β −α) → 0 (and the couplings of the h state to u- and d-type
quarks have the same sign as those in the SM) the CP-odd Higgs state is required to be
rather heavy (mA ≥ 350 GeV) while, in the second one, the so-called ‘wrong-sign scenario’,
whereby cos(β −α) can reach 0.4 or so (and the couplings of the h state to u(d)-type quarks
have the same(opposite) sign as(to) those in the SM) the A mass can be as light as 200
GeV or so.

Thus, the 2HDM Type-II offers the possibility to LHC searches of establishing sensitivity
to the presence of the A state over a wide mass range. The latter is most copiously produced
via bb̄, gg → A and can, in particular, decay via A → Z(∗)h, which can then altogether be
elevated to a new A search channel, alongside the traditional ones in τ+τ− (for mA < 2mt)
and tt̄ (for mA > 2mt) final states, since the h mass is now known rather precisely. The
importance of the A → Z(∗)h decay channel has been repeatedly emphasised in literature,
as it would simultaneously allow one to establish the presence of an extended Higgs sector
as well as the gauge structure of the theory embedding it.

There are several searches that have been carried out at the LHC looking for the A state
via the A → Zh decay, i.e., with the Z on-shell (which we will describe in a forthcoming
section), typically done by using Z → l+l− (l = e, µ) and h → bb̄ decays. However, these
all concentrated on an A mass range starting from mZ + mh ≈ 215 GeV, i.e., assuming
decays of the CP-odd Higgs boson into Z and h particles both being on-shell. While this
assumption is fully justified in the case of the Higgs boson, which has a typical width of
order 10 MeV at most (according to latest h measurements at the LHC), it is less so for the
gauge boson, for which the width-to-mass ratio is of order 3%. Off-shell effects involving the
Z boson are therefore not negligible, hence searching for the CP-odd Higgs boson decaying
into Z∗h is of phenomenological interest, as recently advocated in, e.g., [11, 12].

It is the purpose of our paper the one of proposing new searches for the bb̄, gg → A →
Z(∗)h → l+l−bb̄ channel at the LHC over an extended mA range, from values both below
mA +mZ (where the neutral weak gauge boson is off-shell, Z∗) and (far) above it (where the
neutral weak gauge boson is on-shell, Z). Furthermore, in the light of the fact that the AZh
vertex is suppressed in the 2HDM Type-II so that SM backgrounds to the aforementioned
l+l−bb̄ signature are significant, in order to establish sensitivity to this BSM scenario too,

1Here, α is the mixing angle between the h and H states and tan β is the ratio of the Vacuum Expectation
Values (VEVs) of the two doublets.
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we deploy here advanced Machine Learning (ML) methods that could well be adopted by
ATLAS and CMS, as they surpass the state-of-the-art therein in this respect.

Specifically, we carry out our search by utilizing a set of Deep Neural Networks (DNNs)
that span all data types at the LHC, e.g., kinematical distributions, energy deposit of
charged hadrons and (reconstructed) four-momenta of final state particles. A Multi-Layer
Perceptron (MLP) network that analyzes the constructed kinematical distributions of the
final state particles is also used. Then, a Convolution Neural Network (CNN), which an-
alyzes jet images that can be constructed by visualising the pT (transverse momentum)
distributions of the final state jets is exploited. Furthermore, we adopt a new method
for a Siamese Neural Network (SNN) which is a twin encoder model with two training
stages. The model maps the high dimensional input feature space to lower dimensional
space (latent space) such that the Euclidean distance between images from different classes
is maximal. For this purpose the SNN minimizes a modified contrastive loss function in the
first training stage, while in the second training stage it minimizes an entropy loss function.
Also, we adjust a Hybrid Deep Neural Network (HDNN), which is a two streams input net-
work that can analyze the kinematical distributions and constructed jet images at the same
time. Finally, to tackle the issue of sparse pixels in jet images, we utilize a suite of Graph
Neural Networks (GNNs) to examine the graphs developed from the four-momenta of the
final state particles. In this scenario, we employ four distinct GNNs: a Dynamic Graph
Convolution Neural Network (DGCNN), a Graph Convolution Network (GCN), a Graph
Attention (GAT) network, and a Graph Sample and AggreGate (GraphSAGE) network.

In order to study the influence of each network individually, we utilize a linear CKA to
evaluate the similarity among hidden layer representations. This approach is necessary as
Deep Learning (DL) models are typically considered as black boxes without innate expla-
nations for their results. Instead, we leverage CKA to analyze the information learned by
the hidden layers of each model, providing a robust explanation for each model’s individual
classification accuracy. Despite the linear CKA’s innate ability to explain the reported
model accuracy by scrutinizing the representation pattern within a model’s hidden layers,
we also use the CKA to compare the classification accuracy among different used models.

Our paper is organised as follows. In the next section, we describe the 2HDM, in
particular, its Type-II realization. We then illustrate our overall analysis strategy, followed
by a detailed description of the various ML methods that we advocate. Then we provide an
analysis of the learned representations of the hidden layers of each model thereby offering
a robust explanation of the reported accuracy of our results. After which, we present the
latter and finally conclude.

2 The 2HDM

In this section we first give a brief review of the 2HDM with type-II Yukawa couplings
focusing on the aspects of it which are relevant to our analysis. We then describe theoretical
and experimental constraints applicable to it. We finally scan over its parameter space to
extract interesting BPs to be used in our numerical analysis.

2.1 The Higgs potential

The 2HDM is an extension of the SM through a second SU(2)L Higgs doublet with the same
quantum numbers under the SM symmetry gauge group [3, 13]. The two (SU)L doublet
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fields, ϕ1 and ϕ2, are defined as

ϕ1 =
(

η+
1

(v1 + h1 + ih3)/
√

2

)
, ϕ2 =

(
η+

2
(v2 + h2 + ih4)/

√
2

)
, (1)

in terms of four (pseudo)real scalar fields hi, with i = 1, . . . , 4, two complex charged fields
η+

i , with i = 1, 2, and two Vacuum Expectation Values (VEVs) vi, with i = 1, 2. The
Lagrangian density of the model can be decomposed as

L2HDM = LSM + Lϕ + Vϕ + Yϕ , (2)

where LSM contains the kinetic terms for the SM gauge fields and fermions, Lϕ contains
those of the two Higgs doublet fields, Vϕ denotes the Higgs potential of the two doublet
fields and Yϕ is the Yukawa part which gives rise to the couplings between the Higgs fields
and SM fermions. The most general 2HDM Higgs potential is given by

Vϕ = m2
11(ϕ†

1ϕ1) + m2
22(ϕ†

2ϕ2) −
[
m2

12(ϕ†
1ϕ2) + h.c.

]
+ λ1(ϕ†

1ϕ1)2 + λ2(ϕ†
2ϕ2)2 + λ3(ϕ†

1ϕ1)(ϕ†
2ϕ2) + λ4(ϕ†

1ϕ2)(ϕ†
2ϕ1)

+ 1
2
[
λ5(ϕ†

1ϕ2)2 +
[
λ6(ϕ†

1ϕ1) + λ7(ϕ†
2ϕ2)

]
(ϕ†

1ϕ2) + H.c.
]

.

(3)

Such a potential allows for Flavor Changing Neutral Currents (FCNCs) at tree level,
though, which are strongly constrained by experimental measurements. Adding a global
Z2 symmetry to the potential, with (ϕ1, ϕ2) → (ϕ1, −ϕ2) transformations, prevents the
existence of FCNC sources in it [14]. However, the most general Yukawa interaction violates
such a Z2 symmetry, thus leading again to potentially FCNCs at tree level [15]. Thus, to
tame the latter, only specific Yukawa structures, known as the aforementioned Types [3], are
allowed. However, to enable EWSB compliant with the measured particle spectrum of the
SM, a softly broken Z2 symmetry should be enabled, by requiring a small but non-vanishing
mass m2

12(ϕ†
1ϕ2) and setting λ6 = λ7 = 0. (Herein, softly means that the model still respects

the Z2 symmetry at small distances in all order of perturbation theory.) The ‘soft’ mass
m2

12 and λ5 are in general complex, though, with two phases m2
12 = |m2

12|eiη(m2
12) and

λ5 = |λ5|eiη(λ5) [16, 17]. In the following, we will consider a real potential that preserves
the CP symmetry, thus with vanishing complex phases, η(m2

12) = η(λ5) = 0. In such a
configuration of the 2HDM, then 7 independent parameters remain, which are λi, with
i = 1, . . . 5, tan β = v2/v1 and m2

12, from which the physical parameters, i.e., Higgs boson
masses and couplings, are obtained, with the constraint that one of the former must be set
to 125 GeV or so (which in our case is the one of the h field). Finally, as mentioned already,
amongst the possible Yukawa structures, we restrict our study to the Type-II only.

