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Exhaled Volatile Organic Compounds as Biomarkers for Airway Biology in Severe Asthma
by

Adnan Azim

Breathomics, the measurement of exhaled volatile organic compounds (VOCs), is an exciting
new biomarker medium for airways disease. The greatest unmet need for biomarkers in severe
asthma is in T2 low disease and so, in this thesis, | sought to identify a T2 low phenotype and
assess whether breathomics could be used as a biomarker for this patient group.

A cohort of severe asthma patients was recruited and clinically characterised in parallel to
sputum induction and exhaled breath collection. Though the T2 high phenotype was easy to
recognise, T2 low disease was poorly defined by inflammatory cell counts alone. Measures of
inflammatory cell activation provided were insufficient to describe new phenotypes.

16s rRNA sequencing of sputum samples identified a cohort of T2 low patients, characterised
by airway colonisation with Haemophilus, sputum neutrophilia and ongoing disease burden.
However, none of the clinically available biomarkers were able to identify this cohort of patents.

The exhaled VOC samples from this severe asthma cohort demonstrate a clear structure to the
exhaled VOC matrix, however, sensitivity to underlying airway inflammation was weak. Repeated
breath sampling identified heterogeneity in the stability of VOCs during an otherwise clinically
stable state. Exclusion of VOCs with a high degree of within-subject variability resulted in less
model overfitting and AUC an of 0.643 for predicting sputum eosinophilia (>2%). 2-pentanone,
was identified as having the strongest feature importance. This ketone is thought to be generated
in the airway epithelium.

Applying this newly established analytical framework, a model was built to predict the cluster
of patients with heavy Haemophilus colonisation, potentially amenable to Azithromycin therapy.
A model built on non-erratic VOCs predicting Haemophilus with an AUC of 0.857. Decane was
identified as a possible biomarker, however further validation is required.

The findings from this thesis demonstrate sensitivity of exhaled VOCs to the airway biology of
severe asthma patients but require validation.
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Chapter 1

Chapter 1 Introduction

1.1 Asthma

1.1.1 Definition of Asthma

The term “asthma” is derived from the Greek root “acBuawvw”, which means “to gasp for
breath”, and was originally used to describe non-specific respiratory symptoms before narrowing
to its modern use as a diagnostic label . In the mid nineteenth century, Henry Hyde Salter
described “paroxysmal dyspnoea of a peculiar character with intervals of healthy respiration
between attacks”?, which is remarkably similar to the twenty-first century description from the
Global Initiative for Asthma of “a heterogenous disease, usually characterised by chronic airway
inflammation. It is defined by the history of respiratory symptoms such as wheeze, shortness of
breath, chest tightness and cough that vary over time and in intensity, together with variable
expiratory airflow limitation” 3. Today, over 300 million people worldwide #, including 1 in 12

adults in the UK °, have asthma and its incidence appears to be rising ®7.

Defining a disease is central to the philosophy of medicine and, traditionally, requires
distinguishing the disease state from normal healthy state 8. Value judgements on “normality” *1°
aside, this is relatively straight-forward for the majority of diseases **. For asthma, however,
definitions tend to avoid etiological implications 2. This is in part due to the diverse clinical
presentation of asthma, which have long been understood to reflect the complex interplay of
genetic and environmental components 2 interacting to influence disease expression . Instead,
focus has been aimed at observable characteristics (clinical, biological, and physiological) and the
description of distinct phenotypes '>1¢, resulting in treatment paradigms that are based upon

disease severity rather than their underlying mechanisms.

1.1.2 Burden of Asthma

The greatest burden of asthma comes from those with uncontrolled disease: a definition that
usually captures one or more undesirable consequences: frequent exacerbation rate '8, poor
lung function *° poor quality of life 2922 or death 23. These patients account for the majority of
asthma related healthcare expenditure 242>, costing the National Health Service (NHS) an
estimated £1 billion/year in addition to the hidden societal costs of disability, missed schooling
and lost work days?®. Most people with asthma respond well to standard preventer therapies

(inhaled corticosteroids with or without long acting beta, agonists) 3 so the majority of



Chapter 1

uncontrolled asthma can be managed by addressing factors such as poor medication adherence,
significant co-morbidities (e.g. rhinitis, gastro-oesophageal reflux, obesity and psychological co-
morbidities) and external triggers (e.g. allergens and environmental factors) that may be

contributing to poor disease control?’.

However, some 3-10% 2%%° of patients with asthma remain poorly controlled despite escalation of
preventer therapies and addressing of the factors described above. These patients have severe
asthma, as defined by the International ERS/ATS guidelines: “asthma which requires treatment
with high dose inhaled corticosteroids (ICS) plus a second controller (and/or systemic
corticosteroids) to prevent it from becoming ‘uncontrolled’ or which remains ‘uncontrolled’ despite
this therapy”?8. This definition of severe asthma highlights the limitations of ignoring the aetiology
of asthma and of a severity-based approach to therapy; their recognition has heralded a shift

towards understanding the mechanisms underlying asthma, complex though they may be.

1.13 Pathophysiology of Asthma

Before tackling the aetiology of asthma, it is worth considering the purpose of the organ of
interest: the airways. One of the primary roles of the lung is to facilitate gas exchange

between the circulatory system and the external environment. As such, the airways are organised
into a branching configuration so as to maximise the surface area of respiratory bronchioles and
alveoli, which participate in gas exchange 3°. However, exposing a large mucosal surface area to
the environment leads to its constant exposure to external stimuli, which demands the robust
discrimination of what is harmful and what is not 1. Unsurprisingly, an orchestra of mechanisms is
required to fulfil this mandate, commonly involving epithelial cells, fibroblasts, endothelial cells

and smooth muscle cells, inflammatory mast cells, eosinophils and T lymphocytes.

None of these should be considered in isolation but T lymphocytes (T Cells) are widely recognised
as central to the asthma immune response. Derived from pluripotent haematopoietic stem cells in
the bone marrow, T cells mature in the thymus (hence their nomenclature) 32 and can be
described by their gene or protein expression and associated functions. CD4* T cells, otherwise
known as T Helper Cells (Th cells), are activated by peptide antigens presented by MHC class Il
molecules on antigen presenting cells (APCs) 33 and, based on their cytokine repertoire, can be
further subdivided into two functionally distinct subsets: Thl (defence against intracellular
bacteria, viruses and cancer) and Tu2 (defence against parasites and allergens) 34. This dichotomy
was the basis for traditional asthma dogma 3°, in which asthma was understood to represent an
exaggerated specific IgE mediated 3¢ Tu2 cell response 374 driving airway hyperresponsiveness 4

and responsive to steroid therapy.
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However, the varied response of asthma patients to steroid treatment #>%3, the identification of
persistent eosinophilia in patients treated with high dose inhaled steroids 4#** and the
identification of eosinophilia in patients without strong atopic features ¢ illustrates that the T2
paradigm is incomplete. We now recognise that T2 cytokines (IL-4, IL-5, IL-13) can be produced by
pathways not directly related to Tu2 cells °>°! and the past few decades have seen the detailed

description of the immunology of asthma >2.

1.14 Heterogeneity of Severe Asthma

Asthma is now widely appreciated to be an umbrella term encompassing a number of endotypes,
disease entities defined by specific biologic mechanisms >3, manifesting with similar clinical
presentations >*. We can appreciate that phenotypes (e.g. the presence of eosinophils) can be
driven by multiple mechanisms but also that an endotype (e.g. airway remodelling) can be
associated with multiple phenotypes °°. The current paradigm of phenotyping patients offers
limited insight into the mechanisms driving poor disease control and contribute to the varied
response to treatments given ubiquitously. Shifting focus to endotypes promises the potential

that specific therapies can be appropriately prescribed to improve asthma control ®.

1.2 A Systems Biology Approach to Severe Asthma

1.2.1 Biomarkers

A biomarker is “a characteristic that is objectively measured and evaluated as an indicator of
normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic
intervention” *”. In addition to its utility in drug discovery (e.g. target identification) and
development (e.g. target engagement) >%, biomarkers can serve a number of clinical purposes:
diagnostic (e.g. presence or absence of a disease), prognostics (e.g. indicate severity and

outcomes of a disease) and theragnostics (e.g. predictors of response to treatments) >°.

