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Highlights  
 

 We propose queue-based stochastic epidemic model for viral epidemics 
 

 The model is tractable yet general and applicable to large populations 
 
 

 It describes epidemics with general latency and infectious periods 
 
 

 We derive a control rule that ensure a shrinking epidemic 
 
 

 Our experiments illustrate the effectiveness of the proposed control rule 
 



Journal Pre-proof

A

T .

A r

ge

in e

ve s

tr t

is a

si

fo e

d

st e

p

in

th

va

K

co

1

f

d o

co

P 3

Revised Manuscript (Clean version)
Jo
ur

na
l P

re
-p

ro
of

A Novel Queue-based Stochastic Epidemic
Model with Adaptive Stabilising Control

bstract

he main objective of this paper is to propose a novel SEIR stochastic epidemic model

distinguishing feature of this new model is that it allows us to consider a setup unde

neral latency and infectious period distributions. To some extent, queuing systems with

finitely many servers and a Markov chain with time-varying transition rate comprise th

ry technical underpinning of the paper. Although more general, the Markov chain is a

actable as previous models for exponentially distributed latency and infection periods. I

also significantly more straightforward and tractable than semi-Markov models with

milar level of generality. Based on stochastic stability, we derive a sufficient condition

r a shrinking epidemic regarding the queuing system’s occupation rate that drives th

ynamics. Relying on this condition, we propose a class of ad-hoc stabilising mitigation

rategies that seek to keep a balanced occupation rate after a prescribed mitigation-fre

eriod. We validate the approach in the light of the COVID-19 epidemic in England and

the state of Amazonas, Brazil, and assess the effect of different stabilising strategies in

e latter setting. Results suggest that the proposed approach can curb the epidemic with

rious occupation rate levels if the mitigation is timely.

eywords: Stochastic epidemic models, Markov processes, queuing theory, stabilising

ntrol.

. Introduction

Classical epidemic models [e.g., 1, 2, 3] are powerful tools to understand the spread o

iseases and support public health policies. These models often divide the population int

mpartments. For example, a classical SIR model includes susceptible (S), infected (I) and

reprint submitted to Elsevier June 19, 202
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covered (R) individuals. The SEIR model is a generalisation whereby E represents th

posed individuals who have been contaminated but are not yet infectious due to the dis

se’s latency period. Classical compartmental models were extensively applied to describ

e evolution of the COVID-19 pandemic, differentiated only by the number and types o

mpartments. While Liu et al. [4] utilised a classical SIR model, McQuade et al. [5] ap

lied a SEIR model that differentiated symptomatic and asymptomatic infected individuals

rasad [6] utilised a QSIR model, where Q represents the quarantined population. Man

al et al. [7] introduced an analogous QSEIR model, whereas Upadhyay et al. [8] applied

age-structured QSIR model that differentiated the disease evolution across different ag

oups. Although nearly ubiquitous in epidemic modelling, classical compartmental model

e deterministic and do not capture the underlying uncertainties or the random duration

the disease cycle [9]. Stochastic epidemic models [10, 11] were designed to better captur

me of these uncertainties and provide more practical support for decision-making.

Network models are a variety of stochastic epidemic models that consider the population

ensity and mobility [e.g., 12, 13, 14]. However, they are computationally intensive, limitin

eir applicability to low-dimensional and sometimes artificial problems. Perhaps due to it

mplicity, SIR is arguably the most utilised class of stochastic epidemic models. Trapman

d Bootsma [15] used this framework to demonstrate the advantage of an M/G/1 queuin

odel to estimate the size of an epidemic at the time of detection. Sometime later, classica

/M/S queues were utilised to estimate the whole outbreak of the Ebola virus [16]. Mor

cently, Barraza et al. [17] employed pure Birth processes to fit data from the initial stage

the COVID-19 epidemic. Underpinning the analysis is the theory of Markov processe

8], used to model the transition of individuals among the SIR populations.

Markov models provide a powerful analytical framework for SIR models, allowing, fo

ample, the treatment of non-homogeneous populations [19]. However, one of the limita

ons is that the infectious period’s duration is assumed exponential, thus narrowing th

chnique’s applicability [20, 21]. A possible alternative is to develop more complex block

ructured Markov chains that mimic certain non-exponential infection times [22, 23]. Albei

mited, the added flexibility comes at the price of less interpretable and tractable models

2
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ith limited applicability to small populations.

A thorough treatment of general infection times demands a class of semi-Markov pro

sses known as piecewise-deterministic processes (PDP) [24]. Clancy [20] uses such

ass and martingale theory to derive the distribution of the number of infected individual

roughout the pandemic under generally distributed infection times. Later, Gómez-Corra

d López-Garćıa [21] utilised a similar model to obtain the distribution of the number o

condary cases due to an infected individual. PDP models require memory of the diseas

rogression of all currently infected individuals, which impacts the model’s analytical and

mputational tractability and limits its use. Hence, these models are typically applied t

nd the structural properties of a spread rather than to model and control an outbreak.

More appropriate for epidemics with non-negligible latency period, such as COVID-1

5], the stochastic SEIR models in the literature [e.g., 26, 27, 28] are limited to exponentiall

istributed latency and infectious periods and also focus on deriving structural properties o

e epidemic spread rather than describing the epidemic spread and underpinning contro

rategies. Therefore, inspired by the recent COVID-19 outbreak and considering the lac

a realistic and computationally tractable epidemic model that incorporates control and

propriately describes the inherent uncertainty, this works develops a novel stochastic SEIR

odel that is parsimonious enough to underpin the design of control strategies, while keepin

level of generality that allows for arbitrary latency and infection period distributions.

