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Abstract. We classify compact Riemann surfaces of genus g, where g − 1 is a prime p, which
have a group of automorphisms of order ρ(g − 1) for some integer ρ ≥ 1, and determine isogeny
decompositions of the corresponding Jacobian varieties. This extends results of Belolipetzky and
the second author for ρ > 6, and of the first and third authors for ρ = 3, 4, 5 and 6. As a corollary
we classify the orientably regular hypermaps (including maps) of genus p + 1, together with the
non-orientable regular hypermaps of characteristic −p, with automorphism group of order divisible
by the prime p; this extends results of Conder, Širáň and Tucker for maps.

1. Introduction

A compact Riemann surface S of genus g ≥ 2 has a finite automorphism group,
of order at most 84(g− 1). It is well known that for a given genus g the possibilities
for surfaces S and their automorphism groups depend heavily on the factorisation of
the Euler characteristic χ = 2−2g, since divisors of χ allow such surfaces to occur as
unbranched coverings of those of smaller genus. From this point of view, the simplest
case to consider is therefore that in which g−1 is a prime p. In [1], Belolipetzky and
the second author considered this situation on the assumption that S has a group
G of automorphisms of order ρ(g − 1) where ρ ≥ λ for some λ > 6; they showed
that if p is sufficiently large as a function of λ (to avoid finitely many sporadic cases)
then S and G lie in one of six infinite families, each with a simple construction. This
work has been reinterpreted and taken further in the context of orientably regular
maps by Conder, Širáň and Tucker in [11]. More generally, Conder and Kulkarni [12]
have investigated sequences of groups of automorphisms of order ag+ b for constants
a, b ∈ Q, such as the Accola–Maclachlan groups of orders 8(g + 1) and 8(g + 3).

The group-theoretic techniques available to study this problem divide it naturally
into two general cases, according to whether or not p divides |G| (or equivalently
ρ ∈ Z). If it does, then the Sylow and Schur–Zassenhaus theorems imply that, for
all but finitely many primes p, G is a semidirect product P ⋊ Q of a normal Sylow
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p-subgroup P ∼= Cp by a group Q of order ρ. Moreover, Q ≤ Aut T where T = S/P
is a Riemann surface of genus 2 (see Lemma 6 for these results), so the possibilities
for Q are limited. The small number of exceptional primes p can be dealt with by
ad hoc methods. (The primes p = 2, 3 and 5 are often omitted, since automorphism
groups for very small genera g behave differently and are well-known: see [4, 9], for
example.) The results in [1] for ρ > 6 have recently been extended by the first and
third authors [24, 39] to the cases where ρ = 3, 4, 5 or 6 and p ≥ 7; for instance,
they show that for ρ = 5 there are no new surfaces (the groups G with ρ = 5 are all
subgroups of those appearing in [1] as full automorphism groups of surfaces S with
ρ = 10), whereas for ρ = 6 they describe an infinite family of surfaces, two members
of which also appear in [1] with larger automorphism groups; this family also realises
the groups arising for ρ = 3.

Here we will build on these results, filling in gaps (such as for small primes where
ρ > 6) to give a unified treatment and a complete classification of the groups G and
surfaces S for all integers ρ ≥ 1. We also describe some group actions, such as those
in case (v) of Theorem 1(a), which are only implicit in [24], where the emphasis is
more on the surfaces than on the groups. For conciseness of exposition and proof,
the main result, Theorem 1, is stated (below) only for integers ρ ≥ 3 and primes
p ≥ 7. Small values of ρ and p, which lead to less uniform behaviour, are discussed
separately towards the end of the paper.

In order to state our results, we introduce some notation. For each prime p > 2
and divisor r of p− 1 let us define a group

Gp,r := 〈a, b | ap = br = 1, bab−1 = aω〉

where ω is a primitive rth root of 1 in the field Fp of order p. This is a semidirect
product of 〈a〉 ∼= Cp by 〈b〉 ∼= Cr, with the latter acting faithfully by conjugation on
the former. Up to isomorphism this group, denoted by Cp ⋊r Cr in [24], is indepen-
dent of the choice of ω, and is the unique subgroup of order pr in the affine group
AGL1(p) ∼= Gp,p−1. For example, Gp,2 is a dihedral group Dp of order 2p.

Each compact Riemann surface S of genus g ≥ 2 is isomorphic to a quotient H/K
of the hyperbolic plane H by a surface group K of genus g. A group G (necessarily
finite) is isomorphic to a subgroup of AutS if and only if G ∼= Γ/K where Γ is a
cocompact Fuchsian group containing K as a normal subgroup. The signature of Γ
has the form

σ = (γ;m1, . . . , mk)

for some genus γ (of H/Γ ∼= S/G) and elliptic periods mi ≥ 2. We will also refer to
σ as the signature of the action of G on S. The order of the periods mi is irrelevant.
For brevity, we will omit γ and write simply (m1, . . . , mk) in the (rather frequent)
cases where γ = 0, and we will denote an elliptic period m repeated r times by m[r].
Our main result is the following:

Theorem 1. Let S be a compact Riemann surface of genus g = p+ 1 for some
prime p ≥ 7.

(a) There is a subgroup G ≤ AutS of order |G| = ρ(g−1) for some integer ρ ≥ 3
if and only if one of the following holds, where σ denotes the signature of the action
of G:

(i) ρ = 12, σ = (2, 6, 6) and G ∼= Gp,6 × C2 where p ≡ 1 mod (3);
(ii) ρ = 10, σ = (2, 5, 10) and G ∼= Gp,10 where p ≡ 1 mod (5);
(iii) ρ = 8, σ = (2, 8, 8) and G ∼= Gp,8 where p ≡ 1 mod (8);
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(iv) ρ = 6, σ = (3, 6, 6) and G ∼= Gp,6 or Gp,3 × C2 where p ≡ 1 mod (3);
(v) ρ = 6, σ = (2, 2, 3, 3) and G ∼= Gp,6 where p ≡ 1 mod (3);
(vi) ρ = 5, σ = (5, 5, 5) and G ∼= Gp,5 where p ≡ 1 mod (5);
(vii) ρ = 4, σ = (2, 2, 4, 4) and G ∼= Gp,4 where p ≡ 1 mod (4);
(viii) ρ = 4, σ = (2[5]) and G ∼= Gp,2 × C2

∼= D2p;
(ix) ρ = 3, σ = (3[4]) and G ∼= Gp,3 where p ≡ 1 mod (3);
(x) ρ = 84, σ = (2, 3, 7) and G ∼= PSL2(13) where p = 13;
(xi) ρ = 48, σ = (2, 3, 8) and G ∼= PGL2(7) where p = 7;
(xii) ρ = 24, σ = (3, 3, 4) and G ∼= PSL2(7) where p = 7.

(b) In cases (i) and (iv), for each p there is a single chiral pair of surfaces S1 and
S1, the same in each case, each surface admitting both groups G in (iv). In cases (ii)
and (vi) there are two chiral pairs S2,S2 and S ′

2,S
′
2, the same in each case. In case

(iii) there is a single chiral pair of surfaces S3,S3. In case (v) there is an infinite
family of surfaces, of real dimension 2, with an action of Gp,6 of signature (2, 2, 3, 3),
restricting to the action of Gp,3 in (ix); two of these surfaces, namely the chiral pair
S1,S1 in (i), also both admit actions of Gp,6 and Gp,3 × C2 of signature (3, 6, 6) in
(iv). In cases (vii) and (viii) there is an infinite family of surfaces for each p, of real
dimension 2 and 4 respectively; if p ≡ 1 mod (8) then two of these in (vii) are the
chiral pair S3,S3 in (iii). In case (x) there are three surfaces, and in cases (xi) and
(xii) there are two, the same in each case.

(c) The surfaces S in case (iv) and a chiral pair of those in case (v) are the
surfaces S1,S1 in (i) with automorphism group A := AutS ∼= Gp,6 ×C2; when p = 7
two of those in case (v) have A ∼= PGL2(7) in (xi), and when p = 13 three of those
in case (v) have A ∼= PSL2(13) in (x). The surfaces in case (vi) have A ∼= Gp,10 in
(ii). In case (vii), if p ≡ 1 mod (8) a chiral pair S3,S3 have A ∼= Gp,8 in (iii). In

case (viii), if p ≡ 1 mod (3) a chiral pair S1,S1 have A ∼= Gp,6 × C2 in (i). The
surfaces in case (ix) are the infinite family in case (v), with Gp,3 acting as a subgroup
of index 2 in Gp,3×C2, and with automorphism groups as described here for case (v).
The surfaces in case (xii) have A ∼= PGL2(7) in (xi). All other surfaces S have
automorphism group A = G.

This theorem confirms and extends results obtained earlier by Belolipetzky and
the second author [1] for ρ > 6, and more recently by the first and third authors [24,
39] for ρ = 3, 4, 5, 6. There are similar but less uniform results for primes p ≤ 5 and
for ρ = 1 and 2, discussed briefly in Sections 8 and 9 after the proof of Theorem 1.

The Jacobian variety JS of a compact Riemann surface S of genus g ≥ 2 is a
principally polarised abelian variety of dimension g, namely a complex torus which
is projective. The relevance of Jacobian varieties lies in part in Torelli’s theorem,
that two compact Riemann surfaces are isomorphic if and only if their Jacobians are
isomorphic as principally polarised abelian varieties.

It is known that Jacobians are irreducible, in the sense that they are not isomor-
phic to the product of two abelian subvarieties of lower dimension. Due to this fact,
it is natural to consider isogenies between them, namely, surjective homomorphisms
with finite kernel.

Let G be a finite group acting conformally on a compact Riemann surface S. It
is well known that this action induces an action of G on JS and this, in turn, induces
an isogeny decomposition which is G-equivariant (see [8, 30]). This decomposition of
Jacobians under group actions has been extensively studied, following early papers
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by Wirtinger [51] and Schottky and Jung [45]. For decomposition of Jacobians with
respect to specific groups, see [6, 18, 22, 23, 35, 37, 38, 40, 41].

The following result extends and confirms previous results in [24] and [39] and
provides a complete treatment of isogeny decompositions for each surface S in The-
orem 1.

Theorem 2. For each surface S in Theorem 1, the Jacobian JS decomposes up
to isogeny as follows. For S in case (i) we have

JS ∼ E1 × E2 × (JC)6

where E1 = S/〈a, t〉 and E2 = S/〈a, b3t〉 are elliptic curves and C = S/〈bt〉 has genus
(p − 1)/6 with t generating the direct factor C2 of Gp,6 × C2. In case (iv) with an
action of Gp,3 × C2 we have

JS ∼ E1 × E2 × (JC)3

where E1 and E2 = S/〈a, t〉 are elliptic curves and C = S/〈b〉 has genus (p − 1)/3
with t generating the direct factor C2 of Gp,3×C2. In case (iv) with an action of Gp,6

we have
JS ∼ E1 × E2 × (JC)6

where E1 and E2 = S/〈a, b3〉 are elliptic curves and C = S/〈b〉 has genus (p− 1)/6.
In case (viii) we have

JS ∼ E1 × E2 × (JC)2

where E1 and E2 = S/〈at〉 are elliptic curves and C = S/〈bt〉 has genus (p− 1)/2. In
the remaining cases, with an action of Gp,r, we have

JS ∼ JT × (JC)r

where T = S/〈a〉 has genus 2 and C = S/〈b〉 has genus (p− 1)/r.