Several biomarkers are described in asthma, most notably sputum eosinophilia, expressed as a
percentage of inflammatory cells . Airway eosinophilia can predict the response to inhaled
steroids %192, is altered by steroid therapy ®3%* and can be used to titrate asthma therapy . It is
unsuitable, however, for routine clinical practice or large epidemiological studies due to the

practical limitations of undertaking sputum induction in a clinical setting.

Correlation between blood and sputum eosinophil counts ¢ has facilitated the emergence of
blood eosinophilia as an alternative biomarker. Raised blood eosinophil counts are associated

with poor asthma control ¢, lung function decline ® and exacerbations 7% they have become
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central in defining a phenotype of severe asthma patients 772 that respond to anti-IL5/ IL-5

receptor alpha (IL-5 Ra) therapies 737 (even if selection by this criteria is not perfect 77).

Nitric oxide, synthesised by NO synthetases 78, can be measured in exhaled breath by
chemiluminescence 7>, The fractional exhaled NO concentration (FeNO) in exhaled breath,
expressed as parts per billion (ppb), though only modestly accurate in predicting sputum
eosinophilia &, can predict the risk of exacerbations 828 and is altered by steroid therapy 8. This

allows serial FeNO measurements to be used as a measure of inhaled corticosteroid compliance

85

Numerous other biomarkers are described in asthma but are generally biased towards T2 cytokine
driven disease . Non-T2 driven disease, defined by the absence of measurable T2 cytokine
activity, is poorly described and has no robust biomarkers associated with it 8728, despite these

patient groups being most treatment-resistant and having the worst clinical outcomes #7890,

1.2.2 Metabolomics

Unpicking the complexity of asthma pathophysiology requires a shift towards appreciation that
dysregulation of physiological mechanisms occurs within a network of other closely
related/regulated mechanisms °. This system level approach to biology was first proposed many
decades ago 2 but has recently gained momentum in clinical research through advancesin a
number of inter-disciplinary fields: biology, mathematics, statistics and computer sciences *.
“Systems biology” is difficult to define ** but aims to identify general principles of a system,
through comprehensive study of its molecular diversity *°. In clinical research, molecular diversity
can be described using high-throughput measurement of biomolecules: genomics for DNA,
transcriptomics for RNA transcripts and proteomics for translated proteins from various biological

samples (biofluids, cells or tissues).

However, it is not enough to simply list the components of a system: it is necessary to understand
how these components fit together, how they behave under different conditions and what their
regulatory mechanisms involve %. Systems biology therefore requires exploration of these multi-
dimensional datasets through sophisticated mathematical and computational modelling °7:%8,
Typically, this describes an unbiased approach that makes few a priori assumptions, allowing the
data to generate new hypotheses. This approach is well suited to asthma due to its biological

complexity and gene-environment interactions .

Metabolomics describes the systems biology approach to small (typically measuring 50-1500

daltons) molecules measured in biofluids, cells or tissues 1%, These small molecules (e.g. lipids and
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proteins) are the substrates and products of metabolism, and so metabolomics aims to provide a
snapshot of the biochemical activity associated with a cellular state. Metabolomic profiling of
serum and urine samples has previously demonstrated differences between healthy controls and
asthma 1% as well as between clinical phenotypes 1921 making it perfectly suited to biomarker

discovery 1%,

In identifying the need for more biomarkers for severe asthma, it is useful to consider how to
judge the quality of a biomarker. The Evaluation of Genomic Applications in Practice and
Prevention (EGAPP) Initiative of the United States Centers for Disease Control propose three
measures, in addition to considering the legal and social issues around that test: analytical
validity, clinical validity and clinical utility 1°. These can broadly be summarised by asking whether

the biomarker test result is true, meaningful and useful, respectively 7.

Those biomarkers that originate from the organ of interest are more likely to offer direct insight
into airway biology '%. However, in order to have the highest translational potential, biomarkers
need to be easily sampled at the point of care 8. Where sputum and bronchoscopic sampling fall
at this hurdle 1%, exhaled breath offers the optimal combination of proximity to airways and
minimal invasiveness 19, The clinical adoption of C!3/% urea for Helicobacter pylori *'and FeNO for
airway inflammation 2 demonstrates the utility of exhaled breath: this medium can be sampled

safely, non-invasively and repeatedly, almost without exhaustion (e.g. capnography *3).

1.3 Breathomics as a Biomarker for Asthma

1.3.1 Definition

Though primarily composed of water vapour and inert gases, exhaled breath also contains
thousands of volatile organic compounds (VOCs) 14, VOCs are the main molecular substrate
triggering our sense of smell, and characteristic breath odours have been used to identify illnesses
since Hippocrates'®®. The medical applications of this strategy were transformed in 1971 by the
demonstration that exhaled breath contained more than 250 VOCs !¢, Though exhaled breath
only constitutes a small proportion of metabolomics research, ¥, it is recognised that exhaled
VOC concentrations can reflect different disease states 1811°, suggesting a role for exhaled VOC

analysis as a non-invasive metabolomic biomarker °.

1.3.2 Methodological Overview

Modern VOC analysis can be considered under one of two broad methodological headings:

pattern recognition-based sensors or chemical analytical techniques 2°. Pattern recognition-
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based sensors, synonymous with electronic noses, are modelled on the mammalian nose. These
e-noses contain an array of cross-reactive sensors, which react promiscuously and non-selectively
to VOCs. The final “breathprint” reflects the differential signalling of multiple sensors to partially
overlapping VOCs 1?1122 These breathprints then require analysis by pattern recognition
algorithms 23124 similar to how our brain would interpret signals from the nose. Chemical
analytical techniques typically refer to mass spectrometry (MS) %or MS Hybrid techniques 126128,

in which ions created by VOCs can be measured based upon their mass/charge (m/z) ratio.

Mass spectrometry continues to be the gold standard method for VOC analysis 1?° due to its ability
to identify composition and concentrations of individual VOCs. It is, however, expensive in terms
of expertise and equipment. Though the e-nose sensor array is cheaper, quicker and easier to use
130,131 it sacrifices that ability to reliably trace back to analytes of interest 132, If understanding the
mechanisms behind a biomarker/biomarker profile is not necessary 33, sensor-based systems are
ideally suited, but if the biomarker is being interrogated for mechanistic purposes # (e.g. drug
target discovery), then the costs savings in pursuing pattern recognition-based sensors over
chemical analytical techniques may represent a false economy. That is not to say that the two
technologies are mutually exclusive: both can be successfully integrated into the same study 34,
and improved understanding of the mechanisms and factors contributing to VOC profiles could

inform future sensor-based technologies.

1.3.3 Breathomics in Asthma

Exhaled VOC analysis has demonstrated excellent accuracy for discriminating patients with
asthma from healthy controls and other respiratory conditions 3>. More than diagnostics,
however, a number of studies have successfully applied exhaled VOCs as a biomarker for
inflammatory phenotyping, treatment stratification, treatment monitoring and exacerbation

assessment {Azim, 2019 #293

Almost all the identified discriminatory VOCs identified in asthma studies are straight-chain,
branched, or aromatic hydrocarbons >’ and whilst there are proposed endogenous origins to such
compounds **%, they frequently occur exogenously *>° and may simply reflect differential uptake
of environmental VOCs ¢°, Consequently, those VOCs which occur commonly and in high
concentrations or those that are common to many inflammatory states 161162, are over-

represented in the literature

For airways diseases, it is likely that, only a fraction of the VOCs identified in exhaled breath relate

to airway events. While exhaled breath sampling is simple for patients, the analyte of interest is
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by definition, volatile, and each stage of exhaled breath analysis introduces additional sources of

variation 163,

Just like exhaled nitric oxide concentrations 8%1%4 individual VOCs concentrations °® and e-nose
sensor deflections 22 can be influenced by flow rate and breath holding 123, Similarly, most studies
collect VOCs from the total expiratory phase, as it is logistically most simple to achieve. E-nose
breathprints using this breath sample show more inferior diagnostic potential (asthma vs healthy
controls) than when excluding air within the oropharynx 138, possibly reflecting the dilution of
discriminatory VOCs by this contaminant air. There has been a range of strategies used to exclude
air from this dead space, including valves and estimated volumes, which are inconsistent and
unreliable 3185 to a highly engineered system of pressure sensors 142166167 \which is expensive
and bulky. The optimal solution needs to balance practicality and precision, so as not to negate
the clinical utility of breath sampling. The breath sampler developed by a broad consortium of