This paper proposes an innovative Mt/G/∞ model to describe the epidemic’s stochasti

ehaviour during the outbreak. It is the first queuing model of the kind, as the M/G/

eue in [15] is a specialised model to evaluate the size of the epidemic solely at the time o

etection and therefore does not cover the epidemic evolution. The approach hinges on tw

nique novelties. Firstly, we describe the input process as a time-varying Poisson process

hich enables us to describe the variation of infection rates as a function of the system’

ynamics. Secondly, we select a queuing model with infinitely many servers by realising tha

ere are no limits to the number of new infections and considering that conditions progres

parallel.

To our knowledge, this is the first work to introduce a time-varying Markov chain capabl

3
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emulating a stochastic epidemic model with general latency and infection times. Thi

novation relies on the results of Eick et al. [29], which demonstrate that the output proces

Mt/G/∞ queues comprises a series of time-indexed Poisson variables. Albeit as tractabl

the models that assume exponential (memoryless) infection and latency periods [e.g.

, 27, 28], the proposed framework is more general than the complex block-structured

odels [e.g., 22, 23] as it does not impose any assumption on the infection and latenc

eriod distributions.

Even if our approach’s generality level is partially matched by previous PDP model

ithin the more restricted SIR framework [20, 21], these require memory of the diseas

rogression of all individuals in the infected population. Of course, this is infeasible for all bu

ny population sizes and limits such models’ applicability to support decision-making. In

ntrast, the proposed framework considers general latency and infection periods by keepin

ack solely of the new expositions within a complete disease cycle: from catching the virus t

tering the removed population. Table 1 below briefly summarises the properties of existin

proaches and the characteristics of our method. Please notice that the computationa

pects, mentioned before, are not included.

able 1: Summary of the characteristics of existing models. The mnemonic O represents a characteristi

at occasionally appears in the literature.

Stochastic Stochastic Stochastic Queuing Present

SIR SEIR SIR SEIR network models paper

atency Deterministic ✓
eriod

Stochastic
Exponential O

General O ✓
ecovery Deterministic ✓ ✓ O

eriod
Stochastic

Exponential O O O O

General O O O ✓
nalysis of Structural properties only ✓ ✓ ✓
pread Only epidemic outset ✓

Full epidemic simulation ✓ ✓
Control capability O O No No O ✓

In addition to the methodological innovations, we propose a novel strategy to curb th

idemic based on the classical occupation rate of theMt/G/∞ exposition-to-removal queue

4
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his measure provides a dynamic estimate of the epidemic’s short-term growth. The strateg

lies on mitigating actions specially tailored to maintain the system’s occupation rate ρ a

ose as possible to a prescribed level 0 < ρ̄ < 1 at all times, thus ensuring a shrinkin

idemic. We validate the model’s predictive capability in light of the COVID-19 epidemi

England. We also conducted experiments using data from the COVID-19 dynamics in

mazonas, Brazil. The experiments illustrate the approach’s accuracy and utility whil

roviding invaluable insights into the system’s response to the proposed mitigation policies

he results demonstrate that the epidemic can be conquered by maintaining appropriat

cupation-level targets as long as the mitigation is not excessively delayed.

Although parameter fitting and data-driven analysis are beyond the scope of this paper

is worth mentioning that insufficient testing and asymptomatic infections may compromis

arameter fitting from epidemic data, regardless of the model’s level of detail. Consider

r instance, the state of Amazonas, Brazil: a largely unmitigated epidemic event whereb

serological study estimated an accumulated incidence of 76% [30, 31] in October 2020. In

ntrast, official epidemic reports featured a cumulative incidence of about 3.9% up to th

d of that month [32]. These figures suggest reconciling conflicting reports beyond ensurin

equate parameter fitting [33]. One advantage of the proposed model is that it can directl

se the latency and infectious period distributions from medical studies, such as [25, 34]

hus, only the infection rate β can be inferred from epidemic data. For a comprehensiv

iscussion of the relationship between the reproductive number, the growth rate, and th

ape of the disease cycle distribution, refer to [9].

To summarise, we present a novel SEIR-based queuing model to describe epidemic evo

tion and underpin epidemic control policies. The model is simpler and more computa

onally parsimonious than competing stochastic epidemic models, such as network models

contrast to classical epidemic models, our approach is stochastic, dynamic, and adap

ve; furthermore, it allows for general latency and infection periods. In contrast to existin

ochastic models, our approach allows the decision maker to adjust the level of control ac

rding to a prescribed expected decrease in infection levels. It is also less susceptible to poo

ata from insufficient testing and asymptomatic infections than data-driven approaches.

5
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This work is organised as follows. Section 2 introduces the mathematical formulation o

e proposed SEIR model, starting with the proposed Mt/G/∞ queues. We then use thes

eues’ input and output processes to propose a continuous time Markov chain to describ

e epidemic’s evolution. In Section 3, we present a stochastic stability analysis that give

se to a class of ad-hoc mitigation strategies to curb the epidemic. Section 4 features a se

experiments designed to illustrate the model’s performance in real-world settings. Th

periments also highlight the effectiveness of prescribed mitigation policies belonging t

e class introduced in Section 3. Finally, Section 5 concludes the manuscript.

1. A Few Notations

We will use the following notation throughout this paper. Let Z+ be the usual set of non

egative integers and N = {0, 1, 2, 3, ...N} ⊂ Z+, where N is a finite number. Consider Ω =

4 and define the probability space (Ω,F ,P). In addition, E(·) stands for the mathematica

pectation.

. Mathematical formulation

This section proposes a stochastic dynamic formulation in a probability space (Ω,F ,P)

o some extent, it is inspired by the classical deterministic SEIR epidemiological mode

, 2, 3], depicted in Figure 1 and further explained below.

S E I R
βI σ−1 γ−1

Figure 1: The classical SEIR model

The model comprises four compartments, namely: (i) susceptible, (ii) exposed, (iii

fected and (iv) removed. Susceptible individuals can be infected if they come in contac

ith infected individuals. Exposed individuals have been infected, but the disease is stil

tent, so they cannot spread the disease and do not manifest any symptoms. Once th

tency period is over, exposed persons become infected and may present symptoms. Finally

6
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fected individuals either die due to the disease or become immune to it. In both cases

ey migrate to the removed population, which comprises individuals who can no longe

ntract or spread the disease.

