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Abstract. We show that for an oriented 4-dimensional Poincaré complex X with finite fundamental

group, whose 2-Sylow subgroup is abelian with at most 2 generators, the homotopy type of X is
determined by its quadratic 2-type.

1. Introduction

An oriented 4-dimensional Poincaré complex is a finite CW complex with a fundamental class
[X] ∈ H4(X;Z) such that

− ∩ [X] : C4−∗(X;Z[π1(X)]) → C∗(X;Z[π1(X)])

is a chain equivalence. For many fundamental groups, Hambleton and Kreck [HK88HK88, Theorem 1.1]
classified oriented 4-dimensional Poincaré complexes up to orientation-preserving (o.p.) homotopy
equivalence, in terms of isomorphism classes of pairs consisting of the Postnikov 2-type TX and a
homology class t ∈ H4(TX), the image of [X] under some 3-connected map X → TX . Baues and
Bleile [BB08BB08, Corollary 3.2] showed that this result indeed holds for all fundamental groups.

One could be tempted to view this as a complete classification. However, it is often desirable in
applications to have a classification in terms of more readily computable invariants. The standard
suite of invariants of an oriented 4-dimensional Poincaré complex X are those which comprise the
quadratic 2-type:

[π1(X), π2(X), kX , λX ],

where π2(X) is considered as a Z[π1(X)]-module, kX ∈ H3(π1(X);π2(X)) is the k-invariant of X
and λX is the equivariant intersection form on π2(X). Since recording the first three is equivalent
to knowing the Postnikov 2-type, investigations into the homotopy classification reduce to asking
whether t ∈ H4(TX) is determined by λX .

We recall the history of the homotopy classification problem for oriented simply-connected 4-
dimensional Poincaré complexes. Whitehead and Milnor [Whi49Whi49, Mil58Mil58] classified them in the simply-
connected case, and later Wall [Wal67Wal67, Theorem 5.4] did the same for those with cyclic fundamental
groups of prime order. Hambleton and Kreck [HK88HK88] showed that oriented 4-dimensional Poincaré
complexes with finite cyclic fundamental group of arbitrary order, and more generally with a finite
fundamental group with 4-periodic cohomology, are classified up to o.p. homotopy equivalence by their
quadratic 2-type. Bauer [Bau88Bau88] generalized this further to the case where only the 2-Sylow subgroup
of the fundamental group has 4-periodic cohomology.

We consider the case where the 2-Sylow subgroup is abelian with at most two generators. Note
that abelian groups with at most two generators have 4-periodic cohomology if and only if they are
cyclic, so this improves previous results.

Theorem 1.1. Let π be a finite group such that the 2-Sylow subgroup is abelian with at most two gener-
ators. Then two oriented 4-dimensional Poincaré complexes with fundamental group π are orientation-
preserving homotopy equivalent if and only if their quadratic 2-types are isomorphic.
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Our proof of Theorem 1.11.1 is based on the following result, which was proven by Hambleton-
Kreck [HK88HK88, Theorem 1.1 (i)], with a hypothesis removed by Teichner [Tei92Tei92] (see also [KT21KT21,
Corollary 1.5]). Let Γ be Whitehead’s quadratic functor, whose definition we recall in Section 22.

Theorem 1.2 ([HK88HK88, Tei92Tei92]). If Z ⊗Z[π1(X)] Γ(π2(X)) is torsion free, then oriented 4-dimensional
Poincaré complexes with fundamental group π are o.p. homotopy equivalent if and only if their qua-
dratic 2-types are isomorphic.

By Theorem 1.21.2, to prove Theorem 1.11.1 it suffices to show that Z ⊗Z[π1(X)] Γ(π2(X)) is torsion
free. Here is an outline of our proof of this fact, which will occupy us for the remainder of the
article, together with signposts as to where in the paper each step is carried out. After recalling the
definition and some properties of Γ, Section 22 introduces tools for showing that groups of the form
Z⊗ZπΓ(L) are torsion free. Section 33 applies them to L = π2(X), where X is a 4-dimensional Poincaré
complex. This section recalls the short exact sequence for stable isomorphism classes of Zπ-modules
0 → ker d2 → π2(X) → coker d2 → 0, where d2 and d2 come from a free Zπ-module resolution (C∗, d∗)
of Z and its dual respectively. At the start of Section 44, we reduce the proof that Z⊗Z[π1(X)]Γ(π2(X))

is torsion free to showing that K := Z ⊗Zπ Γ(ker d2) and CK := Z ⊗Zπ Γ(coker d2) are torsion free
abelian groups, for π a 2-Sylow subgroup of π1(X). The remainder of Section 44, which is the technical
core of the paper, then proves that the groups K and CK are torsion free for π any finite abelian group
with at most two generators, completing the proof that Z⊗Z[π1(X)]Γ(π2(X)) is torsion free, and hence
by Theorem 1.21.2 completing the proof of Theorem 1.11.1.

Remark 1.3. Note that for nonorientable 4-dimensional Poincaré complexes (or even manifolds) the
analogous statement to Theorem 1.11.1 does not hold even for π = Z/2, by [KKR92KKR92]. Nonetheless nonori-
entable closed 4-manifolds with fundamental group Z/2 were classified up to homotopy equivalence
by Hambleton, Kreck, and Teichner [HKT94HKT94].

After this article appeared as a preprint, the first and third authors, together with Nicholson,
proved the analogue of Theorem 1.11.1 for dihedral fundamental groups [KNR22KNR22].

We also note that the method of proof of Theorem 1.11.1 does not work for finite abelian groups
whose 2-Sylow subgroup requires more than two generators. As discussed in Section 55, for π1(X) ∼=
Z/2×Z/2×Z/2, the group Z⊗Z[π1(X)] Γ(π2(X)) is in general not torsion free. This leads us to pose
the following question.

Question 1.4. Let π be a finite abelian fundamental group whose 2-Sylow subgroup requires more
than two generators. Are there oriented 4-dimensional Poincaré complexes (or even better, manifolds)
with fundamental group π that are not homotopy equivalent but have isomorphic quadratic 2-types?
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2. Whitehead’s Γ groups

We recall the definition of Whitehead’s Γ functor from [Whi50Whi50], as well as a couple of key lemmas
that we shall use in computations of Γ groups.

Definition 2.1 (Γ groups). Let A be an abelian group. Then Γ(A) is an abelian group with generators
the elements of A. We write a as v(a) when we consider it as an element of Γ(A). The group Γ(A)
has the following relations:

{v(−a)− v(a) | a ∈ A} and

{v(a+ b+ c)− v(b+ c)− v(c+ a)− v(a+ b) + v(a) + v(b) + v(c) | a, b, c ∈ A}.

In particular, v(0A) = 0Γ(A).
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Remark 2.2. For X a 4-dimensional Poincaré complex with finite fundamental group π,

π2(X) ∼= H2(X̃;Z) ∼= H2(X̃;Z) ∼= Hom(H2(X̃;Z),Z),

which is in particular a finitely generated free abelian group.

Lemma 2.3 ([Whi50Whi50, page 62]). If A is free abelian with basis B, then Γ(A) is free abelian with basis

{v(b), v(b+ b′)− v(b)− v(b′) | b ̸= b′ ∈ B}.

In this case, we will usually consider Γ(A) as the subgroup of symmetric elements of A⊗ A given
by sending v(a) to a ⊗ a. Observe that v(b + b′) − v(b) − v(b′) corresponds to the symmetric tensor
b⊗ b′ + b′ ⊗ b. For a Zπ-module A, the group π acts on Γ(A) ⊆ A⊗A via

g ·
∑
i

(ai ⊗ bi) =
∑
i

(g · ai)⊗ (g · bi).

To compute Γ groups we will mostly rely on the following lemma.

Lemma 2.4 ([Bau88Bau88, Lemma 4]). Let π be a group. If 0 → A → B → C → 0 is a short exact
sequence of Zπ-modules which are free as abelian groups, then there is a Zπ-module D, also free as
an abelian group, and such that there are short exact sequences of Zπ-modules

0 → Γ(A) → Γ(B) → D → 0

and

0 → A⊗Z C → D → Γ(C) → 0.

For the direct sum of free abelian groups A,B, the short exact sequences in the previous lemma
split, so we have an isomorphism of Zπ-modules

Γ(A⊕B) ∼= Γ(A)⊕ Γ(B)⊕ (A⊗Z B).

For computational purposes we will need that the map A ⊗Z C → D is given as follows. Pick bases
(as free abelian groups) {ai}, {cj} and {ai, c̃j} of A, C, and B respectively, where c̃j is a lift of cj .
Then ai ⊗ cj is sent to [ai ⊗ c̃j + c̃j ⊗ ai] ∈ D ∼= Γ(B)/Γ(A).