It is worth emphasising that the factors arising in the previous decompositions
that are not elliptic curves are not necessarily simple, that is, they may admit a
further isogeny decomposition.

We recall that case (iii) is new and case (ix) is new but implicit in [24, Theorem 2]
since it is contained in case (v). Case (iv) is contained in case (i); they are new and
indeed improve the decomposition found in [24, Theorem 2]. Case (vi) is new but
implicit in [24, Theorem 1] since it is contained in case (ii) and case (viii) improves
the decomposition determined in [39, Theorem 3]. Case (vii) is dealt with in [39,
Theorem 3]. Cases (x), (xi) and (xii) are well-known; these Jacobians decompose
as a product of elliptic curves (see, for example, [18] for the former case in a more
general context). The proof of Theorem 2 is given in Section 10.

Connections of these results with maps and hypermaps are discussed in Section 11
where, as a corollary to Theorem 1, we obtain the following classification, where the
numbering of cases follows and refers to that in Theorem 1(a):

Theorem 3. The orientably regular maps or hypermaps of genus g = p + 1
for some prime p ≥ 7, with orientation-preserving automorphism group G of order
divisible by p, are as follows (up to duality or triality, permuting the roles of vertices,
edges and faces):

(i) for p ≡ 1 mod (3) the surfaces S1 and S1 in Theorem 1(a)(i) support a chiral
pair of orientably regular maps of type {6, 6} with G ∼= Gp,6 × C2;

(ii) for p ≡ 1 mod (5) the surfaces S2, S2, S
′
2 and S ′

2 in Theorem 1(a)(ii) support
two chiral pairs of orientably regular maps of type {5, 10} with G ∼= Gp,10;
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(iii) for p ≡ 1 mod (8) the surfaces S3 and S3 in Theorem 1(a)(iii) support a chiral
pair of orientably regular maps of type {8, 8} with G ∼= Gp,8;

(iv) for p ≡ 1 mod (3) the surfaces S1 and S1 in Theorem 1(a)(i) and (iv) support
two chiral pairs of orientably regular hypermaps of type (3, 6, 6), one each
with G ∼= Gp,6 or Gp,3 × C2;

(vi) for p ≡ 1 mod (5) the surfaces S2, S2, S
′
2 and S ′

2 in Theorem 1(a)(ii) and (vi)
support twelve orientably regular hypermaps of type (5, 5, 5) with G ∼= Gp,5;

(x) for p = 13 the three surfaces S in Theorem 1(a)(x) support three regular
maps of type {3, 7} with G ∼= PSL2(13), one on each surface;

(xi) for p = 7 the two surfaces S in Theorem 1(a)(xi) support two regular maps
of type {3, 8} with G ∼= PGL2(7), one on each surface;

(xii) for p = 7 the two surfaces S in Theorem 1(a)(xi) support two regular hyper-
maps of type (3, 3, 4) with G ∼= PSL2(7), one on each surface.

As before, primes p ≤ 5 are omitted for conciseness, but are easily dealt with.
This theorem can also be regarded as a classification of the regular dessins d’enfants
(see [25]) satisfying the same conditions on their genus and automorphism group.
There is a similar classification of non-orientable regular maps and hypermaps of
characteristic −p in Section 12. These results extend to hypermaps some earlier
results for maps by Conder, Širáň and Tucker in [11], where they also consider the case
where p does not divide |G|. For small p, these maps and hypermaps are identified in
Sections 11 and 12 with the corresponding entries in Conder’s computer-generated
lists [9].

In Theorem 1 there is an obvious contrast between cases (i) to (ix), which de-
scribe infinite sequences (guaranteed by Dirichlet’s Theorem on primes in arithmetic
progressions) exhibiting uniform behaviour, and cases (x) to (xii) where we have
small sporadic examples exhibiting irregular behaviour. In Sections 11 and 12 we
see the same contrast concerning the maps and hypermaps on these surfaces. This
distinction, a common phenomenon for both finite groups and compact Riemann sur-
faces in general, is explained here by the fact (see the second paragraph above) that
in cases (i) to (ix) the Sylow p-subgroup P ∼= Cp of G is normal, implying that S is
a regular unbranched p-sheeted covering of a Riemann surface T = S/P of genus 2,
whereas in cases (x) to (xii) P is not normal in G, and S does not have this structure.

It is worth emphasising that this paper does not consider values ρ ∈ Q \ Z,
where the methods and results (see [1, 11], for instance) are different: for example,
the Accola–Maclachlan groups of order 8(g + 3) and 8(g + 1) and their associated
surfaces play an important role there, and only the first of these, with g = 3, has
g − 1 prime and ρ ∈ Z. It is hoped to revisit this situation later.

Acknowledgment. The authors are grateful to David Singerman for a number of
helpful remarks concerning Fuchsian groups, and to an anonymous referee for sug-
gesting some very useful improvements to the paper. The third author was partially
supported by Fondecyt Grants 11180024 and 1190991. The first and third authors
were partially supported by Redes Grant 170071.

2. Preliminaries

Throughout this paper we will be concerned with cocompact Fuchsian groups.
A Fuchsian group is a discrete subgroup Γ of PSL2(R), acting discontinuously by
Möbius transformations on the upper half plane H. We say that Γ is cocompact
if the quotient space H/Γ is compact, in which case it is known that Γ is finitely
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generated and contains no parabolic elements: the non-identity elements of Γ are all
elliptic and of finite order, with one fixed point in H, or hyperbolic and of infinite
order, with no fixed points in H and two on its boundary P1(R) = R ∪ {∞}. For
background on compact Riemann surfaces and Fuchsian groups, we refer to [17].

For the rest of this paper, S will denote a compact Riemann surface of genus
g ≥ 2. By the Uniformisation Theorem, S is conformally equivalent (isomorphic) to
the quotient H/K of H by a Fuchsian group K isomorphic to the fundamental group
Πg of S.

2.1. Group actions, topological equivalence. We say that a group G acts
on S if there is a group monomorphism ψ : G→ AutS. The condition g ≥ 2 implies
that AutS is finite, so G acts discontinuously on S. The orbit-space S/G induced
by this action ψ then has a natural Riemann surface structure so that the projection
S → S/G is holomorphic.

A group G acts on S if and only if there is a Fuchsian group Γ containing K
with an epimorphism θ : Γ → G such that ker θ = K (see [47, 43]); in this case
S/G ∼= H/Γ. We call θ a surface epimorphism. Since S is compact, so is S/G, so Γ
is cocompact. It then follows that Γ has a presentation with generators

Aj , Bj (j = 1, . . . , γ) and Xi (i = 1, . . . , k)

(respectively hyperbolic and elliptic), and defining relations
γ
∏

j=1

[Aj , Bj ].

k
∏

i=1

Xi = Xmi

i = 1.

We will use this notation for generators throughout the paper. Here γ is the genus of
S/G, and the elliptic periods mi indicate the order of branching at the branch points
of the covering S → S/G. The order of the elliptic periods is irrelevant, and we will
usually assume that 2 ≤ m1 ≤ · · · ≤ mk.

One can encode this presentation by saying that Γ has signature

σ = (γ;m1, . . . , mk).

We will also refer to σ as the signature of the action ψ of G on S (with monodromy
θ), or more concisely (but less precisely) as the signature of G. More generally, we
will write Γ(σ) to denote any Fuchsian group with this signature.

Two actions ψ1, ψ2 : G → AutS of G on S are said to be topologically equiv-
alent if there exist an automorphism ω of G and an orientation-preserving self-
homeomorphism h of S such that

(1) ψ2(g) = hψ1(ω(g))h
−1 for all g ∈ G.

In this case ψ1 and ψ2 have the same signature. Each orientation-preserving home-
omorphism h satisfying (1) yields a group automorphism h∗ of Γ. We let B denote
the subgroup of Out (Γ) consisting of the images of such automorphisms h∗. Equiva-
lently, surface epimorphisms θ1, θ2 : Γ → G define topologically equivalent actions if
and only if θ2 = ω ◦ θ1 ◦h

∗ for some ω ∈ Aut(G) and h∗ ∈ B (see [3, 21, 34]). If S/G
has genus γ = 0 then B is generated by the braid transformations.

2.2. Equisymmetric stratification. Each Riemann surface S of genus g ≥ 2
is uniformised by a surface Fuchsian subgroup K ∼= Πg of PSL2(R). Two subgroups
uniformise isomorphic surfaces if and only if they are conjugate in PSL2(R). We
define the Teichmüller space Tg to be the quotient of the space of such embeddings
r : Πg → K ≤ PSL2(R) modulo conjugation in PSL2(R); it is homeomorphic to
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a ball of dimension 6g − 6. The modular group or mapping class group Modg :=
Aut+(Πg)/Inn(Πg) acts by composition on Tg, where Aut+(Πg) is the orientation-
preserving subgroup of index 2 in the extended automorphism group Aut(Πg) of Πg;
we define the moduli space Mg to be the quotient space Tg/Modg, see [3, 21, 34].
The projection Tg → Mg is a regular branched covering, so Mg has the structure of
an orbifold. For g ≥ 3 the (orbifold-)singular locus (branch locus of the covering) Bg
of Mg is formed by the Riemann surfaces with non-trivial automorphisms, whereas
for g = 2 it consists of those with other automorphisms in addition to the identity
and the hyperelliptic involution. See [34], for example.

More generally, if Γ is an abstract group with signature σ, then the Teichmüller
space T(Γ) is the space of embeddings r : Γ → PSL2(R), with r(Γ) discrete in
PSL2(R), modulo conjugation in PSL2(R); if Γ has signature σ = (γ;m1, . . . , mk)
then T(Γ) is homeomorphic to a ball of dimension d = 6γ− 6+ 2k (see [21, 34, 48]).
For example, if γ = 0 and k = 3 then d = 0 and T(Γ) is a point, giving a single
conjugacy class of triangle groups of type (m1, m2, m3) in PSL2(R). Since T(Γ)
depends only on σ we can write it as T(σ). The modular group of Γ is the quotient
Mod(Γ) := Aut+(Γ)/Inn(Γ), and the moduli space of Γ is the quotient M(Γ) :=
T(Γ)/Mod(Γ). Any inclusion α : Γ → Γ′ of Fuchsian groups induces an embedding
T(α) : T(Γ′) → T(Γ) defined by [r] 7→ [r ◦ α] (see [21, 34, 48]). Any action ψ of
a finite group G on S = H/K is determined by an inclusion α : K → Γ (via the
monodromy θ : Γ → G). Then ([3, 21, 34])

(2) Bg =
⋃

G,ψ

M
G,ψ

g

where M
G,ψ

g is a closed, irreducible algebraic subvariety of Mg defined as consisting
of those Riemann surfaces S with a group of automorphisms conjugate to G in Modg
(the conjugacy class determined by ψ). Its interior MG,ψ

g , if non-empty, is a smooth,

locally closed algebraic subvariety of Mg, dense in M
G,ψ

g ; by definition, it consists of
those surfaces with full automorphism group conjugate to G in Modg, and is called
an equisymmetric stratum.