In the deterministic model in Figure 1, susceptible individuals become ill at a rate β >

pon making contact with infected (infectious) individuals, thus resulting in an infection

te δ = βSI. The individuals who acquire the condition immediately become exposed and

itiate their latency period, which averages σ units of time. Upon completing the latenc

eriod, exposed individuals become infectious for an average of γ time units. Afterward, the

ter the removed population due to acquired immunity or death. Table 2 below present

e parameters of the deterministic model:

Table 2: Parameters of SEIR dynamics.

Parameter Description Unit

β Transmission rate transmissions/encounter

σ Latency period days

γ Recovery period days

1. Stochastic formulation

Although the model in Figure 1 is invaluable to understand the underlying process, i

evident that the real-life dynamics are fundamentally stochastic. Albeit both the latenc

d the recovery periods are, indeed, stochastic variables, the deterministic SEIR model can

ly deal with the corresponding average rates. As expressed by Wallinga and Lipsitch [9]

e reproductive number R0 does not suffice to determine the growth rates as the epidemi

olves. They demonstrated that, for a givenR0, the generation interval distribution (latenc

eriod plus infectious period) determines the epidemic’s growth rates. Therefore, considerin

e actual latency period and infectious period distributions is also vital for depicting th

idemic. See, for example, Backer et al. [25] and Verity et al. [34] for estimations of th

7
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tency and recovery periods at the early stages of the COVID-19 epidemic. This Section

odels the SEIR dynamics as a queue with infinite service capacity.

Queue 1 in Figure 2 represents an individual’s trajectory from acquiring the diseas

d therefore becoming exposed to their removal of the system. Because the trajectories o

ifferent individuals are assumed independent, the system can be modelled as a Mt/G/∞
eue, as there is no upper limit on the number of simultaneous infections [29]. The ser

ce time is the sum of two generally distributed random variables σ and γ, representin

e latency and recovery periods, see Table 2; the latter corresponds to the length of th

fectious period.

Essentially, the proposed model depicted in Figure 2 considers each infection as a servic

rovision that includes a latency service that takes a random time (described by random

riable σ) to be completed, followed by a random infection service time that takes γ unit

time to be completed. Like in the deterministic model, the individual becomes infectiou

ter the latency period and immune or removed after the infection period. However, th

roposed stochastic model is more realistic because it allows for random latency and infec

ous periods and makes no assumption regarding their distributions, which can be promptl

ferred from data and included inputted in the model.

λ(t) δe(t)
E I

δi(t)
R

Queue 2

Queue 1

latency (σ) recovery (γ)

igure 2: Queue 1: Mt/G/∞ Queue from Exposed to Removed. Queue 2: Mt/G/∞ Queue from Expose

Infected

We model the arrival rate as a Poisson random variable with a rate proportional to th

aximum number of encounters between healthy and infected individuals, recalling tha

ch new arrival represents a new contagion. The proposed model innovates by considering

me-varying arrival rate λ(t) = βS(t)I(t) to cover the epidemic’s evolution over time. Figur

8
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shows that each departure from Queue 1 represents a decrease of one infected individual

ach arrival corresponds to a new exposition, i.e., a susceptible individual contracting th

isease in its latent stage. Each compartment (E, I, and R) denotes the correspondin

EIR population.

Also, in Figure 2, Queue 2 is a second Mt/G/∞ queue that covers the latency period

only. Each departure of this queue increases the infected population by one.

The queues in Figure 2 are inspired by the work of Eick et al. [29]. However, the proposed

idemic model is more general since the input rate λ(t) is not solely a function of time

stead, it depends on the number of infected and susceptible individuals at time t ≥ 0. A

reviously stated, stochastic jumps in the number of infected individuals depend upon th

eparture processes of the two queues introduced in Figure 2.

emark 1. Deterministic models typically use differential equations to describe the dynam
s of the system in Figure 1 [e.g., 35], considering both σ and γ as deterministic values. In
ntrast, the approach in Figure 2 regards a disease cycle as the sequential provision of tw
tivities of random duration (latency and infection), which can be seamlessly represente
a queuing model [e.g., 36]. In the next section, we tailor the queuing parameters to mode
epidemic spread appropriately.

1.1. The arrival and departure processes

We start by modelling the arrival process λ(t) shared by both queues, that represent

e number of new infections over time. At any given time t ≥ 0, the rate of contagion

xposition) is given by

λ(t) = βS(t)I(t), t ≥ 0, (1

here β is a scalar parameter, S(t) and I(t) are the sizes of the susceptible and infected

opulations at time t, respectively. This means that λ(t) is the rate at which previousl

ealth individuals will randomly catch the disease at time t, where λ(t) is given by Eq. (1)

Recall that σ is the random length of the latency time, after which a newly contaminated

dividual becomes infectious. Therefore, After experiencing a random latency time σ

posed individuals become infected. As Queue 2 represents the patient’s journey through

e latency phase (Fig. 2), the output of this queue δe(t) represents the number of new

9
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fections at time t. According to Eick et al. [29], δe(t) is a Poisson random variable with

ean:

δe(t) = E(λ (t− σ) ). (2

his is because the latency period σ is the service time of Queue 2.