2.1. Showing that groups of the form Z⊗Zπ Γ(L) are torsion free. The strategy to show that
groups of the form Z⊗Zπ Γ(L) are torsion free is to reduce to one of the cases in the next result, due
to Hambleton and Kreck. See also their corrigendum [HK18HK18], where a mistake in the original proof is
fixed.

Theorem 2.5 ([HK88HK88, Theorem 2.1]). Let π be a finite group. Let L be one of the following:

(i) a finitely generated projective Zπ-module;
(ii) the augmentation ideal ker(ε : Zπ → Z);
(iii) Zπ/N , where N =

∑
g∈π g denotes the norm element.

Then Z⊗Zπ Γ(L) is torsion free.

We will also need the following proposition, which extends the third case of Theorem 2.52.5.

Proposition 2.6. Let G and H be finite groups and let NH =
∑
h∈H h be the norm element of H,

considered in Z[G×H]. Then Z⊗Z[G×H] Γ(Z[G×H]/NH) is torsion free.

For a ZH-module A, let A[G] := {
∑
g∈G agg | ag ∈ A} be the Z[G×H]-module with the addition

and the action given by(∑
g∈G

agg
)
+
(∑
g∈G

bgg
)
=

∑
g∈G

(ag + bg)g and (g′, h)
(∑
g∈G

agg
)
=

∑
g∈G

(hag)(g
′g)

respectively. The proof of Proposition 2.62.6 starts with the following lemma.
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Lemma 2.7. Let G and H be finite groups and write π := G × H. Let A be a ZH-module which
is finitely generated and free as an abelian group. Consider the subset S′ of G of all elements with
g2 ̸= 1. Then we have a free involution on S′ given by g 7→ g−1. Let S ⊆ G be a set of representatives
for S′/(Z/2). Then there is an isomorphism of Zπ-modules

ϕ : Γ(A[G])
∼=−→ Γ(A)[G]⊕

⊕
g∈S

(A⊗Z A)[G]⊕
⊕

g∈G\{1},g2=1

(A⊗Z A)[G]/Flipg,

where the submodule Flipg := ⟨(a⊗ b)− (b⊗ a)g | a, b ∈ A⟩.

The special case H = 1 and A = Z is [HK88HK88, Lemma 2.2] and the proof is similar.

Proof. The inverse of ϕ is given as follows. Elements (a⊗a′)γ ∈ Γ(A)[G] are sent to aγ⊗a′γ, elements
(a ⊗ a′)γ ∈ (A ⊗Z A)[G] in the factor indexed by g ∈ S are sent to aγg ⊗ a′γ + a′γ ⊗ aγg, and for
g with g2 = 1 elements (a ⊗ a′)γ ∈ (A ⊗Z A)[G]/⟨(a ⊗ b) − (b ⊗ a)g | a, b ∈ A⟩ are again sent to
aγg ⊗ a′γ + a′γ ⊗ aγg.

Since as an abelian group

Γ(A[G]) ∼=
⊕
g∈π/H

Γ(A)⊕
⊕

{g,g′}⊆π/H,g ̸=g′
A⊗Z A,

it is easy to see that the above described map is surjective. That it is also injective follows from a
computation of the rank of the involved modules considered as abelian groups, since both sides are
free as abelian groups by Lemma 2.32.3. □

Proof of Proposition 2.62.6. Let π := G ×H. We have Z[π]/NH ∼= (ZH/NH)[G]. Thus by Lemma 2.72.7
the abelian group Z⊗Zπ Γ(Z[π]/NH) is a direct sum of groups of the form

Z⊗ZH Γ(ZH/NH), Z⊗ZH (ZH/NH ⊗Z ZH/NH) and Z⊗Z⟨H,g⟩ (ZH/NH ⊗Z ZH/NH)

where in the last case the element g has order two and acts on ZH/NH ⊗Z ZH/NH by flipping the
two factors. The first of these is torsion free by Theorem 2.52.5.

As an abelian group, ZH/NH is free with Z-basis given by 1 ·h for h ∈ H \{1}. It is straightforward
to check that the map

Z⊗ZH (ZH/NH ⊗Z ZH/NH) → ZH/NH ; 1⊗ ([λ]⊗ [λ′]) 7→ [λ′λ],

where the involution is determined by h = h−1, is well-defined and an isomorphism of abelian groups.
It follows that Z⊗ZH (ZH/NH ⊗Z ZH/NH) is a free abelian group.

Finally, the abelian group Z⊗Z⟨H,g⟩(ZH/NH⊗ZZH/NH) can in the same way be identified with the
orbits (ZH/NH)/(Z/2), where Z/2 acts by the involution. This abelian group is also torsion free with
Z-basis (H \{1})/(Z/2), where Z/2 acts by inversion. This completes the proof of Proposition 2.62.6. □

2.2. Connection with Tate homology.

Definition 2.8 (Tate homology). Given a finite group π and a Zπ-module A, the Tate homology

groups Ĥn(π;A) are defined as follows. Let ·N : Aπ → Aπ denote multiplication with the norm element
from the orbits Aπ := Z⊗Zπ A to the π-fixed points of A, that is (·N)(1⊗ a) =

∑
g∈π ga ∈ Aπ ⊆ A.

Then

Ĥn(π;A) := Hn(π;A) for n ≥ 1; Ĥ0(π;A) := ker(·N);

Ĥ−1(π;A) := coker(·N); and Ĥn(π;A) := H−n−1(π;A) for n ≤ −2

The following elementary observation will be central to our computations.

Lemma 2.9. Let π be a finite group. For a Z-torsion free Zπ-module A, the torsion in Z ⊗Zπ A is

precisely the zeroth Tate homology Ĥ0(π;A).
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Proof. Since the π-fixed points Aπ are again Z-torsion free, and torsion maps to torsion under a
homomorphism, the torsion in Z ⊗Zπ A is contained in the kernel of multiplication by the norm
element N . The composition of the multiplication with N and the projection Aπ → Z⊗Zπ A is given
by multiplication with the group order. Hence all elements in the kernel of multiplication with N are
annihilated by multiplication with |π| and are thus torsion elements. More precisely, suppose that
1⊗ a ∈ ker(·N) ⊆ Z⊗Zπ A. Then in Z⊗Zπ A we have:

|π|(1⊗ a) = |π| ⊗ a = 1⊗
∑
g∈π

ga = 1⊗ (·N)(1⊗ a) = 1⊗ 0 = 0.

So 1⊗ a is a torsion element. □

Lemma 2.10. For the sequences of coefficients in Lemma 2.42.4, Z⊗ZπΓ(B) is torsion free if Z⊗ZπΓ(A),
Z⊗Zπ Γ(C) and Z⊗Zπ (A⊗Z C) are torsion free.

Proof. Consider the long exact sequence of Tate homology groups [Bro94Bro94, VI (5.1)] corresponding to
the sequence 0 → Γ(A) → Γ(B) → D → 0,

· · · → Ĥ1(π;D) → Ĥ0(π; Γ(A)) → Ĥ0(π; Γ(B)) → Ĥ0(π;D) → Ĥ−1(π; Γ(A)) → · · ·

It follows that if Z ⊗Zπ Γ(A) and Z ⊗Zπ D are torsion free, i.e. Ĥ0(π; Γ(A)) = Ĥ0(π;D) = 0 by
Lemma 2.92.9, then also Z ⊗Zπ Γ(B) is torsion free. By the same argument, applied to the short exact
sequence 0 → A ⊗Z C → D → Γ(C) → 0, it follows from the assumptions that Z ⊗Zπ Γ(C) and
Z⊗Zπ (A⊗Z C) are torsion free, that Z⊗Zπ D is torsion free. □

3. Application to 4-dimensional Poincaré complexes

Let X be a 4-dimensional Poincaré complex with finite fundamental group π. Let (C∗, d∗) be a
free Zπ-resolution of Z with C0 = Zπ, and with C1 and C2 finitely generated. Then stably (possibly
stabilising any of the three modules by a free module) there is an extension

0 → ker d2 → π2(X) → coker d2 → 0,

as shown in [HK88HK88, Proposition 2.4]. Here the choice of resolution (C∗, d∗) does not matter since
for any two choices of resolution the Zπ-modules ker d2 and coker d2 are stably isomorphic; see for
example [KPT22KPT22, Lemma 5.2], which relies on [HAM93HAM93].

Lemma 3.1. For every finite group π, and for every choice of free resolution (C∗, d∗), ker d2 and
coker d2 are torsion free abelian groups.

Proof. Let (C∗, d∗) be a free Zπ-resolution of Z with C0 = Zπ and C1 and C2 finitely generated, as
above. Then ker d2 is a subgroup of a finitely generated free abelian group, and so is torsion free.