Observe that MG,ψ
g is empty if and only if the action ψ of G extends for each

Riemann surface admitting the action ψ (see [14] for example). An action of G, with
surface epimorphism θ : Γ → G and ker θ = K, is said to extend to an action of a
group G′ ≥ G if and only if there is an abstract Fuchsian group Γ′ ≥ Γ with a surface
epimorphism θ′ : Γ′ → G′ such that θ′|Γ = θ, ker θ′ = K, and such that T(Γ) and
T(Γ′) have the same dimension. In [48] Singerman determined all pairs of signatures
(σ(Γ), σ(Γ′)) for which it is possible to have an extension in the sense introduced
here. The action is called maximal if it has no such extension with G′ 6= G.

2.3. Jacobian varieties with a group action. Let S be a compact Riemann
surface of genus g ≥ 2. We denote by H1(S;C) the g-dimensional complex vector
space of 1-forms on S, and by H1(S;Z) the first integral homology group of S. Recall
that, as mentioned in the Introduction, the Jacobian variety

JS := H1(S;C)∗/H1(S;Z)

of S is an irreducible principally polarised abelian variety of dimension g. See, for
example, [2, 17].

The action of a finite group G on S induces a Q-algebra homomorphism

Ξ : Q[G] → EndQ(JS).
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Let W1, . . . ,Wr be the rational irreducible representations of G, and for each Wl

let Vl be a complex irreducible representation of G associated to it. We assume V1
to be the trivial representation of G. Following [30], the equality

(3) 1 = e1 + · · ·+ er in Q[G],

where el is uniquely determined central idempotent associated to Wl, yields a G-
equivariant isogeny

JS ∼ A1 × · · · ×Ar,

where Al is the abelian subvariety of JS defined as Al := Ξ(nel)(JS) and n ≥ 1 is
chosen to satisfy nel ∈ Z[G]. Moreover, there are idempotents fl1, . . . , flnl

such that

(4) el = fl1 + · · ·+ flnl

where nl = dl/sl is the quotient of the degree dl and the Schur index sl of Vl. These
idempotents provide nl pairwise isogenous subvarieties of JS. If we denote by Bl one
of them for each l, then (3) and (4) provide the isogeny

(5) JS ∼ Bn1

1 × · · · × Bnr

r

known as the group algebra decomposition of JS with respect to G. See [8].
Let H be a subgroup of G. We denote by dHl the dimension of the vector subspace

of Vl of those elements which are fixed under H. Following [8], the group algebra de-
composition (5) induces the following isogeny of the Jacobian J(S/H) of the quotient
S/H

(6) J(S/H) ∼ B
nH
1

1 × · · · × BnH
r

r where nHl = dHl /sl.

Assume that (γ;m1, . . . , mk) is the signature of the action of G on S and that
this action is represented by the surface epimorphism θ : ∆ → G. The dimension of
each factor Bl in (5) can be computed explicitly in terms of the action of the group.
Concretely, following [43], for l ≥ 2

(7) dimBl = kl

[

dl(γ − 1) + 1
2

k
∑

j=1

(dl − d
〈θ(Xj)〉
l )

]

where kl is the degree of the extension Q ≤ Ll with Ll denoting a minimal field of
definition for Vl. Note that the dimension of B1 equals γ.

3. Signatures

If G acts on a compact Riemann surface S of genus g ≥ 2, with G ∼= Γ/K and
with a signature

σ = (γ;m1, . . . , mk)

as before, then the Riemann–Hurwitz formula, applied to the inclusion K ≤ Γ, states
that

(8) 2(g − 1) = |G|

(

2γ − 2 +
k
∑

i=1

(

1−
1

mi

)

)

.

The ratio ρ = ρσ := |G|/(g − 1) depends only on σ; with this notation, equation (8)
becomes

(9)
2

ρ
= 2γ − 2 +

k
∑

i=1

(

1−
1

mi

)

.
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The following result, presumably well-known, will be useful later on. Although
we will not explicitly cite it, we rely on both the result and the method of proof when
compiling lists of signatures satisfying various conditions.

Lemma 4. Given any rational α > 0 there are only finitely many sets of integers
γ ≥ 0 and m1, . . . , mk ≥ 2 satisfying the equation

(10) α = 2γ − 2 +

k
∑

i=1

(

1−
1

mi

)

.

Proof. Since 1− 1
mi

≥ 1
2

for each i, we have

2γ +
k

2
≤ α + 2,

so there are only finitely many possibilities for γ and k. For any given γ and k we
need to solve an equation of the form

(11) β =
k
∑

i=1

1

mi

with a fixed β > 0. We will use induction on k to show that equation (11) has only
finitely many solutions. If k = 1 this result is trivial, so suppose that k ≥ 2 and
we have proved it for sums of k − 1 terms. We may number the terms mi so that
m1 ≥ . . . ≥ mk (temporarily departing from our usual convention), in which case
mk ≤ k/β so that there are only finitely many possibilities for mk. For each of these
values of mk we are solving an equation

β ′ =

k−1
∑

i=1

1

mi

with a fixed β ′ > 0, and by the induction hypothesis this has only finitely many
solutions. �

Despite this result, there is no uniform bound on the number of solutions for
equations of the form (10). For example, given any solution for α with γ ≥ 1, one
can create another by replacing γ with γ − 1 and in compensation increasing k by
adjoining four terms mi = 2. One can iterate this substitution as often as required
if γ is large enough. Nevertheless, in practical applications to Riemann surfaces the
number of solutions is usually rather small, as we will see later.

Corollary 5. Each ρ > 0 corresponds to only finitely many cocompact signa-
tures σ. �

As is well-known, the smallest positive value of the right-hand side of equation (9)
is 1/42, attained only by σ = (2, 3, 7) and leading to the Hurwitz bound ρ ≤ 84. This,
together with Corollary 5, implies that there are only finitely many signatures σ such
that ρσ ∈ Z. For each integer ρ all such signatures σ can be found by simple (if
tedious) arithmetic. Those for integers ρ ≥ 8 can be found in the Appendix of [1].
Adjoining those for ρ = 4, 5, 6 and 7 leads to the following list, which gives all σ
corresponding to integers ρ ≥ 4. (The rather long lists of signatures for ρ = 1, 2 and
3 are omitted here since for such ρ, any group of order ρp is cyclic or isomorphic to
Gp,ρ, and these can be dealt with more easily by a different method.)

• ρ = 84, σ = (2, 3, 7);
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• ρ = 48, σ = (2, 3, 8);
• ρ = 40, σ = (2, 4, 5);
• ρ = 36, σ = (2, 3, 9);
• ρ = 30, σ = (2, 3, 10);
• ρ = 24, σ = (2, 3, 12), (2, 4, 6), (3, 3, 4);
• ρ = 21, σ = (2, 3, 14);
• ρ = 20, σ = (2, 3, 15), (2, 5, 5);
• ρ = 18, σ = (2, 3, 18);
• ρ = 16, σ = (2, 3, 24), (2, 4, 8);
• ρ = 15, σ = (2, 3, 30), (2, 5, 6), (3, 3, 5);
• ρ = 14, σ = (2, 3, 42);
• ρ = 13, σ = (2, 3, 78);
• ρ = 12, σ = (2, 4, 12), (2, 6, 6), (3, 3, 6), (3, 4, 4), (2, 2, 2, 3);
• ρ = 10, σ = (2, 4, 20), (2, 5, 10);
• ρ = 9, σ = (2, 4, 36), (2, 6, 9), (3, 3, 9);
• ρ = 8, σ = (2, 5, 20), (2, 6, 12), (2, 8, 8), (3, 3, 12), (3, 4, 6), (2, 2, 2, 4);
• ρ = 7, σ = (2, 5, 70), (2, 6, 21), (2, 7, 14), (3, 3, 21);
• ρ = 6, σ = (2, 7, 42), (2, 8, 24), (2, 9, 18), (2, 10, 15), (2, 12, 12), (3, 4, 12),
(3, 6, 6), (4, 4, 6), (2, 2, 2, 6), (2, 2, 3, 3);

• ρ = 5, σ = (2, 11, 110), (2, 12, 60), (2, 14, 35), (2, 15, 30), (2, 20, 20), (3, 4, 60),
(3, 5, 15), (3, 6, 10), (4, 4, 10), (5, 5, 5), (2, 2, 2, 10);

• ρ = 4, σ = (3, 7, 42), (3, 8, 24), (3, 9, 18), (3, 10, 15), (3, 12, 12), (4, 5, 20), (4, 6,
12), (4, 8, 8), (5, 5, 10), (6, 6, 6), (2, 2, 3, 6), (2, 2, 4, 4), (2, 3, 3, 3), (2[5]), (1; 2).

For future reference, let us define

Σ := {σ | ρσ ∈ Z, ρ ≥ 4},

the set of all signatures in the above list.

4. Normal structure

From now on we will assume that G acts on some compact Riemann surface S
of genus g = p + 1 with p prime, and that ρ := |G|/(g − 1) ∈ Z, or equivalently, p
divides |G|. The following lemma describes the normal structure shared by almost
all of the groups G we shall study.

Lemma 6. (a) If ρ is coprime to p and has no divisor d 6= 1 such that d ≡ 1
mod (p) (thus in particular if p > ρ) then G is a semidirect product P ⋊ Q where
P ∼= Cp and Q has order ρ.

(b) If, in addition, p is coprime to all the elliptic periods in the signature σ of G,
then Q has a faithful action, with signature σ, as a group of automorphisms of the
Riemann surface T := S/P of genus 2.

Proof. (a) Since |G| = ρp is divisible by p but not by p2, G has a Sylow p-
subgroup P ∼= Cp. Sylow’s theorems state that the number of Sylow p-subgroups
divides |G| and is congruent to 1 mod (p), so it divides ρ; by our hypothesis on the
divisiors of ρ this number must be 1, so that P is a normal subgroup of G. Since
|G : P | = ρ is coprime to p the Schur–Zassenhaus Theorem implies that G is a
semidirect product P ⋊Q for some subgroup Q of order ρ.
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(b) The normal subgroup P of G lifts back, under the epimorphism θ : Γ → G
with kernel K ∼= Πg, to a normal subgroup ∆ of Γ with Γ/∆ ∼= G/P ∼= Q and
∆/K ∼= Cp. If p does not divide any elliptic period of Γ then ∆ is torsion-free and
therefore a surface group. Since the p-sheeted covering S = H/K → H/∆ = T :=
S/P is smooth, T has genus

g − 1

p
+ 1 = 2.