breath researchers and engineers (http://www.breathe-free.org), represents one such solution. A

similar pragmatism is likely necessary for the exclusion of exogenous VOCs. Subtracting ambient
VOC concentrations from exhaled VOC concentrations (alveolar gradient) 18 risks the loss of
salient signals and ignores VOC interactions within the airways *°%1¢°, Though not able to eliminate

all exogenous VOCs, filters can at least reduce background contamination 32,

Once collected, unless performing online analysis, the storage medium bears consideration. Most
early studies stored breath samples in an inert polymer (usually Tedlar) bag, but the
concentrations of compounds stored in Tedlar bags show compound-specific decay rates and the
bags themselves can introduce contaminants *°717°, Van der Schee et al. found no variation when
breath samples were stored for up to two weeks *>°, and many studies try to minimise storage
time 13138 Alternative or subsequent storage solutions: thermal desorption tubes containing
some sort of adsorbent material: porous organic polymers, activated charcoal, carbon molecular
sieves or graphitized carbon blacks do not guarantee against this decay '*’. No adsorptive material

can completely capture all the VOCs in the breath without some degree of loss 171,

Moreover, different materials are vulnerable to breakthrough (non-quantitative adsorption of
analytes) and memory effect (incomplete desorption resulting in interference with subsequent
measures) 172, Ideally, therefore, the choice of adsorbent materials and the duration of storage *°
should be determined by compounds of interest 137173, Most studies now adsorb onto Tenax TA
(2,6-diphenyl-p-phenylene oxide) 174, due to its hydrophobicity, thermal stability and its ability to
absorb a wide range of VOCs '7>. To add further complications, it is also appreciated that not all

VOCs originate from the airways. Non-asthma-VOC research proposes a model of blood/gas
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coefficients ¢ and quantification of regional lung ventilation and perfusion 177 to describe the

delivery and migration of systemically generated VOCs to exhaled breath.

Even then, a robust and reliable sample collection is relatively straightforward when compared to
data management, analysis, and interpretation 178, The past few decades of asthma-VOC literature
demonstrate the rapid technological evolution of this field. Early breath research was limited to a
"bottom-up" approach: VOCs were targeted a priori and analysed using expensive and laborious
chemical techniques. Consequently, these studies were limited in numbers and focussed on
markers of oxidative stress 52 (inflammation not specific to asthma 4%%2), The modern parallel
developments of improved separation techniques, improved lower limits of detection, electronic
nose (e-nose) technology and high-throughput omics analysis platforms allow the full spectrum of
exhaled VOCs to be analysed "top-down" as highly dimensional composite profiles:

"breathomics".

In the absence of a clear consensus on the optimal statistical approach, studies are likely to
publish highly internally valid results which, in the absence of external validation, likely
overestimate real-world findings °. This influence of data handling on biomarker identification
means that transparency is more important than ever. The TRIPOD recommendations on
reporting multivariable prediction models 8 and STARD guidelines on reporting of diagnostics

accuracy studies ® provide useful frameworks for future publications.

The methodological heterogeneity of the breath analysis literature is well documented 63182 and
yearns for methodological standardisation 16382, Metabolomics studies demand standard
operating protocols for both the analytical and computational workflows **’, including strategies
to monitor within- and between-batch measurement variations 83, Sharing meta-data relating to
sample handling, processing and analysis is of paramount importance and represent a critical step
in building reference libraries ##with the ultimate intention for breathomics research being
inter-laboratory and equipment comparison 8. Only then will true external validation, where
findings are replicated in a new study, be possible 8. Nevertheless, expert consensus is optimistic
for a role of exhaled VOCs in delivering precision medicine for asthma 8: the right treatment for

the right patient at the right time %,

1.4 Knowledge Gap: Improving Breathomics Study Endpoints in Asthma

“Late at night, a police officer finds a drunk man crawling around on his hands and knees
under a streetlight. The drunk man tells the officer he’s looking for his wallet. When the

officer asks if he’s sure this is where he dropped the wallet, the man replies that he

10
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thinks he more likely dropped it across the street. Then why are you looking over here?

the befuddled officer asks. Because the light’s better here, explains the drunk man.”1%°

The chemical and data handling issues described above are of paramount importance to driving
the field of breathomics forwards. However, parallel to these efforts, there is also a need to
innovate the study designs of breathomics research.. One of the unique selling points for a
breathomics based biomarker is its ease of sampling and, therefore, potential to translate to
clinical practice 19, It is highly conceivable that an e-nose type device could be used in an
outpatient clinical setting but this ambition is undermined by the fact that easily accessible
biomarkers are already established in routine clinical practice 38-%°¢ including an exhaled breath
biomarker (FeNO). To augment or join FeNO and blood eosinophils in a clinical setting, a
breathomics biomarker either needs to be more accurate at predicting a feature that can already

be predicted or predict something that cannot currently be predicted.

14.1 Breathomics as a More Accurate Biomarker for Existing Phenotypes

In considering more accurate inflammatory phenotyping, there remains, of course a ceiling effect:
the development of a breathomics biomarker in order to achieve an AUC of 0.9, when biomarkers
with an AUC of 0.7 are already established '°7, may not be financially or practically viable. In this
aforementioned Belgian study ¥, it is striking that, despite being a well conducted study in a
large number of patients, exhaled VOCs only achieve an AUC of 0.7, comparable to blood
eosinophil and FeNO alone, rather than the oft promised (albeit in studies lacking validation
cohorts) AUCs exceeding 0.9 13, One conclusion is that there needs to be improvement in the

breathomics technology (i.e., chemical and data handling).

Alternatively, it could be that an AUC of 0.9 is not biologically plausible for a metabolomics
biomarker. It is well recognised that airway eosinophilia can arise from multiple mechanisms °9°2,
Indeed, omics analysis of the airways samples of severe asthma patients identify a number of
eosinophilic and neutrophilic sub-phenotypes 1%. Biomarkers can only be as good as the gold
standard against which they are assessed %% if VOCs are specifically related to only one of these
distinct mechanisms (e.g. a non-allergic, ILC2 mediated eosinophilia rather than an allergic Th2
cell mediated eosinophilia *°), using an umbrella phenotype (e.g. sputum eosinophilia) as the

study endpoint would miss that relationship.

Reducing the application of VOC biomarkers to predicting inflammatory phenotypes does not
comprehensively address the ability of breathomics to describe airway inflammation, which may
be better described by more detailed analysis of induced sputum 4718, Exploratory analysis in the

U-BIOPRED cohort, for example, suggest that e-nose, can discriminate clusters defined by sputum

11



Chapter 1

transcriptomics °3 more effectively than existing biomarkers. This finding underlines the notion
that, though sputum eosinophils are clinically relevant endpoints in themselves #?, they are also

imperfect biomarkers for characterisation efforts at a molecular level 1%,

1.4.2 Breathomics as a Biomarker for Novel Phenotypes

Taking inspiration again from the Belgian study **7, the authors report an AUC of 0.73 for
predicting airway neutrophilia, an AUC comparable to existing biomarkers used to predict airway
eosinophilia. This is one example for how a breathomics biomarker may offer novel information
to the clinician as sputum neutrophils represent one paradigm for describing T2 low asthma. T2
low asthma is poorly defined but describe patients who do not display T2 high signals; these
patients are characterised by resistance to steroid therapy and ineligibility to currently licenced

biologic therapies, with pathophysiology putatively ascribed to Th1 and/or Th17 cells 22,

Though sputum neutrophils are a candidate marker for non T2 driven disease 2%, inconsistent cut-
offs 46192204 ‘concerns of possible confounding as a product of steroid therapy 2% and the finding
that therapeutic reductions in circulating neutrophilia have not reduced the exacerbation
frequency of patients with severe uncontrolled asthma 2% undermine its value as a robust
phenotype 2. Consequently, comparing breathomics to such a poorly defined gold-standard may

once again undermine the value of breathomics.

