Controlled objects in left-exact $\infty$-categories and the Novikov conjecture
Controlled objects in left-exact $\infty$-categories and the Novikov conjecture
We associate to every $G$-bornological coarse space $X$ and every left-exact $\infty$-category with $G$-action a left-exact infinity-category of equivariant $X$-controlled objects. Postcomposing with algebraic K-theory leads to {new} equivariant coarse homology theories. This allows us to apply the injectivity results for assembly maps by Bunke, Engel, Kasprowski and Winges to the algebraic K-theory of left-exact $\infty$-categories.
Bunke, Ulrich
b5755b35-f32f-4ec9-bb46-ded3cfd42faa
Cisinski, Denis-Charles
1d04995e-b8c5-4dde-97a0-963e341762a3
Kasprowski, Daniel
44af11b9-4d22-49f2-a6a3-04009f45b075
Winges, Christoph
347e42cd-fbb9-4dfc-80e3-84c79eb5696a
Bunke, Ulrich
b5755b35-f32f-4ec9-bb46-ded3cfd42faa
Cisinski, Denis-Charles
1d04995e-b8c5-4dde-97a0-963e341762a3
Kasprowski, Daniel
44af11b9-4d22-49f2-a6a3-04009f45b075
Winges, Christoph
347e42cd-fbb9-4dfc-80e3-84c79eb5696a
Bunke, Ulrich, Cisinski, Denis-Charles, Kasprowski, Daniel and Winges, Christoph
(2019)
Controlled objects in left-exact $\infty$-categories and the Novikov conjecture.
arXiv.
(In Press)
Abstract
We associate to every $G$-bornological coarse space $X$ and every left-exact $\infty$-category with $G$-action a left-exact infinity-category of equivariant $X$-controlled objects. Postcomposing with algebraic K-theory leads to {new} equivariant coarse homology theories. This allows us to apply the injectivity results for assembly maps by Bunke, Engel, Kasprowski and Winges to the algebraic K-theory of left-exact $\infty$-categories.
This record has no associated files available for download.
More information
Accepted/In Press date: 6 November 2019
Identifiers
Local EPrints ID: 478541
URI: http://eprints.soton.ac.uk/id/eprint/478541
ISSN: 2331-8422
PURE UUID: d69ae9c5-6758-4627-9ca6-4029c19540e9
Catalogue record
Date deposited: 04 Jul 2023 17:48
Last modified: 17 Mar 2024 04:19
Export record
Contributors
Author:
Ulrich Bunke
Author:
Denis-Charles Cisinski
Author:
Daniel Kasprowski
Author:
Christoph Winges
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics