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Abstract
Purpose of Review  Increasing bone mineral accrual during childhood might delay the onset of osteoporosis. We discuss the 
scientific evidence for early life approaches to optimising skeletal health.
Recent Findings  There is an ever-growing body of evidence from observational studies suggesting associations between 
early life exposures, particularly during foetal development, and bone mineral density (BMD). The findings of such studies 
are often heterogeneous, and for some exposures, for example, maternal smoking and alcohol intake in pregnancy or age at 
conception, intervention studies are not feasible. The most frequently studied exposures in intervention studies are calcium 
or vitamin D supplementation in pregnancy, which overall suggest positive effects on offspring childhood BMD.
Summary  Maternal calcium and/or vitamin D supplementation during pregnancy appear to have positive effects on offspring 
BMD during early childhood, but further long-term follow-up is required to demonstrate persistence of the effect into later life.

Keywords  Osteoporosis · Epidemiology · Bone mineral density · Vitamin D · Calcium · Developmental programming · 
Epigenetics

Introduction

Osteoporosis is a disorder of bone mass and microarchitec-
ture resulting in increased propensity to fracture. Osteopo-
rosis and the associated fragility fractures are an important 
cause of healthcare use and expenditure. It was estimated 
that in 2019, 32 million individuals in the European Union 

plus the United Kingdom (UK) and Switzerland (termed 
EU27 + 2) were living with osteoporosis. There were esti-
mated to be 4.3 million new fragility fractures during that 
year, equivalent to 11,705 fractures per day [1]. The total 
cost of new fragility fractures, existing fractures and phar-
macological interventions for osteoporosis in the EU27 + 2 
was calculated at €56.9 billion, representing approximately 
3.5% of healthcare expenditure in these countries [1]. In 
addition to pain and disability, fracture is associated with 
an increased risk of death, and nearly 250,000 deaths in the 
EU27 + 2 in 2019 were directly attributed to fracture [1]. 
Importantly, with an ageing population observed in most 
developed countries, the burden of osteoporosis has and 
will likely continue to increase unless primary preventative 
strategies can be implemented. One approach might be to 
improve skeletal health in early life to improve peak bone 
mass (PBM) and delay the onset of osteoporosis [2].

Bone Mass Throughout the Lifecourse

Osteoporotic bone typically has both low bone mineral den-
sity (BMD) and a deterioration in the microarchitecture of 
the bone, including cortical thinning and a reduction in tra-
becular number and thickness. However, the clinical defini-
tion of osteoporosis, as defined by the World Health Organi-
sation (WHO), is based solely on a measurement of BMD 
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by dual-energy X-ray absorptiometry (DXA). BMD is com-
pared to data from a reference population of healthy young 
adult females to generate a standard deviate “T-score”, with a 
T-score less than − 2 used to define osteoporosis [3]. Certainly, 
the clinical relevance of a low BMD is demonstrated by lower 
BMD in both adults [4] and children [5] who fracture.

Skeletal development begins in utero at 8–12 weeks’ 
gestation but foetal skeletal calcium accretion peaks dur-
ing the third trimester of pregnancy. Foetal bone mineral 
accretion is primarily determined by foetal plasma calcium 
ion (Ca2+) concentration, which is dependent on the active 
transport of Ca2+ from the maternal to foetal circulation 
by the placenta [6]. Adaptations to maternal calcitropic 
hormones and increased intestinal calcium absorption dur-
ing pregnancy help to facilitate this high foetal calcium 
demand, yet maternal serum Ca2+ is maintained within 
the normal adult range. At birth, bone mineral constitutes 
approximately 2% of an infant’s body weight [7].

During childhood and adolescence, skeletal growth in 
both length and width due to constant modelling and remod-
elling results in bone mineral accrual and an increase in bone 
mass (the composite of bone mineral content and bone size). 
Puberty is a critical period for bone mineral accrual, dur-
ing which whole body bone mass roughly doubles. Notably, 
the rate of gain in bone mass temporally lags behind peak 
growth velocity by approximately 6 months, resulting in a 
period of relative under-mineralisation [8]. This coincides 
with an increased incidence of fracture during adolescence, 
observed later in boys than girls and coinciding with the later 
puberty onset in males [9]. Following final height achieve-
ment, bone mineral accrual continues into early adulthood. 
Recent analysis of cross-sectional data collected during 
2005–2014 in the National Health and Nutrition Examina-
tion Survey (NHANES) in the United States of America 
(USA) suggested PBM was attained between 20 and 24 years 
in males and 19 and 20 years in females depending on skel-
etal site. PBM is typically attained earlier at the femoral neck 
and total hip than lumbar spine in both sexes, with no differ-
ence by ethnicity or body mass index [10]. Thereafter, bone 
mass decreases, with an acceleration in bone loss after the 
menopause in women. Mathematical modelling has demon-
strated that achieving a 10% higher PBM will delay the onset 
of osteoporosis by 13 years [2], highlighting the necessity to 
optimise early life bone mineral accrual to reduce the burden 
of osteoporosis and fragility fracture.