Since Q ∼= Γ/∆ it follows that Q acts faithfully as a group of automorphisms of T .
The obvious composition Γ → G → Q is a surface epimorphism, so this action of Q
has the same signature as that of G, namely the signature σ of Γ. �

(Note that if g − 1 is a prime-power pe, all of this lemma remains valid apart
from the isomorphism of P with Cp; this suggests an obvious generalisation of the
present investigation, as in [7] for example.)

Γ

∆

K

∆′∆p

1

M

K

0

G

P

1

Q

1→

→

→

→

→

→

→

→

Figure 1. Normal structure of Γ and G in Lemma 6.

The groups of automorphisms of Riemann surfaces of genus 2, together with their
corresponding signatures σ, are listed by Broughton in [4, Table 4]. For each signature
σ, all but finitely many primes p satisfy the conditions of Lemma 6. For such primes,
since P is abelian and of exponent p, K must contain the commutator subgroup
∆′ of ∆ and the group ∆p generated by its pth powers. Thus ∆ ≥ K ≥ ∆′∆p, so
that K projects onto a codimension 1 submodule K := K/∆′∆p of the FpQ-module
M := ∆/∆′∆p. Figure 1 shows the normal structure of Γ and G in Lemma 6; the
vertical lines denote inclusions of subgroups or submodules, and the arrows denote
natural epimorphisms.

By its definition, M is isomorphic, as an FpQ-module, to the mod (p) homology
group H1(T ;Fp) of T . By decomposing this homology representation of Q one can
determine those primes p which give examples of the actions we require. The small
number of exceptional primes, for which Lemma 6 does not apply, can be dealt with
individually.

Since T has genus 2, M has dimension 4 over Fp. Since p does not divide
ρ = |Q|, Maschke’s Theorem applies to the action of Q on M , so M is a direct
sum of irreducible submodules. Now H1(T ;C) = H1(T ;Z) ⊗ C is a direct sum of
two Q-submodules, corresponding under duality to the holomorphic and antiholo-
morphic differentials in H1(T ;C) and affording complex conjugate representations
of Q [44]; this implies that M is either irreducible, or a direct sum of two irreducible
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2-dimensional submodules or four irreducible 1-dimensional submodules. Thus M
has a 1-dimensional quotient if and only if the last case arises, giving four kernels
K corresponding to two chiral pairs of surfaces S of genus g. A theorem of Serre
(see [17, V.3.4], for example) shows that Q acts faithfully on H1(T ;Fp) for p > 2, so
this action embeds Q in GL1(p)

4 ∼= C4
p−1, and hence Q is an abelian group of rank

at most 4 and exponent e dividing p− 1.
The only abelian groups Q in Broughton’s list [4, Table 4] of genus 2 group

actions are the following:
(1) C6 × C2 with σ = (2, 6, 6);
(2) C10 with σ = (2, 5, 10);
(3) C8 with σ = (2, 8, 8);
(4) C6 with σ = (3, 6, 6);
(5) C6 with σ = (2, 2, 3, 3);
(6) C5 with σ = (5, 5, 5);
(7) C4 with σ = (2, 2, 4, 4);
(8) V4 with σ = (2[5]);
(9) C3 with σ = (3[4]);

(10) C2 with σ = (2[6]);
(11) C2 with σ = (1; 2, 2).

Since we are restricting attention to integers ρ ≥ 3, only cases (1) to (9) are relevant
here. (As we will see later, they correspond to cases (i) to (ix) respectively in The-
orem 1(a).) In each case one can use character theory to decompose the module M
for different primes p, and thus determine those giving 1-dimensional quotients and
how Q acts on them.

By the Lefschetz fixed-point formula, the homology character χ of Q on H1(S;Z)
is 2 − φ where φ(q) is the number of fixed points of an element q ∈ Q on T . By a
result of Macbeath [33],

(12) φ(q) = |NQ(〈q〉)|
k
∑

i=1

εi(q)

mi

for all q 6= 1 in Q, where εi(q) = 1 or 0 as q is or is not conjugate in Q to a power of
the image of the elliptic generator Xi of Γ. When Q is cyclic this simplifies to

φ(q) = |Q|
∑ 1

mi
,

where the sum is over all mi divisible by the order of q. Using the resulting values
of χ, one can calculate the coefficients

aj =
1

|Q|

∑

q∈Q

χ(q)χj(q)

of the irreducible characters χj of Q in the decomposition

χ =
∑

j

ajχj

of χ as a sum of irreducible complex characters of Q. Since p ≡ 1 mod (e), Fp is a
splitting field for Q, so reducing this decomposition mod (p) gives the decomposition
of M over Fp.

An alternative method of evaluating φ is to use an explicit model for T and Q,
and simply to find and count the fixed points of each q ∈ Q, as in [1]. For instance,
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in case (1) one can take T to be the compact Riemann surface corresponding to
the curve w2 = z6 − 1, with the direct factors of G generated by its automorphisms
z 7→ eπi/3z and w 7→ −w; in cases (2) and (3) one can use the curves w2 = z5−1 and
w2 = z(z4 − 1) with G generated by (z, w) 7→ (e2πi/5z,−w) and (z, w) 7→ (iz, eπi/4w)
respectively, and in cases (4) to (9) one can restrict φ to subgroups of these three
groups.

5. Proof of Theorem 1 for standard primes

Here we will prove parts (a) and (b) of Theorem 1 for what we call ‘standard
primes’ p, those satisfying the conditions of Lemma 6, by considering the possibilities
for Q in cases (1) to (9) in turn. The remaining ‘nonstandard primes’ will be dealt
with in the next section. We will also prove Theorem 1(c) for some of cases (i) to
(xii) in this section, postponing others until parts (a) and (b) have been proved.

The Teichmüller space T(σ) of groups Γ of a given signature σ = (γ;m1, . . . , mk)
has dimension d = 6γ − 6 + 2k (see [48], for example). In cases (1), (2), (3), (4)
and (6), where γ = 0 and k = 3, we have d = 0 and T(σ) is a point, giving a single
conjugacy class of triangle groups Γ in PSL2(R). However, in the remaining cases
d > 0 and we have d-dimensional families of groups Γ and of surfaces S. We will deal
with the triangle groups first, since the decomposition of the homology character in
these cases has already been determined by Kazaz [26] in the context of hypermaps
of genus 2 and their coverings; the other cases follow easily.

We will deal with case (1) in some detail, and then just outline the method and
results for the other cases. Here Γ = Γ(2, 6, 6), ∆ = Γ′ and Q ∼= C6 × C2

∼= V4 × C3

of order ρ = 12 and exponent e = 6. In this case all primes p > 5 satisfy the
conditions of Lemma 6 (note that for p = 5 a group G of order ρp = 60, such as A5,
could have six Sylow 5-subgroups P , rather than one). Let x1 and x2 be the images
in Q of the elliptic generators X1 and X2 of Γ (see §3), generating direct factors
C2 and C6 of Q. The irreducible complex characters of Q are the homomorphisms
χi,j = χi1χ

j
2 : Q → S1 (for i mod (2) and j mod (6)), where χ1 : x1 7→ −1, x2 7→ 1

and χ2 : x1 7→ 1, x2 7→ ζ (a primitive 6th root of 1). Using equation (12) we find
that χ = χ1,1 + χ1,−1 + χ1,2 + χ1,−2. The first two and the last two are complex
conjugate pairs, with image C6 and kernels generated by the involutions x32 and x1x32
respectively. It follows that for primes p ≡ 1 mod (6) (equivalently, p ≡ 1 mod (3)), Q
acts as C6×C2 on each of four corresponding submodules Mi,j of M , with the factors
C6 acting faithfully and C2 trivially. It acts in the same way on the corresponding
1-dimensional quotient modules of M , each obtained by factoring out the other three
submodules, so it induces groups G ∼= Gp,6 × C2 on two chiral pairs of surfaces S of
genus p+ 1.

Now the normaliser N(Γ) of Γ in PSL2(R) is the maximal Fuchsian group
Γ(2, 4, 6), which contains Γ with index 2 (see [48]). Conjugation in N(Γ) transposes
the elliptic generators X2 and X3 = (X1X2)

−1 of Γ, so it acts on Q by transposing
the involutions x32 and x1x

3
2. It therefore transposes the first chiral pair of surfaces

with the second, so up to isomorphism we have just one chiral pair of surfaces S1

and S1. It also follows from [48] that N(Γ) is the only Fuchsian group properly
containing Γ, so each surface has automorphism group G. This deals with case (1),
giving Theorem 1(a)(i) together with the statements in parts (b) and (c) concerning
this case.
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(i)

(v), (iv)

(ix)

N(Γ) = (2, 4, 6)

Γ = (2, 6, 6)

Γ1 = (2, 2, 3, 3) Γ2 = (3, 6, 6)∼Γ3 = (3, 6, 6)

Γ4 = (3[4])

∆

G = Gp,6 × C2

G1 G2 G3

Gp,3

P

Q ∼= C6 × C2

Qi
∼= C6

C3

1

→

→

→

→

→

→

→

→

Figure 2. Cases (i), (iv), (v) and (ix) of Theorem 1(a).

We can also deal with case (4), and gain some information about cases (5), (8)
and (9), by considering subgroups of Γ(2, 6, 6). This group has three subgroups of
index 2: the normal closure Γ1 of X1 and X2

2 has signature (2, 2, 3, 3), while the
normal closures Γ2 and Γ3 of X2 and X3 have signature (3, 6, 6). These correspond
to three subgroups Qi

∼= C6 of index 2 in the group Q ∼= C6 ×C2 in case (1), and to
three subgroups Gi of index 2 in G ∼= Cp,6 × C2, each acting on the same chiral pair
of surfaces S1 and S1 as in Theorem 1(a)(i). These subgroups are shown in Figure 2,
where to save space we have represented a Fuchsian group Γ by its signature σ, and
the three subgroups Q1, Q2 and Q3 by a single symbol Qi.