Now let us recall that γ is the random recovery time after the infection is manifested

e., after an individual becomes infectious. Therefore, after experiencing the recovery tim

), the infected patient becomes removed. As Queue 1 represents an individual’s whol

urney, including latency and recovery (Fig. 2), the output of this queue δi(t) represent

e number of new removals at time t. Recalling that the total time from exposition t

moval is the sum of random variables σ and γ, the results of Eick et al. [29] implies tha

(t) is a Poisson random variable with mean:

δi(t) = E(λ( t− (σ + γ) )). (3

emark 2. Note that, at time t, both S(t) and I(t) are known; therefore, so is λ(t), whic
a deterministic function of these quantities. Moreover, since the system has a singl
alisation, all past values of λ(t) are known at time t. Therefore, the results of Eick et al
9] can be applied as they require that λ(t) be a known function of time up to time t; the
not require the knowledge of the future realisations of λ(t).

We develop an equivalent time-varying Markov model to our queuing formulation in

e following subsection. This will allow us to describe the system’s dynamics via simpl

ansition probabilities, enabling a parsimonious simulation of an epidemic across a larg

opulation.

1.2. Markov formulation with time-varying transition rate

We make use of the arrival and departure rates of Queues 1 and 2 in Eq. (1)-(3) to defin

time-varying Markov process Xt, t ≥ 0 that describes the evolution of the populations in

e SEIR compartments. At any time t ≥ 0, X(t) = (S(t), E(t), I(t), R(t) ) ∈ Ω is th

ate of process Xt, t ≥ 0. By definition, Xt, t ≥ 0 will be subject to random jumps tha

appen whenever either of these events occurs: i) a new exposition, represented as a new

10
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rival in the queuing system, ii) a new infection - represented as a departure from Queu

or iii) a new removal, i.e., a new departure from Queue 1 - see Fig. 2.

To describe the dynamics of the process Xt, t ≥ 0, we use Poisson variables to represen

e input and output of both queues [29] at any given time t ≥ 0. Consequently, the tim

ntil the next event will be exponentially distributed, and the total jump rate at time t ≥
:

Λ(t) = λ(t) + δe(t) + δi(t). (4

et {τ0, τ1, . . .} be the sequence of jumps in the system, with τ0 ≡ 0 and τk+1 > τk, ∀k ≥ 0

ow, assume a jump occurs at time t = τk. The following holds:

P (X(t+) = Y |X(t) = (S(t), E(t), I(t), R(t))), t = τk )

=





λ(t)

Λ(t)
if Y = (S(t)− 1, E(t) + 1, I(t), R(t)) )

δe(t)

Λ(t)
if Y = (S(t), E(t)− 1, I(t) + 1, R(t)) )

δi(t)

Λ(t)
if Y = (S(t), E(t), I(t)− 1, R(t) + 1) )

0 otherwise.

(5

The first expression on the right-hand side of Eq. (5) corresponds to a new conta

on/exposition, which happens at rate λ(t), see Eq. (1), and implies the transference o

individual from the susceptible to the exposed population. The second expression corre

onds to a new infection that happens upon the departure of an individual from Queue 2

hich occurs at rate δe(t), see Eq. (2). In that case, this individual moves from the exposed

the infected population. Finally, the third possibility is the departure of an individua

om Queue 1, which happens at rate δi(t), see Eq. (3). In that case, this individual migrate

om the infected to the removed population.

Finally, after the jump at t = τk, k ≥ 0, the value of the exposition rate λ(t) also changes

d becomes:

λ(t+) = βS(t+)I(t+), (6

11
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here the new values on the right-hand side of the expression above vary as a function o

e transition probabilities in (5), clearly, λ(t) remains unaltered between successive jumps

iven an initial distribution and the transition probability in (5), the process Xt, t ≥ 0 is

ntinuous-time Markov chain [18].

. Stochastic stability and reproduction number

Whereas deterministic models rely on the evaluation of trivial equilibrium to derive sta

ility conditions and the so-called reproduction number R0 [e.g. 37], the notion of stochasti

ability [e.g., 38] provides an ideal framework to evaluate the conditions for a recedin

idemic as time elapses. Queuing theory connects this notion with the so-called occupa

on rate, a measure of the input-to-output ratio as time elapses [36], deriving conditions t

sure that the infected population consistently decreases towards zero.

Consider Queue 1 in Figure 2. Assuming a considerable population, the stability of such

queue hinges on the occupation rate [e.g., 36]:

ρ(t) =
λ(t)

δi(t)
, (7

d can be ascertained if a finite time t̄ ≥ 0 exists such that ρ(t) < 1,∀t ≥ t̄. This guarantee

at the system stabilises and the number of customers in the queue remains finite. However

ability is guaranteed with a finite population because the number of infected individual

ill remain within finite, albeit possibly large, bounds. In that case, we are interested in th

end of Queue 1, which indicates whether the epidemic is increasing or receding. Theorem

below establishes the condition for a receding epidemic.

heorem 1. Consider the Markov process described in Section 2.1.2 and assume that ρ(t) <
for all t > t̄ ≥ 0, with t̄ < ∞. Then, it follows that:

E
(
E(t+) + I(t+) | X(t) ; t = τk

)
< E(t) + I(t), ∀t = τk > t̄, k ≥ 0, (8

here {τ0, τ1, . . .} is the sequence of jumps in the system, as defined in Section 2.1.2.

12
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roof From (5) we have that:

E
(
E(t+) + I(t+) | X(t) ; t = τk

)
=
λ(t)

Λ(t)
(E(t) + I(t) + 1)+

δe(t)

Λ(t)
(E(t) + I(t)) +

δi(t)

Λ(t)
(E(t) + I(t)− 1)

=E(t) + I(t) +
λ(t)− δi(t)

Λ(t)
,

or all t = τk. The last equality holds because Λ(t) = λ(t) + δe(t) + δi(t) - Eq. (4). Now, Eq. (8

llows by assuming ρ(t) < 1 for all t > t̄ ≥ 0.

Notice that Eq. (8) means that the expected total number of infected and exposed

dividuals will decrease at each new jump time τk, k ≥ 0. As a consequence of Theorem

we can interpret ρ(t) as the reproduction number of the system at time t and ρ(t) <

r all t > t̄ ≥ 0 as a sufficient condition for the epidemic to stabilise and shrink after tim

It intuitively states that if more people are recovering than getting infected, we have

ecreasing trend of infections.