The tree level mass matrix squared for the Higgs fields can be obtained as(
M2

)
ij

= ∂Vϕ

∂hi∂hj

∣∣∣∣∣
hi,j=0

, (4)

where the hi’s (i = 1, . . . , 4) are the four components of the complex doublet fields. Upon
EWSB, three physical neutral scalars are obtained after diagonalizing the corresponding
mass matrices, two CP-even (scalar) ones (h, H) and a CP-odd (pseudoscalar) one (A),
with masses given by

m2
h,H = 1

2

[
χ2

11 + χ2
22 ∓

√
(χ2

11 − χ2
22)2 + 4(χ2

12)2
]

, (5)

m2
A = 2m2

12
sin 2β

− λ5v2 , (6)
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with

χ2
11 = m2

12 tan β + 2λ1v2 cos2 β , (7)
χ2

22 = m2
12 cot β + 2λ2v2 sin2 β , (8)

χ2
12 = −m2

12 + 1
2(λ3 + λ4 + λ5)v2 sin 2β , (9)

where the VEVs satisfy the relation v =
√

v1 + v2 (with v being the SM one)2. As intimated,
in the following, we will consider h as the SM-like Higgs boson discovered at the LHC in
2012.

To stay with the neutral Higgs sector, the imposed CP conservation only allows for tree
level couplings between two massive gauge bosons and the CP-even Higgs states while the
CP-odd Higgs state can only couple to a gauge boson and a CP-even Higgs one. Further-
more, all neutral Higgs states can couple to fermions. The couplings strength of the neutral
Higgs bosons to both matter and forces are parameterized in terms of tan β and another
parameter, α, which is the mixing angle between the CP-even Higgs states [3]. Specifically,
the coupling strength of the AZh vertex is proportional to cos(β − α).

2.2 Constraining the 2HDM free parameters

The 2HDM free parameters are constrained from various theoretical considerations and
experimental observations. In order to account for the perturbativity of the Higgs potential,
the magnitude of the couplings in the Higgs potential is constrained to |λi| ≤ 4π (i =
1, . . . 5). The stability of the model vacuum constrains a combination of these couplings, as
follows [18]

λ1, λ2 > 0, λ3 +
√

λ1λ2 > 0, λ3 + λ4 − λ5 +
√

λ1λ2 > 0 . (10)

The contribution of the 2HDM particles to EW Precision Observables (EWPOs) at the
loop level affects the measured oblique parameters, which are constrained from global fits
to be [19]

S = 0.03 ± 0.10, T = 0.05 ± 0.12, U = 0.03 ± 0.10 , (11)
so that we account for these limits too. The precise measurements of the SM Higgs mass
and coupling strengths by the ATLAS and CMS experiments add extra bounds on the
properties of the SM-like Higgs, h [20–23]. Furthermore, the other neutral and charged
Higgs states undergo constraints from null resonance searches at various colliders, see,
e.g., [24–27]. The contribution of the charged Higgs boson to B meson decays sets severe
bounds on the (mH± , tan β) plane, as mentioned. The dominant bounds come from the
following Branching ratios (Br) measurements: Br(B+ → τ+ν) = (1.06 ± 0.19) × 10−4 and
Br(B → Sγ)Eγ≥1.6GeV) = (3.32 ± 0.15) × 10−4 [28]. Specifically, for large tan β the charged
Higgs boson mass is constrained to be mH± ≥ 600 GeV or so while for tan β ≤ 10 such a
mass bound is significantly relaxed [29, 31].

2.3 Assessment of the parameter space

In order to find viable parameter space points that satisfy all the mentioned constraints we
scan over the aforementioned Higgs potential free parameters. For fast convergence we use
the ML assisted scanner package of Ref. [29] to scan over the following ranges:

0 ≤ λ1 ≤ 10, 0 ≤ λ2 ≤ 0.2, −10 ≤ λ3 ≤ 10, −10 ≤ λ4 ≤ 10,

−10 ≤ λ5 ≤ 10, 1 ≤ tan β ≤ 45, −6000 GeV2 ≤ m2
12 ≤ 0 GeV2 .

(12)

2The other two Higgs states emerging from the 2HDM after EWSB are charged and are denoted by H±.
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(The narrow range of λ2 is to keep the SM-like Higgs h as the lightest neutral Higgs state.)
As a result, we obtain 300 000 points that satisfy all constraints, which are shown in Fig. 1.

Figure 1: The scan output points that satisfy all constrains. (Left) Total cross section of the
process pp → A → Zh at

√
s = 14 GeV versus cos(β − α). (Middle) The same versus mA.

(Right) The decay rate Br(A → bb̄) versus mA. The color bar represents the corresponding
tan β value in all plots.

The left plot shows the total cross section of the process pp → A → Zh at
√

s = 14 GeV
versus cos(β−α), with the color bar representing the corresponding tan β value. The overall
coupling strength is proportional to some function of tan β, depending upon the relative
size of the htt̄ and hbb̄ couplings at production level times cos(β − α) at decay level, the
latter modulated by the functional form of the total width in terms of α and β. The middle
plot shows the same data points mapped against mA. By combining these two plots, it is
clear that the production times decay cross section can be up to ∼ O(1 pb) for mA ≤ 400
GeV and/or tan β < 10. The right plot shows the Br(A → bb̄), as this is the dominant
one over the mass range of interest here, i.e., mA < 600 GeV or so, while for larger mA the
dominant decay modes are A → Z(∗)H and, mostly, A → tt̄. Indeed, the A → Z(∗)h mode
pursued here is never dominant, although it is maximised in the region between mZ + mh

and 2mt.
As for the separate dynamics of production and decay, it is worth emphasizing the

following. On the one hand, for smaller tan β, the main contribution to the production
cross section comes from gg → A (i.e., gg-fusion) while, for larger tan β, the dominant one
is bb̄ → A (i.e., bb̄-annihilation). On the other hand, for the A → Z(∗) decay rate, the
dependence on tan β is less straightforward. As for the further two transitions, Z(∗) → l+l−

(l = e, µ) and h → bb̄, these (essentially) are SM processes. Finally, it is worth mentioning
that, when the top quark loop (entering gg-fusion) exhibits an imaginary part for mA > 2mt,
there occurs a destructive interference of our signal with the pp → Z(∗)bb̄ process, which
yields a small reduction of the total cross section [32, 33], which we neglect here.

3 Analysis strategy

In this section, we numerically investigate our chosen signature of the CP-odd Higgs boson
of the 2HDM Type-II at Run 3 of the LHC and HL-LHC using different recent ML models.
Thus, we concentrate on the process pp → A → Zh with

√
s = 14 TeV and an integrated

luminosity Lint of 300 and 3000 fb−1. The subprocesses of interest are initiated by bb̄-
annihilation and gg-fusion, eventually yielding a lepton l+l− (l = e, µ) and b-jet pair, as
shown in Fig. 2. We first review experimental results on this process obtained by ATLAS
and CMS, we then borrow the most essential elements of one of their (kinematical) analyses
to introduce our own approach, before moving on to describe the ML part of it.
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Figure 2: Feynman diagrams for the considered signal subprocesses.

3.1 Current ATLAS and CMS results

Up-to-date searches for pp → A → Zh signals at the LHC, in a variety of final states, were
recently reviewed in great detail in another paper of one of us [12], to which we refer the
reader, including their interpretation in two different 2HDM Types. Here, we limit ourselves
to the case of the Type-II considered (in normal mass hierarchy) and refers specifically to
the Zh → l+l−bb̄ (l = e, µ) signature.

The decay A → Zh has been searched for at the LHC by both the ATLAS and CMS
collaborations assuming the case of normal mass hierarchy (i.e., mh = 125 GeV) and an on-
shell Z boson, i.e., specifically assuming mA ≥ mZ + mh. Just like here, in such searches,
the A state is assumed to be produced via bb̄, gg → A3 and the decay rates of the h
state to fermions are given by the measurements of the Br’s of the 125 GeV boson, thus
Br(h → bb) ≈ 57%.

In the CMS analysis of Ref. [34] (see also Ref. [35]), with
√

s = 13 TeV and 35.9
fb−1, targeting the mA > 225 GeV range, separate searches are carried out for the decays
Z → e+e− and Z → µ+µ−. In each case, the signal is separated into categories with
1, 2 and 3 b-jets. In general, the selection efficiencies are similar for the two production
mechanisms in the 1 and 2 b-jet categories and they increase slightly with increasing mA

while in the 3 b-jet category the selection efficiency for gg → Abb is considerably larger
(due to the presence of more b-jets in the signal) than that for gg → A, being almost an
order of magnitude greater for mA < 300 GeV. Furthermore, the SM backgrounds to the
l+l−bb̄ signature are largest for the 1 b-jet category and smallest for the 3 b-jet one. In
the 2 b-jet category (that we are assume here), the dominant backgrounds are found to be
pp → Zbb̄ and pp → tt̄, which we shall adopt here too. Searches for the above signature
by the ATLAS collaboration in Refs. [36] (with 36.1 fb−1 of luminosity) and [37] (with 139
fb−1 of luminosity) have similar strategies and derive comparable limits on the total cross
section, over the ranges mA > 220 GeV and mA > 280 GeV, respectively.