As described in 1.4.1, one way to better assess breathomics is to once again, better define the T2
low phenotype. The association, between sputum neutrophilia and airway colonisation by
potentially pathogenic bacteria 2% suggest that host-microbial interactions might be a better way
to understand these poorly-characterised asthma endotypes 2%°. The resident microbiome has
been found to have a key role in the establishment and maintenance of healthy gastrointestinal
tract and critical in understanding chronic inflammatory diseases of this organ 21°, which like the

respiratory tract is also a large mucosal surface area with exposure to external stimuli.

Microbiome analysis, whether clinically or academically, suffers from a reliance on airway
samples, which as we have discussed in 1.2 is impractical and expensive. Beyond the obstacles in
airway sampling issues, microbiome analysis of the airways suffers from the fact that sputum
samples are not as rich in bacterial matter as samples from the Gl tract 3. However, bacteria are
abundant producers of VOCs 21213 gnd VOCs from bacteria are likely to contribute to the spectra
of exhaled VOCs. As such it is plausible that exhaled VOCs could be used as a biomarker for
describing the airway microbiome, which could in turn help better phenotype T2 low asthma

patients, who have the greatest unmet need for biomarkers.

12
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1.4.3 Breathomics to Define New Phenotypes

Finally, clustering has been at the heart of efforts to understand the heterogeneity of asthma for
the past few decades. Originally applied to clinical variables #4824 it is now commonly applied to
omics type data %215, Clustering is an unsupervised machine learning technique that seeks to
identify the similarity of patients across a defined set of variables and grouping them on that basis
216, When applied to omics data, it can group patients with similar biology together and separate

patients with distinct biology 2Y7.

Few studies in asthma have considered clustering on VOCs?!8, however, metabolites, in addition
to reflecting cellular genetic information and its mMRNA expression (measured by genomics and
transcriptomics respectively), can be influenced by or arise from exogenous sources: micro-
organisms, xenobiotics (e.g. drug and environmental pollutants) and dietary sources 12229, Of the
many thousands of VOCs in exhaled breath 4, a proportion of these relate to age 2%, gender 2%,
diet 223, exercise 2% and smoking 2%, features associated with T2 low disease 2°2. Some of these
factors, such as asthma therapy °#2%, the resident microbiome ?° and environmental exposures

133,157,227-229 may be highly relevant to understanding severe asthma.

These factors are likely to be highly salient to asthma, which is characteristically a product of
gene-environment interactions. Clustering on this information may provide novel and meaningful
insight, particularly to T2 low asthma which remains poorly defined using conventional

techniques.

1.5 Aims and Objectives

The aim of this thesis is to understand whether exhaled volatile organic compounds can give an

insight into biologic events in the airways of severe asthma patients.
The objectives of the thesis are to:

e Characterise an asthma cohort and confirm that it is representative of a severe asthma
population in which a breathomics biomarker would be useful by applying descriptive on their
clinical characteristics and sputum inflammatory cell counts.

e Assess the value of granulocyte activation markers as possible biomarkers of airway
inflammation by using descriptive statistics across sputum inflammatory phenotypes and

supervised machine learning approaches to predict those phenotypes in this cohort.

13
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Describe the airway microbiome using 16S rRNA sequencing on sputum samples from this
cohort using multivariate statistical approaches to compare across inflammatory
phenotypes and unsupervised machine learning to define new phenotypes.

Assess the plausibility of the exhaled VOC measures collected in this cohort using
multivariate statistical approaches to describe the relationship of VOCs to one another
and to the eosinophilic phenotype and multivariate statistical approaches to assess the
repeatability of VOCs

Use supervised machine learning approaches to assess the exhaled VOCs for the
prediction of microbially defined phenotypes and unsupervised machine learning to

define new phenotypes.
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Chapter 2 Methods

2.1 Introduction

The analyses presented in this thesis have been captured via a substudy of the Wessex AsThma
CoHort of difficult asthma (WATCH) cohort. As detailed below, the WATCH Cohort has been
established in order to efficiently capture the clinical characteristics of difficult to treat asthma
patients (PI Dr Ramesh Kurukulaaratchy). The study also provides the infrastructure for new
studies to easily access this cohort (or subsets of this cohort) by incorporating them as sub-

studies.

Airway sampling of severe asthma patients was established as a WATCH sub-study (Pl Professor
Peter Howarth), which included sputum induction as part of the characterisation/sampling
process. Breath sampling of severe asthma patients was established as another WATCH sub-study
(P1 Dr Adnan Azim), which included breath sampling and was performed alongside patients

providing induced sputum samples

Methodology relating to the Breath Sampling of Severe Asthma Patients is detailed in Chapter 6.

2.2 WATCH Study

The WATCH cohort is a dual centre study (University Hospital Southampton Foundation Trust
(UHSFT) and Queen Alexandra Hospital (QAH)) which started recruitment at UHSFT in August
2015. The Difficult Asthma Clinic at UHSFT and QAH are formally commissioned Regional Centres
for Severe Asthma, providing support for patients across the South Central, UK region. The Adult
Asthma multidisciplinary team (MDT) at both sites comprise consultants, research fellows,
specialist nurses, associate practitioners, clinical psychologists, physiotherapists and dietitians.
The service is provided via dedicated regional severe asthma clinics, transitional/young asthma
patient clinic, Isle of Wight outreach asthma clinic, biologics (omalizumab, mepolizumab,
reslizumab and benralizumab) clinic, nurse-led asthma clinic, clinical psychology clinic and
respiratory physiotherapy clinic. Patients attending the adult or transitional regional asthma
clinics are assessed by a physician and referred onto further MDT members and investigations
with clinical decisions supported by regular post-clinic MDTs and monthly biologics referral MDTs
This facilitates the extensive characterisation of each patient, which, in turn, enables the clinic to

meet the standards of care described by NHSE.
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221 Study Design

WATCH is a prospective observational study of patients with Difficult Asthma attending the
Difficult Asthma Clinics at UHSFT and QAH. The study design, protocol and paperwork was
approved by West Midlands — Solihull Research Ethics Committee (REC reference: 14/WM/1226).
Patients were recruited into the study by way of a discrete “Enrolment” Study Visit capturing core
demographic and clinical information and the results of the characterisation process provided by
the clinic. For new to clinic patients an additional 3-month follow-up visit was also undertaken.
Thereafter, records are continuously updated through annual “Follow Up” Study Visits and
extraction from electronic clinical records. This pragmatic, opportunistic approach to data
collection takes full advantage of the broad multidisciplinary clinical approach to difficult asthma
management without becoming too onerous for the patient, clinician or researcher (Figure 2).
Patients can complete all their CRF’s during clinic appointments for convenience but are also

given the opportunity to complete their longer enrolment visit on a separate day.

Historical Blood Tests
Historical Skin Prick Tests
Historical Radiology Update Radiology Update Radiology

Historical Lung Function Tests Update Lung Function Tests  Historical Blood Tests Update Lung Function Tests
Data Capture from Data Capture from Electronic Data Data Capture from
> Clinical Records > Clinical Records » capture from > dinical Records
Clinical Records
Consent
Demographic Details
Disease Related History
Medication History Update Consent Update Consent
Disease Related Questionnaires Update of Histary Update of History
Biobank of Research Samples Update of Medications Update of Medications
|, Enrolment Visit 3month f/u Visit 12month ffu Visit
WATCH Data Collection i) > >
]
UHS Clinical Asthma
Service Management Pome  Peame P mnenses P ame P enteview P e > Cinie - Physio Review > cinie
Inhaler A -
inhaler 8 s e .
Inhaler ¢ =
Tableta |
Tablet 8 e e ———————
Blood Tests |
Lung Function Tests I I I I I I
Radiology Tests I I I

Figure 2.1 A schematic outline of the aligned clinical and research pathways/timelines followed
by a patient under the UHSFT Difficult Asthma Clinic participating in the WATCH

study.

Examples of how clinical tests (blood tests, lung function and radiology) and
medication changes over time were captured for the study. *Ear Nose and throat

(ENT), follow up (f/u).
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2.2.2 Patient Recruitment

e All patients who attend the Adult or Transitional Regional Asthma Clinic managed with
“high dose therapies” and/or “continuous or frequent use of oral steroids” according to
the BTS Adult Asthma Management Guidelines 2016 are invited to the WATCH study

e Patients were excluded from the WATCH study if they attended the Adult or Transitional
Regional Asthma Clinic at UHSFT but are not managed with “high dose therapies” and/or
“continuous or frequent use of oral steroids” according to the BTS Adult Asthma

Management Guidelines 2016 or if they lacked the ability to provide informed consent.