Let K be a finite 2-dimensional CW complex with fundamental group π. Then the cellular chain
complex C∗(K;Zπ) is a start of a free resolution of Z as a Zπ-module. In particular H2(K;Zπ)
is stably isomorphic to coker d2 and hence it suffices to show that H2(K;Zπ) is torsion free as an

abelian group. Since π is finite, H2(K;Zπ) ∼= H2(K̃;Z). By universal coefficients the latter group is

isomorphic to Hom(H2(K̃;Z),Z), which as required is torsion free. □

The next lemma combined with Lemma 3.13.1 and Lemma 2.92.9 implies that the torsion subgroups of
Z ⊗Zπ Γ(ker d2) and Z ⊗Zπ Γ(coker d2) only depend on the stable isomorphism classes of ker d2 and
coker d2 respectively, and thus only depend on the group π.

Lemma 3.2. Let A be a Zπ-module that is free as an abelian group. Then Ĥ0(π; Γ(A)) only depends
on the stable isomorphism type of A.

Proof. We have Γ(A ⊕ Zπ) ∼= Γ(A) ⊕ Γ(Zπ) ⊕ (Zπ ⊗Z A). By Theorem 2.52.5, Ĥ0(π; Γ(Zπ)) = 0.

Furthermore, Ĥ0(π;Zπ ⊗Z A) is the torsion in Zπ ⊗Zπ A ∼= A which was torsion free by assumption.

Hence Ĥ0(π; Γ(A⊕ Zπ)) ∼= Ĥ0(π; Γ(A)). □

We need the following elementary observation in the proof of the next proposition.
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Lemma 3.3 ([Bro94Bro94, III (5.7)]). Let M be a left Zπ-module, consider Zπ as a left rank one free
module, and let M ⊗Z Zπ be the Zπ-module where π acts via the diagonal action. Let (M ⊗Z Zπ)r
be the Zπ-module where π acts just on Zπ by left multiplication and π acts trivially on M . Then the
map

ψ : M ⊗Z Zπ → (M ⊗Z Zπ)r; m⊗ g 7→ g−1m⊗ g

is a Zπ-module isomorphism.

Proof. The map sending m⊗ g 7→ gm⊗ g gives an inverse. That both are Zπ-linear is straightforward
to check. □

Proposition 3.4. The abelian group ker d2 ⊗Zπ coker d2 is torsion free for every finite group π.

Proof. This was noticed by Bauer [Bau88Bau88, page 5], but was not proven there. We give the argument
here. Consider the exact sequence

0 → Z N−→ C0 d1−→ C1 d2−→ C2 → coker d2 → 0.

By Lemma 3.33.3, ker d2 ⊗Z C
i is Zπ-module isomorphic to (ker d2 ⊗Z C

i)r the module with the same
underlying abelian group but where the π action is trivial on ker d2 and acts as usual on Ci. Since

ker d2 is free as a Z-module, this is free as a Zπ-module. Hence Ĥj(π; ker d2 ⊗Z C
i) = 0 for all i, j by

[Bro94Bro94, VI (5.3)]: if A is a free Zπ-module, then Ĥj(π;A) = 0 for all j ∈ Z. Now, from the long exact
sequence in Tate homology groups and dimension shifting [Bro94Bro94, III.7] we get

Ĥ0(π; ker d2 ⊗Z coker d2) ∼= Ĥ−3(π; ker d2 ⊗Z Z).

A similar argument shifting dimension upwards shows that Ĥ−3(π; ker d2) ∼= Ĥ0(π;Z) = 0. Hence

Ĥ0(π; ker d2 ⊗Z coker d2) = 0, which is equivalent to the statement of the proposition by Lemma 2.92.9,
since Z⊗Zπ (ker d2 ⊗Z coker d2) ∼= ker d2 ⊗Zπ coker d2. □

Corollary 3.5. Assume that Z ⊗Zπ Γ(ker d2) and Z ⊗Zπ Γ(coker d2) are torsion free. Then Z ⊗Zπ
Γ(π2(X)) is torsion free.

Proof. The torsion in Z ⊗Zπ Γ(π2(X)) equals Ĥ0(π; Γ(π2(X)) by Lemma 3.13.1 and Lemma 2.92.9. By
Lemma 3.13.1 again and Lemma 3.23.2, this torsion only depends on the stable isomorphism class of π2(X),
and therefore we may consider the stable exact sequence 0 → ker d2 → π2(X) → coker d2 → 0. By
Lemma 2.102.10, Z⊗Zπ Γ(π2(X)) is torsion free if Z⊗Zπ Γ(ker d2), Z⊗Zπ Γ(coker d

2) and Z⊗Zπ (ker d2⊗Z
coker d2) are torsion free. The first two hold by assumption, the latter holds by Proposition 3.43.4. □

As stated in the introduction, by [KT21KT21, Corollary 1.5], to show Theorem 1.11.1 it suffices to show
that Z ⊗Z[π1(X)] Γ(π2(X)) is torsion free. We will therefore want to show that Z ⊗Zπ Γ(ker d2) and

Z ⊗Zπ Γ(coker d2) are torsion free in the cases we consider. We will use the following lemma several
times.

Lemma 3.6. Let π be a finite group. Let 0 → A → B → C → 0 be a short exact sequence of
Zπ-modules such that B is torsion free as a Z-module and such that Z⊗Zπ A is torsion free. In this
case the sequence

0 → Z⊗Zπ A→ Z⊗Zπ B → Z⊗Zπ C → 0

is exact. Assume that for every (nontrivial) torsion element t ∈ Z ⊗Zπ C, of order k say, there is a
preimage b ∈ Z⊗Zπ B of t such that the preimage a ∈ Z⊗Zπ A of kb ∈ Z⊗Zπ B is not divisible by k.
Then Z⊗Zπ B is a torsion free Z-module.

Proof. We have an exact sequence

H1(π;C) → Z⊗Zπ A→ Z⊗Zπ B → Z⊗Zπ C → 0.

As π is finite, H1(π;C) is a torsion group [Bro94Bro94, III (10.2)]. Since Z⊗Zπ A is torsion free, the map
H1(π;C) → Z⊗Zπ A is trivial and thus the sequence

0 → Z⊗Zπ A→ Z⊗Zπ B → Z⊗Zπ C → 0
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is exact.
Since Z⊗ZπA is torsion free, every nontrivial torsion element in Z⊗ZπB has to map to a nontrivial

torsion element in Z⊗ZπC. Now suppose for a contradiction that Z⊗ZπB has torsion. Let t′ ∈ Z⊗ZπB
be a nontrivial torsion element mapping to t ∈ Z⊗Zπ C of order k. Let b ∈ Z⊗Zπ B be a preimage as
in the assumption, and let a ∈ Z⊗Zπ A be the preimage of kb, where by assumption a is not divisible
by k. Then b− t′ maps to 0 ∈ Z⊗Zπ C. Let a

′ ∈ Z⊗Zπ A be the preimage of b− t′. Furthermore, kt′

maps to kt = 0 ∈ Z⊗ZπC and is torsion, thus kt′ is trivial in Z⊗ZπB. Hence ka′ maps to k(b−t′) = kb.
Thus a = ka′. But ka′ is divisible by k, contradicting the assumption on a = ka′. It follows that
Z⊗Zπ B is a torsion free Z-module, as desired. □

Remark 3.7. Suppose the torsion in Z⊗ZπC is generated by a single element x of order n. The following
observation allows us to simplify what we have to check to apply the second half of Lemma 3.63.6. The
order of the multiple t = ℓx is n

gcd(n,ℓ) . Let b ∈ Z⊗Zπ B be a preimage of x. Then ℓb is a preimage of

t = ℓx. If the preimage a′ of n
gcd(n,ℓ)ℓb in Z ⊗Zπ A is divisible by n

gcd(n,ℓ) , then the preimage a of nb

would also be divisible by n
gcd(n,ℓ) (since n

gcd(n,ℓ) is coprime to ℓ
gcd(n,ℓ) ). Hence to show that Z⊗Zπ B

is torsion free in the case that the torsion in Z⊗Zπ C is cyclic, it suffices to check that the preimage
a is not divisible by any divisor of n.

4. Proof of the main theorem

Proof of Theorem 1.11.1. Recall that by [KT21KT21, Corollary 1.5], to show Theorem 1.11.1 it suffices to show
that Z⊗Z[π1(X)] Γ(π2(X)) is torsion free.

Corollary 3.53.5 implies that it is enough to show that Z⊗ZπΓ(ker d2) and Z⊗ZπΓ(coker d
2) are torsion

free, where (C∗, d∗) is a free Zπ-resolution of Z with C0 = Zπ, and C1 and C2 finitely generated. By
Lemma 2.92.9, we therefore have to show that

Ĥ0(π; Γ(ker d2)) = 0 and Ĥ0(π; Γ(coker d
2)) = 0.