In carrying out our ML driven analysis, we will compare our results with some of those
from the aforementioned ATLAS and CMS analyses, as well as an earlier ATLAS study,
the one of Ref. [38], based on 3.2 fb−1 of data and starting from mA = 220 GeV, which is,
in fact, the one offering the simplest kinematical analysis, upon which we will model ours.

3.2 Kinematical analysis

Following the analysis in [38], we require events to have two isolated leptons, these be-
ing either electrons or muons, and two isolated b-tagged jets. The reconstructed events
satisfy the following requirements in transverse momentum, pseudorapidity and separa-

3Although the emulation of the first subprocess via gg → Abb̄ is sometimes used [39].
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tion: pT (l) > 20 GeV, pT (j) > 25 GeV and |η(l, jet, b)| ≤ 2.5. Furthermore, our selection
cuts on the invariant masses of the hadronic and leptonic systems are as follows: 75 GeV
< mbb < 145 GeV and 70 GeV < mll < 110 GeV. Jets are reconstructed with the anti-kT

algorithm [40] but our results proved stable against a change of clustering algorithm to the
Cambridge-Aachen one [41, 42].

Reconstructed events are required to have at least two isolated b-jets with cone radius
R = 0.4 using a flat b-tagging efficiency of 70%. For the mistagging rate of gluon and light
quark jets as b ones, we adopt a flat rate of 10−3 while, for c-jets, we use 10−2.

The dominant background contributions come from the W +W − leptonic decays in the
pp → tt̄ process and from pp → Zbb̄, where the Z boson decays leptonically. Other back-
ground processes like single-top production, di-gauge boson production, associated produc-
tion of a gauge boson with the SM Higgs and pp → W ±b̄b are not considered as they can
be removed by the basic cuts applied here [38].

Table 1: Input parameters for our four BPs. The last column shows the total cross section
for the process depicted in Fig. 2.

mA[GeV] λ1 λ2 λ3 λ4 λ5 tan β m2
12 GeV2 cos(β − α) σtot [fb]

200 6.81 0.14 1.86 −0.12 −0.31 5.02 −4260 0.37 65.8
250 6.12 0.14 1.86 −0.11 −0.81 5.01 −4270 0.38 86.49
300 5.22 0.13 4.00 −1.82 −1.44 4.68 −4530 0.35 109.42
350 4.69 0.14 3.85 −1.35 −1.57 4.38 −5440 0.34 95.68

We carry out the analysis for four BPs, with mA = 200, 250, 300 and 350 GeV. For
the first BP, the Z boson is produced off-shell while in other three cases is on-shell. The
four BPs are chosen from the output of the scanned points mentioned in section 2.3, all
of which satisfy all relevant theoretical and experimental bounds. Tab. 1 shows the input
parameters for the four BPs, alongside their production times decay cross sections, down to
the final state l+l−bb̄. We notice that all our BPs belong to the ‘wrong-sign scenario’, i.e.,
the right-arm region of Refs. [9, 10], typically offering larger total cross sections than in the
‘alignment limit’, thereby making these particularly amenable to experimental analyses.

Simulation of the signal and background events proceeds through a chain of sequentially
automated steps. For events generation and cross section calculation we use MadGraph [43]
with its standard generation level cuts (which do not bias our detector level results). For
gg-fusion, the loop implemented in MadGraph is an effective vertex as described in [44].
SPheno [45, 46] is used to compute the numerical value of such an effective vertex at the
Leading Order (LO) in perturbation theory. PYTHIA [47] is exploited for parton showering,
hadronization, heavy flavor decays and for adding the soft underlying event, multi-particle
scatterings, etc. FastJet [48] is used for jet clustering. The fast simulation of the ATLAS
detector was done with the DELPHES package [49]. Finally, the standard ATLAS card is
modified to be able to simulate the tracks and energy deposit from the charged hadrons.

4 DNN
After event simulation, we adopt different types of ML models to analyze different categories
of events, kinematical distributions, energy deposits of charged hadrons and (reconstructed)
four-momenta of the final state particles.

Starting with high-level kinematical distributions, we adopt a MLP model to optimize
the separation between the signal and background distributions. The constructed distri-
butions have unique information about the global structure of the signal and background
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events, thus the structure of the MLP network, with fully-connected layers, is able to an-
alyze the global features ending up with large classification power between the signal and
background events. Although the MLP can achieve high classification performance, the
fact that some background distributions have similar kinematical structure to signal ones
hinders the overall classification power. However, one can improve the classification perfor-
mance by applying initial cuts that maximize the signal-to-background yield before feeding
the distributions to the MLP. Furthermore, the constructed kinematical spectra exhibit a
large correlation among each other and applying a cut on any distribution will, in some
cases, affect the structure of all others, aspect which then continues to hinder the classifi-
cation performance of the MLP. In order to control the global impact of the initial cuts,
one has then to decorrelate such a dependence across the kinematical variables via the
square-root of the covariance matrix or Gaussian transformation of variables as described
in [50]. In the end, although the initial cuts may increase the classification performance,
we opted not to apply any thus allowing full freedom to the MLP in finding the optimal
classification boundaries.

A second approach is to analyze the charged hadrons by exploiting the fact that, in an
unbroken SU(3)C , color is conserved in the QCD interaction and provides different color flow
structures for different processes. The structure of the color flow depends on the color nature
of mediating particles, e.g., the radiation pattern within and around b-(anti)quark pairs from
Higgs boson decays is expected to be different from the radiation pattern of the same from
tt production or Zbb processes. In order to exploit the color flow properties to classify signal
and background events, one can think of the LHC detector as a giant camera and the streams
of hadrons as images. The constructed images are two dimensional arrays in the (η − ϕ)
plane while the pixels size is adjusted to be within the detector response and the pixels
are weighted by the sum of the total transverse momentum deposited in the corresponding
part in the detector [51–54]. We adopt a CNN model to analyze the constructed jet images
and output the classification probability for signal and background events. The CNN is
constructed by combining two different sets of hidden layers, convolution ones and fully-
connected ones. Convolution layers are constructed from filters (kernels) that share their
weights locally and hence they are able to capture local information stored into the images
while the fully-connected layers are handcrafted to analyze the captured local information
ending up with global information about the image by adjusting different structures of the
neurons for signal and background images.

Although the CNN is designed to capture local information of the jet images, there
is no guarantee it can capture some hidden information, e.g., similar or dissimilar local
information for images from the same or different classes, respectively. For this purpose,
we introduce a SNN [55, 56]. This is a two-step training network with twin encoders that
share their weights. As a twin convolution encoder model, it processes the images in pairs
from the same or different classes. In the first training stage the model learns similar
features shared amongst images from the same class, e.g., pairs of signal or background
images, by minimizing the latent space Euclidean distance between them and maximizing
the distance between images from different classes, i.e., pairs from signal and background
images. Once the latent space is shaped by separating the Euclidean distance between
signal and background images, the second training stage starts by freezing the optimized
weights for one encoder and adding a fully-connected layer and one output layer with two
output neurons to identify the signal and background events. The construction of the SNN
enables it to learn hidden features that are shared among each class.

To incorporate the different data structure as inputs to a neural network, a dual-input
HDNN is then constructed [57–60]. The first stream consists of fully-connected layers that
process the reconstructed kinematical variables (see below). The second stream consists of
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two-dimensional convolution layers and pooling layers that process the jet images. The two
streams are then concatenated into one flatten layer, then, for better expressivity, a fully-
connected layer is added before the final output layer. The HDNN model with dual inputs
has the advantage to combine the global information captured by the fully-connected layers
acting on the kinematical distributions and the local information captured by the kernels
in the convolution layers acting on the jet images. To analyze the combined information,
global and local one, exalts the model expressivity in terms of signal and background events,
which in turn enhances the overall classification performance.

CNNs are specifically tailored to process grid-like data structures, such as images, where
local information is paramount. By using predefined filters, CNNs capture local patterns
effectively. However, this design inherently carries significant inductive biases [61]. As
the constructed jet images are sparse, inductive biases confuse the model, which ends up
with lower classification performance. The challenge here stems from the model inability to
adequately process sparse, non-grid-like data, which is a significant limitation for CNNs. To
address these issues, we propose the use of GNNs instead. Unlike CNNs, GNNs can process
input data that naturally form a graph structure, with entities represented as nodes and
relationships as edges. This makes GNNs adept at handling sparse and/or irregular data.
In the case of jet physics, for instance, the four-momenta of the final state particles can be
seen as graph nodes, while the graph edges can be weighted by the angular distance between
the particles. GNNs have an inherent ability to handle both local and global information in
the data. They propagate information across the graph, allowing each node to be influenced
by its neighbor information and iteratively capture long-range dependencies. This makes
GNNs better performing so as to overcome the limitations of CNNs in this context.