Theorem 1 implies that we must consider the disease’s whole cycle, from exposition t

moval, to evaluate the epidemic trend. It underscores the importance of accurately trackin

e epidemic’s evolution through an efficient testing strategy. The accurate evaluation o

ch a cycle’s length will also be essential to evaluate the lags between mitigating actions and

ecreases in infections and expositions. Although mitigation can prevent future exposition

d infections, it does not affect recent transmissions still in the latent stage, which wil

ntinue to manifest and may drive infection up in the first stages of the mitigation.

1. Mitigation strategies

Theorem 1 provides a basis for developing mitigation strategies to stabilise the epidemic

hereas the Markov model in Section 2.1.2 enables us to evaluate the long-term effects o

ch strategies, for example via simulation. Following the literature, we introduce the contro

itigating action) in the form of non-pharmaceutical interventions to limit the spread o

e disease [e.g., 39, 40, 35]. A control level 0 ≤ u(t) ≤ 1 attains a reduction of 100u(t

ercentage points in the transmission rate at time t ≥ 0, thus resulting in a controlled

13
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position rate:

λ(t, u(t)) = β(1− u(t))S(t)I(t), t ≥ 0. (9

Let π = {u(t), t ≥ 0} be a mitigation strategy and let Π denote the set of all feasibl

rategies Π = {π : 0 ≤ u(t) ≤ 1, ∀t ≥ 0}. The dynamics of the system under any strateg

∈ Π can be evaluated by running the Markov chain Xt, t ≥ 0 with the same underlyin

ynamics, but making λ(t) = λ(t, u(t)), t ≥ 0. This means at any time t, the mitigation

olicy will prevent 100u(t)% of the new contagions that would happen without such an

tervention.

We are particularly interested in the class of stabilising policies ΠS ∈ Π, such that:

u(t) =





0, if t ≤ t̄,

min

[(
1− ρ̄

ρ(t)

)
, 0

]
, if t > t̄,

(10

here ρ(t) is the uncontrolled occupation rate in Eq. (7), designed to ensure that th

pected rate of new contagions after the control is at most 100ρ̄% of the expected numbe

recoveries, thus ensuring a consistent decrease of the epidemic levels.

It is easy to see that such policies lead to a controlled occupation rate ρc(t) =
λ(t,u(t))

δi(t)
≤

∀t > t̄, see Eq. (9). Henceforth, ρ̄ will be called target occupation level, and π = (t̄, ρ̄) wil

escribe any stabilising policy π ∈ ΠS that satisfies Eq. (10). In the next Section, we wil

aluate these policies in light of the COVID-19 epidemic and explore the stabilising effec

parameters ρ̄ and t̄ in Eq. (10). Observe that because the population is finite, the effec

the control can be limited by a delayed start of mitigation.

emark 3. Note from Eq. (9)–(10) that it is always possible to find a control u ∈ [0, 1
at leads to a particular target occupation rate ρ̄ ∈ [0, 1]. Hence, finding mitigation levels t
ive infections down and stabilise the epidemic is also possible. Note also that the mitigatin
vels can act as a guide for policy-making. They determine how effective the set of mitigatin
tions should be to drive infection levels down. For example, u(t) = 0.5 means that th
t of actions mandated—such as mask-wearing and social isolation should prevent at leas
% of the new contagions. In possession of prevention targets, one can evaluate differen
mbinations of actions to attain such targets, dynamically incorporating newly discovere
urses of action.

14
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Observe, however, that the Markov model in Section 2.1.2 is not limited to the proposed

ass of mitigation strategies. One can substitute any arbitrary mitigation policy π ∈ Π in

q. (9) and run the controlled Markov chain to evaluate the effect of such a policy. T

emonstrate that, our experiments will also include the on-off lockdown policies proposed

Tarrataca et al. [35], but evaluated there using a deterministic model with average rates

esigned to control hospital bed occupation, these policies trigger a full-scale lockdown when

fections surpass a prescribed upper bound; conversely, mitigating actions are lifted when

fections fall below a prescribed lower bound.

. Numerical Experiments

This Section validates the proposed stochastic SEIR dynamic model in Section 2.1.2 in

ght of data from the COVID-19 epidemic evolution in England and the state of Amazonas

razil.

1. The case of England

Given the identified inconsistencies in public datasets reporting positive tests [e.g. 31, 41

d the actual number of infections, we will first validate our model with data from th

eekly COVID-19 survey that estimates by random sampling the total levels of infection in

ngland since mid-2020 [42]. The survey provides a reliable benchmark for model validation

efore we investigate ad-hoc control strategies in the following subsection. Table 3 lists th

opulation and transmission rate parameters estimated by Arruda et al. [43].

Table 3: Parameters of the Simulation.

Parameter Description Value

P Total population 56, 000, 000

I(0) Initial number of infected people 50, 400

E(0) Initial number of exposed people 16, 800

S(0) Initial number of susceptible people 55, 932, 799

β Transmission rate 2.55 · 10−9

15
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tency period σ and the latency plus infection period (σ+γ), representing the entire diseas

cle. The distributions are compatible with previous studies on the random duration of th

isease cycle [25, 34] and assumed discrete to cope with the typical daily data collection.

Tables 4 and 5 unveil the distributions of σ and (σ + γ), respectively.

Table 4: Latency Period Distribution (σ).

Day 0 1 2 3 4 5 6 7

Probability - 0.0009 0.0056 0.0222 0.0611 0.1222 0.1833 0.2095

Day 8 9 10 11 12 13 14

Probability 0.1833 0.1222 0.0611 0.0222 0.0056 0.0009 6 · 10−5

Table 5: Latency and Infection Period Distribution (σ + γ).