In dealing with case (4), since there is only one conjugacy class of subgroups
Γ(3, 6, 6) in PSL2(R), we may without loss of generality take Γ = Γ2 or Γ3; indeed,
since these are conjugate in Γ(2, 4, 6) it is sufficient to consider just one of them,
say Γ2. As in case (1), Γ2 has a unique normal surface subgroup with the required
quotient (now C6), so this must be the same subgroup ∆ as in case (1), with the same
quotient M = ∆/∆′∆p, but now regarded as a module for FpQ2. This decomposes in
the same way as before, so we obtain the same two chiral pairs of surfaces, isomorphic
under Γ(2, 4, 6), and we need to determine how Γ2 acts on them. Now Q2 = 〈x2〉,
which contains the kernel 〈x32〉 of χ1,±1 but not the kernel 〈x1x

3
2〉 of χ1,±2, so Γ2

induces a group Gp,3 ×C2 on the first chiral pair of surfaces and Gp,6 on the second;
for Γ3 it is the other way round. Thus S1 and S1 each admit two groups Gp,3 × C2

and Gp,6, as described in Theorem 1(a)(iv).
The subgroup Q1 = 〈x1, x

2
2〉 = 〈x1x

2
2〉 contains neither of the kernels 〈x32〉 and

〈x1x
3
2〉 of χ1,±1 and χ1,±2, so Γ1 induces a group G1

∼= Gp,6 on each of S1 and S1,
corresponding to case (5). However, Γ1 is only one of a 2-dimensional family of groups
Γ(2, 2, 3, 3), each having a unique normal surface subgroup ∆ with quotient Q ∼= C6.
In this case, each of the two faithful 1-dimensional characters of Q has multiplicity
2 in χ, so M is a direct sum of two copies each of two 1-dimensional submodules
affording the two faithful actions of Q. Now the direct sum of two isomorphic 1-
dimensional modules also contains another p − 1 copies of that module, so M has
2(p+ 1) maximal submodules, each corresponding to a kernel K < ∆ and a surface
S affording a group G = G1

∼= Gp,6 (see Theorem 1(a)(v)).
The three subgroups Γi (i = 1, 2, 3) of index 2 in Γ = Γ(2, 6, 6) intersect in a

normal subgroup Γ4 of index 4 and signature (3[4]). This is one of a 2-dimensional
family of groups Γ(3[4]) corresponding to the group Q = C3 and signature σ = (3[4])
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in case (9), giving groups G ∼= Gp,3 for p ≡ 1 mod (3) as in Theorem 1(a)(ix) (the only
other group of order ρ(g−1) = 3p for p > 3, namely C3p, is not generated by elements
of order 3). It is shown in [24, Corollary 1] that any action Γ(3[4]) → Gp,3 extends to
an action Γ(2, 2, 3, 3) → Gp,6 on the same family of surfaces as in Theorem 1(a)(v),
where Γ(2, 2, 3, 3) and Gp,6 contain Γ(3[4]) and Gp,3 with index 2 (note that the
decomposition of the homology module is the same for Q = C3 in case (9) as for
Q = C6 in case (5)). In fact, any group Γ(3[4]) has three normal surface subgroups ∆
of index 3, equivalent under outer automorphisms and each yielding 2(p+1) maximal
submodules of its quotient module M = ∆/∆′∆p, so we have 6(p + 1) kernels K in
Γ(3[4]).

(i)

(viii)

Γ = (2, 6, 6)

Γ0 = (2[5])

∆

G = Gp,6 × C2

Gp,2 × C2

P

Q ∼= C6 × C2

Q0
∼= V4

1

→

→

→

→

→

→

Figure 3. Cases (i) and (viii) of Theorem 1(a).

There is also a unique normal subgroup Γ0 of index 3 in Γ(2, 6, 6), namely the
normal closure of X1 and X3

2 , with signature (2[5]) and with Q0 = Γ0/∆ ∼= V4,
corresponding to case (8); see Figure 3. Again, for p ≡ 1 mod (3) the chiral pair S1

and S1 in case (1) admit a corresponding subgroup of Gp,6×C2, this time isomorphic
to Gp,2 × C2

∼= Dp × C2
∼= D2p as described in Theorem 1(a)(viii); once again, they

are members of a family of surfaces, this time of dimension 4, admitting this group
but now without the restriction that p ≡ 1 mod (3).

(ii)

(vi)

N(5, 5, 5) = (2, 3, 10)

Γ = (2, 5, 10)

(5, 5, 5)

∆

G = Gp,10

Gp,5

P

Q ∼= C10

C5

1

→

→

→

→

→

→

Figure 4. Cases (ii) and (vi) of Theorem 1(a).

A simpler case than case (1) is case (2), where Γ = Γ(2, 5, 10), ∆ = Γ′ and
ρ = e = 10; see Figure 4. Here all primes p > 5 satisfy the conditions of Lemma 6,
and character theory shows that M splits as a sum of 1-dimensional irreducible
submodules if and only if p ≡ 1 mod (10), or equivalently p ≡ 1 mod (5). The
resulting quotient modules K realise the four faithful 1-dimensional representations
of Q over Fp, so they correspond to two chiral pairs of surfaces S2,S2 and S ′

2,S
′
2 acted

on by groups G ∼= Gp,10, as stated in Theorem 1(a)(ii). Since N(Γ) = Γ (see [48]), the
four kernels K ≤ ∆ are mutually non-conjugate in PSL2(R), so the four surfaces S
they uniformise are mutually non-isomorphic, with AutS = G. The index 2 inclusion
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Γ(5, 5, 5) < Γ(2, 5, 10) shows that the group ∆ in case (6), where ρ = e = 5, is the
same as in case (2); again, we obtain surfaces S if and only if p ≡ 1 mod (5), as
claimed in Theorem 1(a)(vi). These are the chiral pairs S2,S2 and S ′

2,S
′
2 in case (2),

each surface admitting an action of Gp,5 as a subgroup of its automorphism group
Gp,10. In fact, Γ(5, 5, 5) has three normal surface subgroups ∆ of index 5, each yielding
four kernels K; however N(Γ(5, 5, 5)) is Γ(2, 3, 10), which contains Γ(2, 5, 10) with
index 3, and the quotient Γ(2, 3, 10)/Γ(5, 5, 5) ∼= S3 permutes these three subgroups
∆ transitively, so up to isomorphism we obtain only the four surfaces described here.
(The distinction between these twelve kernels becomes important when we consider
them in Section 11 as representing distinct hypermaps.)

(iii)

(vii)

N(Γ) = (2, 4, 8)

Γ = (2, 8, 8)

(2, 2, 4, 4)

∆

G = Gp,8

Gp,4

P

Q ∼= C8

C4

1

→

→

→

→

→

→

Figure 5. Cases (iii) and (vii) of Theorem 1(a).

The situation in case (3), where ρ = e = 8, is similar to that in case (2); see
Figure 5. Now there are two normal subgroups of Γ = Γ(2, 8, 8) with quotient C8,
but only one of them, the normal closure ∆ of X1X

4
2 in Γ, is torsion-free and thus a

surface group of genus 2. In this case Lemma 6 applies to all primes p > 7, together
with p = 5, and M has 1-dimensional quotients if and only if p ≡ 1 mod (8). Again,
these realise the four faithful 1-dimensional representations of Q, so we obtain two
chiral pairs of surfaces S admitting actions of G ∼= Gp,8. This time, however, Γ is not
a maximal Fuchsian group: it has index 2 in its normaliser N(Γ) = Γ(2, 4, 8), which
is maximal. Conjugation in N(Γ), which leaves ∆ invariant, induces isomorphisms
between the two chiral pairs, so up to isomorphism we obtain one chiral pair S3 and
S3, as claimed in Theorem 1(a)(iii), each with AutS = G.

There is a unique subgroup of index 2 in Γ = Γ(2, 8, 8) containing ∆; this has
signature (2, 2, 4, 4) and ρ = 4, corresponding to case (7) where Q ∼= C4. This induces
actions of Gp,4 on the same chiral pair of surfaces S3 and S3 as in case (3), where
p ≡ 1 mod (8). However, as in case (5), these are members of a 2-dimensional family
of groups Γ(2, 2, 4, 4) and surfaces S realising Gp,4, which arise for all primes p ≡ 1
mod (4) as in Theorem 1(a)(vii).

We have now dealt with cases (1) to (9), corresponding to cases (i) to (ix) in
Theorem 1(a). These are the cases where the prime p satisfies the conditions of
Lemma 6, so that G has the normal structure Cp ⋊ Q described there. Cases (x) to
(xii), where the lemma does not apply, will be considered in the next section.

6. Exceptional actions for nonstandard primes

For each integer ρ ≥ 3 and its corresponding signatures σ ∈ Σ we need to consider
the ‘nonstandard primes’ p ≥ 7 which do not satisfy the conditions of Lemma 6, since
for these the arguments of the preceding section do not apply, and exceptional groups
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G may appear. The primes dividing each ρ, or dividing d− 1 for divisors d 6= 1 of ρ
(see Lemma 6(a)), are easily found. For ρ = 84 they are 2, 3, 5, 7, 11, 13, 41 and 83.
For ρ = 48 they are 2, 3, 5, 7, 11, 23 and 47. The primes 29 and 23 arise for ρ = 30
and 24 respectively, while 19 arises for ρ = 40 and 20, and 17 arises for ρ = 36 and
18. For other ρ, only primes p ≤ 13 arise. The largest primes dividing any of the
elliptic periods in the signatures σ ∈ Σ (see Lemma 6(b)) are 13 when ρ = 13 and
σ = (2, 3, 78), and 11 when ρ = 5 and σ = (2, 11, 110), so Lemma 6(b) applies for all
p ≥ 17, and in some cases for smaller primes.

In fact, a case-by-case argument in [1] shows that if ρ ≥ 8 there are no exceptional
groups for primes p ≥ 17, although there is one for p = 13, namely PSL2(13), which
acts on three Riemann surfaces of genus 14 as a Hurwitz group (with ρ = 84) as
in Theorem 1(a)(x) (see [32]). By inspection, the only nonstandard primes arising
for 3 ≤ ρ ≤ 7 are 2, 3, 5 and 7, so it is sufficient to restrict attention to the primes
p ≤ 13.

In addition to ρ = 84 with σ = (2, 3, 7), the prime p = 13 is nonstandard
for ρ = 40 with σ = (2, 4, 5), for ρ = 14 with σ = (2, 3, 42), and ρ = 13 with
σ = (2, 3, 78). There is no surface epimorphism from Γ(σ) to a group G of order
13ρ in the second or third of these three cases, since |G| is coprime to 3. In the first
case, applying Sylow’s theorems for the primes 5 and 13 shows that a group of order
13ρ = 23.5.13 has a normal subgroup of order 65, whereas there is no epimorphism
from Γ(2, 4, 5) to the resulting quotient group of order 8. Thus the only exceptional
group G arising for p = 13 is the unique Hurwitz group PSL2(13) of genus 14.

The prime p = 11 is nonstandard for all σ with ρ divisible by 12, together with
ρ = 5 for σ = (2, 11, 110). The last case can be eliminated, since a group of order
55 can have no element of order 110. In the other cases G acts by conjugation as
a doubly transitive group of degree 12 on its Sylow 11-subgroups. Now the doubly
transitive finite groups are known (see [16, Section 7.7], for example), and those of
degree 12 are PSL2(11) and PGL2(11) acting naturally on P1(F11), the Mathieu
groups M11 and M12 acting on the cosets of a subgroup PSL2(11) and on the Steiner
system S(12, 6, 5), and A12 and S12 acting naturally; these groups all have orders
divisible by 5 whereas G does not, so there are no exceptional groups for p = 11.

The prime p = 7 is nonstandard for many signatures, including (2, 3, 8) and
(3, 3, 4) for ρ = 48 and 24. These lead to two exceptional groups, namely PGL2(7)
and its subgroup PSL2(7), as in Theorem 1(a)(xi) and (xii); each of these is (by
character theory and Möbius inversion, see [25, Sections 5.1.5, 5.1.6], for example)
a quotient of the corresponding triangle group by two normal subgroups K, so they
both act on the same pair of surfaces of genus 8. All other signatures can be elimi-
nated by group-theoretic arguments as above, or (less laboriously) by checking Con-
der’s lists of group actions [10] for examples of genus 8 with ρ ∈ Z. This completes
the proof of Theorem 1(a) and (b).