As a generic set-up for all the proposed DNNs, we require all models to have an output
layer with two neurons and a softmax function. The loss function is the categorical cross
entropy defined as

Loss = −
∑

i

Yi log(Ŷi) , (13)

with i = 1, 0 for signal and background classes, respectively, and Yi, Ŷi are the true and
predicted labels from each class. The dimension of the final output probability, Ŷ , is 1 × 2,
(Psig, Pbkg), with P ranging between [0, 1]. If Psig > 0.5 (Pbkg < 0.5), the corresponding
event is classified as most likely being a signal event and if Psig < 0.5 (Pbkg > 0.5) the
corresponding event is classified as most likely being a background event. An AdamW
optimizer [62] is used to optimize the minimization of the loss function with learning rate
10−3, weight decay 4 × 10−3 and exponential decay rate 0.9. The size of the input data is
200, 000 in all models, divided into 70% for training and 30% for testing the model accuracy.
The DNNs are trained and tested on equal size data sets for signal and background events.

it’s worth noting that we haven’t fine-tuned the proposed networks, given the substantial
computational resources that would be necessary. Indeed, conducting a grid search of the
hyper-parameters could potentially improve the accuracy of the classification results we’ve
reported.

4.1 MLP

A MLP is the basic type of a feed-forward DNN which consists of fully-connected hidden
layers of different length. Given the nature of the fully-connected layers, a MLP is designed
to learn the global information in the reconstructed kinematical distributions. This can
be achieved by firing specific neurons in each hidden layer corresponding to the signal or
background distributions. After training, a MLP exhibits specific structures of the fired
neurons in case of signal or background events. We point out that the full connection of the
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MLP hidden layers enables the model to propagate all event information among all hidden
layers and thus its ability to learn global information about the event is increased 4.

For optimal classification performance, we select distributions with high discrimination
power between signal and background events. To select the highly ranked distributions we
follow a Sequential Backward Selection (SBS) feature [63] by first constructing all possi-
ble kinematical distributions and ‘greedily’5 removing one feature after another, in order
to find the one that maximizes a cross-validated score when an estimator is trained on
this single feature. The feature selection method indicates highly ranked nine kinematical
distributions as shown in Fig. 3, e.g., for the signal BP with mA = 300 GeV. Although
the kinematical distributions herein are for a specific signal point, we found that other sig-
nal BPs have similar discriminative power. The selected kinematical distributions can be
chosen as follows.

Figure 3: Kinematical distributions for signal (BP with mA = 300 GeV) and background
events superimposed and normalized to 1 before applying the pre-selection cuts. The color
codes hold for all distributions as follows: signal (blue), pp → tt̄ (green) and pp → Zbb̄
(orange).

4Obviously, a MLP cannot be used for jet image analysis as the nature of the fully-connected layers
makes the model depend on the spatial position of the energy deposits into the image. In contrast, a CNN
with local weight sharing among its kernels makes the model independent of such a spatial position.

5That is, by using a greedy algorithm that follows the problem-solving heuristic of making the locally
optimal choice at each stage.
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• MET : Missing Transverse Energy (MET ), defined as MET = |−
∑

vi
p⃗T (vi)|, which

is the sum of the transverse momenta of the visible particles. This is very similar for
the signal and pp → Zbb̄, with pp → tt̄ set apart.

• m(bb): Invariant mass of the b-jet pair. Signal events show a narrow peak around the
rest mass of the SM-like Higgs boson while background events show a broader peak
as they are initially produced from QCD radiation in the case of pp → Zbb̄ and from
top decays in the case of pp → tt̄.

• PT(bb): Transverse momentum of the b-jet pair reproducing mh, which exemplifies the
Higgs boson boost in signal events (and is different for other BPs). This distribution
has a strong degree of similarity with the background ones.

• ∆R(bb): Angular distance separation between the two b-jets reconstructing the Higgs
boson, with ∆R(bb) =

√
(∆η(bb))2 + (∆ϕ(bb))2. For the pp → Zbb̄ background, the

two b-jets recoil against the associated Z when the latter is produced near its mass
shell, thus they have a small boost factor and fly back-to-back with angular distance
around π. A similar behavior also applies to the b-jets emerging from top-(anti)quark
leptonic decays, for which ∆R(bb) peaks again around π. Signal events show instead a
narrow peak around 1.6 (for a heavier A, e.g., mA = 350 GeV, the b-jets receive extra
an boost and ∆R(bb) peaks around 1.

• m(ll): Invariant mass of the lepton pair. Reconstructed events from the signal and
pp → Zbb̄ processes offer a tight reconstruction of the Z boson mass by showing a
narrow peak around mZ while, for pp → tt̄ events, the final state leptons emerge from
a pair of W ± boson decays, thereby missing such a distinctive feature. (In the case
of signal events from the BP with mA = 200 GeV, the Z∗ boson is produced off-shell
and thus the invariant mass peak for the signal is very similar to that of pp → tt̄.)

• PT(ll): Transverse momentum of the two leptons reproducing mZ which exemplifies
the Z(∗) boson boost in signal events (again, the latter and pp → tt̄ events have
similar distributions which are in turn different from that of the background process
pp → Zbb̄).

• ∆R(ll): Angular distance separation between the two leptons reconstructing the Z(∗),
which exhibits a similar behavior as the angular separation between the two b-jets in
all cases.

• m(bbll): Invariant mass of the b-jet and lepton pairs which reconstruct the masses of
the h and Z(∗) boson, respectively, in turn reconstructing the mass of the A state.
(For the BP with mA = 200 GeV, the reconstructed A mass peak is broader as the
final leptons from the off-shell Z∗ boson decay are soft and can be missed.) There is
a clear difference here between signal and background events.

• pT(bbll): Transverse momentum of the b-jet and lepton pairs which reconstruct the
masses of the h and Z(∗) boson, respectively, in turn exemplifying the A state boost
in signal events, which overlap significantly with that of background ones.

After reconstruction of the kinematic distributions we stack all backgrounds and signal
events separately such that each data set has dimensions ddistribution = (9, N) with N being
the total number of events. As a supervised classification problem, we assign a numeric
label Y = 1 to the signal events and Y = 0 to (the whole of) the background events.
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Figure 4: A schematic architecture for the used MLP model. Here, we visualize a Fully-
Connected (FC) NN layer.

Having the input distributions and their labels adjusted, we use MLP with an input layer
of the same dimension as the inputs. Fig. 4 shows a schematic architecture of the used
MLP model which consists of three pairs of fully-connected hidden layers with Rectified
Linear Unit (ReLU) activation function and an output layer with two neurons and softmax
activation function. The number of neurons in the first pair is 256, in the second is 128 and
in the third is 64. To avoid over-training, each hidden layer pair is followed by a dropout
layer. During the training process the model tries to minimize the difference between its

Figure 5: MLP test results when trained on kinematic distributions for signal events (BP
with mA = 300 GeV). The ROC curve (left), MLP output score (middle) and confusion
matrix (right) are shown.

predictions and the assigned labels. To measure the model ability to generalize to new
unseen data, we test the model accuracy to unseen test set.

Fig. 5 shows the MLP results from the test sample for the signal BP with mA = 300 GeV.
To quantify the classification power of the model, the left plot shows the Receiver Operator
Characteristic (ROC) curve6 The middle plot shows the output score of the model for the
signal events (blue) and background events (orange). The right plot shows the CM when a
symmetric threshold value at 0.5 is used on the model output.

6The ROC curve is an evaluation metric for binary classification problems: it is a probability curve
that plots the true positive rate against the false positive rate at various threshold values and essentially
separates the ‘signal’ from the ‘noise’ caused by misclassifying the background. In other words, it shows the
performance of the model to identify the signal events at all classification thresholds. The Area Under the
Curve (AUC) is the measure of the ability of a binary classifier to distinguish between classes and is used
as a summary of the ROC curve. As the ROC curve quantifies the relation between true and false positive
rates, which indicates the model ability to identify the signal events, the Confusion Matrix (CM) reports the
values for both positive and negative hypotheses. Accordingly, one can clearly estimate the model response
to identify the signal and background events.
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4.2 CNN

As mentioned above, the global structure of the color flow can be seen at the LHC as a
color string from the soft hadrons that stretch between the two colored connected jets.
The different color structure for different processes originates from the color nature of the
parent particle, which can provide the event with an observable to aid the search for new
physics. The two b-quarks from the decay of the Higgs boson form a color dipole whose
radiation pattern is contained primarily within a pair of cones around the two b-quarks,
with a tendency for more radiation to occur in the region between the two. In contrast, the
two b-quarks in pp → Zbb̄ and pp → tt̄ events come from colored particles and are thus not
directly connected, forming two isolated cones with less radiation in the region between the
two b-quarks that in the signal. To effectively identify the different radiation patterns, we
construct the jet images as a squared array in the (η, ϕ) plane with each pixel given by the
total hadron pT deposited in the associated region of the calorimeter. In Fig. 4.2 we show
normalized pT distributions for 50, 000 events for signal BP with mA = 300 GeV (left),
pp → Zbb (middle) and pp (right). To ensure that the CNN is not learning space-time

Figure 6: Normalized pT distribution for accumulated 50, 000 events after pre-processing
steps for signal (BP with mA = 300 GeV) and backgrounds events.

symmetries and can be generalized to new unseen data at different locations, the jet images
are pre-processed as follow:

1. Image cleansing Images are constructed only from hadrons which have track infor-
mation while at the same time we remove leptons (and photons).