Day 0 1 2 3 4 5 6 7

rob. - - - - - - - -

Day 8 9 10 11 12 13 14 15

rob. - - 3.87 · 10−7 4.84 · 10−6 3.87 · 10−5 0.0002 0.0010 0.003

Day 16 17 18 19 20 21 22 23

rob. 0.0098 0.0233 0.0466 0.0792 0.1151 0.1439 0.1550 0.143

Day 24 25 26 27 28 29 30 31

rob. 0.1151 0.0792 0.0466 0.0233 0.0098 0.0034 0.0010 0.000

Day 32 33 34 35

rob. 3.87 · 10−5 4.84 · 10−6 3.87 · 10−7 1.49 · 10−8
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emark 4. It is worth reinforcing that latency and recovery periods are disease-specific pa
meters that are not deterministic nor observable from epidemic reports. Hence, it is unsur
ising that fitting these parameters from epidemic data compromises the results, as infinitel
any parameter combinations can be found [33]. The latency period is non-observable, an
e daily number of new infections is often imprecise in epidemic reports as these depend on
myriad of factors (e.g., availability of tests, people volunteering to test, logistics, amon
hers). Fortunately, latency and recovery periods can be recovered from medical studies o
e disease, such as [25, 34], which are independent of epidemic data and can therefore giv
se to identifiable models [33].

igure 3: Epidemic evolution in England. The grey area surrounding the red line correspond

the reported 95% confidence interval centered in the median (red line).

Figure 3 depicts the simulated infection levels as time elapses against the 95% confidenc

terval of England’s weekly estimated infection levels [42]. The mean square error (MSE

etween the predicted and observed values was 0.0313. To adjust the data, we needed to infe

e control levels u(t) during the epidemic evolution, resulting from the many mitigation

olicies applied in the country in response to the epidemic evolution. Figure 4 depicts th

ntrol effect as time elapses.

It is evident in Figure 3 that our approach can effectively follow the epidemic trend a

me elapses. Meanwhile, Figure 4 illustrates the approach’s ability to infer the effect o

itigation in terms of infection prevention under uncertainty. One can notice an increase in

ntrol levels when the epidemic is decreasing - the effect of the mitigating policies applied

17
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Figure 4: Estimated preventive effect of epidemic mitigating policies in England

response to surges in infection, as well as a gradual decrease in control levels at time

hen relaxed mitigation led to increased infection levels.

Figure 5 depicts the error evolution between the predicted infection levels and the median

England’s weekly estimated infection levels. One can see that the proposed approach

osely follows the observed trends, keeping the errors limited as time elapses.

Finally, Figure 6 depicts the 95% confidence interval of the predicted infection levels in

ngland across 100 simulations. One can see that the predictions are robust and that th

nfidence interval remains limited as time elapses. That behaviour is maintained in th

mulations of the following subsections; therefore, we only plot the median of the simulated

lues, as the variation remains limited, and our analysis focuses on the mitigation policies

ects.
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Figure 5: Prediction Error

Figure 6: 95% confidence interval for the model

2. The epidemic in the state of Amazonas, Brazil

To simulate the epidemic evolution in the State of Amazonas, we employ parameter

sted in Table 6, as well as the latency and infectious period distributions of Tables 4 and

Without mitigation, that results in a total infection rate of about 80% as the system
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abilises, in line with the 76% rate estimated from a serological study in that state [30].

Table 6: Parameters of the Simulation.

Parameter Description Value

P Total population 4, 144, 596

I(0) Initial number of infected people 2

E(0) Initial number of exposed people 252

S(0) Initial number of susceptible people 4, 144, 342

β Transmission rate 3.447 · 10−8

3. The effect of delayed mitigation

The first experiment series examines policies π = (t̄, ρ̄) ∈ ΠS that follow Eq. (10

ith a fixed target occupation level ρ̄ = 0.95. The objective is to evaluate the effect o

elaying the start of mitigating actions by varying the first parameter. Cases A-F in Table

ature different triggering times for the mitigating actions, starting with the case where n

itigation is enforced (t̄ = ∞). For each experiment, we ran 100 simulations of the system

r two years, starting from the outset of the epidemic. The values plotted in the followin

gures correspond to the median of the simulated trajectories.

emark 5. The target occupation level is a parameter that determines how fast the epidemi
ill reduce and can be adjusted depending on the decision maker’s preferences. We vary th
rget rates in Section 4.4 to expand the analysis.

Table 7: Simulated cases.

Case A B C D E F

t̄ ∞ 147 168 189 210 231

ρ̄ 0.95 0.95 0.95 0.95 0.95 0.95

20



Journal Pre-proof

f

m s

a e

ep f

th e

p

ca

le e

m e

p

re

le
 Jo
ur

na
l P

re
-p

ro
of

1

5

10
15
20
25

50

75

100

100 147 210 300 400 500 600 730

Time (days)

p
o
p
u
la

ti
o
n
 (

%
)

exposed infected removed susceptible u(t)

Figure 7: Epidemic evolution for Case A: the unmitigated spread

Figure 7 shows the daily evolution of the epidemic for Case A, i.e., in the absence o

itigating actions. The number of individuals in each SEIR compartment is depicted a

percentage of the total population to facilitate the interpretation. One can see that th

idemic spreads rapidly, with the number of infected individuals peaking at around 19% o

e population after 250 days. The epidemic shrinks due to the decrease in the susceptibl

opulation until it subsides around the 400th day. Overall, about 85% of the population

tch the disease at some point during the two years.