As observed by Bauer [Bau88Bau88], it suffices to show this for a 2-Sylow subgroup G of π. For every non-
cyclic finite abelian group π with two generators, we shall show in Proposition 4.14.1 and Proposition 4.114.11

below that Ĥ0(π; Γ(ker d2)) and Ĥ0(π; Γ(coker d
2)) vanish. In particular this holds for π the two

generator abelian 2-Sylow subgroup of some larger group.
We also need to check 1-generator finite abelian groups, i.e. finite cyclic groups. This was done by

Hambleton and Kreck [HK88HK88] but we repeat the argument here. Let C be the cyclic group of order k

generated by t and as ever let N =
∑k−1
i=0 t

i be the norm element. There is a free resolution whose
first few terms are

· · · → ZC 1−t−−→ ZC ·N−−→ ZC 1−t−−→ ZC → Z → 0.

Therefore ker d2 ∼= ⟨1 − t⟩ ∼= ZC/N and coker d2 ∼= ZC/N . By Theorem 2.52.5 (iii), we have that
Z⊗ZC Γ(ZC/N) is torsion free as required. Modulo Proposition 4.14.1 and Proposition 4.114.11 below, this
completes the proof of Theorem 1.11.1. □

4.1. The computation of Ĥ0(π; Γ(ker d2)). In this section we show the following.

Proposition 4.1. For every finite abelian group with two generators π, Ĥ0(π; Γ(ker d2)) = 0.

As explained above, we may assume that |π| is a power of 2 for the purpose of the proof of
Theorem 1.11.1, but we do not need this assumption for Proposition 4.14.1.

Proof. For the group π = ⟨a, b | an, bm, [a, b]⟩ let Na :=
∑n−1
i=0 a

i and Nb :=
∑m−1
i=0 bi. Let C2

d2−→
C1

d1−→ C0 be the chain complex of Zπ-modules corresponding to the presentation ⟨a, b | an, bm, [a, b]⟩.
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Extend this to the standard free resolution of Z as a Zπ-module:

C4

d4

��

Zπ
Na

��

⊕ Zπ

b−1
��

1−a

��

⊕ Zπ

Nb��

Na

��

⊕ Zπ

b−1
��

1−a

��

⊕ Zπ

Nb��
C3

d3

��

Zπ
1−a

��

⊕ Zπ

1−b
��

Na

��

⊕ Zπ

−Nb��

1−a

��

⊕ Zπ

1−b
��

C2

d2

��

Zπ
Na

��

⊕ Zπ

b−1
��

1−a

��

⊕ Zπ

Nb��
C1

d1

��

Zπ
1−a

��

⊕ Zπ

1−b
��

C0 Zπ

By exactness, ker d2 ∼= im d3 ∼= C3/ ker d3 ∼= coker d4. From this it follows that

ker d2 ∼= (Zπ)4/⟨(Na, 0, 0, 0), (b− 1, 1− a, 0, 0), (0, Nb, Na, 0), (0, 0, b− 1, 1− a), (0, 0, 0, Nb)⟩.

Define

M1 := (Zπ)2/⟨(Na, 0), (0, Nb)⟩ and M2 := (Zπ)2/⟨(1− a, 0), (Nb, Na), (0, b− 1)⟩.

The inclusion of the outer two summands of (Zπ)4 induces a short exact sequence

(4.2) 0 →M1 → ker d2 →M2 → 0.

For M2 we have a short exact sequence

(4.3) 0 → Zπ/⟨1− a⟩ →M2 → Zπ/⟨Na, b− 1⟩ → 0.

In both these sequences, a quick check is required that the map on the left is indeed injective.

Claim. We have that Z⊗Zπ Γ(M2) is torsion free, that is Ĥ0(π; Γ(M2)) = 0.

The proof of this claim takes more than a page. To prove the claim, we want to apply Lemma 3.63.6
to the short exact sequence

(4.4) 0 → Γ(Zπ/⟨1− a⟩) → Γ(M2) → D → 0

coming from Lemma 2.42.4. We will use the other sequence

(4.5) 0 → Zπ/⟨1− a⟩ ⊗Z Zπ/⟨Na, b− 1⟩ → D → Γ(Zπ/⟨Na, b− 1⟩) → 0,

from Lemma 2.42.4 as well, to compute the torsion in Ĥ0(π;D).
We check that (4.44.4) satisfies the hypotheses of Lemma 3.63.6 that Γ(M2) and Z ⊗Zπ Γ(Zπ/⟨1 − a⟩)

are torsion free as Z-modules. Let Ca, Cb denote the cyclic subgroups of π generated by a and b
respectively, so π ∼= Ca × Cb. Note that as abelian groups Zπ/⟨1 − a⟩ ∼= ZCb and Zπ/⟨Na, b − 1⟩ ∼=
ZCa/Na. In particular both are torsion free abelian groups. It follows from the extension (4.34.3) that
M2 is also torsion free, then Lemma 2.32.3 implies that Γ(M2) is torsion free. Furthermore, we have

Ĥ0(π; Γ(Zπ/⟨1− a⟩)) ∼= Ĥ0(π; Γ(ZCb)) ∼= Ĥ0(Cb; Γ(ZCb)).

The second isomorphism follows by observing that Ĥ0(π; Γ(ZCb)) is the torsion in Z ⊗Zπ Γ(ZCb),
while Ĥ0(Cb; Γ(ZCb)) is the torsion in Z ⊗ZCb

Γ(ZCb). But the action of Zπ on Γ(ZCb) factors

through the homomorphism Zπ → Zπ/⟨1 − a⟩
∼=−→ ZCb, so tensoring over Zπ and tensoring over

ZCb yield isomorphic groups. Now, Ĥ0(Cb; Γ(ZCb)) = 0 by Lemma 2.92.9 and Theorem 2.52.5 (i), so
Z⊗Zπ Γ(Zπ/⟨1− a⟩) is torsion free. This completes the proof that (4.44.4) satisfies the hypotheses from
the first sentence of Lemma 3.63.6 that Γ(M2) and Z⊗Zπ Γ(Zπ/⟨1− a⟩) are torsion free as Z-modules.
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We continue proving the claim that Z⊗Zπ Γ(M2) is torsion free. The first part of Lemma 3.63.6 now
gives us a short exact sequence

(4.6) 0 → Z⊗Zπ Γ(Zπ/⟨1− a⟩) → Z⊗Zπ Γ(M2) → Z⊗Zπ D → 0.

To apply this sequence, we need to understand the torsion in Z⊗Zπ D, which we do next.
By tensoring over Zπ with Z, the sequence (4.54.5) gives rise to a long exact sequence ending in:

· · · → Z⊗Zπ (Zπ/⟨1− a⟩ ⊗Z Zπ/⟨Na, b− 1⟩) → Z⊗Zπ D → Z⊗Zπ Γ(Zπ/⟨Na, b− 1⟩) → 0.

We noted above that Zπ/⟨Na, b−1⟩ ∼= ZCa/Na. Since the action of Zπ on this module factors through

Zπ → Zπ/⟨b−1⟩
∼=−→ ZCa, the same holds for the Zπ action on Γ(ZCa/Na), and so Z⊗ZπΓ(ZCa/Na) ∼=

Z ⊗ZCa Γ(ZCa/Na). This latter group is torsion free by Theorem 2.52.5 (iii). Therefore the torsion in
Z⊗Zπ D comes from

Z⊗Zπ (Zπ/⟨1− a⟩ ⊗Z Zπ/⟨Na, b− 1⟩) ∼= Zπ/⟨1− a⟩ ⊗Zπ Zπ/⟨Na, b− 1⟩
∼= Zπ/⟨1− a,Na, b− 1⟩ ∼= Z/n.

The image of the generator 1⊗ 1 of Zπ/⟨1− a⟩⊗Zπ Zπ/⟨Na, b− 1⟩ in Z⊗ZπD has as a preimage in
Z⊗Zπ Γ(M2) the element [(1, 0)⊗ (0, 1)+(0, 1)⊗ (1, 0)]. Here we represent elements of Z⊗Zπ Γ(M2) as
symmetric tensors in (Zπ)2⊗Z(Zπ)2: each element of (Zπ)2 determines an element ofM2, so we obtain
an element of Γ(M2) ⊆M2⊗ZM2. The square brackets around [(1, 0)⊗(0, 1)+(0, 1)⊗(1, 0)] indicates
taking orbits under the π action i.e. the element 1 ⊗ ((1, 0) ⊗ (0, 1) + (0, 1) ⊗ (1, 0)) ∈ Z ⊗Zπ Γ(M2).
From now on we will use this square bracket notation to denote the classes of elements in various
quotients of tensor products of free Zπ-modules.