Modifiable Factors Affecting Bone Health 
in Childhood and Adolescence

There is evidence of moderate to high tracking (maintenance 
of the relative position of an individual within the population 
distribution over time) of BMD through childhood, puberty 

and into young adulthood [11, 12]. This might partly reflect 
a genetic tendency as osteoporosis has high heritability and 
numerous loci associated with BMD have been identified in 
genome-wide association studies (GWAS) [13]. Thus far, sin-
gle nucleotide polymorphisms have been identified accounting 
for up to 20% of the variance in adult BMD [13]; whilst further 
genetic contribution will undoubtedly be identified in future 
studies, findings thus far raise the possibility of modifiable life-
style factors influencing BMD in early and later postnatal life.

Physical activity has beneficial effects on the growing skel-
eton. In childhood and adolescence, higher levels of physical 
activity are associated with greater BMC, BMD and measures 
of bone strength by peripheral quantitative computed tomog-
raphy in both cross-sectional and longitudinal studies [14–17]. 
Vigorous physical activity has however been associated with 
higher risk of fracture, probably due to confounding by greater 
exposure to potential fracture-inducing events [14]. Two ran-
domised controlled trials (RCT) have demonstrated positive 
effects of a high impact jumping intervention in pre-pubertal 
children on whole body, lumbar spine and hip BMC with 
some persistence of the effect several years after cessation of 
the intervention [18, 19]. Furthermore, observational studies 
have also demonstrated associations between self-reported 
physical activity in adolescence and young adulthood and 
BMD in mid- and older adulthood [20–22]. For example, 
Zhang et al., using the Hertfordshire Cohort Study, found 
self-reported physical activity in women at age 18–29 years 
was associated with higher total hip BMD at age 72–80 years 
after adjustment for current activity levels [21], highlighting 
the importance of promoting physical activity in early life and 
around PBM to reduce osteoporosis risk.

Consideration of nutritional health is also important to 
maximise bone mineral accrual. This is of particular impor-
tance in preterm infants and those born with low birth weight, 
who often have had the reduced in utero bone mineral accrual 
as transplacental calcium transfer is maximum in the third 
trimester. The lower BMD can persist into later childhood 
and adulthood in those born preterm [23, 24]. Human breast 
milk is known to have beneficial effects on the risk of neonatal 
sepsis and complications of prematurity including necrotising 
enterocolitis and retinopathy of prematurity [25], and there is 
some evidence to suggest that there are long-term benefits for 
bone health [26]. These benefits are similarly observed in term 
infants in observational studies [27]. Fortification of human 
milk can also increase BMC in preterm infants [28].

Additionally, particular importance should be given to the 
nutritional status of children with chronic medical conditions 
that impact on nutritional intake or intestinal absorption, and 
are as such at increased risk of poor bone health. Despite bone 
mineral containing over 99% of the body’s total calcium, the 
benefits of calcium supplementation in children and adoles-
cents on BMC and BMD are unclear. Prevention of dietary cal-
cium and vitamin D deficiency are vital to prevent rickets and 
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symptomatic hypocalcaemia. However, whilst observational 
studies suggest positive associations between calcium intake 
and BMC or BMD [17], the findings of RCTs have generally 
been inconclusive and few have demonstrated persistence of 
a positive effect after discontinuation of supplementation. A 
recent meta-analysis of RCTs of calcium supplementation in 
children and young adults up to 35 years of age suggested a 
small positive effect on BMD at the femoral neck and whole 
body with a similar direction of effect at the lumbar spine and 
total hip but with confidence intervals bounding zero. The 
effect appeared to be stronger in studies that included only 
individuals over 20 years of age, although the number of stud-
ies was small, and some studies were limited to only women 
[29]. Similarly, observational studies suggest a non-linear 
relationship between 25-hydroxyvitamin D [25(OH)D] status 
and BMD or BMC in childhood [30], and this is supported by 
a meta-analysis of RCTs of vitamin D supplementation, but 
RCTs suggest that the effect of vitamin D supplementation on 
BMD in healthy children is small and may only be of benefit to 
those with biochemically low 25(OH)D levels [31–33].