Figure 8 shows that Case B starts mitigating early in the epidemic, with low infection

vels. The results illustrate the effectiveness of the mitigation policy. Observe that th

itigation policy successfully prevents the spread of the disease, maintaining 85% of th

opulation healthy over the whole two-year interval. In contrast, the removed population

aches 15% at the end of that interval. Controlling the epidemic, however, demands high

vels of mitigation that oscillate and stabilise around 0.50.
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Figure 8: Epidemic evolution for Case B

In Case C, the mitigation strategy is delayed for an extra three weeks concerning Case B

he mitigating actions are similar, tend to stabilise around the same value, and are equall

fficient to curb the epidemic. The difference concerning Case B is an increase in the fina

mber of individuals that catch the disease at some point, represented by the removed

opulation. This number increases from 15% in Case B to around 26% in Case C, thu

ighlighting the sensitivity of the spread concerning mitigation delay. The results also show

at a three-week delay produces a higher level of infection throughout the epidemic, with

e peak of infections just exceeding 1% of the population and decreasing slowly over time

Figures 10 feature the results for Case D. Despite an extra delay of three weeks concernin

ase C, it is still possible to flatten the curve and prevent an uncontrollable epidemi

crease. Nonetheless, the delay produces a peak of infections five times as large as in Cas

, with 5% of people being infected 200 days after the outset of the epidemic. The tota

moved population skyrockets from about 26% in Case C to about 70% in Case of D, thu
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Figure 9: Epidemic evolution for Case C

inforcing the importance of early mitigation to prevent the spread of the disease and th

ponential effect of extra mitigation delays. Due to the spread of the disease and th

rresponding decrease in the number of susceptible individuals, we can slowly relax th

itigation until the disease has contaminated about 50% of the population. As the diseas

reads further, we can rapidly relax the mitigation while maintaining a steady decreas

infected individuals. The mitigation is completely lifted just before the anniversary o

e outset of the epidemic. After about 600 days, the control levels are increased again t

revent a recrudescence.

Figure 11 shows the results for Case E that provide further evidence of the deleteriou

ect of mitigation delay. A further delay of three weeks concerning Case D results in an

fection peak of around 9% closely after the start of mitigation. Due to the more prominen

eak, we can relax the mitigation earlier and more rapidly, reaching complete relaxation jus

efore 300 days. The final number of removed individuals indicates that the epidemic affect
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Figure 10: Epidemic evolution for Case D

out 75% of the population within two years.

Finally, Figure 12 presents the results for Case F, demonstrating that delaying the mit

ation by 12 weeks effectively renders it meaningless. Indeed, on day 231, the uncontrolled

idemic is so widespread that the infection levels are dropping due to fewer susceptible indi

duals remaining in the population. The infection peaks on day 240 when it simultaneousl

icts approximately 17% of the population.

3.1. Brief notes on policy implementation

As observed in the experiments, since the stabilising policies are adaptive, they will pre

ribe mitigation levels that vary over time. However, we can set up fixed average mitigation

vels for specified intervals for practical purposes. For example, suppose the decision-make

ishes to revise the mitigation policies bi-weekly. In that case, we can use the model t

mulate the next two weeks and find the control levels for the whole period. Then, we can
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Figure 11: Epidemic evolution for Case E

commend the average value of the control in the next two weeks as a fixed mitigation leve

r the period. This process would repeat every other week.

4. The effect of distinct occupation rates

This Section investigates the effect of different target occupation rates ρ̄ in the stabilisin

olicies. To provide an exciting baseline, we start mitigating actions on t̄ = 189 when th

idemic reaches a significant proportion of the population. However, as in Case D of Figur

, the epidemic can still be controlled. The set of experiments in Table 8 assesses the effec

varying the target occupation level from 60% to 90% in regular intervals.

Table 8: Second set of experiments.

Case H I J K

t̄ 189 189 189 189

δ̄ 0.60 0.70 0.80 0.90
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Figure 12: Epidemic evolution for Case F

Figure 13 presents the results for Case H; as one can observe, the percentage of infected

eople peaks around 7%. As expected, the more substantial mitigation has no effect in th

rly stages and cannot prevent a similar peak as in the baseline (Case D). However, a

me elapses, we can notice that the increased mitigation produces a much more pronounced

ecrease in infections. In effect, infections are virtually extinguished after about 500 days

he increased control can keep the removed population at about 26% at the end of tw

ars, whereas that level was 70% in the baseline. Notably, the mitigation is kept high afte

e system stabilises to avoid recrudescence.

The results for Case I are shown in Figure 14. The increase in the target occupation

te ρ̄ concerning Case H has several noticeable effects: a slight decrease in the mitigatin

tions, a slower rate of decrease of the infection levels, and an increase in the removed

opulation. The infection levels decrease to 0.5% after two years. The reduced contro
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Figure 13: Epidemic evolution for Case H

vels also lead to an increase in the removed population, which climbs from 26% in Case H

close to 37% in Case I.

The trend of increasing infection levels gathers speed in Case J, as the decrease in th

quired mitigating actions leads to about 50% of removals within the two-year horizon

oupled with the significant decrease in the susceptible population, which reduces the po

ntial spread, the decrease in ρ̄ produces a steep decrease in the control levels. However

creased levels of mitigation are required later to avoid a second wave.

Finally, Figure 16 presents the results for Case K. As the target occupation level ap

roaches the baseline (Case D), the overall behaviour becomes quite similar. Despite drop

ing mitigating actions around day 350, the reduced size of the susceptible population cause

e infection to fall gradually. After the system stabilises, late mitigation efforts are needed

keep the infection at bay just before the 500th day.
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Figure 14: Epidemic evolution for Case I

5. The effect of on-off lockdown policies

This Section briefly evaluates the effect of on-off lockdown policies. Proposed by Tar

taca et al. [35], these policies demand a full-scale lockdown (u(t) = 1, ρ̄ = 0) when th

mber of infections surpasses a prescribed upper limit; conversely, all measures are lifted

(t) = 0, ρ̄ = ∞) as soon as these numbers drop below a lower bound. We simulate th

o policies whose upper and lower bounds appear in Table 9.

Table 9: The third set of experiments.