2.2.3 Data Collection

Data for the WATCH study was captured both through Case Record Forms (CRFs). The initial
enrolment CRF contains a large suite of questionnaires that mirrors the extensive characterisation
undertaken in clinical practice (Table 1 and 2). This was completed after the patient has received
and read a patient study information sheet, a clinical or research member of the WATCH study
team has received consent from the participant, and they have been assigned a study number. A
clinical or research member of the WATCH team then proceeded to interview the participant,
asking the questions from the Enrolment CRF (Table 2.1) and then filling in questionnaires with
the participant (Table 2.2). In addition to the questionnaires, the enrolment visit collects objective

measures and biological samples.

Table 2.1  Summary of Objective Clinical Measures Captured at Enrolment

* Immunoglobulin E (IgE), Fractional Exhaled Nitric Oxide (FeNO), Bronchoalveolar

Lavage (BAL)

Investigations Including

Blood Tests Full Blood Count, Serum Total IgE, (as well as any other clinically
requested samples)

Lung Function Test Spirometry +/- Reversibility (as well as any other clinically
requested tests)

Exhaled Breath FeNO

Anthropometry Height, Weight, Bioelectrical Impedance

Biobank Samples Blood, Urine, Induced Sputum, BAL

Finally, additional objective clinical data from the hospital electronic systems were harnessed to
provide retrospective and current investigation findings.
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Table 2.2 Summary of Historical Clinical Record Data Collected During Participation in WATCH

Study

Investigations

Historical Blood
Tests

Allergy Testing

Radiology

Oesophageal
Investigation
Results

ENT Results

Lung Function
Tests

May Include

Full blood count (FBC), Total Immunoglobulins E, G,
M, A (IgE, IgG, IgM, IgA), Aspergillus precipitins
(IgG), 25-hydroxy-vitamin D3, Anti-Neutrophil
Cytoplasmic Antibody (ANCA), Antinuclear
Antibody (ANA), Alpha-1-Antitrysin level (A1AT),
Urea & Electrolytes, Liver Profile, Parathyroid
Hormone (PTH), Thyroid function tests (Thyroid
Stimulating Hormone & Free Thyroxine)

Either Skin Prick Tests or Specific IgE Blood Tests to
common aeroallergens [aspergillus fumigatus,
alternaria tenius, cladosporium, penicillium, mixed
moulds, grass mix, birch, weed mix,
Dermatophagoides pteronyssinus and
Dermatophagoides farinae, feathers, cat, dog,
horse, and rabbit]

Computed Tomography (CT) or High Resolution CT
Chest (HRCT), CT sinuses, dual energy X-ray
absorptiometry (DEXA) scan

Oeosphagogastroduodenoscopy (OGD),
Oesophageal Manometry, pH/Impedance Testing

Nasoendoscopy

Spirometry +/- Bronchodilator Reversibility
Exhaled Nitric Oxide

Gas Transfer

Impulse Oscillometry

Static Lung Volumes

Multiple Nitrogen Breath Washout

2.2.4 Electronic Healthcare Data Collection

Limit of Data
Retrieval

10 years

10 years

10 years

10 years

10 years

1 year
1 year
5 years
1 year
1 year
1 year

The WATCH database captured results from clinically requested and clinically processed

investigations. These were performed by hospital departments in line with Standard Operating

Procedures (SOPs) that conform to standards required of an NHS Hospital Service. Height and

weight were measured by the study team from which BMI was calculated.

Clinically requested lung function was performed by the UHSFT Respiratory Physiology

Department or Specialist Asthma Nurses, who operated in accordance with local department
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SOPS and ARTP (Association of Respiratory Technology and Physiology) guidelines, described in
2.2.3 Spirometry with Reversibility.

2.2.5 Clinical Characterisation

For patients in the Airway Sampling in Severe Asthma Cohort, the full characterisation schedule
was performed on the same morning, starting with breath collection and ending with sputum
induction. In some cases, in order to obtain a viable sputum sample, it was necessary to repeat
sputum induction on a second date; if so, this was performed within 7 days of the breath sample.
Patients were excluded from the analysis if a viable sputum sample was not obtainable. A subset
of patients were invited to provide breath samples on five consecutive days in addition to the
characterisation schedule. Breath samples were collected in the same room, at the same time of
day for each measure. Sputum induction was performed within 7 days prior to the first breath

sample.

2.25.1.1 Skin Prick Testing

Skin prick testing was usually performed at 1% clinical assessment to a standard panel of
aeroallergens by the Asthma Specialist Nurses to common allergens using standard commercially
available solutions. This included positive (histamine) and negative (saline) controls plus
Aspergillus Fumigatus; Altenaria Tenius; Grass Mix Pollen; Birch Pollen; Weed Mix (Mugworth,
Nettle, Pellion, Dandelion, English Plantain); Flower Mix (Aster, Chrysanthemum, Dahlia, Golden
Rod, Marguerite); Rape Pollen; Dermatophagoides pteronyssinus; Dermatophagoides farina;
Cockroach; Feathers; Cat Fur; Dog Fur; Horse. Antihistamines were omitted for 3 days prior to the
test and Tricyclic Antidepressants for 7 days prior to the test. A positive skin prick test was defined

as a mean wheal diameter 23mm than the negative control.

2.25.1.2 Radiology Results

Clinically requested radiological investigations were usually performed by the UHSFT Radiology
Department, which operates according to Royal College of Radiology guidelines and standards.
Results were stored on the hospital’s local results server from which data was extracted (see data
management). If the patient had imaging results at another site (e.g. local secondary care

hospital), these were sought and imported to the study database.

2.2.5.1.3 Spirometry with Reversibility

Subjects were asked to refrain from the following if possible before lung function testing.

e No smoking for 24 hours
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e No alcohol consumption for 4 hours
e No vigorous exercise for 30 minutes
e No tight fitting clothing that could restrict full chest and/or abdominal expansion
e No food for 2 hours

e If clinically acceptable, no supplemental oxygen for 10 minutes

For spirometry, if patients were able to withhold their regular inhaler therapy then reversibility
testing was performed using salbutamol (2.5mg nebulised or 400ug via spacer device).

Restrictions before Reversibility Testing:
e Withhold short acting inhalers such as the RB-agonist salbutamol or the anticholinergic
drug ipratropium bromide for at least 4 hours.
e Withhold long acting B-agonist bronchodilators such as salmeterol for at least 12 hours.

e Withhold oral therapy with aminophylline or slow release 3-agonist for 12 hours

Spirometry was performed using either Carefusion® (Chatham, UK) or Nspire Health Ltd (Hertford,
UK) equipment according to ERS/ATS guidelines 2%, If subjects were unable to withhold regular
inhaler therapy then Spirometry results were recorded as “post-bronchodilator”. Z Scores and
percentage predictive values were calculated using GLI (Global Lung function Initiative) look up

tables.

2.2.5.14 Exhaled Nitric Oxide

Fraction of Exhaled Nitric Oxide (FeNO) was measured using the NIOX VERO® (Oxford, UK) or
Bedfont NObreath® (Aylesford, UK) at a flow rate of 50ml/s according to ERS/ATS guidelines .
Exhaled nitric oxide was measured before any other lung function test due to the influence of
breathing manoeuvres on FeNO readings. A minimum of 2 technically acceptable tests were

recorded with the two highest values within 10% of each other and the mean value reported.

20



Chapter 2

Full Lung Allied o - Specialist

. Spirometry, Flow-volume S Allergy, ENT, Speec History, Examination,
Function - Byssgmieivmi SLECEIRHE herapy, 61 Cinie, Seep PECICIINN 17 ctment & investigation
Testing Plethysmography, Exhaled Input Clinie Review Plan

Nitric Oxide

Asthma

Tett Physiotherapy, Psychology,
Specialist [y

MDT Input

Post Clinic
MDT

Asthma Specialist, Allergist,
Nurse, Physiotherapist,
Psychologist

Specialist

Skin Prick Test, Blood Tests,
Nurse Assessments (ACQ,
Review Nijmegen, Epworth) Inhaler
Technique, Asthma Action
Plan

Specialist

Doct History, Examination, Further induced Sputum, HRCT,
octor Treatment & Investigation Diagnostic Impulse Oscillometry

Review Plan

L8O asthma Specialist, Allergist,
MDT Nurse, Physiotherapist,
Psychologist

Figure 2.2  Schematic Representation of the Assessments and Interactions Patients Undertake as

Part of Their Assessment in the UHSFT Clinical Asthma Service

Abbreviations: Ear Nose and Throat (ENT), Gastrointestinal (GI) Multidisciplinary

(MDT), High Resolution Computed Tomography (HRCT)

2.3 Airway Sampling of Severe Asthma Patients

23.1 Study Design

As per the parent WATCH study, biological sampling of severe asthma patients was performed

entirely cross-sectionally.

2.3.2 Patient Recruitment

e Patients with severe asthma, confirmed by an asthma specialist in accordance with the
BTS (British Thoracic Society) guidelines with alternative causes for symptoms excluded
and treatment for co-morbidities optimised.

e Participants were aged between 18 and 80 years with no restrictions according to gender,

race, or smoking status.

21



Chapter 2

233 Sampling and Analyses

2331 Sputum Induction

Sputum was induced using a DeVilbiss® Ultraneb (DeVilbiss, NY, USA) following a standardised
protocol based on the methods described by ten Brinke et al 231, Patients were bronchodilated
with short acting beta-agonist (SABA) medication prior to sputum induction and lung function
(FEV1) was measured after each 5-minute nebulisation beginning with 0.9% saline followed by 3%
and finally 4.5%, if tolerated, to check if a 20% drop from post bronchodilator FEV1 had been
reached at which point the induction would be stopped. Lung function (FEV1) was measured after
each 5-minute nebulisation and after 2 minutes of nebulisation if the subject’s FEV1 <1.5L.

Samples were stored on ice during collection and transport to the laboratory for processing.

2.3.3.2 Sputum Processing

Sputum processing was performed in the NIHR Southampton Biomedical Research Centre BRC by
Clair Barber. The concurrent method of sputum processing was performed providing PBS and DTE
supernatant for analysis 232, Sputum samples were processed as soon as possible and within 2
hours of expectoration with 8x volume of phosphate buffered saline (PBS) and a proportion of
supernatant was then removed and the sample was further incubated with 0.2% dithioerythritol
(DTE) giving a final concentration of 0.1% DTE. Cytospins were stained using by rapid Romanowski
staining (Fisher Scientific, Loughborough, UK). The proportion of inflammatory cells were assessed

by counting 800 respiratory cells plus squamous to give a mean percentage of respiratory cells.

2333 MSD Analysis

Inflammatory mediators were measured using a V-plex multiple cytokine immunoassay platform
(Meso Scale Discovery, MSD) as per the manufacturer's instructions by Dr Laurie Lau. The assay

use SULFO-TAG labelled Detection Antibody for electroemiluminescence.

23.4 Microbial 16S rRNA Sequencing

DNA was extracted by Professor James Chalmers’ lab at Dundee University on the Qiacube DNA
extraction machine using the DNeasy PowerSoil Pro Kit (250). DNA extraction was performed in
batches. An extraction negative was performed for any new reagent used. Samples were analysed
in two 16s rRNA sequencing runs: Run 1 (111 sputum samples samples) and Run 2 (108 samples —
a mix of sputum and bronchoalevolar lavage). Each batch included a PCR negative control and a
Qiagen elution buffer negative control as well as a sequencing positive control (Mock Community

from Zymo — ZmyoBIOMICS Microbial Community DNA Standard — D6305). Stutter primers
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(Nextera v2 indexes SET A & C) were used. lllumina sequenced paired-end fastq files were

demultiplexed by sample and barcodes removed.

2.4 Breath Sampling of Severe Asthma Patients

Methodology relating to the Breath Sampling of Severe Asthma Patients is detailed in Chapter 6.
Briefly, this sub-study was designed in order to pair breath samples to sputum samples collected
in the Airway Sampling of Severe Asthma Patients sub-study and clinical characterisation of the

|Il

WATCH Study. The sub-study had two arms: “cross sectional” and “repeatability”.

2.5 Multidisciplinary Contributions

All the work presented in this thesis was performed by myself except in the following instances in

which work was performed by others or assisted by others:

Ms Kim Bentley was the WATCH study nurse and assisted with many of study visits and

procedures.

e Mr Matthew Harvey was the WATCH study co-ordinator and provided guidance on many
aspects of sub-study management, including the various ethics submissions

e Mr Colin Newell was the WATCH data manager and assisted with interactions with the
study database.

e Dr Hitasha Rupani’s team at Queen Alexandra Hospital contributed to characterisation of
participants recruited at the Portsmouth site

e Dr Clair Barber performed the initial pre-processing of many of the sputum samples and
performed the cell counts.

e Dr Laurie Lau performed the cytokine analyses of sputum samples

e Professor James Chalmers’ team at the University of Dundee, including (but not limited
to) Dr Hollian Richardson and Dr Alison Dicker performed the 16S sequencing of sputum
samples.

e The Owlstone Medical team performed the GCMS analysis of breath samples and pre-

processed the data according to their pipelines.
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Professor John Langley, Dr Grielof Koster and Dr Paul Afolabi provided guidance on
technical matters relating to organic chemistry and mass spectrometry

Dr Faisal Rezwan provided guidance on machine learning approaches used throughout
this thesis

Dr David Cleary provided guidance on bioinformatic approaches used in the microbial
analyses

Dr Ramesh Kurukulaaratchy is Pl for the WATCH Study

Professor Peter Howarth is Pl for the Airway Sampling of Severe Asthma Patients WATCH
sub-study and provided guidance for the Breath Sampling of Severe Asthma Patients

WATCH sub-study.
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Chapter 3 Characterising a Severe Asthma Cohort

3.1 Introduction

Traditional phenotyping efforts in severe asthma classify patients according to their clinical
characteristics such as demographics or clinical history 46233234 put provide little insight into the
nature of the underlying mechanisms. Stratification is thought to be more meaningful if done by
measures of airway inflammation®®?. The inflammation can be objectively measured by
guantitative cytometry of bronchial washes, bronchoalveolar lavage or bronchial biopsy 3 but is
most commonly performed in induced sputum 23>, Patients are typically stratified into groups
based upon the presence and absence of eosinophils and neutrophils: eosinophilic, neutrophilic,
mixed granulocytic (eosinophils and neutrophils both present) and paucigranulocytic (eosinophils
and neutrophils both absent) 1°1. Though there is no consensus cut-offs for these granulocytes
46,192,204 these inflammatory phenotypes appear to have distinct characteristics 2°4?3¢ and indicate

the delineation of underlying mechanisms.

Analysis from subsequent chapters of my thesis relates to this cohort and so the objectives of this

chapter are to

Describe the clinical characteristics of this cohort

e Confirm that the cohort is representative of the patients in whom a breathomics
biomarker would be clinically useful
e Describe the clinical characteristics of sputum inflammatory phenotypes

e Assess the predictive values of currently available clinical biomarkers

3.2 Chapter Specific Methods

3.2.1 Patient Population

The patients described in this chapter were recruited from the Airway Sampling in Severe Asthma
WATCH Sub-Study. Patients could be enrolled into study via two sources: patients already
enrolled into the WATCH Study of Difficult Asthma were recruited if they met severity criteria.
Alternatively, patients were recruited directly from the Regional Difficult to Treat Asthma Services

at University Hospital Southampton and Queen Alexandra Hospital via enrolment into the WATCH
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Study. Patients were excluded if they were unable to provide a viable sputum sample (=50%

viability).

3.2.2 Statistical Analysis

Statistical analysis was performed using Python scripting language (version 3.8.3) ?¥’. Clinical
characteristics were described using median and 95% confidence intervals with between group
comparisons by Mann Whitney U tests for continuous variables and absolute numbers with
percentages within each group and Chi Squared tests for categorical variables. Correlations were
calculated by spearman rank coefficients. Receiver Operating Characteristic (ROC) Curves were
constructed from the false positive and true positive rate and the performance of each biomarker

was reported by the Area Under the Curve (AUC).

In order to define the optimal cut-off for biomarkers predicting sputum eosinophils of >2% and
sputum neutrophils of >40%, >61% and >76%, the precision, recall and threshold values were
calculated for each biomarker value in the dataset for predicting the target. This process was
iterated over every possible cut-off. The F1 score was extracted for each cut-off and ranked so as

to find the optimal cut-off. The combined use of biomarkers refers to both criteria being satisfied.

33 Results

3.3.1 Patient Population Recruitment
Non WATCH Patientsin
WATCH Study the UHSFT and QAH
(n=359) Asthma Clinics

(n~950)

y A\ 4

Newly recruited into
T WATCH
(n=221)

Existing patients
(n=49)

Severe Asthma Patients
(n=270)

A\ 4

Successful Sputum Induction
(n=194)

Figure 3.1 Consort Diagram of Patients Recruited to the Airway Sampling in Severe Asthma

Cohort
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Patient recruitment started in October 2017 at UHSFT. At the start of the study, there were 359
patients in the WATCH study, of which 49 met the inclusion criteria for this cohort and were
invited for sputum induction. At the start of the recruitment, there were an estimated 550
patients in the asthma clinic, not already in the WATCH study. Over the recruitment period, a
further 400 patients had been referred to the service. Two hundred and twenty one patients met
the inclusion criteria for this cohort and were newly recruited to the WATCH study. Of the 270
patients undertaking sputum induction, 194 patients provided a viable sputum sample,
representing a 71.8% success rate (which includes patients providing a viable sputum sample at

repeat sputum induction attempts) (Figure 3.1).

3.3.1.1 Airway Sampling in Severe Asthma Cohort compared to Parent WATCH Cohort

[ WATCH 501

37 130 64 Thesis Cohort

Figure 3.2  Overlap of Patients in the Airway Sampling in Severe Asthma Cohort of Severe

Asthma and patients described in the WATCH Cohort of Difficult to Treat Asthma

All patients characterised in the Airway Sampling and Breath Sampling sub-studies were recruited
into the parent WATCH study. Of the patients that were included in the analysis of 501 difficult to
treat asthma patients 23, only one third of patients (130) were included in the Airway Sampling

sub-study (Figure 3.2).

27



Chapter 3

Table 3.1  Comparison of the Thesis Severe Asthma Cohort and WATCH Difficult to Treat

Asthma Cohort (excluding 130 overlapping patients)

Continuous variables expressed as median [Q1, Q3] with differences measured by

Mann-Whitney U test. Categorical variables expressed as n (%) with differences

measured by chi-square test. Abbreviations: ICS, inhaled corticosteroid; BDPe,

beclomethasone dose equivalent; FeNO, fraction of nitric oxide in exhaled breath;

post BD, post bronchodilator; FEV1, forced expiratory volume in 1 second; FVC,

forced vital capacity; FEF25-75%, forced expiratory flow at 25% to 75% of FVC; ACQ,

asthma control questionnaire, HADSTOT, Hospital Anxiety and Depression Total

Score; SNOT, SinoNasal Outcome Score

Sex (% Female)

Age

BMI

Smoker (% Never)
Atopy

Age of Onset

Exacerbations in Last 12
months

ICS (BDPe)

FeNO

Blood Eosinophil Count
PostBD FEV1

PostBD FEV1/FVC

PostBD FEF25-75 %predicted

ACQ6
HADSTOT
SNOT20

Airway Sampling of

Severe Asthma
(n=64)

31 (48.4)

54.5 [41.8,65.0]
27.7 [25.6,32.5]
39 (60.9)

46 (71.9)

23.0 [7.0,49.0]
2.0[0.0,4.0]

2960.0
[2000.0,3585.0]

28.0[16.5,52.0]
0.3[0.1,0.4]
84.9 [63.0,97.2]
69.0 [60.8,80.0]
55.9 [36.7,84.7]
2.5[1.2,3.0]
9.0 [6.0,15.0]
28.0[18.5,44.0]

WATCH Difficult to

Treat Asthma
(n=371)

255 (68.7)

51.0 [36.0,62.0]
29.5 [25.4,35.6]
202 (54.6)

213 (68.5)

18.0 [3.0,38.0]
3.0 [1.0,5.0]

3000.0
[2000.0,3000.0]

17.1[9.0,34.7]
0.2 [0.1,0.3]
77.8 [61.4,92.8]
69.0 [58.0,78.0]
49.8 [27.7,80.5]
2.5[1.5,3.5]
11.0 [6.0,18.5]
29.0 [17.0,46.8]

P-Value

0.003
0.024
0.358
0.640
0.700
0.121
0.019

0.420

<0.001
0.004
0.172
0.553
0.239
0.260
0.202
0.810

Compared to the WATCH Cohort of Difficult to Treat Asthma, the Airway Sampling in Severe

Asthma Cohort had fewer females and was marginally older (Table 3.1). The Airway Sampling in

Severe Asthma Cohort had higher blood eosinophil counts and FeNO despite similar levels of ICS

therapy but statistically fewer exacerbations in the past 12 months (Table 3.1). There were no

statistically significant differences between the two cohorts in terms of post-bronchodilator lung

function or self-reported asthma scores (Table 3.1).
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3.3.2 Sputum Inflammatory Phenotypes

Of the 194 patients that produced a viable sputum sample, 50% were found to have an
eosinophilia (either eosinophilic (36.4%) or mixed granulocytic (13.9%), Figure 3.3). 32.3% of
patients were paucigranular. Neutrophilia was seen in a third (either neutrophilic (17.4%) or
mixed granulocytic (13.9%) of patients. The mixed granulocytic phenotype was the rarest of the

four sputum inflammatory phenotypes.

30

Percentage of Whole Cohort
&

Paucigranular Eosinophilic MNeutrophilic Mixed Granular
Sputum Inflammatory Phenotype

Figure 3.3  Proportion of Sputum Inflammatory Phenotypes

Paucigranular = sputum eosinophils <2% and sputum neutrophils <61%; Eosinophilic
= sputum eosinophils >2% and sputum neutrophils <61%; Neutrophilic = sputum
eosinophils <2% and sputum neutrophils >61%; Mixed Granular = sputum

eosinophils>2% and sputum neutrophils >61%

There were no differences in terms of treatments (ICS dose, mOCS use or biologics use), co-
morbidities (smoking status, atopic status, GORD) or self-report asthma burden (ACQ6, HADS,

SNOT) between the inflammatory phenotypes (Table 3.4).

The eosinophilic and neutrophilic phenotypes were predominantly male (43.7% and 44.1% female
respectively) whilst the mixed granulocytic and paucigranular phenotypes were predominantly
female (59.3% and 66.1% respectively). The mixed and paucigranular phenotypes had BMlIs
greater than 30 (34.6 (27.2-36.2) and 30.8 (27.7-34.0) respectively).
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The eosinophilic phenotype was associated with a late age of asthma onset (33.0 (14.2-54.0)
years), nasal polyps (reported in 40.8%), frequent exacerbations (3 (1.0-5.0)), high FeNO (43.5
(27.0-71.8)), lung function reversibility (13.3 (4.3-20.8)) and poor post BD spirometry (FEV1 67.7
(54.8-83.5) %predicted).

The mixed granulocytic phenotype had the poorest post BD FEV1(62.6 (54.3,83.7) %predicted)
but, consistent with the high BMI (34.6 (27.2-36.2)), there is a trend towards these patients
having the lowest post BD FVC (77.4 (68.9-95.2) %predicted). Nevertheless, they continue to have
an obstructive post BD FEV1/FVC ratio (64.0 (54.0-77.5)) and evidence of small airways disease
(post BD FEF?>7°% 38.3 (23.8-82.2) %predicted).