Since the generator of Zπ/⟨1 − a⟩ ⊗Zπ Zπ/⟨Na, b − 1⟩ has order n, by exactness of (4.64.6), we have
that

[n((1, 0)⊗ (0, 1) + (0, 1)⊗ (1, 0))] ∈ Z⊗Zπ Γ(M2)

lies in the image of Z ⊗Zπ Γ(Zπ/⟨1 − a⟩), in the sequence (4.64.6). To apply Lemma 3.63.6 together with
Remark 3.73.7, we have to show that [n((1, 0)⊗(0, 1)+(0, 1)⊗(1, 0))] has preimage in Z⊗ZπΓ(Zπ/⟨1−a⟩)
that is not divisible by n nor any of its factors. Let · be the usual involution sending g 7→ g−1. We
find the preimage of [n((1, 0)⊗ (0, 1) + (0, 1)⊗ (1, 0))]:

[n((1, 0)⊗ (0, 1) + (0, 1)⊗ (1, 0))] = [(Na, 0)⊗ (0, 1) + (0, 1)⊗ (Na, 0)]

=

n−1∑
i=0

[
(ai, 0)⊗ (0, 1) + (0, 1)⊗ (ai, 0)

]
=

n−1∑
i=0

[
(1, 0)⊗ (0, a−i) + (0, a−i)⊗ (1, 0)

]
= [(1, 0)⊗ (0, Na) + (0, Na)⊗ (1, 0)] = [(1, 0)⊗ (0, Na) + (0, Na)⊗ (1, 0)]

= [−(1, 0)⊗ (Nb, 0)− (Nb, 0)⊗ (1, 0)].

Here the first equation uses that a acts trivially on the first factor, so multiplication by n and by Na
are equivalent. The second and fourth equations use the definition of Na. The third equation uses
that we have tensored with Z over Zπ. In general, if Zπ acts diagonally on a tensor product L⊗Z L
of Zπ-modules, in the tensored down module Z⊗Zπ (L⊗L) the relation [a⊗ (λb)] = [(λa)⊗ b] holds,
where λ ∈ Zπ and a, b ∈ L. The fifth equation uses that Na = Na. The sixth and final equation uses
the second relation of M2.

The preimage element 1 ⊗Nb +Nb ⊗ 1 is not divisible in Z ⊗Zπ Γ(Zπ/⟨1 − a⟩) ∼= Z ⊗ZCb
Γ(ZCb).

This follows from the concrete description of Γ(ZCb) as a ZCb-module from [HK88HK88, Lemma 2.2]; see

also Lemma 2.72.7. Now by Lemma 3.63.6 and Remark 3.73.7, Z⊗Zπ Γ(M2) is torsion free, so Ĥ0(π; Γ(M2))
is trivial. This completes the proof of the claim.

Now we show that Z⊗Zπ Γ(ker d2) is torsion free, as desired for the proposition. We want to apply
the short exact sequence (4.24.2). By Lemma 2.42.4 we have a Zπ-module E and short exact sequences

(4.7) 0 → Γ(M1) → Γ(ker d2) → E → 0
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and

(4.8) 0 →M1 ⊗Z M2 → E → Γ(M2) → 0.

Claim. The short exact sequence (4.74.7) satisfies the hypotheses from the first sentence of Lemma 3.63.6.
That is, Γ(ker d2) and Z⊗Zπ Γ(M1) are torsion free as Z-modules.

We have M1
∼= Zπ/Na ⊕ Zπ/Nb and hence M1 is torsion free. We saw above, just below (4.54.5),

that M2 is torsion free. Then the short exact sequence 0 →M1 → ker d2 →M2 → 0, or alternatively
Lemma 3.13.1, implies that ker d2 is torsion free. Therefore Γ(ker d2) is torsion free by Lemma 2.32.3. Next,
M1

∼= Zπ/Na ⊕ Zπ/Nb implies that

Γ(M1) ∼= Γ(Zπ/Na)⊕ Γ(Zπ/Nb)⊕ (Zπ/Na ⊗Z Zπ/Nb).
The groups Γ(Zπ/Na) and Γ(Zπ/Nb) are still torsion free after applying Z⊗Zπ by Proposition 2.62.6.
The group

Z⊗Zπ (Zπ/Na ⊗Z Zπ/Nb) ∼= Zπ/Na ⊗Zπ Zπ/Nb ∼= Zπ/⟨Na, Nb⟩
is torsion free with Z-basis given by {aibj | 1 ≤ i ≤ n − 1, 1 ≤ j ≤ m − 1}. Therefore Z ⊗Zπ Γ(M1)
is torsion free. This completes the proof of the claim that (4.74.7) satisfies the hypotheses of the first
sentence of Lemma 3.63.6.

Next we compute the torsion in Z ⊗Zπ E, i.e. Ĥ0(π;E). The short exact sequence (4.84.8) gives rise
to a long exact sequence:

· · · → Ĥ0(π;M1 ⊗Z M2) → Ĥ0(π;E) → Ĥ0(π; Γ(M2)) → · · ·

By the claim above, Ĥ0(π; Γ(M2)) = 0. We have

Z⊗Zπ (M1 ⊗Z M2) ∼=M1 ⊗Zπ M2
∼= (Zπ/Na ⊗Zπ M2)⊕ (Zπ/Nb ⊗Zπ M2).

Using the description of M2 in terms of generators and relations,

M2 := (Zπ)2/⟨(1− a, 0), (Nb, Na), (0, b− 1)⟩,
it follows that

Zπ/Na ⊗Zπ M2
∼= (Zπ)2/⟨(1− a, 0), (Nb, 0), (0, b− 1), (Na, 0), (0, Na)⟩
∼= (Z/n)Cb/Nb ⊕ ZCa/Na.

Similarly,
Zπ/Nb ⊗Zπ M2

∼= ZCb/Nb ⊕ (Z/m)Ca/Na.

It follows that the torsion in Z⊗Zπ E has preimages in Z⊗Zπ Γ(ker d2) of the form

[(1, 0, 0, 0)⊗ (0, λ, 0, 0) + (0, λ, 0, 0)⊗ (1, 0, 0, 0) + (0, 0, 0, 1)⊗ (0, 0, λ′, 0) + (0, 0, λ′, 0)⊗ (0, 0, 0, 1)]

with λ ∈ ZCb and λ′ ∈ ZCa. Here we represent elements of Z ⊗Zπ Γ(ker d2) as symmetric tensors in
(Zπ)4 ⊗Z (Zπ)4, which determine elements in Γ(ker d2) ⊆ ker d2 ⊗Z ker d2. As above square brackets
indicate taking orbits under the π action, that is the corresponding element of Z⊗Zπ Γ(ker d2).

Claim. The torsion in Z⊗Zπ E is generated by the elements

[(1, 0, 0, 0)⊗ (0, 1, 0, 0) + (0, 1, 0, 0)⊗ (1, 0, 0, 0)] and [(0, 0, 0, 1)⊗ (0, 0, 1, 0) + (0, 0, 1, 0)⊗ (0, 0, 0, 1)],

that is, elements corresponding to the first two summands in the sum above with λ = 1, and the final
two summands with λ′ = 1.

Now we prove the claim. Using the relation (b− 1, 1− a, 0, 0) in ker d2, in ker d2 ⊗Z ker d2 we have

(1− b, 0, 0, 0)⊗ (1− b, 0, 0, 0) = (0, 1− a, 0, 0)⊗ (0, 1− a, 0, 0).

Hence the same relation holds in Γ(ker d2). We have

(0, 1− a, 0, 0)⊗ (0, 1− a, 0, 0) =(0, 1, 0, 0)⊗ (0, 1, 0, 0)− (0, a, 0, 0)⊗ (0, 1, 0, 0)

− (0, 1, 0, 0)⊗ (0, a, 0, 0) + (0, a, 0, 0)⊗ (0, a, 0, 0).
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In Z⊗Zπ Γ(ker d2) the last element represents the same element as (0, 1, 0, 0)⊗ (0, 1, 0, 0) since we can
act diagonally with a−1. Hence in Z⊗Zπ Γ(ker d2) we have

[(0, 1− a, 0, 0)⊗ (0, 1− a, 0, 0)] = [(0, 1− a, 0, 0)⊗ (0, 1, 0, 0) + (0, 1, 0, 0)⊗ (0, 1− a, 0, 0)].

Using the same relation as before, we have

[(0, 1− a, 0, 0)⊗ (0, 1, 0, 0) + (0, 1, 0, 0)⊗ (0, 1− a, 0, 0)]

=[(1− b, 0, 0, 0)⊗ (0, 1, 0, 0) + (0, 1, 0, 0)⊗ (1− b, 0, 0, 0)]

=[(1, 0, 0, 0)⊗ (0, 1− b−1, 0, 0) + (0, 1− b−1, 0, 0)⊗ (1, 0, 0, 0)].