The In Utero Environment and Long‑Term 
Bone Health

There is now increasing recognition that modifiable expo-
sures occurring before birth impact long-term health. In 1986, 
Barker and colleagues observed a close geographical relation-
ship between infant mortality rates and standardised mortal-
ity from cardiovascular disease 65 years later, leading to the 
“developmental origins of health and disease hypothesis” [34]. 
Subsequent observations of relationships between birth weight 
and other non-communicable diseases extended this hypothesis 
to other clinical outcomes, including skeletal health. Indeed, 
birthweight is positively associated with bone mass in both 
young and late adulthood [35]. Whilst birthweight is a proxy for 
poor intrauterine nutrition, poor intrauterine growth might not 
result in low birth weight. The importance of in utero growth, 
as opposed to simply achieved weight at birth, to long-term 
skeletal health is further supported by data from both the South-
ampton Women’s Survey (UK) and Generation R (The Nether-
lands) mother–offspring birth cohort studies, in which measures 
of foetal growth derived from ultrasound measurements during 
pregnancy have also shown positive associations with BMD 
and hip geometry in childhood [36, 37].

Maternal Lifestyle in Pregnancy 
and Offspring Bone Health

Maternal health and lifestyle factors are important deter-
minants of intrauterine growth, and their associations with 
offspring skeletal health have been assessed in observational 

studies. Smoking, for example, is recognised to impact nega-
tively on foetal growth and birth weight due to detrimental 
effects on placental function. However, the relationship of 
maternal smoking with offspring bone health is more com-
plex. In both the Princess Anne Hospital cohort and the 
SWS, maternal smoking was associated with lower neonatal 
BMC and BMD [38, 39]. Jones et al. similarly found lower 
BMD at age 8 years in Australian children born to mothers 
who smoked in pregnancy [40], but this relationship was 
no longer evident at age 16 years [41]. Some studies have 
found maternal smoking in pregnancy to be associated with 
higher BMD in childhood [37, 42]. A recently published 
meta-analysis suggested that maternal smoking in pregnancy 
was associated with lower offspring BMD in childhood/ado-
lescence, but that this relationship was no longer evident 
after adjustment for current weight [43]. Indeed, it is well 
recognised that maternal smoking in pregnancy is associated 
with greater childhood obesity, and obese children tend to 
have higher BMD. The intricate relationships between poor 
in utero growth in infants of smokers, postnatal catch-up 
weight gain and coupled with increased risk of other post-
natal risk factors for poor bone development may underlie 
these differing relationships in observational studies. Inter-
estingly, offspring of women who smoked during pregnancy 
were shown in a large population-based registry study in 
Sweden to have higher risk of fracture from age 5 years to 
young adulthood; however, the risk of fracture in siblings 
with differing in utero smoking exposure was similar, sug-
gesting this risk might be confounded by similar post-natal 
environmental characteristics [44], although other shared 
maternal factors during pregnancy (e.g. diet, body compo-
sition) may also be relevant.

Alcohol exposure during foetal life appears to have a 
detrimental effect on bone development. Children with 
foetal alcohol spectrum disorders (FASD) have lower 
WBLH BMD in adolescence than controls [45]. This 
might reflect their shorter stature given the effect of bone 
size on BMD measurement by DXA, and greater exposure 
to other drugs of abuse is seen in children with FASD and 
might also affect bone health [45]. However, animal stud-
ies have suggested that even low levels of alcohol expo-
sure are deleterious to bone development independent of 
the effect on foetal growth [46]. In a large prospective 
birth cohort study in Finland, moderate maternal alcohol 
consumption was associated with a more than two-fold 
increased risk of fracture before 8 years of age [47], but to 
our knowledge, there are no studies assessing pregnancy 
alcohol use and offspring BMD.

In developing countries such as the UK, maternal age at 
conception is advancing [48], which based on the findings of 
a birth cohort in Sweden might increase the risk of poor long-
term offspring bone health. In that study, increasing maternal 
age was associated with lower total body and lumbar spine 
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areal BMD in young adult males when controlling for several 
potential confounders [49]. Maternal parity however does not 
appear to be associated with offspring BMD [39, 49].