7. Proof of Theorem 1(c)

In proving parts (a) and (b) of Theorem 1, we have described all the pairs S
and G ≤ A := AutS for primes p = g − 1 ≥ 7 and ratios ρ = |G|/(g − 1) ≥ 3. If
A 6= G then A must be one of the groups described as acting on S, but with ratio
ρA := |A|/(g− 1) a proper multiple of ρ. It is straightforward to check parts (a) and
(b) to determine when this is possible, starting with the largest values of ρ.

Clearly, in cases (x) and (xi) no proper multiples of ρ arise, so A = G in these
cases. (Indeed, the corresponding two triangle groups are maximal, giving a more
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direct proof.) In case (xii), however, G = PSL2(7) is a subgroup of index 2 in the
group PGL2(7) in case (xi), acting on the same two surfaces, so here G < A =
PGL2(7).

The only proper multiples of ρ = 12 in case (i) are the values 84, 48 and 24
in cases (x) to (xii). However, the groups PSL2(13), PGL2(7) and PSL2(7) in
those three cases do not contain subgroups isomorphic to Gp,6 × C2 for any prime p
(see [13] for their maximal subgroups, for example), so A = G for all p in case (i).
The surfaces in (iv) are the same chiral pair S1 and S1 as in (i), so in case (iv) we
have G < A ∼= Gp,6 × C2 for each p.

No proper multiples of ρ = 10 in case (ii) appear, so A = G in this case. This is
the only proper multiple of ρ = 5 in case (vi), and we have seen that the surfaces in
case (ii) and (vi) are the same, so for case (vi) we have G < A ∼= Gp,10.

The only proper multiples of ρ = 8 in case (iii) are in cases (xi) and (xii); however,
the latter require p = 7 whereas p ≡ 1 mod (8) in case (iii), so here A = G.

The only proper multiples of ρ = 6 in case (v) are in cases (i), (x), (xi) and
(xii). A group Gp,6 in case (v) cannot be a subgroup of PSL2(7), since this group
has Sylow 7-normalisers isomorphic to G7,3, but it is a subgroup of Gp,6 ×C2, acting
on S1 and S1, for all p ≡ 1 mod (3), and of PGL2(7) and PSL2(13) for p = 7 and
13 respectively. Thus if S = S1 or S1 then G < A ∼= Gp,6 × C2, and if p = 7 or 13
there are two or three surfaces S with G < A ∼= PSL2(7) or PSL2(13), but otherwise
A = G.

In case (vii) there are proper multiples of ρ = 4 in cases (i), (iii), (x), (xi) and
(xii). However, the requirements that Gp,4 ≤ A and p ≡ 1 mod (4) exclude all except
(iii) (for example, the Sylow 13-normaliser in PSL2(13) is isomorphic to G13,6). We
have seen that if p ≡ 1 mod (8) then Gp,4 acts as a subgroup of index 2 in the group
Gp,8 in case (ii) on the chiral pair S3 and S3, so for these surfaces G < A ∼= Gp,8,
whereas A = G for all other surfaces in case (vii).

In case (viii) there are also proper multiples of ρ = 4 in cases (i), (iii), (x), (xi)
and (xii). The existence of elements of order 2p in G excludes all except (i), whereas
if p ≡ 1 mod (3) and S = S1 or S1 then G < A ∼= Gp,6 × C2. Otherwise, A = G.

The surfaces in case (ix) are the infinite family in case (v), so they have au-
tomorphism groups as described above for case (v). This completes the proof of
Theorem 1(c), and thus of Theorem 1.

8. Small primes p

Although for conciseness we have stated and proved Theorem 1 only for primes
p ≥ 7, the proof extends, with only minor modifications, to the prime p = 5. In
addition to the cases (vii) and (viii) of Theorem 1(a), which are still relevant here,
the following exceptional actions arise for integers ρ ≥ 3:

(a) one action of a group G ∼= V25 ⋊ S3 of signature (2, 3, 10) with ρ = 30, where
V25 := C5 × C5, restricting to actions of subgroups V25 ⋊ C3 of signature
(3, 3, 5) with ρ = 15, of V25 ⋊ C2 of signature (2, 5, 10) with ρ = 10, and of
V25 of signature (5, 5, 5) with ρ = 5;

(b) one action of G ∼= S5 of signature (2, 4, 6) with ρ = 24, restricting to the
action of G5,4

∼= AGL1(5) of signature (2, 2, 4, 4) in Theorem 1(a)(vii);
(c) one action of G ∼= C5 × S3 of signature (2, 10, 15) with ρ = 6, restricting to

an action of a subgroup C15 of signature (5, 15, 15) with ρ = 3;
(d) one action of G ∼= C20 of signature (4, 5, 20) with ρ = 4.
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For the primes p = 2 and 3 one can consult the rich literature on group actions
of genus 3 and 4 in [4, 14, 27, 28, 29], for example, together with Conder’s lists of
group actions in [10].

9. Small values of ρ

Although we have restricted attention to integers ρ ≥ 3, mainly for simplicity of
exposition, the cases ρ = 1 and 2 are easily dealt with: in the first case G ∼= Cp and
all elliptic periods mi in σ are equal to p, while in the second case G ∼= C2p or Dp and
each mi = 2, p or 2p. (For cyclic and dihedral group actions in general, see results of
Harvey and of Bujalance et al. in [20] and [5] respectively.) However, the results are
less uniform than for integers ρ ≥ 3. It is straightforward to determine the possible
signatures σ in these two cases. When ρ = 1 they are the following:

• (2;−) for any p,
• (1; 2[4]) for p = 2,
• (1; 3, 3, 3) for p = 3,
• (2[8]) for p = 2,
• (3[6]) for p = 3,
• (5[4]) for p = 5.

When ρ = 2 they are:
• (1; 2, 2) for any p, G = C2p or Dp,
• (2, 5, 5, 10) for p = 5, G = C10,
• (2, 6, 6, 6) for p = 3, G = C6,
• (3, 3, 6, 6) for p = 3, G = C6,
• (4[4]) for p = 2, G = C4,
• (2, 2, 2, 4, 4) for p = 2, G = C4,
• (2, 2, 2, 3, 6) for p = 3, G = C6,
• (2, 2, 3, 3, 3) for p = 3, G = C6 or D3.

In each case the Teichmüller space of groups Γ(γ;m1, . . . , mk) has dimension
6γ+2k−6 > 0, so there is an uncountable family of surfaces S admitting the action
of G. It is a routine matter to count the possible kernels K in a specific group Γ: for
instance, if ρ = 1, so that G ∼= Cp, one can use the following results.

Lemma 7. If p is prime and k ≥ 1 then the number sk of k-tuples (x1, . . . , xk) ∈

F k
p with each xi 6= 0 and

∑k
i=1 xi = 0 is given by

sk =
p− 1

p

(

(p− 1)k−1 + (−1)k
)

.

Proof. This formula can be proved by applying the Inclusion-Exclusion Principle
to the set of all solutions in Fp of

∑

xi = 0 (without the restriction xi 6= 0), and
then excluding those with some xi = 0. Alternatively, it can be proved by induction
on k, using the obvious recurrence relation (consider xk)

(sk, tk) = (sk−1, tk−1)

(

0 1
p− 1 p− 2

)

, (s1, t1) = (0, 1),

where

tk =
1

p− 1

(

(p− 1)k −mk

)

=
1

p

(

(p− 1)k − (−1)k
)

is the number of solutions xi 6= 0 in Zp of
∑

xi = a for a given a 6= 0 (clearly
independent of a). �
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Corollary 8. Let Γ be a cocompact Fuchsian group with signature (γ;m1, . . . ,
mk). Then the number of normal surface subgroups of prime index p in Γ is 0 unless
mi = p for each i, in which case the number is

p2γ − 1

p− 1
if k = 0,

and

p2γ−1
(

(p− 1)k−1 + (−1)k
)

if k ≥ 1.

Proof. The number of such subgroups is equal to the number of surface epi-
morphisms Γ → G ∼= Cp ∼= Fp, divided by the number p − 1 of automorphisms of
G. Clearly there are no such epimorphisms unless each mi = p. In this case the
epimorphisms correspond bijectively to the choices of elements aj , bj (j = 1, . . . , γ)
and xi (i = 1, . . . , k) of Fp which generate the additive group Fp (equivalently are
not all zero), with each xi 6= 0 and

∑

xi = 0. If k = 0 then any choice of the 2γ
elements aj, bj , except taking all equal to 0, is allowed, so the required number is
(p2γ − 1)/(p − 1). If k ≥ 1 then any choice of the elements aj , bj is allowed, while
Lemma 7 gives the number of choices for the elements xi, so multiplying these leads
to the required formula. �

It follows from Corollary 8 that in the cases listed above for ρ = 1, the numbers
of normal surface subgroups of index p are p3 + p2 + p+ 1, 4, 9, 1, 11 and 13. Similar
arguments show that for the signatures listed above for ρ = 2 the numbers are
4(p + 1) (for each of G = C2p and Dp), 3, 1, 3, 3, 1, 1, 1 (for G = C6) and 4 (for
G = D3). In many cases, some of these kernels will be conjugate in PSL2(R), leading
to isomorphic surfaces S, and in many cases AutS will be larger than G. Lloyd has
enumerated equivalence classes of surface epimorphisms Γ → G ∼= Cp under the
action of Aut Γ× AutG in [31].

10. Proof of Theorem 2

Consider the group Gp,r = 〈a, b | ap = br = 1, bab−1 = aω〉 with p > 2. Define
m := (p− 1)/r and choose k1, . . . , km ∈ F∗

p = Fp \ {0} in such a way that

F∗
p = ⊔mj=1{kj, kjω, . . . , kjω

r−1},

where ⊔ denotes disjoint union. Observe that k1 can be chosen as 1. Then, by
considering the method of little groups of Wigner and Mackey [46, p. 62], we find
that Gp,r has, up to equivalence, r complex irreducible representations of degree 1,
given by

Ul : a 7→ 1, b 7→ ξlr

for l = 0, . . . , r−1, where ξs := exp(2πi/s) for any s ∈ N, and m complex irreducible
representations of degree r, given by

Vkj : a 7→ diag(ξkjp , ξ
kjω
p , . . . , ξkjω

r−1

p ), b 7→ Jr :=













0 1 0 · · · 0
0 0 1 · · · 0

. . .
0 0 0 · · · 1
1 0 0 · · · 0













for j = 1, . . . , m. We remark that the Schur index of each of these representations
equals 1.
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Assume that S is as in case (iv) with group Gp,6. Since U1, U2 and V1 are pair-
wise non-Galois associated, they give rise to three pairwise non-equivalent rational
irreducible representations of Gp,6. It follows that, as explained in subsection §2.3,
the group algebra decomposition of JS with respect to Gp,6 has the form

(13) JS ∼ BU1
×BU2

× B6
V1 ×A,

where A is the product of the factors associated to the remaining rational irreducible
representations of Gp,6. As an application of (7), it can be seen that

dim(BU1
) = dim(BU2

) = 1 and dim(BV1) = (p− 1)/6;

consequently, by comparison of dimensions in (13), we see that dim(A) = 0 and hence
A = 0. We now consider the induced isogeny (6) with H equal to 〈a, b3〉 and 〈b〉 to
deduce that

J(S/〈a, b3〉) ∼ BU2
and J(S/〈b〉) ∼ BV1

respectively. It then follows that JS decomposes isogenously as the product of the
elliptic curves E1 = BU1

and E2 = S/〈a, b3〉 and six copies of the Jacobian variety of
C = S/〈b〉 of genus (p− 1)/6.

The complex irreducible representations of Gp,r × C2 correspond to the tensor
products of those of Gp,r and those of C2 = 〈t : t2 = 1〉. Concretely, with the same
notation as before, Gp,r×C2 with p > 2 has, up to equivalence, 2r complex irreducible
representations of degree 1, given by

U±
l : a 7→ 1, b 7→ ξlr, t 7→ ±1

for l = 0, . . . , r−1, and 2m complex irreducible representations of degree r, given by

V ±
kj

: a 7→ diag(ξkjp , ξ
kjω
p , . . . , ξkjω

r−1

p ), b 7→ Jr, t 7→ ±Ir

for j = 1, . . . , m, where Ir stands for the r × r identity matrix.
Assume that S is as in case (i). Note that U+

1 , U
−
1 and V −

1 give rise to three
pairwise non-equivalent rational irreducible representations of Gp,6 × C2. It follows
that the group algebra decomposition of JS with respect to Gp,6 × C2 has the form

JS ∼ BU+

1
× BU−

1
× B6

V −

1

× A,

where A is the product of the factors associated with the remaining rational irre-
ducible representations of Gp,6 × C2. We apply (7) to deduce that

dim(BU+

1
) = dim(BU−

1
) = 1 and dim(BV −

1
) = (p− 1)/6;

thus A = 0. We apply the induced isogeny (6) with H equal to 〈a, t〉, 〈a, b3t〉 and
〈bt〉 to deduce that

J(S/〈a, t〉) ∼ BU+

1
, J(S/〈a, b3t〉) ∼ BU−

1
and J(S/〈bt〉) ∼ BV −

1

respectively. Write E1 = S/〈a, t〉, E2 = S/〈a, b3t〉 and C = S/〈bt〉 and the result
follows.

Assume that S is as in case (iv) with group Gp,3 × C2. By a similar argument
U+
1 , U

−
1 and V −

1 yield three pairwise non-equivalent rational irreducible represen-
tations of Gp,3 × C2, and the group algebra decomposition of JS with respect to
Gp,3 × C2 has the form

JS ∼ BU+

1
× BU−

1
× B3

V −

1

× A,

for some abelian subvariety A of JS. We apply (7) to deduce that

dim(BU+

1
) = dim(BU−

1
) = 1 and dim(BV −

1
) = (p− 1)/3;
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consequently A = 0. The induced isogeny (6) with H equal to 〈a, t〉 and 〈b〉 shows
that

J(S/〈a, t〉) ∼ BU+

1
and J(S/〈b〉) ∼ BV −

1

respectively, and the desired decomposition follows.
Assume that S is as in case (viii). Consider the complex irreducible representa-

tions of Gp,2 × C2
∼= D2p given by

χ1 : r 7→ 1, s 7→ −1, χ2 : r 7→ −1, s 7→ −1 and ψ : r 7→ diag(ξ2q, ξ−1
2q ), s 7→ J2

where r := at and s := bt and D2p = 〈r, s : r2p = s2 = (sr)2 = 1〉. It is clear that
they are not Galois associated and therefore the group algebra decomposition of JS
with respect to D2p has the form

JS ∼ Bχ1
× Bχ2

×B2
ψ × A,

for some abelian subvariety A of JS. We proceed as before and apply (7) to deduce
that

dim(Bχ1
) = dim(Bχ2

) = 1 and dim(Bψ) = (p− 1)/2;

consequently A = 0. The induced isogeny (6) with H equal to 〈r〉 and 〈s〉 shows that

J(S/〈r〉) ∼ Bχ1
and J(S/〈s〉) ∼ Bψ

respectively. The desired decomposition follows after setting E1 = Bχ2
, E2 = S/〈r〉 =

S/〈at〉 and C = S/〈s〉 = S/〈bt〉.
The remaining cases have already been determined in [24, Theorem 1] and [39,

Theorem 3].

11. Connections with maps and hypermaps

Many of the groups G we have classified in Theorem 1(a), specifically those in
cases (i) to (iv), (vi) and (x) to (xii), arise as quotients of triangle groups Γ =
Γ(l, m, n). As such they are also automorphism groups of orientably regular hyper-
maps H, equivalently regular dessins d’enfants (see [25]), of type (l, m, n); if l = 2
these are maps of type {m,n} (or dually {n,m}) in the notation of Coxeter and
Moser [15], with m and n the common valencies of the faces and vertices. (More
generally, if any of the periods l, m or n is 2, then by renaming the generators of
Γ one can regard H as a map.) By contrast with the situation we have considered
for Riemann surfaces in Theorem 1(c), where AutS ∼= N(M)/M with N(M) the
normaliser of M in PSL2(R), here G is always the full orientation-preserving au-
tomorphism group AutH ∼= NΓ(M) = Γ/M of H, rather than a subgroup of it.
Provided the genus g = p + 1 is not too large, these hypermaps and maps can be
found in Conder’s computer-generated lists of such objects in [9], or (in the case of
maps) in Potočnik’s census of rotary maps [36]. By restricting Theorem 1 to the
cases where Γ is a triangle group, i.e. ignoring cases (v), (vii), (viii) and (ix), and
noting that no triangle groups Γ arise for ρ = 1 or 2 (see Section 9), we obtain the
classification in Theorem 3, where the numbering of cases follows and refers to that
in Theorem 1(a).

For small p these maps and hypermaps correspond to entries in Conder’s lists of
chiral maps, chiral hypermaps, regular maps and regular proper hypermaps in [9] as
follows (see later in this section for comments on the number of objects represented
by each entry, and their chirality, duality and triality properties):

(i) the chiral maps of type {6, 6} in case (i) correspond to entry C8.1 for p = 7,
C14.1 for p = 13, C20.1 for p = 19, etc;
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(ii) the chiral maps of type {5, 10} in case (ii) correspond to C12.1 and C12.2 for
p = 11, C32.1 and C32.2 for p = 31, C42.1 and C42.2 for p = 41, etc;

(ii) the chiral maps of type {8, 8} in case (iii) correspond to C18.1 for p = 17,
C42.3 for p = 41, etc;

(iv) the chiral hypermaps of type (3, 6, 6) in case (iv) correspond to CH8.1 and
CH8.2 respectively for p = 7, CH14.1 and CH14.2 for p = 13 (with automor-
phism groups Gp,6 and Gp,3 × C2 respectively in both cases), etc;

(vi) the chiral hypermaps of type (5, 5, 5) in case (vi) correspond to CH12.3 and
CH12.4 for p = 11, CH32.3 and CH32.4 for p = 31, etc;

(x) the regular maps of type {3, 7} in case (x) correspond to R14.1, R14.2 and
R14.3;

(xi) the regular maps of type {3, 8} in case (xi) correspond to R8.1 and R8.2;
(xii) the regular hypermaps of type (3, 3, 4) in case (xii) correspond to RPH8.1 and

RPH8.2.

For example, in case (iv) one can distinguish between the two groups G ∼= Gp,6

and Gp,3 × C2 by the fact that the former contains p involutions while the latter
contains one (necessarily central). Thus for p = 7, where the only chiral hypermaps
of genus 8 and type (3, 6, 6) listed in [9] are CH8.1 and CH8.2, the presentations

G1 = 〈R, S | R3 = (RS−1)2 = S6 = S−2R−1S−1R−1S−2R−1S−1 = 1〉,

G2 = 〈R, S | R3 = S6 = S−1R−1S−1R−1S2R−1 = S−1RS−1R−1SR−1S−1 = 1〉

given there for the automorphism groups Gi of CH8.i (i = 1, 2) show that G1 has at
least two involutions (namely RS−1 and S3, distinct since G is not cyclic), so this
must be G7,6, while G2

∼= G7,3×C2 with a unique involution S3. (Note that in G2, if
we factor out the central subgroup C2 by putting S3 = 1, the third defining relation
implies that (RS)3 = 1, so we have a quotient of Γ(3, 3, 3), namely G7,3 as expected.)
Similar arguments apply for p = 13 and 19. However, for some primes p ≡ 1 mod (3),
such as p = 31, 37, 43 and 61, the numbering of the relevant entries in [9] means that
the corresponding hypermaps have automorphism groups Gp,3 ×C2 and Gp,6 in that
reversed order.

Note that in case (i), for each prime p ≡ 1 mod (3) we found four normal
surface subgroups K of Γ = Γ(2, 6, 6) with Γ/K ∼= G ∼= Gp,6 × C2, representing
two chiral pairs of Riemann surfaces S. However, conjugacy of pairs of subgroups
K in the normaliser N(Γ) = Γ(2, 4, 6) of Γ induces isomorphisms between the two
chiral pairs, so up to isomorphism we obtained only one chiral pair of surfaces, S1

and S1. Nevertheless, these four subgroups K of Γ correspond to four mutually non-
isomorphic maps of type {6, 6}, each chiral pair being the vertex-face dual of the
other. A similar phenomenon occurs in case (iii).

More generally, entries in Conder’s lists [9] represent maps or hypermaps up to
chirality and duality (and also triality, interchanging hypervertices, hyperedges and
hyperfaces, in the case of hypermaps), so each entry can represent up to four or
twelve non-isomorphic maps or hypermaps. Thus entries C12.1 and C12.2 in [9],
corresponding to case (ii) with p = 11, each represent a chiral pair of maps of
type {5, 10} together with the chiral pair of dual maps of type {10, 5}. Similarly,
CH12.3 and CH12.4, corresponding to case (vi) with p = 11, each represent six non-
isomorphic hypermaps: each set of six is an orbit of the group C2 × S3 generated by
the operations of chirality, duality and triality, induced by the normal inclusion of
Γ(5, 5, 5) in the extended triangle group of type (2, 3, 10) with this quotient.
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For the infinite families of chiral maps and hypermaps in cases (i) to (iv) and
(vi), G is always the full automorphism group. However, the finitely many excep-
tional examples in cases (x) to (xii) are all regular, with full automorphism group A
containing G with index 2. In these cases the elements of A \G reverse orientation,
and correspond to anticonformal automorphisms of the Riemann surface S, that is,
automorphisms of S as a Klein surface. We will now determine these groups A.