Using that (1 − b, 0, 0, 0) ⊗ (1 − b, 0, 0, 0) ∈ Γ(M1), in the quotient Z ⊗Zπ E this element is trivial.
Hence in Z⊗Zπ E we have

[(1, 0, 0, 0)⊗ (0, λ, 0, 0) + (0, λ, 0, 0)⊗ (1, 0, 0, 0)] = [(1, 0, 0, 0)⊗ (0, |λ|, 0, 0) + (0, |λ|, 0, 0)⊗ (1, 0, 0, 0)],

where |λ| =
∑m−1
i=0 λbi ∈ Z for λ =

∑m−1
i=0 λbib

i. An analogous argument shows that

[(0, 0, 0, 1)⊗ (0, 0, λ′, 0) + (0, 0, λ′, 0)⊗ (0, 0, 0, 1)]

=[(0, 0, 0, 1)⊗ (0, 0, |λ′|, 0) + (0, 0, |λ′|, 0)⊗ (0, 0, 0, 1)],

in the quotient Z ⊗Zπ E, where |λ′| =
∑n−1
i=0 λ

′
ai ∈ Z for λ′ =

∑m−1
i=0 λ′aia

i. This shows that the
torsion in Z ⊗Zπ E is generated by [(1, 0, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗ (1, 0, 0, 0)] and [(0, 0, 0, 1) ⊗
(0, 0, 1, 0) + (0, 0, 1, 0)⊗ (0, 0, 0, 1)], which completes the proof of the claim.

We continue proving that Z ⊗Zπ Γ(ker d2) is torsion free, by applying Lemma 3.63.6. Let xa :=∑n−1
i=1 (n − i)ai. A short computation shows that n − Na = xa(a

−1 − 1). Then using the relations
(Na, 0, 0, 0) and (b− 1, 1− a, 0, 0) in ker d2, we have:

[n((1, 0, 0, 0)⊗ (0, 1, 0, 0) + (0, 1, 0, 0)⊗ (1, 0, 0, 0))]

=[(n−Na, 0, 0, 0)⊗ (0, 1, 0, 0) + (0, 1, 0, 0)⊗ (n−Na, 0, 0, 0)]

=[(−xa(1− a−1), 0, 0, 0)⊗ (0, 1, 0, 0) + (0, 1, 0, 0)⊗ (−xa(1− a−1), 0, 0, 0)]

=[(−xa, 0, 0, 0)⊗ (0, 1− a, 0, 0) + (0, 1− a, 0, 0)⊗ (−xa, 0, 0, 0)]
=[(−xa, 0, 0, 0)⊗ (1− b, 0, 0, 0) + (1− b, 0, 0, 0)⊗ (−xa, 0, 0, 0)]
=[(xa, 0, 0, 0)⊗ (b− 1, 0, 0, 0) + (b− 1, 0, 0, 0)⊗ (xa, 0, 0, 0)].

This corresponds to the element

(4.9) [(xa, 0)⊗ (b− 1, 0) + (b− 1, 0)⊗ (xa, 0)] ∈ Z⊗Zπ Γ(M1).

Here, similarly to above, we represent elements of Z⊗Zπ Γ(M1) by elements of (Zπ)2 ⊗Z (Zπ)2.
If m = 2, we will compute presently that [2((1, 0, 0, 0)⊗ (0, 1, 0, 0) + (0, 1, 0, 0)⊗ (1, 0, 0, 0))] lies in

the image of Z⊗Zπ Γ(M1), so the order of [(1, 0, 0, 0)⊗ (0, 1, 0, 0) + (0, 1, 0, 0)⊗ (1, 0, 0, 0)] in Z⊗Zπ E
is at most 2, regardless of n. To see this, we compute that

(2, 0, 0, 0)⊗ (0, 1, 0, 0) + (0, 1, 0, 0)⊗ (2, 0, 0, 0)

=(Nb + (1− b), 0, 0, 0)⊗ (0, 1, 0, 0) + (0, 1, 0, 0)⊗ (Nb + (1− b), 0, 0, 0)

and using the relations (0, Nb, Na, 0) and (Na, 0, 0, 0) in ker d2:

[(Nb, 0, 0, 0)⊗ (0, 1, 0, 0) + (0, 1, 0, 0)⊗ (Nb, 0, 0, 0)]

=[(1, 0, 0, 0)⊗ (0, Nb, 0, 0) + (0, Nb, 0, 0)⊗ (1, 0, 0, 0)]

=[(1, 0, 0, 0)⊗ (0, 0,−Na, 0) + (0, 0,−Na, 0)⊗ (1, 0, 0, 0)]

=− [(Na, 0, 0, 0)⊗ (0, 0, 1, 0) + (0, 0, 1, 0)⊗ (Na, 0, 0, 0)] = 0.
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Hence

[(2, 0, 0, 0)⊗ (0, 1, 0, 0) + (0, 1, 0, 0)⊗ (2, 0, 0, 0)]

=[(1− b, 0, 0, 0)⊗ (0, 1, 0, 0) + (0, 1, 0, 0)⊗ (1− b, 0, 0, 0)]

=[(1, 0, 0, 0)⊗ (0, 1− b, 0, 0) + (0, 1− b, 0, 0)⊗ (1, 0, 0, 0)].

We computed above that this equals [(1− b, 0, 0, 0)⊗ (1− b, 0, 0, 0)], which corresponds to the element
[(1 − b, 0) ⊗ (1 − b, 0)] ∈ Z ⊗Zπ Γ(M1). This completes the proof that [2((1, 0, 0, 0) ⊗ (0, 1, 0, 0) +
(0, 1, 0, 0)⊗ (1, 0, 0, 0))] lies in the image of Z⊗Zπ Γ(M1).

Similarly, with xb :=
∑m−1
i=1 (m− i)bi, we have

[m((0, 0, 0, 1)⊗ (0, 0, 1, 0) + (0, 0, 1, 0)⊗ (0, 0, 0, 1))]

=[(0, 0, 0, xb)⊗ (0, 0, 0, a− 1) + (0, 0, 0, a− 1)⊗ (0, 0, 0, xb)],

which corresponds to the element

(4.10) [(0,−xb)⊗ (0, (a− 1)λ′) + (0, (a− 1)λ′)⊗ (0,−xb)] ∈ Z⊗Zπ Γ(M1).

Moreover, if n = 2, 2[(0, 0, 0, 1)⊗(0, 0, 1, 0)+(0, 0, 1, 0)⊗(0, 0, 0, 1)] is the image of [(0, 1−a)⊗(0, 1−a)] ∈
Z⊗Zπ Γ(M1).

Since the elements (4.94.9) and (4.104.10) (or their m = 2, n = 2 analogues) live in different direct
summands in the decomposition

Z⊗Zπ Γ(M1) ∼= Z⊗Zπ Γ(Zπ/Na)⊕ Z⊗Zπ Γ(Zπ/Nb)⊕ (Zπ/Na ⊗Zπ Zπ/Nb),

we can check their divisibility separately and apply Remark 3.73.7 to each summand.
Again, the arguments are the same with the roles of a and b interchanged. Hence we only consider

[xa ⊗ (b− 1) + (b− 1)⊗ xa] ∈ Z⊗Zπ Γ(Zπ/Na)

if m ̸= 2 and [(1− b)⊗ (1− b)] if m = 2.
In the latter case we have Z⊗Zπ Γ(Zπ/Na) ∼= Z⊗ZCa

Γ(ZCa/Na)⊕ZCa/⟨Na, g− g⟩ by Lemma 2.72.7
with G = Cb, H = Ca, and A = ZCa/Na. This is a straightforward application of the lemma, once
one has observed that

Z⊗Zπ
(
(ZCa/Na ⊗Z ZCa/Na)[Cb]/Flipb

) ∼= ZCa/⟨Na, g − g⟩.

The image of [(1 − b) ⊗ (1 − b)] = 2[1 ⊗ 1] + [1 ⊗ b + b ⊗ 1] under the projection to ZCa/⟨Na, g − g⟩
is 1, which if n is even is indivisible. To see that 1 is indivisible, using the basis given by [ak] with

k ̸= 0, we have 1 =
∑n−1
i=1 a

i =
∑n/2−1
i=1 2ai + an/2. If n is even, due to the coefficient of an/2 we see

that 1 is indivisible. If n is odd, we obtain 1 =
∑n−1
i=1 a

i =
∑(n−1)/2
i=1 2ai, so the element is divisible

by 2. However, for n odd we have shown that both n times and 2 times the image of the element
[(1, 0, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗ (1, 0, 0, 0)] in Z ⊗Zπ E is trivial. It follows that this image is in
fact trivial in Z⊗Zπ E, so we do not have to consider it for our application of Lemma 3.63.6.

Now let us consider the case m ̸= 2. Let S be as in Lemma 2.72.7, again with G = Cb, H = Ca, and
A = Z[Ca]/Na. Assume that b ∈ S. By Lemma 2.72.7 we have

Z⊗Zπ Γ(Zπ/Na) ∼= Z⊗ZCa
Γ(ZCa/Na)⊕

⊕
S

ZCa/Na ⊕ L,

where L ∼= ZCa/⟨Na, g − g⟩ if the order m of b is even and L = 0 otherwise. Here we use the
observation from above to find L and that ZCa/Na ⊗ZCa

ZCa/Na. In this direct sum decomposition,
[xa ⊗ (b− 1) + (b− 1)⊗ xa] corresponds to

[xa ⊗ 1 + 1⊗ xa] ∈ Z⊗ZCa Γ(ZCa/Na) plus xa ∈ (ZCa/Na)b∈S .