Although physical activity is recognised as important for 
skeletal development postnatally, the influence of maternal 
physical activity on offspring bone development has been 
rarely investigated. In a study of offspring of rats exposed to 
exercise or control during pregnancy, offspring whole body 
BMD by DXA did not differ, but offspring tibial cortical vol-
umetric BMD was lower in the offspring of exercised dams 
[50]. Similarly, in the SWS, walking speed in late pregnancy, 
used as a measure of maternal physical activity, was nega-
tively associated with neonatal BMC and bone area [39]. 
These findings raise the possibility of competition between 
the maternal and foetal skeleton for finite mineral resource.

Maternal Body Habitus and Offspring Bone 
Health

The prevalence of maternal obesity is increasing, and is 
associated with poorer obstetric health [51, 52]. In the 
SWS, greater maternal triceps skinfold thickness in preg-
nancy, used as a surrogate marker of adiposity, was associ-
ated with greater neonatal BA and BMC [39]. Similarly, in 
a cohort study in Japan, children born to underweight moth-
ers had lower WBLH BMC and BA, but similar BMD, at 
age 10 years. However, it is probable that this was mediated 
by offspring weight, which may also have shared genetic 
and environmental origins in mother and child [53]. Indeed, 
there is likely a non-linear relationship between maternal 
body habitus and offspring bone development, but there is 
stronger evidence to support a role for dietary quality and 
components affecting offspring bone health.

Maternal Nutrition in Pregnancy 
and Offspring Bone Health

Dietary Quality

Several studies have examined the relationships between 
maternal overall dietary quality and offspring bone health. 
In the Princess Anne Hospital Study, 198 women had 
diet assessed by a food frequency questionnaire at 15 and 
32 weeks’ gestation. A dietary score was generated to 
quantify dietary intake compared to recommendations for 
a healthy diet. In late pregnancy, a diet characterised by 
higher intakes of fruit, vegetables, wholemeal bread, rice 
and pasta, yoghurt and breakfast cereals and lower intakes 
of chips, roast potatoes, processed meats, sugar, crisps 
and soft drinks, termed a “prudent diet”, was positively 

associated with offspring whole body and lumbar spine 
BMC and aBMD at 9 years of age, including after adjust-
ment for maternal educational achievement, social class, 
anthropometry and smoking status [54]. Similarly, in over 
50,000 mother–offspring pairs in the Danish National Birth 
Cohort study, a more Western diet in mid-pregnancy, char-
acterised by high intakes of meat, potatoes and white bread 
but low fruit and vegetable intake, was associated with 
higher offspring risk of childhood forearm fracture [55]. 
More recently published work using the SWS and ALSPAC 
birth cohorts showed maternal consumption of a diet with a 
high dietary inflammatory index was negatively associated 
with offspring BA, BMC and aBMD in childhood [56].

Individual Dietary Components

Many studies have been undertaken to establish the roles 
of individual dietary components in bone health. Care 
must be taken in the interpretation of these due to poten-
tial inaccuracies in establishing true intakes from food 
frequency questionnaires; blood biomarkers of dietary 
components may be more reliable. There is also greater 
potential for intervention studies to establish causality for 
single micronutrients than overall dietary quality in deter-
mining offspring BMD.

Calcium

Unsurprisingly, considering the importance of calcium to 
bone mineral accrual, the role of maternal calcium intake 
in pregnancy on offspring bone health has received much 
attention. A recent meta-analysis with literature searches 
performed in September 2020 identified six RCTs of cal-
cium supplementation in pregnancy with assessment of 
offspring bone health [57]; a small effect of calcium sup-
plementation on whole body BMD in the neonatal period 
was noted; however, a long-lasting effect could not be 
established from the available studies.

Polyunsaturated Fatty Acids (PUFA)

Data from animal models suggest that PUFA, derived from 
fish oils, have a role in bone metabolism [58, 59]. In the 
SWS, maternal plasma n-3 PUFA at 34 weeks’ gestation was 
positively associated with offspring WBLH and LS BMC 
and BMD at 4 years of age [60]. In one recently published 
RCT, fish-oil supplementation during pregnancy increased 
offspring WBLH BMC but not BMD at age 6 years. BMI, 
fat mass and lean mass were also higher in the fish-oil sup-
plemented offspring suggesting a general growth stimulating 
effect rather than specific to bone [61].
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Iron

Fibroblast growth factor-23 (FGF23) regulates body phos-
phate homeostasis, primarily by increasing phosphaturia, 
and is also involved in vitamin D regulation. Maternal iron 
deficiency is associated with increased expression of FGF23 
and has therefore been postulated to have implications for 
the developing skeleton. Antenatal iron supplementation 
has recently been shown to reduce maternal and neonatal 
FGF23 [62], but a direct effect on bone health has not yet 
been examined.