2. Pixelization The region in the (η, ϕ) plane is discretized into a 50 × 50 grid with each
pixel weighted by the sum of the transverse momentum in it.

3. Centering We center all particles in an image by shifting ( (ηb+ηb̄)
2 ,

(ϕb+ϕb̄)
2 ) to (0, 0),

which assists the independence of the model classification from the spatial location of
the radiated hadrons.

4. Momentum smearing Constructed images are mostly sparse, which hinders the clas-
sification performance of the CNN model. To reduce the number of the sparse pixels,
we smear the transverse momentum using a Gaussian function within 3 Standard
Deviations (SDs) or σ’s [64].

5. Normalization We normalize the pixel intensity by dividing each pixel in an image by
the maximum pixel intensity value, which helps the model to converge to the global
minimum of the loss function.
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Figure 7: A schematic architecture for the used CNN model. Here, ‘Conv2d’ represents a
two-dimensional CNN layer.

After the pre-processing steps, the constructed image has the dimension of 50×50×1. In
principle, one can add more information to the images, e.g., leptons, MET , etc. properties
[57]. That information can be incorporated into an image by expanding the last dimension of
it, i.e., the image depth. Although having more information into an image allows the model
to learn more characteristic features of the events, we found that including leptons and
MET information to our images does not increase the classification performance very much.
Instead, we opted not to include such an information in order to reduce the computational
costs.

To analyze the constructed jet images we adopt a CNN model with the structure de-
picted in Fig. 7. The model consists of four convolution layers, one fully-connected layer
and one output layer. The first and second convolution layers have 256 kernels with kernel
size 3, ReLU activation function and stride length of 1. To keep the dimensions of the
original input images, we use a padding layer. Third and fourth convolution layers have
128 kernels with kernel size 3 and ReLU activation function. Fifth and sixth convolution
layers have 64 kernels with kernel size 2 and ReLU activation function. After the second
and the fourth convolution layers we use max pooling layers with size 2 × 2. After these,
we use a dropout layer with 30% dropout rate. Output from the last convolution layer is
flattened and projected to one fully-connected layer and dropout layer with 64 neurons and
ReLU activation function.

Figure 8: CNN test results when trained on jet images for signal events (BP with mA = 300
GeV). The ROC curve (left), CNN output score (middle) and confusion matrix (right) are
shown.

The results of the CNN analysis are shown in Fig. 8. The classification performance
is here quantified by the reported AUC metric with value 0.86. We finally notice that the
classification performance of the CNN analysis of the jet images can be enhanced with extra
pre-processing steps, e.g., by constructing the Lund plane [65] or Riemannian mapping [66].
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4.3 SNN

The SNN was first introduced as an algorithm for handwritten signature verification [67].
The main power of the SNN is that it maps input features into a latent space such that a
simple distance in it, the Euclidean distance, approximates the characteristic features in the
original one. It consists of two identical convolution encoders sharing the same set of weights
in order to compare a pair of feature vectors in terms of their similarity or dissimilarity. It
realizes a non-linear embedding of the data with the objective of bringing together similar
examples and to move apart dissimilar examples. To measure the similarity or dissimilarity
of the input pairs we use the Euclidean distance as a similarity metric learning given by

D =

√√√√ n∑
i

(
x1

i − x2
i

)2
, (14)

where x1 and x2 are the latent outputs from the two encoders and n is the latent space
dimension. More precisely, given a pair of input images, the two encoders extract the
features in each image and map these onto the latent space as vectors (x1, x2). The SNN
then minimizes the Euclidean distance between x1 and x2 if they belong to the same class,
e.g., the signal or background class, while it maximizes the Euclidean distance between x1

and x2 if they belong to different classes, e.g., signal and background classes. To do so,
the SNN has to be trained in two stages. Firstly, the model computes the similarity or
dissimilarity by minimizing a modified contrastive loss function as

L(y, D) = α(1 − y) ∗ D2 + y ∗ [Max(β − D, 0)]2 , (15)

with y, D being the true and predicted distance, respectively, while α, β are the margin
parameters for learning the similarity and dissimilarity, respectively. Both parameters are
hyper-parameters to be tuned (in our study we fix both to 1). Also, we adjust the true
distance between the negative pair to be 1 and 0 for the positive pair. We would also like
to mention that, in the self-supervised contrastive learning, data augmentation is used for
learning similarity and dissimilarity [68–70]. In this case, the classification performance
depends on the impact of the data augmentations [71]. Moreover, strong augmentations
and implicit regularization may cause dimensional collapse of the projected data into the
latent space [72]. We stress that, for our SNN with supervised contrastive learning, the
mentioned problems no longer exist.

Once the model is trained to minimize the contrastive loss function, we start the second
learning stage by freezing the weights of one of the encoders and add two fully-connected
layers and one output layer with two neurons and softmax function. For the training in the
second stage, signal images are labelled with 1 while background images are labelled with 0
and we use a categorical cross entropy loss function. A schematic architecture of the used
SNN model is shown in Fig. 9, which consists of two identical convolution encoders, each
of these having the same structure as the discussed CNN without the output layer.

The results of the SNN are shown in Fig. 10, which shows a larger classification per-
formance over the used CNN with AUC = 0.95. Although the SNN processes the same jet
images as the CNN network, it shows an improved classification accuracy over the CNN.
This enhancement is, obviously, due to the minimization of the contrastive loss function,
which in turn enables the model to learn more information from the jet images. (A detailed
discussion about the learned representations by the hidden layers and its impact on the
classification performance is presented in section 5.)
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Figure 9: A schematic architecture for the used SNN model. Here, Encoder-1 and Encoder-
2 are identical and copy their weights during the first training stage. Input images can be
a positive pair, i.e., both images are either signal or background, or a negative pair, i.e.,
one signal image and one background image.

Figure 10: SNN test results when trained on jet images for signal events (BP with mA = 300
GeV). The ROC curve (left), SNN output score (middle) and confusion matrix (right) are
shown.

4.4 HDNN

To improve the expressivity of the ML model of signal and background events one can
incorporate different information into the discussed models, e.g., by adding the lepton in-
formation to the reconstructed images to be analyzed by the CNN or encoding the hadrons
information as distributions to be analyzed by the MLP. In both cases one can find a slight
improvement in the classification performance of each model individually, as the latter is
still able to learn specific types of event information, local or global. Furthermore, con-
catenating a MLP and CNN into a two stream HDNN model can improve the classification
performance [57–60]. The first stream, which processes the input jet images, consists of
convolution, max pooling and drop-out layers plus one flattened layer. The second stream,
which processes the kinematic distributions, consists of fully-connected and drop-out layers.
Both streams are then concatenated to one fully-connected layer and one output layer with
two neurons for predictions, a HDNN. The two streams map the high dimensional infor-
mation onto their own latent space (a lower dimensions space), e.g., the CNN and MLP
map the local and global high dimensional information onto lower dimensional space indi-
vidually. Concatenating the decomposed information in each latent space into one flatten
layer expresses all characteristic features of the signal and background events. A schematic
architecture of the HDNN is shown in Fig. 11.

The HDNN is constructed by combining the above CNN convolution layers and MLP
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Figure 11: A schematic architecture for the used HDNN model.

without the output layer. A concatenation layer is used to connect the last layer of the two
models. A fully-connected layer with 128 neurons is added with ReLU activation function
and a dropout layer with a 30% dropout rate. The last output layer consists of two neurons
and a softmax activation function.

Figure 12: HDNN test results when trained on kinematic distributions and jet images for
signal events (BP with mA = 300 GeV). The ROC curve (left), HDNN output score (middle)
and confusion matrix (right) are shown.

The results of the HDNN analysis are shown in Fig. 12. The ROC curve shows a large
improvement in the HDNN classification performance over the MLP or CNN individually,
with AUC = 0.98. Moreover, incorporating the different data types into a HDNN with
two streams enables the model to learn the intrinsic features of the signal and background
events with equal rates as reported by the confusion matrix (right plot).

4.5 GNN

One way to avoid the sparsity issue of image-based NNs is to utilize a graphical structure
consisting of nodes and edges to encode particle information. GNNs can then be employed
to incorporate the topological relationships among the nodes and edges and learn graph-
structured data. Each reconstructed final state object is represented by a single node in
this approach. This study, in alignment with the methodology described in [58], represents
each node i in the input layer as a feature vector x = (Il, Ib, m, pT, E) that collects the
properties of the corresponding particle, where, e.g., m, pT and E denote the invariant
mass, transverse momentum and energy of a particle system, respectively. The initial
values for Il and Ib are set to 0. The hardest lepton and b-jet in an event assign a value of
1 to Il and Ib, respectively, while, the second hardest lepton and b-jet in the event assign a
value of -1 to Il and Ib, respectively. The angular correlation between two nodes i and j is
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represented by an edge vector ei,j , which consists of a single component that is defined by
the angular distance ∆R(xi,xj) between the particles in nodes i and j.