In other words, the projection to (ZCa/Na)b∈S is xa. Since xa ∈ ZCa/Na is indivisible, so is [xa ⊗
(b− 1)+ (b− 1)⊗xa]. Now using Lemma 3.63.6, we conclude that there is no torsion in Z⊗Zπ Γ(ker d2).

By Lemma 2.92.9 we therefore have Ĥ0(π; Γ(ker d2)) = 0. □
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4.2. The computation of Ĥ0(π; Γ(coker d
2)). In this section we show the following, which will

complete the proof of Theorem 1.11.1.

Proposition 4.11. For every finite abelian group with two generators π, Ĥ0(π; Γ(coker d
2)) = 0.

Again we may assume that |π| is a power of 2, but we also do not need this assumption for
Proposition 4.114.11.

Proof. Let π = ⟨a, b | an, bm, [a, b]⟩. As before, let C2
d2−→ C1

d1−→ C0 be the chain complex correspond-
ing to the presentation ⟨a, b | an, bm, [a, b]⟩. Let d2 : C1 = HomZπ(C1,Zπ) → C2 = HomZπ(C2,Zπ) be
the dual of d2. The module

M := coker d2 ∼= (Zπ)3/⟨(Na, 1− b, 0), (0, 1− a,Nb)⟩
fits into an extension

(4.12) 0 → Zπ/N ⊕ Zπ/N →M → Z → 0,

where N is the norm element in Zπ. The injection is given by the inclusion of the first and third
summands in the presentation of M above, given by d2. The surjection is given by the projection to
the second summand.

By Lemma 2.42.4 there is a Zπ module D and short exact sequences

(4.13) 0 → Γ(Zπ/N ⊕ Zπ/N) → Γ(M) → D → 0

and

(4.14) 0 → (Zπ/N ⊕ Zπ/N)⊗Z Z → D → Γ(Z) → 0.

As in Section 4.14.1, we will show that the first satisfies the conditions of Lemma 3.63.6, and use the second
to compute the torsion in Z⊗Zπ D. Then we will apply the first again, tensored with Z⊗Zπ, together
with Lemma 3.63.6, to deduce that Z⊗Zπ Γ(M) is torsion free.

Claim. The short exact sequence (4.134.13) satisfies the hypotheses of the first sentence of Lemma 3.63.6.
That is Γ(M) and Z⊗Zπ Γ(Zπ/N ⊕ Zπ/N) are torsion free as Z-modules.

First, Zπ/N ⊕ Zπ/N and Z are torsion free abelian groups, and therefore so is M . Alternatively,
apply Lemma 3.13.1. It follows that Γ(M) is torsion free by Lemma 2.32.3. Next, we have

Γ(Zπ/N ⊕ Zπ/N) ∼= Γ(Zπ/N)⊕ Γ(Zπ/N)⊕ (Zπ/N ⊗Z Zπ/N)

By Theorem 2.52.5 (iii), Z⊗Zπ Γ(Zπ/N) is torsion free. Additionally

Z⊗Zπ (Zπ/N ⊗Z Zπ/N) ∼= Zπ/N ⊗Zπ Zπ/N ∼= Zπ/N
is torsion free (as an abelian group) and thus Z⊗Zπ Γ(Zπ/N ⊕Zπ/N) is torsion free. This completes
the proof of the claim that the short exact sequence (4.134.13) satisfies the hypotheses of the first sentence
of Lemma 3.63.6.

We therefore have a short exact sequence:

(4.15) 0 → Z⊗Zπ Γ(Zπ/N ⊕ Zπ/N) → Z⊗Zπ Γ(M) → Z⊗Zπ D → 0.

We will use this later in conjunction with Lemma 3.63.6, to deduce that Z⊗Zπ Γ(M) is torsion free.
Next, we use the extension (4.144.14) to compute the torsion in Z⊗ZπD. Using Γ(Z) ∼= Z, the extension

gives a long exact sequence ending with:

(4.16) · · · → Ĥ1(π;D) → Ĥ1(π;Z)
∂−→ Ĥ0(π;Zπ/N ⊕ Zπ/N) → Ĥ0(π;D) → Ĥ0(π;Z) = 0.

The above boundary map ∂ in the long exact sequence of Tate homology groups is the boundary map
from standard homology, noting that it has image in the subgroup ker(·N) of the orbits Aπ = H0(π;A),
where A = Zπ/N ⊕ Zπ/N . We compute ∂ as follows. Let C∗ be a free Zπ-module resolution of Z
with C1

∼= (Zπ)2 (a−1,b−1)−−−−−−→ C0
∼= Zπ. In the next diagram we show part of the short exact sequence

of chain complexes from which one computes the map ∂.
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C1 ⊗Zπ (Zπ/N ⊕ Zπ/N) C1 ⊗Zπ D C1 ⊗Zπ Z

C0 ⊗Zπ (Zπ/N ⊕ Zπ/N) C0 ⊗Zπ D C0 ⊗Zπ Z

d1⊗IdZπ/N⊕Zπ/N d1⊗IdD d1⊗IdZ=0

We have Ĥ1(π;Z) ∼= C1⊗Zπ Z/ im(d2⊗ IdZ) ∼= Z/n⊕Z/m and Ĥ0(π;Zπ/N ⊕Zπ/N) ∼= Z/|π|⊕Z/|π|.
In the extension (4.144.14), a preimage of 1 ∈ Z ∼= Γ(Z) in D ∼= Γ(M)

Γ(Zπ/N⊕0⊕Zπ/N) is given by [(0, 1, 0) ⊗
(0, 1, 0)]. Here we represent elements of Γ(M) by elements of (Zπ)3⊗Z (Zπ)3; these in turn determine
elements of D since D is a quotient of Γ(M). Under the map

C1 ⊗Zπ D (Zπ)2 ⊗Zπ D ∼= D ⊕D ([−(0, 1, 0)⊗ (0, 1, 0)], 0)

C0 ⊗Zπ D Zπ ⊗Zπ D ∼= D [(a− 1)((0, 1, 0)⊗ (0, 1, 0))]

d1⊗IdD

the element [−(0, 1, 0)⊗ (0, 1, 0)] in the first factor of D⊕D is sent by d1 ⊗ IdD to [(a− 1)((0, 1, 0)⊗
(0, 1, 0))]. This tells us the image of (−1, 0) ∈ Z/n⊕ 0 ⊆ Z/n⊕Z/m ∼= Ĥ1(π;Z) under ∂. To describe
this image precisely, we consider the following diagram.

Zπ/N ⊕ Zπ/N D

Ĥ1(π;Z) Ĥ0(π;Zπ/N ⊕ Zπ/N) Z⊗Zπ (Zπ/N ⊕ Zπ/N)

p

ι

∂ T

Here, the map ι is the identification Zπ/N ⊕Zπ/N ∼= (Zπ/N ⊕Zπ/N)⊗ZZ followed by the map from
(4.54.5), and T is the inclusion of the torsion subgroup by Lemma 2.92.9. Then the computations above

show that (−1, 0) ∈ Z/n⊕ 0 ⊆ Z/n⊕ Z/m ∼= Ĥ1(π;Z) is sent under the composition T ◦ ∂ to

p(ι−1((a− 1)((0, 1, 0)⊗ (0, 1, 0)))).

Here as above the element (a − 1)((0, 1, 0) ⊗ (0, 1, 0)) ∈ D is represented as an element in Γ(M),
which in turn is represented by an element of (Zπ)3 ⊗Z (Zπ)3. To express this as an element in
Z⊗Zπ (Zπ/N ⊕ Zπ/N), we will now compute. Using the relation [(0, 1− a,Nb)] = 0 in M we have

0 =[(0, 1− a,Nb)⊗ (0,−a, 0)− (0, 1, Nb)⊗ (0, 1− a,Nb)]

=[(0, 1− a,Nb)⊗ (0,−a, 0)− (0, 1, Nb)⊗ (0,−a, 0)− (0, 1, Nb)⊗ (0, 1, Nb)]

=[(0, 1, Nb)⊗ (0,−a, 0) + (0,−a, 0)⊗ (0,−a, 0)− (0, 1, Nb)⊗ (0,−a, 0)− (0, 1, Nb)⊗ (0, 1, Nb)]

=[(0,−a, 0)⊗ (0,−a, 0)− (0, 1, Nb)⊗ (0, 1, Nb)]

=[(0, a, 0)⊗ (0, a, 0)− (0, 1, 0)⊗ (0, 1, 0)− (0, 0, Nb)⊗ (0, 0, Nb)

− (0, 1, 0)⊗ (0, 0, Nb)− (0, 0, Nb)⊗ (0, 1, 0)].