Vitamin A

Vitamin A comprises a group of fat-soluble essential nutri-
ents that have roles in vision, immune function, growth and 
cell division and differentiation. In older adults, the different 
forms of dietary vitamin A have opposing associations with 
fracture risk [63]: high intakes of retinol, primarily from ani-
mal sources, are associated with high fracture risk, whereas 
β-carotene intake, primarily from plant sources, is negatively 
associated with fracture risk. Similarly, in the SWS birth 
cohort, maternal serum retinol in late pregnancy was nega-
tively associated with offspring neonatal whole body BMC 
and BA, but not BMD, whereas maternal serum β-carotene 
concentration was positively associated with BMC and BA 
but again not BMD [64]. Comparably, in a much smaller 
mother–offspring study in Norway, maternal serum retinol 
in pregnancy was not associated with offspring whole body 
or LS BMD at age 26 years [65]. Overall, these findings lend 
support to dietary recommendations to limit retinol intake 
during pregnancy due to the known teratogenic effects, and 
suggest possible beneficial effects of carotenoids on off-
spring bone health should be investigated.

Folate

Folate supplementation during pregnancy is strongly advised 
to prevent neural tube defects. Observational studies assess-
ing the relationships between maternal folate intake and off-
spring BMD are conflicting [66–68], but dose-comparator 
intervention studies on this outcome are lacking.

Maternal Vitamin D Status in Pregnancy 
and Offspring Bone Health

Vitamin D is primarily obtained from the action of sunlight 
on the skin rather than through dietary sources. However, 
vitamin D deficiency is highly prevalent in pregnant women 
[69] and can be improved with supplementation and/or food 
fortification practices [70]. Considering this and the impor-
tance of 25(OH)D in maternal calcium absorption, the effect 

of maternal vitamin D supplementation on offspring BMD 
has received scientific interest. Observational studies assess-
ing the associations between maternal 25(OH)D status and 
offspring BMD have reported inconsistent findings, but vari-
ation in gestation at 25(OH)D assessment, age at follow-up, 
cohort demographics and geographical location of the study 
limit comparison between studies (Table 1) [71–89].

There have been numerous RCTs that have assessed the 
effect of pregnancy vitamin D supplementation on neonatal 
anthropometry and/or calcium status [90]. Our own meta-
analysis of these studies suggested a small positive effect on 
birth weight and neonatal serum calcium. There are, however, 
fewer studies that have examined the effect of pregnancy vita-
min D supplementation on offspring musculoskeletal param-
eters; to date, there are 2 published trials assessing neona-
tal BMD [91, 92] and four trials with assessment of BMD 
in early childhood [93–96]. The largest published RCT is the 
MAVIDOS study, which was conducted in three centres in 
the UK and randomised women with a baseline 25(OH)D of 
25–100 nmol/l to either 1000 IU/day cholecalciferol or pla-
cebo from 14 to 17 weeks’ gestation until delivery [97]. Sup-
plementation increased maternal serum 25(OH)D, although 
achieved 25(OH)D in late pregnancy was also influenced by 
maternal BMI, baseline 25(OH)D and genetic variation within 
the vitamin D metabolism pathway [98–100]. DXA data were 
obtained for 665 infants within 2 weeks of birth [91] and 452 
children at 4 years of age [93]. Across the whole trial popula-
tion, no effect of vitamin D supplementation on neonatal bone 
mass was observed, but an interaction with season of birth 
was noted such that BMD was higher in winter-born infants 
of supplemented mothers compared to the placebo group 
[91]. However, at age 4 years, a significant effect of vitamin 
D supplementation on offspring BMD was noted across the 
whole cohort [93] (Fig. 1), equating to approximately 0.17 SD 
difference between the two groups. If this effect is sustained 
into adulthood, it would be expected to reduce fracture risk. 
WBLH lean mass was also increased in the cholecalciferol 
group, consistent with earlier findings from the SWS which 
showed a positive association between late pregnancy 25(OH)
D and offspring grip strength [101].