In the course of our comprehensive study, various architectures were tested to identify
the optimal model capacity. Subsequent to extensive trials and analysis, our observations
revealed that the maximum performance across all tested GNN models was achieved with
a configuration of three hidden layers.

This preference can be rationalized by considering the nature of the graphs involved,
typically containing a limited number of nodes, that is, ranging between 4 and 25. Each layer
in a GNN, by design, corresponds to the aggregation of information from the neighboring
nodes, which is one edge away (1-hop). With small-scale graphs, only a few layers are
often sufficient to incorporate the entirety of the graph data. Conversely, incorporating an
excessive number of layers in a GNN can potentially lead to an undesirable effect known
as oversmoothing. This is a circumstance in which the features of all nodes become overly
homogeneous, subsequently impairing the performance of the model.

In terms of activation function, we employed the Leaky Rectified Linear Unit (LeakyReLU)
following graph convolution layers. This was then followed by the utilization of a max pool-
ing layer to aggregate the node embeddings, subsequently applying a final linear layer. For
the optimization process, a learning rate of 6.4 × 10−6 and a weight decay parameter of 1 ×
10−6 were employed. These values were chosen to ensure efficient learning without compro-
mising the stability of the model. All of the developed models in our study were constructed
utilizing the ‘PyTorch Geometric’ framework [73], a powerful and efficient library designed
to facilitate the implementation of graph-based DL models.

4.5.1 GCN

GCNs have gained significant attention in recent years due to their ability to learn represen-
tations of graph-structured data that are invariant with the input graph size and topology
[74]. GCNs have been successfully applied to various domains, including social network
analysis, molecular biology, recommendation (or recommender) systems and natural lan-
guage processing. The goal of a GCN is to learn a function that maps the input features
to a new representation, capturing the relationships among the vertices in the graph.

The core idea behind GCNs is to generalize the convolution operation from regular grids
to irregular graphs. A graph convolution operation can be thought of as a local averaging
of features from neighboring vertices, which captures both the local structure of the graph
and the features associated with each vertex.

Given an input graph G = (V, E), the graph convolution operation is defined as

H(l+1) = σ
(
D̂− 1

2 ÂD̂− 1
2 H(l)W (l)

)
,

where H(l) ∈ RN×Fl is the feature matrix at layer l, with N being the number of vertices
in the graph, Fl the dimension of the feature space at layer l and W (l) ∈ RFl×Fl+1 the
learnable weight matrix at layer l. Furthermore, σ(·) denotes the activation function.

The matrix Â ∈ RN×N is the adjacency matrix of the input graph with added self-
connections, defined as Â = A + IN , where A is the adjacency matrix of G and IN is the
identity matrix of size N . The matrix D̂ ∈ RN×N is a diagonal matrix with D̂i = ∑

j Âij ,
representing the degree of vertex i in the graph with added self-connections.

The graph convolution operation can be interpreted as a message-passing mechanism,
where each vertex aggregates information from its neighbors and updates its features ac-
cording to the learned weights. This process is repeated for a number of layers, allowing
the model to capture higher-order relationships between vertices in the graph.

20



Figure 13: A schematic architecture for the used GCN model.

The results from our GCN analysis are presented in Fig. 14. The leftmost plot displays
the ROC curve for our trained GCN model, showcasing an AUC value of 0.84. The middle
plot demonstrates the model scores for both signal and background. On the rightmost plot,
the CM is displayed where the signal and background diagonal entries are 0.83 and 0.76,
respectively.

Figure 14: GCN test results when trained on kinematic distributions and jet images for
signal events (BP with mA = 300 GeV). The ROC curve (left), GCN output score (middle)
and confusion matrix (right) are shown.

Despite the demonstrated effectiveness of the GCN model, it isn’t without its con-
straints. These limitations have encouraged the exploration and establishment of multiple
variants and extensions. One major constraint of the original GCN model is its incapability
to handle inductive learning tasks. This inability to generalize to unseen graph structures
or vertices is due to the GCN’s reliance on the explicit adjacency matrix of the input graph,
which makes adapting the model to new data a challenge.

Additionally, the model lacks flexibility when capturing a wide array of graph structures
and applying filters of different spatial sizes, primarily because the conventional GCN model
utilizes a fixed neighborhood aggregation scheme. It’s also worth noting that GCNs treat
all neighboring vertices with equal importance during the feature aggregation phase, which
could be sub-optimal when some neighbors provide more significant information than others.

These shortcomings led to the development of diverse GCN variants, including Graph-
SAGE, Graph Attention Networks (GAT), and Dynamic Graph Convolutional Neural Net-
works (DGCNN). These adaptations address the challenges by incorporating inductive
learning capabilities, applying spectral techniques, and/or introducing attention mecha-
nisms, thereby extending the usability and enhancing the performance of graph-based deep
learning models.

4.5.2 DGCNN

Unlike GCNs, which often assume that graphs are static in nature and hence fail to capture
the dynamics of edges, in a DGCNN [84], the EdgeConv operation serves as the fundamental
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building block. It considers edges as basic units of information propagation instead of
nodes, which is especially beneficial in capturing local geometric structures and dealing
with unordered point sets. DGCNNs extend the idea of CNNs to graphs, where each layer
of the network operates on the nodes and edges of the graph. What makes DGCNNs unique
is their ability to learn the importance of edges dynamically during training. Instead of
relying on pre-defined edge weights (∆R in our case), a DGCNN learns to assign weights
to the edges of the graph based on their importance for the task at hand. This allows the
network to adapt to different graphs and tasks more effectively.

For an edge eij , the EdgeConv operation is:

hij = Φ(vi, vj − vi).

In this equation, vi is the feature vector of the node i, Φ is a shared MLP applied to
the concatenation of the feature vector of node i and the difference between the feature
vectors of nodes j and i. The new feature of node i is then computed by aggregating the
transformed features of all neighboring nodes:

v′
i = ρ({hij |∀j ∈ N(i)}),

where N(i) denotes the neighborhood of node i and ρ is a symmetric function, such as max
pooling or average pooling. The edge features are recomputed in every layer, allowing the
graph structure to dynamically evolve based on the learned node features. This dynamic
nature is a key advantage of the EdgeConv operation in DGCNNs.

Figure 15: DGCNN test results when trained on kinematic distributions and jet images
for signal events (BP with mA = 300 GeV). The ROC curve (left), DGCNN output score
(middle) and confusion matrix (right) are shown.

The results of the DGCNN analysis is shown in Fig. 15. This showcases an enhance-
ment from the previous GCN model, with a reported AUC metric value of 0.87, signifying
improved classification performance.

4.5.3 GraphSAGE

GraphSAGE is an inductive learning framework for graph-structured data that allows GCN
to generalize to unseen graph structures or vertices [75]. Unlike traditional GCNs, which
are transductive and rely on the explicit adjacency matrix of the entire input graph, a
GraphSAGE structure learns to generate embeddings for individual vertices by sampling
and aggregating features from their local neighborhoods.

The core idea behind GraphSAGE is to learn a function that generates vertex embed-
dings by aggregating features from a fixed-size local neighborhood, irrespective of the graph
size or structure. To achieve this, GraphSAGE employs a two-step procedure: sampling
and aggregation.
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Figure 16: A schematic architecture for the used GraphSAGE model (for the node x2).
Here, dots indicates repeated sampling and aggregation for all graph nodes.

Sampling For each vertex v in the graph, GraphSAGE samples a fixed-size set of
neighbors at different search depths. The sampling procedure is carried out for K iterations,
where K is the number of layers in the model. In the k-th iteration, a fixed-size set of Sk

neighbors is sampled uniformly at random from the k-hop neighborhood of v.
Aggregation After sampling the neighbors, GraphSAGE aggregates the features from

the sampled neighborhood to generate the embeddings for each vertex. The aggregation
function can be any differentiable and permutation-invariant function, such as the element-
wise mean, Long Short-Term Memory (LSTM) or max pooling. The aggregation process is
carried out in a hierarchical manner, starting from the outermost layer and moving towards
the target vertex.

Given a vertex v, let Nk(v) denote the set of k-hop neighbors of v. The feature aggre-
gation process in GraphSAGE can be formally defined as follows:

f (k)
v = AGGREGATEk

(
f (k−1)
u : u ∈ Nk(v)

)
, (16)

where f (k)
v is the feature vector of vertex v at the k-th layer and AGGREGATEk(·) is the

aggregation function at layer k. After aggregating the features from all layers, the final
embedding for vertex v is computed by concatenating the original feature vector f (0)

v and
the aggregated feature vector from the last layer f (K)

v :

f ′
v = CONCAT

(
f (0)
v , f (K)

v

)
. (17)

Figure 17: GraphSAGE test results when trained on kinematic distributions and jet images
for signal events (BP with mA = 300 GeV). The ROC curve (left), GraphSAGE output
score (middle) and confusion matrix (right) are shown.