Hence we have

[(a− 1)((0, 1, 0)⊗ (0, 1, 0))] = [(0, 0, Nb)⊗ (0, 0, Nb) + (0, 1, 0)⊗ (0, 0, Nb) + (0, 0, Nb)⊗ (0, 1, 0)].

As D is the quotient of Γ(M) = Γ(Zπ⊕Zπ⊕Zπ
⟨··· ⟩ ) by Γ(Zπ/N ⊕ 0⊕ Zπ/N), we have in D:

[(a− 1)((0, 1, 0)⊗ (0, 1, 0))] = [(0, 1, 0)⊗ (0, 0, Nb) + (0, 0, Nb)⊗ (0, 1, 0)].

This element has preimage (0, Nb)⊗ 1 ∈ (Zπ/N ⊕ Zπ/N)⊗Z Z and thus when tensoring with Z over

Zπ, we get (0,m) ∈ Z/|π| ⊕ Z/|π| ∼= Ĥ0(π;Zπ/N ⊕ Zπ/N) ⊆ Z⊗Zπ (Zπ/N ⊕ Zπ/N).

Similarly, the generator of Z/m in Z/n ⊕ Z/m ∼= Ĥ1(π;Z) maps under the boundary map ∂ to

(n, 0) ∈ Z/|π| ⊕Z/|π|. Hence the torsion in Z⊗Zπ D, which equals Ĥ0(π;D) ∼= coker ∂ by Lemma 2.92.9
and (4.164.16), is isomorphic to Z/n⊕ Z/m.
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Now recall the short exact sequence (4.154.15), 0 → Z ⊗Zπ Γ(Zπ/N ⊕ Zπ/N)
ψ−→ Z ⊗Zπ Γ(M)

θ−→
Z⊗ZπD → 0. We want to apply the second half of Lemma 3.63.6 to deduce that Z⊗ZπΓ(M) is torsion free.
The elements u := [(0, 1, 0)⊗(0, 0, 1)+(0, 0, 1)⊗(0, 1, 0)] and v := [(0, 1, 0)⊗(1, 0, 0)+(1, 0, 0)⊗(0, 1, 0)]
are preimages under θ in Z⊗Zπ Γ(M) of the generators of the torsion in Z⊗Zπ D.

Next we find the preimage under ψ of m times u = [(0, 1, 0) ⊗ (0, 0, 1) + (0, 0, 1) ⊗ (0, 1, 0)]. The
first equation of the following computation in Z⊗Zπ Γ(M) uses the identity m−Nb = −yb(1− b) in

Zπ with yb :=
∑m−1
i=0 ibi = b+ 2b2 + · · ·+ (m− 1)bm−1.

[m((0, 1, 0)⊗ (0, 0, 1) + (0, 0, 1)⊗ (0, 1, 0))]

=[(0, Nb − yb(1− b), 0)⊗ (0, 0, 1) + (0, 0, 1)⊗ (0, Nb − yb(1− b), 0)]

=[(Naxb, Nb, 0)⊗ (0, 0, 1) + (0, 0, 1)⊗ (Naxb, Nb, 0)],

where the last equation uses that 0 = [(Na, 1 − b, 0)] in M . Since 0 = [(a − 1)((0, 1, 0) ⊗ (0, 1, 0))] ∈
Z⊗Zπ Γ(M), the above computation for the boundary map ∂ yields

[−(0, 0, Nb)⊗ (0, 0, Nb)] = [(0, 1, 0)⊗ (0, 0, Nb) + (0, 0, Nb)⊗ (0, 1, 0)].

Since we tensored with Z over Zπ, where Zπ acts diagonally on (Zπ)3 ⊗Z (Zπ)3, we have

[(0, 1, 0)⊗ (0, 0, Nb) + (0, 0, Nb)⊗ (0, 1, 0)]

=[(0, N b, 0)⊗ (0, 0, 1) + (0, 0, 1)⊗ (0, N b, 0)]

=[(0, Nb, 0)⊗ (0, 0, 1) + (0, 0, 1)⊗ (0, Nb, 0)].

Combining these we get

[m((0, 1, 0)⊗ (0, 0, 1) + (0, 0, 1)⊗ (0, 1, 0))]

=[(Naxb, 0, 0)⊗ (0, 0, 1) + (0, 0, 1)⊗ (Naxb, 0, 0)− (0, 0, Nb)⊗ (0, 0, Nb)].

To show that an element of a direct sum is indivisible, it is enough to check this in one summand.
Hence consider the image under the projection

Z⊗Zπ Γ(Zπ/N ⊕ Zπ/N) Z⊗Zπ (Γ(Zπ/N)⊕ Γ(Zπ/N)⊕ (Zπ/N ⊗Z Zπ/N))

Z⊗Zπ (Zπ/N ⊗Z Zπ/N) ∼= Zπ/N

∼=

which for the preimage of mu is Nayb. An analogous computation shows that the preimage under ψ of
n times v = [(0, 1, 0)⊗(1, 0, 0)+(1, 0, 0)⊗(0, 1, 0)] projects to Nbya ∈ Zπ/N ∼= Z⊗Zπ (Zπ/N⊗ZZπ/N),

where ya :=
∑n−1
i=0 ia

i.

Claim. To complete the proof it suffices to show, for every k, ℓ with gcd(k, ℓ) = 1, that kNayb+ℓNbya
is indivisible.

To see this, let a, b ∈ Z and write K := gcd(na,mb). Then to check that au+ bv is not torsion in
Z ⊗Zπ Γ(M), as per Lemma 3.63.6, note that mn/K is the order of the image of au + bv in Z ⊗Zπ D.
Indeed, we have (mn

K

)
(au+ bv) =

(na
K

)
mu+

(
mb

K

)
nv,

and this maps to 0 in Z⊗ZπD since bothmu and nv do. Taking the preimage in Z⊗ZπΓ(Zπ/N⊕Zπ/N),
and then projecting to Z⊗Zπ (Zπ/N ⊗Z Zπ/N) ∼= Zπ/N , we obtain(na

K

)
Nayb +

(
mb

K

)
Nbya.

Write k := na/K and ℓ := mb/K. Note that gcd(k, ℓ) = 1, since K = gcd(na,mb). Then it suffices
to show that kNayb + ℓNbya is indivisible. In particular, we see that it is enough to show that
kNayb + ℓNbya is indivisible for every pair of coprime integers k, ℓ. This completes the proof of the
claim.
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Now we show the desired statement. As an abelian group, Zπ/N is isomorphic to the submodule of
elements in Zπ whose coefficient at the identity group element is zero. Observe that Nayb and Nbya
lie in this submodule. Let k, ℓ ∈ Z be coprime integers. In kNayb + ℓNbya, the coefficient of a1b0 = a
is ℓ, while the coefficient of a0b1 = b is k (and the coefficient in front of the trivial group element is
zero). It follows that in Zπ/N , kNayb+ ℓNbya can only be divisible by gcd(k, ℓ) and its divisors. But
gcd(k, ℓ) = 1 so kNayb + ℓNbya is indivisible, as desired. Hence there is no torsion in Z⊗Zπ Γ(M) by

Lemma 3.63.6. Therefore Ĥ0(π; Γ(M)) = Ĥ0(π; Γ(coker d
2)) = 0 by Lemma 2.92.9. □

5. Groups of order at most 16

For small groups the following computations were made by Hennes [Hen91Hen91] using a computer
program. For π = (Z/2)2,Z/2 × Z/4, (Z/4)2 and D8, Z ⊗Zπ Γ(ker d2 ⊕ coker d2) is torsion free. For
π = (Z/2)3,Z/2×D8 and Z/4× Z/2× Z/2, Z⊗Zπ Γ(ker d2 ⊕ coker d2) contains torsion.

For π = (Z/2)2 it was claimed in [Bau88Bau88, Final remark] (without proof), that Ĥ0(π; Γ(coker d
2)) ∼=

(Z/2)2. By Hennes’ computation and also by our proof above, this is not true.
We used an algorithm written by the third author in his bachelor thesis [Rup16Rup16] to calculate

Z ⊗Zπ Γ(ker d2) for all groups π up to order 16. The algorithm was written in SageMath and the
source code together with output from the calculations can be found in the GitHub repository [RupRup].
There were no computations made of Z⊗Zπ Γ(coker d2).

Example 5.1. The following is a complete list of all groups of order at most 16 such that Ĥ0(π; Γ(ker d2))
is nontrivial. The group Q8 = ⟨i, j, k | i2 = j2 = k2 = ijk⟩ is the quaternion group.

π Ĥ0(π; Γ(ker d2))

Z/4× Z/2× Z/2 (Z/2)2
Z/2× Z/2× Z/2× Z/2 (Z/2)4
Q8 × Z/2 (Z/2)4
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