Case L M

Start 1,5% 2%

Stop 0.3% 1%

Figure 17 shows that Case L features five lockdowns in two years, the first starting on

ay 160. Infections recurrently peak just above 1.5% after the start of the first lockdown
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Figure 15: Epidemic evolution for Case J

e removed population amounts to 22% at the end of the second year. Consistently with

e results reported by Tarrataca et al. [35], the system alternates between rapid increase

d decreases in infection, and the lockdowns become shorter and more spaced over time.

A similar behaviour is observed in Figure 18 for Case M. But because the upper and

wer bounds are more significant, the total number of removals increases from 22% to ove

% in two years. In addition, the peak of infections increases to 3%. Although Case M

as two more lockdowns in two years, the total time in lockdown is similar, as illustrated

Figure 19, which shows the cumulative time in lockdown on the left-hand side and th

uration of individual lockdowns on the opposite half. The mean duration of a lockdown i

out 21 days in case L and 17 days in case M.

Comparing with on-off strategies, one can realise that, among other things, our stochasti

EIR model allows for smoother control and can avoid high infection levels as time elapses

hat results in consistently lower hospital occupation levels and, consequently, lower societa
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Figure 16: Epidemic evolution for Case K

sts. It also allows for a smooth and planned decrease in infection levels while considerin

e uncertainty in the spread.

. Conclusions

Inspired by the unprecedented COVID-19 epidemic, this paper explored innovative stoch

c modelling alternatives to describe the evolution of an epidemic using the classical SEIR

amework. The proposed stochastic model innovates by addressing the spread of the diseas

ithin a realistic model that considers uncertainty and is compatible with random latenc

d infection times, regardless of their distribution. The model is dynamic and adaptive, bu

r approach ensures that despite its generality, it remains simple, tractable, and valuabl

support decision-making as the decision-maker can set up the level of control to enforc

prescribed and sustainable decrease in the infected population.

By drawing a parallel between stochastic stability and the traditional reproduction num
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Figure 17: Epidemic evolution for Case L

er, the paper introduced stabilising strategies to curb an epidemic under general conditions

rovided that mitigation is initiated promptly. Beyond the academic contributions, th

nerality of the proposed approach renders it invaluable to supporting real-world decision

aking in the face of future epidemics. The methodology was validated using official COVID

data from England and literature reports on the epidemic spread in Amazonas, Brazil

he results provide a panorama of insights into the pros and cons of distinct stabilisin

itigation strategies over a two-year horizon. Additionally, the fact that the model could

osely replicate England’s epidemic and estimate the equivalent control levels validates th

proach in a reliable real-world setting, highlighting its value in supporting the design o

idemic mitigation strategies.One limitation is that the approach does not include multipl

ral variants, reinfection, or vaccination. Future work should contemplate the inclusion o
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ese aspects, either individually or combined.

As expected, the experiments illustrate that early intervention is vital to prevent th

isease from affecting a large portion of the population. However, to effectively prevent th
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read, we need very high levels of mitigation over the whole two-year horizon. The result

so suggest that delayed mitigation leads to a dramatic increase in the overall number o

fections. In effect, delays tend to produce persistent infection levels over time, even with

itigation, increasing the spread even though the infection curves are flattened. Beyond

attening the curves, this behaviour suggests that we also need to ensure, by acting swiftly

at their summit is tolerable from both societal and healthcare perspectives.

The proposed approach leaves many research avenues to be explored in future works

ne possibility is to evaluate the model with multiple virus variants, reinfection, and vacci

ation. Another obvious route is to pursue stochastic optimal control policies that somehow

dress the compromise between healthcare aspects, societal issues, and the economic bur

en of mitigation strategies. The challenges involve finding a meaningful trade-off amon

e different elements that decision-makers need to consider and proposing effective formu

tions that avoid the curse of dimensionality [44, 45] to ensure that the problem remain

actable. Another branch goes into developing filtering and analytical approaches to esti

ate a system’s parameters considering that the available information is delayed and biased

nce dependent on local testing and reporting policies.
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1] A. Gómez-Corral and M. López-Garćıa. On SIR epidemic models with generally distributed infectiou

periods: Number of secondary cases and probability of infection. International Journal of Biomathe

matics, 10(02):1750024, 2017. doi: 10.1142/S1793524517500243.
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Universitária, Campinas SP 13083-852, Brasil

eSchool of Computer Science and Engineering, Digital University Kerala, Technocity,
Mangalapuram Thonnakkal PO Thiruvananthapuram, Kerala-695317, India

bstract

he main objective of this paper is to propose a novel SEIR stochastic epidemic model

distinguishing feature of this new model is that it allows us to consider a setup unde

neral latency and infectious period distributions. To some extent, queuing systems with

finitely many servers and a Markov chain with time-varying transition rate comprise th

ry technical underpinning of the paper. Although more general, the Markov chain is a

actable as previous models for exponentially distributed latency and infection periods. I

also significantly more straightforward and tractable than semi-Markov models with

milar level of generality. Based on stochastic stability, we derive a sufficient condition

r a shrinking epidemic regarding the queuing system’s occupation rate that drives th

ynamics. Relying on this condition, we propose a class of ad-hoc stabilising mitigation

rategies that seek to keep a balanced occupation rate after a prescribed mitigation-fre

eriod. We validate the approach in the light of the COVID-19 epidemic in England and

the state of Amazonas, Brazil, and assess the effect of different stabilising strategies in

e latter setting. Results suggest that the proposed approach can curb the epidemic with

rious occupation rate levels if the mitigation is timely.
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Highlights 

· We propose queue-based stochastic epidemic model for viral
epidemics

· The  model  is  tractable  yet  general  and  applicable  to  large
populations

· It  describes  epidemics  with  general  latency  and  infectious
periods

· We derive a control rule that ensure a shrinking epidemic

· Our experiments illustrate the effectiveness of the proposed
control rule
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