The outcomes from the GraphSAGE analysis are displayed in Fig. 17. It reveals a
classification performance, measured by the ROC AUC of 0.86. While GraphSAGE is
predominantly designed for larger graphs, and our dataset comprises mainly smaller graphs.
Despite this, there’s still an observed improvement in comparison to the GCN model.
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The observed improvement with GraphSAGE on smaller graphs could possibly be at-
tributed to its distinctive feature aggregation method. Unlike GCN, which heavily relies
on the graph’s global structure, GraphSAGE employs a more flexible, inductive approach,
aggregating features from the local neighborhood of each node. As a result, even with
smaller graphs, GraphSAGE can extract meaningful, context-rich features leading to en-
hanced performance. Also, GraphSAGE’s sample-based training method helps to capture
and generalize even subtle patterns present in smaller graphs.

4.5.4 GAT

A GAT is a variant of the GCN that incorporate the attention mechanism to adaptively
weigh the importance of neighboring vertices during the feature aggregation step [76]. By
assigning different weights to neighbors based on their relative importance, GATs are able
to learn more expressive and flexible graph representations compared to standard GCNs.

The attention mechanism in GAT is designed to compute a pair-wise attention coefficient
between any two connected vertices, which is used to weigh the contribution of neighboring
features during the aggregation step. Formally, the attention coefficients for a vertex i and
its neighbor j can be defined as:

eij = LeakyReLU
(
a⊤ [Whi ⊕ Whj ]

)
, (18)

where hi and hj are the feature vectors of vertices i and j, respectively, W ∈ RF ′×F is a
shared weight matrix that projects the input features onto a higher-dimensional space, ⊕
denotes concatenation, a ∈ R2F ′ is a learnable attention vector and LeakyReLU is used as
the activation function. To ensure that the attention coefficients are invariant to the order
of vertices, the attention mechanism is made symmetric by considering the concatenation
of the transformed feature vectors for both vertices. The attention coefficients are then
normalized using the softmax function to obtain the final attention weights:

αij = softmaxj(eij) = exp(eij)∑
k∈Ni

exp(eik) , (19)

where Ni is the set of neighboring vertices of vertex i.

Figure 18: A schematic architecture for the used GAT model (for the node x2). Here, wavy
lines illustrate the self and neighbours attention corresponding to the node while different
colors denote independent attention computations (attention heads). The aggregated fea-
tures from each head are averaged to obtain x′

i. Also, αij are the attention weights.

With the attention weights computed, the next step in GAT is to aggregate the features
from neighboring vertices. The feature aggregation can be expressed as a linear combination
of the transformed features of the neighbors, weighted by the attention coefficients:

hi′ = σ
(∑

j ∈ NiαijWhj

)
, (20)
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Figure 19: GAT test results when trained on kinematic distributions and jet images for
signal events (BP with mA = 300 GeV). The ROC curve (left), GAT output score (middle)
and confusion matrix (right) are shown.

where σ(·) is the activation function.
The analysis of the GAT is depicted in Fig. 19, with the classification performance,

as expressed through AUC metric, returning a value of 0.85. In our training process, we
employed four attention heads. This setup allows the model to capture different types
of relationships and multi-dimensional information from neighboring nodes, enhancing its
representation learning capability. GAT’s improvement over GCN could be attributed to
its capability to weigh the importance of neighboring nodes differently when aggregating
information.

5 Similarity of DNN hidden layers representations
DL models are treated as black boxes which predictions are very hard to explain according to
the learned information in the hidden layers. Recently, there have been proposed interesting
methods trying to explain the predictions of DL models [77, 78]. They assume that the
contribution of a feature can be determined by measuring how the prediction score changes
when the feature is altered. Although the proposed method can explain the change in the
prediction score among different types of input features, it does not give a clear insight
about what is the learned representation for each hidden layer. The challenge in analyzing
the hidden layers representations of NNs is that features are distributed across a large
number of neurons. Moreover, hidden layers do not have fixed size of neurons. Linear CKA
[79] addresses these challenges, enabling quantitative comparisons of representations within
and across networks.

To compute the similarity of the hidden layers representations, CKA takes as an input
the hidden layers activation matrices as X ∈ Rd×P1 and Y ∈ Rd×P2 with P1 and P2 being
the neurons in the different hidden layers evaluated on the same input set with size equals
to d. The CKA similarity is defined as

CKA(M, N) = HSIC(M, N)√
HSIC(M, M)HSIC(N, N)

, (21)

where M = XX⊤ and N = Y Y ⊤7 denote the Gram matrices for the two hidden layers.
The main advantage of having a Gram matrix is that we can compute the similarity of
hidden layers representations with different number of neurons as the Gram matrix always
has the dimension of d × d. Moreover, one can compute the CKA similarity for hidden
layers from different DNNs.

7As we compute the linear CKA then M is simply XX⊤ while, for kernel CKA, M can be computed as
Φ(X, X) with Φ being the used kernel function.
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Figure 20: CKA similarities for the MLP (left), CNN (middle) and SNN (right) models
for the signal (BP with mA = 300 GeV) using 1000 test events are shown. Layers include
the input, fully-connected, convolution, pooling and dropout layers but exclude the output
layer.

The Hilbert Schmidt Independent Criterion (HSIC) is defined as

HSIC(M, N) = 1
(d − 1)2 tr(MHNH) , (22)

with H is a centering matrix and M, N are defined above. It is worth mentioning that
the HSIC is not invariant to random scaling of the input features, but it can be made
invariant through a normalization as introduced in the CKA formula. The value of a CKA
similarity ranges between [0, 1] and indicates the similarity of the learned representations by
each hidden layer. Layers with small CKA values do not share the same representations and
they learn different information from the input data which improves the model classification
performance. A larger CKA value indicates that layers learn the same information about
the input features resulting in no improvement of the classification accuracy of the model.
In this case one can truncate those layers which share the same information to reduce the
model complexity with no impact on the classification performance. For illustration of the
relation between the CKA similarity of the hidden layers and the classification accuracy we
point out to Fig. 3 in [79]. Here, Fig. 20 shows the CKA similarity for three DNN models:
MLP (left plot), CNN (middle plot) and SNN (right plot). The models are trained on the
signal point with mA = 300 GeV and to compute the CKA we adopt 1000 test samples for
each model. The CKA value is then computed for all layers of each model, e.g., Conv2d,
FC, dropout, pooling and input layers, but we do not include the final output layer (the
two neurons layer with softmax activation). The MLP model shows a uniform similarity
distribution among all layers except the input layer. The uniform similarity in the MLP
model indicates that the model is able to capture global information only. In fact, such
a behavior of the MLP layers is expected as the input features are high-level kinematic
distributions which encode the global characteristic features of the signal and background
events. Moreover, the uniform similarity among the MLP hidden layers indicates that one
can reduce the number of the used layers with no significant reduction of the classification
accuracy.

The CNN model shows a large CKA similarity among each convolution layer pair. The
first two convolution layers and the pooling layer have large CKA similarities. Also, the
second and third pair of the convolution layers as well as the pooling layers have large CKA
similarities among themselves. The last layers, 14th − 16th, are the fully-connected layers
which have similar representation among themselves but are different from the convolution
layers. In general, all convolution layers share a CKA similarity ∼ 0.8 among each other
which indicates that they all capture specific local information encoded into the jet images.

As for the SNN model, when tested on the same CNN input, we notice that, while the
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first two convolution layers and the pooling layers have large CKA value as in the CNN
model, the other convolution layers have small CKA similarity to the first convolution layers.
The last layers, 15th − 20th, are the fully-connected and dropout layers. The fact that the
first couple of convolution layers do not share the same similarity to the later convolution
layers indicates that convolution layers in the SNN capture different information from the
input jet images. Indeed, the additional information captured by SNN layers is the reason
for the enhanced classification accuracy over the CNN one. Overall, the CKA similarity for
SNN hidden layers assures that the convolution layers do not capture only local information
(similar to the CNN layers) but also capture different types of information, similarity and
dissimilarity of the input images.

Figure 21: CKA Similarity for GNN models. The CKA values are computed for the layers
of each model as well as layers from different models.

The power of the CKA approach lies in its ability to compute the similarity between
hidden layers from different models. As seen in Fig. 21, we demonstrate the CKA similarity
across all hidden layers of the GNN models. These similarities are drawn both within the
hidden layers of each individual model and between the hidden layers from different GNN
models.

An interesting observation is that the hidden layers from the DGCNN and GraphSAGE
models demonstrate a relatively high similarity, approximately 0.7, but are distinctly dif-
ferent from the GCN and GAT models. This similarity reflects the classification accuracy
values, with DGCNN and GraphSAGE displaying nearly identical classification accuracy
across all mass points, as shown in Fig. 22.