The regular maps R14.1, R14.2 and R14.3 in case (x) with G ∼= PSL2(13) are
distinguished in [9] as having Petrie polygons (closed zigzag paths, turning first right
and first left at alternate vertices) of lengths 12, 26 and 14 respectively (this length
is twice the order of the commutator [x, y], where (x, y, z) is the canonical generating
triple of type (2, 3, 7) for G). An equivalent group-theoretic distinction is that z has
trace t = ±6,±5,±3 respectively, belonging to each of the three conjugacy classes
of elements of order 7 in G (see [25, Example 5.4]). Now Singerman [49] has shown
that any orientably regular map with orientation-preserving automorphism group
G ∼= PSL2(q) for some prime power q is in fact regular, with full automorphism
group A ∼= PSL2(q)× C2 or PGL2(q) as two of the three canonical generators of G
are inverted by an inner or outer automorphism ofG; moreover Hall [19, Theorem 2.9]
has shown that in the case of a Hurwitz group PSL2(q), these two cases correspond
to 3− t2 being a square or non-square in Fq, where t is defined as above. The maps
R14.1, R14.2 and R14.3 have 3−t2 = 6,−1 and −6, with only −1 a square mod (13),
so they have automorphism groups A ∼= PGL2(13), PSL2(13) × C2 and PGL2(13)
respectively.

The regular maps R8.1 and R8.2 in case (xi) have G ∼= PGL2(7). As the auto-
morphism group of a non-abelian simple group PSL2(7), G is complete, with no outer
automorphisms, so these maps both have automorphism group A ∼= PGL2(7) × C2

(see [42, Exercise 7.17 and Theorem 7.4], for example).
To deal with the regular hypermaps RPH8.1 and RPH8.2 in case (xii) we need to

know the canonical generating triples for their orientation-preserving automorphism
groups G ∼= PSL2(7). For i = 1, 2 let Hi be the orientably regular hypermap
of type (3, 3, 4) corresponding to the following generating triple (xi, yi, zi) for G,
where matrices in SL2(7) and GL2(7) are used to represent elements of PSL2(7) and
its automorphism group PGL2(7), with the usual convention that scalar matrices
represent the identity:

x1, y1, z1 =

(

3 0
0 5

)

,

(

1 2
3 0

)

,

(

0 1
6 3

)

,

x2, y2, z2 =

(

3 5
0 5

)

,

(

1 2
3 0

)

,

(

0 1
6 4

)

.

For each i the generators xi, yi of order 3 are inverted by conjugation by the involution
gi where

g1 =

(

0 1
2 0

)

∈ PGL2(7) \ PSL2(7) and g2 =

(

3 1
4 4

)

∈ PSL2(7).

It follows that H1 and H2 are both regular, with automorphism groups PGL2(7)
and PSL2(7)× C2 respectively. By their genus and type they must be RPH8.1 and
RPH8.2 in some order. One can check that the second triple satisfies the defining
relation (acab)4 = 1 for RPH8.2 given in [9], with x2 = cb, y2 = ba and z2 = ac,
whereas the first triple does not, so Hi is RPH8.i for i = 1, 2, with A ∼= PGL2(7)
and PSL2(7)× C2 respectively.
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Having mentioned the subject of Petrie length, we note that for the chiral maps
in cases (i), (ii) and (iii) the commutator [x, y] is always a non-identity element of P ,
so it has order p and therefore the Petrie length of the map is 2p.

There are three instances in Theorem 3, namely cases (i) and (iv), (ii) and (vi),
and (xi) and (xii), where the same surfaces S support orientably regular maps M
with orientation-preserving automorphism group G, and also orientably regular hy-
permaps H with orientation-preserving automorphism group G0 of index 2 in G. In
the second and third of these instances, M can be obtained from H by represent-
ing the latter as its Walsh bipartite map [50] on the same surface, with black and
white vertices corresponding to the hypervertices and hyperedges of H, and edges
corresponding to their incidences, and then ignoring the colours of the vertices. The
same applies in the first instance, except that here we must first use a triality op-
eration to replace H with an orientably regular hypermap of type (6, 6, 3). In each
instance, every automorphism of H induces an automorphism of M, whereas M
has colour-transposing automorphisms which correspond to dualities rather than au-
tomorphisms of H, thus giving the index 2 inclusion between their automorphism
groups. All instances of this phenomenon can be explained by the index 2 inclusion
of the triangle group Γ(m,m, n) in Γ(2, m, 2n), see [48].

Although Theorem 3 is restricted to primes p ≥ 7, the comments in Section 8
concerning p = 5 also apply here. The triangle group actions listed there correspond
to the following groups G, signatures σ and entries in [9]:

(a) V25⋊S3, (2, 3, 10), R6.1; V25⋊C3, (3, 3, 5), RPH6.1; V25⋊C2, (2, 5, 10), R6.6;
V25, (5, 5, 5), RPH6.11;

(b) S5, (2, 4, 6), R6.2;
(c) C5 × S3, (2, 10, 15), R6.10; C15, (5, 15, 15), RPH6.12 and RPH6.13;
(d) C20, (4, 5, 20), RPH6.7.

For example in (b), R6.2 corresponds to the generating triple ((1, 2)(3, 5), (2, 3, 4, 5),
(1, 2, 3)(4, 5)) of G = S5; the first two generators are inverted by the involution
(3, 5) ∈ G, so A = S5 × C2. In (c), entries RPH6.12 and RPH6.13 in [9] refer to
three regular hypermaps of type (5, 15, 15) with G = C15 and A = D15; RPH6.12,
corresponding to the generating triple (3, 11, 1) of G = Z15, is a single hypermap,
invariant under the duality interchanging hyperedges and hyperfaces (transposing the
generators of Γ of order 15), while RPH6.13 consists of a dual pair, corresponding to
the triples (6, 8, 1) and (12, 2, 1).

With this extension, the results in this section represent a classification of the
orientably regular maps and hypermaps of genus p + 1 with orientation-preserving
automorphism group G of order divisible by the prime p ≥ 5. Much of this (and
more, where p does not divide |G|) has already been achieved for maps by Conder,
Širáň and Tucker in [11]; here we have widened the context to include hypermaps
and to relate these combinatorial structures to their underlying Riemann surfaces.

12. Non-orientable maps and hypermaps

If H is a non-orientable regular hypermap of type (l, m, n) then its automorphism
group G is a quotient ∆/M of the extended triangle group ∆ = Γ[l, m, n] of that
type. Its orientable double cover H̃ is the orientable regular map corresponding to
the map subgroup M̃ = M ∩ Γ of the corresponding triangle group Γ = Γ(l, m, n)
(the even subgroup of ∆), with full automorphism group

∆/M̃ = (Γ/M̃)× (M/M̃) ∼= (∆/M)× (∆/Γ) ∼= G× C2
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and orientation-preserving automorphism group Γ/M̃ ∼= G. If H has characteristic
−p (so that it has genus p + 2), then H̃ has characteristic −2p and hence has genus
p + 1. In particular, if p is a prime dividing |G| and p ≥ 7 then H̃ must be one of
the regular hypermaps described in Theorem 3, namely one of the three maps R14.1,
R14.2 and R14.3 of type {3, 7} with p = 13 in case (x), or one of the two maps R8.1
and R8.2 of type {3, 8} or hypermaps RPH8.1 and RPH8.2 of type (3, 4, 4) with p = 7
in cases (xi) and (xii). We will deal with these possibilities in turn.

As shown in Section 11, the maps R14.1, R14.2 and R14.3 have full automorphism
groups A ∼= PGL2(13), PSL2(13)×C2 and PGL2(13) respectively. Only the second
of these has the form G × C2, so we obtain a non-orientable regular quotient map
R14.2/C2 of type {3, 7} and genus 15 with automorphism group G ∼= PSL2(13).
This must be N15.1, the only non-orientable regular map of this type and genus
listed in [9]. (Note also that N15.1 has Petrie length 13; since Petrie lengths are
either preserved or halved by factoring out a central subgroup C2, this confirms that
N15.1 is not a quotient of R14.1 or R14.3.)

We have seen that R8.1 and R8.2 have full automorphism group A ∼= PGL2(7)×
C2. They therefore yield non-orientable regular quotient maps of type {3, 8} and
genus 9 with automorphism group G ∼= PGL2(7). These must be N9.1 and N9.2
in [9], in some order. Since these maps have Petrie lengths 7 and 8, while R8.1 and
R8.2 have Petrie lengths 8 and 14, it follows that N9.1 and N9.2 are quotients of
R8.2 and R8.1 respectively.

We have also seen that RPH8.1 and RPH8.2 have automorphism groups A ∼=
PGL2(7) and PSL2(7)× C2 respectively. We therefore obtain a non-orientable reg-
ular hypermap RPH8.2/C2 of type (3, 3, 4) and genus 9 with automorphism group
PSL2(7). This must be NPH9.1, the only hypermap in [9] satisfying this description.
However, we obtain no non-orientable hypermap from RPH8.1. Thus we have proved
the following (again with the numbering as in Theorem 1(a)):

Theorem 9. The non-orientable hypermaps of characteristic −p for some prime
p ≥ 7 dividing the order of their automorphism group G are (up to triality) as follows:

(x) the regular map N15.1 of type {3, 7} and genus 15 for p = 13, with orientable
double cover R14.2 in Theorem 3(x), and with G ∼= PSL2(13);

(xi) the regular maps N9.1 and N9.2 of type {3, 8} and genus 9 for p = 7, with
orientable double covers R8.2 and R8.1 in Theorem 3(xi), and with G ∼=
PGL2(7);

(xii) the regular hypermap NPH9.1 of type (3, 3, 4) and genus 9 for p = 7, with
orientable double cover RPH8.2 in Theorem 3(xii), and with G ∼= PSL2(7).

As in Section 11, it is straightforward to extend this classification to the case
p = 5. The only new example arising is the non-orientable regular map N7.1 of type
{4, 6} and genus 7, with automorphism group S5 and orientable double cover R6.2 in
case (b) of Section 11. As in the orientable case, these results overlap those in [11],
where non-orientable maps are classified without the restriction that p divides |G|.

13. Closing remarks

We close this paper with an observation and two questions. It is noticeable that
the infinite families of maps and hypermaps, corresponding to cases (i) to (iv) and
(vi) of Theorem 1(a), all occur in chiral pairs, whereas the finitely many sporadic
examples, corresponding to cases (x) to (xii) where p = 7 or 13, are all (fully) reg-
ular, possessing orientation-reversing automorphisms. There is a similar distinction
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between the underlying Riemann surfaces S, forming conjugate pairs in cases (i) to
(ix) but not (x) to (xii). In a sense this is partly explained by the method of proof
of Theorem 1, based on the decomposition (for the all but finitely many p satisfying
Lemma 6) of the module M , which mirrors the decomposition of the homology mod-
ule H1(T ;C) in terms of holomorphic and antiholomorphic differentials. However, a
truly satisfactory explanation should depend, not on the human choice of a method
of proof, but on intrinsic properties of the objects studied. One might argue that
this is just another instance of the well-known phenomenon in finite group theory
of infinite families exhibiting uniform behaviour, with finitely many relatively small
exceptions, but this does not explain why the infinite families should all be chiral,
and the exceptions all regular.

So firstly, is there a better explanation of this phenomenon, and secondly, is it
an indication of something more general about the balance between regularity and
chirality, or is it simply a consequence of the rather restrictive assumptions applied
here?
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