A positive effect of pregnancy vitamin D supplementa-
tion was also found in the Copenhagen Prospective Studies 
on Asthma in Childhood (COPSAC2010), in which women 
were randomised to either 2400 IU/day or 400 IU/day chole-
calciferol from 24 weeks’ gestation. In that study, differences 
in WBLH BMC and aBMD at 6 years of age of 0.15 and 0.2 
SD, respectively, were identified, thus of comparable mag-
nitude to the differences observed in MAVIDOS [94]. How-
ever, no differences in WBLH BMC or aBMD were iden-
tified at age 3 years. In contrast, O’Callaghan et al. found 
no differences in WBLH BMD or BMC at 4 years of age 
in offspring of children born to mothers randomised to 
either 4200 IU/week, 16,800 IU/week or 28,000 IU/week 
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cholecalciferol in Bangladesh [95]. The differences in study 
findings likely reflect methodological differences, including 
timing of commencing vitamin D supplementation, dosing, 
daily versus weekly supplementation and the geographical 
location and population in which the study was performed. 
This highlights the need to consider generalisability of a 
study population. Nonetheless, taken together, these studies 
do suggest a possible benefit of pregnancy vitamin D sup-
plementation for offspring bone health, but further follow-up 
of these cohorts is needed to demonstrate persistence into 
adolescence and adulthood.

Mechanisms

The mechanisms underlying the observed associations 
between the early environment and future bone health are 
not fully understood. Animal models allow for more marked 
dietary restrictions than is typically observed in human stud-
ies, and can be used to identify potential mechanisms for the 
observations. For example, rats fed a protein-deficient diet 
in pregnant have offspring with fewer ossification centres 
and alterations to the growth plate [102], and in ewes fed a 
calorie-restricted diet, mesenchymal stem cell activity was 
reduced [103].

In humans, there may be a direct effect of individual 
nutrients or overall nutrition (directly or indirectly due to 
an effect on placental function, e.g. smoking) on bone min-
eralisation. Maternal 25(OH)D supplementation for exam-
ple increases umbilical cord calcium concentration [90], 
and thus, it could be postulated that this increases calcium 
availability for skeletal mineralisation. However, interest-
ingly, the winter effect of vitamin D supplementation on 
neonatal BMD at birth [91], but with a positive effect at age 
4 years, regardless of season [93], in MAVIDOS, and similar 
observations at ages 3 and 6 years in COPSAC2010 [94], 

suggests an evolving effect of vitamin D supplementation 
on BMD over childhood. This would support an epigenetic 
mechanism underlying this relationship. Epigenetics is the 
study of the interaction between the environment and gene 
expression. Genes can be differentially expressed in differ-
ent cells and tissues according to function and need, and 
in experimental studies, alterations to offspring phenotype 
and gene expression can occur in response to environmental 
cues and maternal diet [104]. DNA methylation and his-
tone modification are two types of epigenetic mechanisms. 
These are stable heritable changes that influence gene tran-
scription without changing the DNA sequence, and can be 
influenced by the in utero environment, such as maternal 
smoking [105] and, in the MAVIDOS trial, pregnancy vita-
min D supplementation [106]. Differences in the level of 
DNA methylation have been associated with childhood bone 
mass [107, 108], with methylation at the retinoid-X-receptor-
a (RXRA) gene in perinatal tissue implicated as a potential 
link between maternal 25-hydroxyvitamin D status, vitamin 
D supplementation and offspring bone mass in both obser-
vational and intervention settings [106, 107].

Conclusions

Optimisation of bone mineral accrual during early life is 
likely to reduce the risk and delay the onset of osteoporosis 
in later life. Approaches to this include during childhood, 
such as physical activity and nutrition, and during in utero 
development. Recently, pregnancy vitamin D supplemen-
tation has been demonstrated to have promising beneficial 
effects on offspring BMD in early childhood in two large 
randomised controlled trials in the UK [91, 93] and Den-
mark [94], and a meta-analysis has suggested a small effect 
of calcium supplementation in pregnancy on neonatal BMD 

Fig. 1   The effect of 1000 IU/
day cholecalciferol supplemen-
tation from 14 to 17 weeks’ ges-
tation until delivery on offspring 
whole body less head bone 
mineralisation at 4 years of age. 
Reproduced with permission 
from Curtis et al. JBMR + 2022. 
BMC, bone mineral content; 
aBMD, areal bone mineral 
density; scBMD, size corrected 
bone mineral content
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[57]. Ongoing follow-up of these children is required to 
show persistence of this effect into later life, and further 
epigenetic and metabolic studies might help to elucidate the 
underlying mechanisms of this effect.
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