6 Results

We now apply the different ML models to probe the l+l−bb̄ (l = e, µ) signature of the
pp → A → Z(∗)h process at Run 3 of the LHC (with an integrated luminosity of 300 fb−1)
and the HL-LHC (with an integrated luminosity of 3000 fb−1). The discrimination power of
each of the networks measures how well the signal and background features are recognized,
which is quantified by the ROC curve. The better discrimination performance between
signal and backgrounds, the higher the true positive rate than the false positive rate in the
ROC curve. Detailed information about the remaining number of signal and background
events after optimizing the cuts on the DNN output for all the considered signal points can
be found in Tab. 2.

The expected upper limit on the total cross section can be constructed by computing
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the probability of finding the expected data incompatible with the prediction of the various
ML models. The expectation value of having a certain number of events in the ith mA bin
in the DNN output score distribution is [80]

E = µSi + Bi , (23)

where Si and Bi are the number of signal and background events, respectively, and µ is
the signal strength parameter. The signal strength parameter defines the type of statistic
measure, so that µ = 1 is rejecting a signal discovery hypothesis and defining the upper
limit on the total cross section. Such a limit can be calculated from the optimization of the
signal-to-background cut on the DNN output and this has been done using the following
significance formula [81–83]:

σsys =
[
2
(

(Ns + Nb) ln (Ns + Nb)(Nb + σ2
b )

N2
b + (Ns + Nb)σ2

b

− N2
b

σ2
b

ln(1 + σ2
b Ns

Nb(Nb + σ2
b ))
)]1/2

, (24)

with Ns and Nb being the number of signal and background events, respectively, and where
σb is the total uncertainty in the background events. For a 95% Confidence Level (C.L.)
upper limit on the total cross section for σ(pp → A → Z(∗)h)× Br(h → b̄b), we require
the signal significance to be σsys ≤ 2 [81]. The corresponding results for all considered ML
models are shown in Fig. 22. The CMS and ATLAS bounds extracted from [34] (Fig. 5)
and [38] (Fig. 11), respectively, linearly scaled to the considered integrated luminosities,
are also presented8.

Figure 22: 95% C.L. upper limit on the total cross section for the process σ(pp → A → Zh)×
Br(h → b̄b) at Run 3 of the LHC with Lint = 300 fb−1 (left) and the HL-LHC with
Lint = 3000 fb−1 (right), both with

√
s = 14 TeV and assuming a systematic uncertainty

σb = 10% on the background. The expected CMS and ATLAS limits extracted from [34]
(Fig. 5) and [38] (Fig. 11), respectively, and linearly scaled to the two luminosities are also
given. Bullet points on the ML curves indicate the four BPs considered.

The overarching observation here is that the results obtained from all our ML approaches
systematically outperform the experimental results for both LHC configurations. Amongst
the former, as obviously seen, the HDNN with two stream inputs has the most stringent limit
amongst all networks. Indeed, this is expected as merging both global and local information
by concatenating an MLP and CNN enables the model to access all needed information

8It is worth mentioning here that the ATLAS analysis considers a combined limit between the channels
of two isolated leptons plus no leptons. If, for consistency with our analysis, one considered only the ATLAS
results from the channel with two isolated leptons channel, the experimental limit in Fig. 22 will be relaxed.

28



about the events which in turns enhances the classification performance. Interestingly, the
SNN has an equal, and even better, classification performance than the MLP network.
Although the SNN is trained on jet images, which encode only local information about the
event, i.e., radiation patterns of the charged hadrons, it has more stringent limits than the
MLP network, which is trained on kinematic distributions encoding only global information.
We interpret this as follows: that learning the similarity among events from the same class
can secretly provide “unseen” global information to the SNN model. This can be achieved
by mapping events from different classes, signal and background, into different locations in
the Euclidean latent space of the model during the first training stage. The newly learned
“unseen” global information can be clearly interpreted from the CKA of SNN where the
early convolution layers capture information different to the ones captured by the late
convolution ones. Moreover, GNNs (DGCNN, GCN, GAT and GraphSAGE), produce a
slightly worse performance than CNNs. This is because they analyze low level data, i.e.,
(reconstructed) four-momenta of the final state particles. To increase the classification
performance of GNN models, we would need to add more inductive biases to be tuned.
In fact, the size of the constructed graphs is small, which is due to the small number of
(reconstructed) final state particles in each event. Accordingly, if we increased the number
of the inductive biases, e.g., by increasing the number of GNN layers, the GNN model would
overfit.

7 Conclusions

In summary, in this paper, we have used a variety of advanced ML techniques, most of which
had never been applied previously to the study of collider processes, to prove that they can
offer a significant improvement with respect to traditional LHC analyses, using either a cut-
and-count approach or else based on traditional ML approaches, such as (shallow) NNs.
Our methodology, in fact, exploits instead DNNs, the latter covering MLP, CNN, SNN
and HDNN algorithms and a variety of GNNs (DGCNNs, GCNs, GAT and GraphSAGE
networks), including an interpretable ML element that gives us confidence in the accuracy
of our predictions.

In order to exemplify the scope of this multi-prong ML approach, we have targeted a
BSM process to which current experimental analyses by ATLAS and CMS have moderate
sensitivity, i.e., bb̄, gg → A → Z(∗)h → l+l−bb̄ (l = e, µ), involving the production and decay
of a CP-odd Higgs state of a 2HDM Type-II (A) and the SM-like Higgs discovered in 2012
(h). The CERN machine configurations adopted included Run 3 of the LHC as well as the
HL-LHC, wherein

√
s = 14 TeV for both and Lint = 300 and 3000 fb−1, respectively. This

process is rather intriguing, as it is a potential BSM signal that would prove simultaneously
the presence of an extended Higgs sector (with a different CP nature) with respect to the
SM one and its underlying gauge structure. However, such a BSM signal suffers from
overwhelming backgrounds, so that it is a significant challenge to extract it. Furthermore,
depending on the A mass, whether it is such that mA < mZ +mh, mZ +mh < mA < 2mt or
mA ≈ 2mt, both the size of the signal (via the Br(A → Z(∗)), with the gauge boson being
either off- or on-shell as mA increases) and the composition of the background samples vary
significantly, so that different kinematical selections are generally required to optimise the
sensitivity of the various searches therein.

By adopting standard acceptance cuts on the final state objects (leptons and hadrons)
and a rather bland selection around the Z(∗) and h masses, so long that these are sup-
plemented by a combination of the aforementioned ML tools, we were able to improve, in
comparison to the very latest ATLAS and CMS results, the sensitivity to the cross section
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of the signal process by at least a factor of 4(2) over the mZ +mh < mA < 2mt(mA ≈ 2mt)
region while at the same time proving that there can be sensitivity also over the so-far unex-
plored mA < mZ +mh interval. Finally, we find that CNN approaches generally outperform
GNN ones.

Table 2: Analysis summary for all DNN models considered (column 1) for all signal BPs
from Tab. 1, identified by the A mass (column 2). Column 3 shows the area under the ROC
curve in each case. Columns 5 and 6 show the number of remaining signal and background
events, respectively, after maximizing the cut on the DNN output. Column 6 shows the
final significance. For illustrative purposes, event rates and significances are here computed
at the luminosity mid point of 1000 fb−1.

BPs AUC Signal (S) Background (B) σ

MLP

mA = 200 GeV 0.90 6538 486 156
mA = 250 GeV 0.92 46894 1422 496
mA = 300 GeV 0.95 63060 1287 614
mA = 350 GeV 0.96 69496 1004 678

CNN

mA = 200 GeV 0.87 9253 2007 142
mA = 250 GeV 0.89 47122 2675 443
mA = 300 GeV 0.86 60114 4417 485
mA = 350 GeV 0.90 66320 2364 574

SNN

mA = 200 GeV 0.92 7267 441 171
mA = 250 GeV 0.94 45822 1135 507
mA = 300 GeV 0.95 61940 1210 612
mA = 350 GeV 0.96 69894 2843 672

HDNN

mA = 200 GeV 0.93 7810 328 191
mA = 250 GeV 0.95 44033 767 525
mA = 300 GeV 0.98 63243 784 661
mA = 350 GeV 0.97 69798 956 685

DGCNN

mA = 200 GeV 0.86 6973 722 150
mA = 250 GeV 0.83 39126 1958 414
mA = 300 GeV 0.87 51436 1362 532
mA = 350 GeV 0.91 63463 1131 608

GCN

mA = 200 GeV 0.84 7256 992 143
mA = 250 GeV 0.78 38242 2083 403
mA = 300 GeV 0.84 50154 1416 520
mA = 350 GeV 0.89 61510 1051 620

GAT

mA = 200 GeV 0.85 6904 745 147
mA = 250 GeV 0.82 38459 1894 412
mA = 300 GeV 0.85 51237 1407 528
mA = 350 GeV 0.9 63607 1223 622

GraphSAGE

mA = 200 GeV 0.85 6915 723 148
mA = 250 GeV 0.82 38993 1994 412
mA = 300 GeV 0.86 51284 1392 529
mA = 350 GeV 0.9 63655 1207 624
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