The neutrophilic phenotype had the youngest age of onset (7.0 (2.0-19.0)), and relatively
preserved post BD spirometry: FEV1 (%predicted) 81.2 (60.1 - 92.6)), FVC (% predicted) 93.0 (77.8-
101.3). The pauci-granulocytic group had the highest proportion of female patients (66.1%) and
well preserved post BD spirometry: it is the only phenotype with a non-obstructive post BD

FEV1/FVC ratio 74.5 (64.5-81.0).
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Table 3.2  Clinical Characteristics Across Sputum Inflammatory Phenotypes

Continuous variables expressed as median [Q1, Q3] with differences measured by
Mann-Whitney U test.Categorical variables expressed as n (%) with differences
measured by chi-square test. Abbreviations: GORD, gastro-oesophageal reflux
disease; ICS, inhaled corticosteroid; BDPe, beclomethasone dose equivalent; OCS,
oral corticosteroids; IgE, Immunoglobulin E; IL-5, Interleukin 5; ACQ, asthma control
guestionnaire, HADSTOT, Hospital Anxiety and Depression Total Score; SNOT,
SinoNasal Outcome Score; FeNO, fraction of nitric oxide in exhaled breath; post BD,
post bronchodilator; FEV1, forced expiratory volume in 1 second; FVC, forced vital

capacity; FEF25-75%, forced expiratory flow at 25% to 75% of FVC;

Eosinophilic Mixed Neutrophilic Paucigranular P-
(n=71) Granular (n=34) N =62) Value
(n=27)

Female Sex 31 16 15 41 0.041
(43.7) (59.3) (44.1) (66.1)

Age 60.0 59.0 54.0 53.0 0.093
[47.5,70.5] [48.5,66.0] [44.0,62.0] [42.5,64.8]

BMI 27.6 34.6 28.9 30.8 0.017
[24.8,31.5] [27.2,36.2] [24.9,32.4] [27.7,34.0]

Never 46 16 21 41 0.66

Smoker (64.8) (59.3) (61.8) (66.1)

Atopic 46 17 19 37 0.829
(64.8) (63.0) (55.9) (59.7)

GORD 45 16 23 35 0.812
(63.4) (59.3) (67.6) (56.5)

Nasal Polyps 29 5 8 6 0.003
(40.8) (19.2) (24.2) (9.8)

Age of Onset  33.0 18.0 7.0 13.0 0.002
[14.2,54.0] [5.0,28.0] [2.0,19.0] [4.0,38.0]

Exacerbations 3.0 1.0 1.0 1.5 0.022

in the Last 12 | [1.0,5.0] [0.0,3.0] [0.0,2.0] [1.0,3.0]

Months

ICS (BDPe) 3000.0 3000.0 3000.0 3000.0 0.497
[2000.0,3780.0] [2000.0,3000.0] @ [2575.0,3755.0] [2000.0,3000.0]

Maintenance 31 13 11 24 0.58

0oCs (43.7) (48.1) (32.4) (38.7)

Anti IgE 6 3 5 5 0.72
(8.5) (11.1) (14.7) (8.1)

Anti IL-5 11 1 5 7 0.432
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ACQ6

HADS

SNOT20

FeNO

PostBD FEV1

(% predicted)

PostBD FVC

(% predicted)

(15.5)

2.3
[1.2,3.5]
9.0
[6.0,15.0]
31.5
[23.0,47.8]
43.5
[27.0,71.8]
67.7
[54.8,83.5]
91.5
[77.3,102.2]

PostBD 65.0
FEV1/FVC [52.0,70.0]
PostBD 38.1
FEF25-75% (% [27.1,50.1]
predicted)
FEV1 112%2)
Reversibility [4.3,20.8]
Blood 5.0[4.0,6.4]
Neutrophils
Blood 0.4 [0.2,0.5]
Eosinophils
Serum Total 174.8
IgE [46.7,411.0]
Sputum 34.8 [19.8,43.2]
Neutrophils
Sputum 16.8 [6.4,32.5]
Eosinophils

3.3.3

(3.7
2.7
[1.8,3.2]

8.0
[5.0,13.0]

19.0
[13.0,34.0]

235
[16.2,37.0]

62.6
[54.3,83.7]

77.4
[68.9,95.2]

64.0
[54.0, 77.5]

38.3
[23.8,82.2]

10.9
[3.0,24.2]

6.1[4.8,7.8]

0.3[0.2,0.6]

70.4
[21.6,261.9]

73.7 [70.2,81.6]

5.0([3.2,8.2]

(14.7)

2.7
[1.7,3.2]

13.0
[7.5,18.5]

33.5
[17.5,47.0]

19.5
[12.5,28.8]

81.2
[60.1,92.6]

93.0
[77.8,101.3]

68.0
[61.8, 75.8]

54.6
[36.0,69.4]

4.0
[0.1,9.6]

6.0 [4.5,7.6]

0.2 [0.1,0.2]

194.1
[56.5,539.3]

77.7 [68.6,88.7]

0.4 [0.2,0.8]

(11.3)

2.2
[1.4,3.0]

11.0
[6.5,16.5]

32.0
[18.8,45.0]

18.0
[11.0,28.8]

87.0
[72.3,99.7]

95.7
[84.8,105.8]

74.5
[64.5, 81.0]

68.8
[39.6,89.7]

7.7
[4.4,13.8]

4.8 [3.9,6.5]

0.1[0.1,0.2]

33.0
[14.2,136.2]

28.3[17.2,46.6]

0.5[0.1,0.9]

0.615

0.267

0.128

<0.001

<0.001

0.058

<0.001

<0.001

0.016

0.047

<0.001

<0.001

<0.001

<0.001

Assess Currently Available Clinical Biomarkers for Predicting Sputum Inflammatory

Phenotypes

Blood cell counts (eosinophils and neutrophils) are commonly available in a respiratory clinic.

Their relation to sputum cell counts was explored in the Airway Sampling in Severe Asthma

Cohort.
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3.3.3.1 Correlations Between Clinical Biomarkers and Sputum Eosinophilia and

Neutrophilia

Blood eosinophils and FeNO only share a weak positive correlation (r = 0.231, p<0.001), however
both have moderate correlations with sputum eosinophilia (r = 0.563, p<0.001 and r = 0.494,

p<0.001 respectively) (Figure 3.5).
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Figure 3.4 Spearman Rank Correlations of Clinical Biomarkers, FeNO (fraction of exhaled nitric

oxide in exhaled breath) and Blood Eosinophil counts with Sputum Eosinophilia

There are only weak correlations between blood and sputum neutrophil measures (r = 0.218, p =
0.004). Sputum Neutrophils have a weak negative correlation with FeNO (r = -0.229, p = 0.004)
but there is no statistically significant correlation between blood neutrophils and FeNO (Figure

3.6).
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Figure 3.5 Spearman Rank Correlations of Clinical Biomarkers, FeNO (fraction of exhaled nitric

oxide in exhaled breath) vs Blood and Sputum Neutrophils

3.3.3.2 Predicting Sputum Inflammatory Phenotypes with Clinical Biomarkers

A range of thresholds have been used for blood eosinophil counts and FeNO in clinical trials and in
clinical practice, ranging from 150-400 and 20-50 respectively, to predict sputum eosinophil
counts of >2%.Applying these cut-offs, produce an AUC range from 0.6 and 0.7 (Figure 3.7 and
Figure 3.8).
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produces ROC AUC=0.664
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Figure 3.7 ROC Curve for Different FeNO

Cut-offs for predicting Sputum

Eosinophils >2%

AUC scores are difficult to translate to clinical practice; but the positive predictive value is of

clinical salience. The highest cut-offs for blood eosinophils and FeNO produces the highest PPV for

predicting sputum eosinophilia >2%: 0.877 and 0.729 respectively (Table 3.5).

Table 3.3

Positive Predictive Value for Different Cut-offs for Clinical T2 Biomarkers in Predicting

Sputum Eosinophils >2%

Abbreviations: FeNO, fraction of exhaled nitric oxide in exhaled breath

Biomarker
Blood Eosinophils >200
Blood Eosinophils >300
Blood Eosinophils >400
FeNO >20
FeNO >30
FeNO >40

PPV

0.633
0.795
0.877
0.631
0.726
0.729

Using the iterative approach (described in 3.2.2), we can identify the optimal cut-off for these

biomarkers (defined as the (lowest cut-off producing the highest f1-score for predicting sputum

eosinophils >2%). This allows a check for which thresholds are best for T2 biomarkers and

provides a threshold to assess for biomarkers for which there is no recognised threshold. For the

clinically used biomarkers, blood eosinophil counts and FeNO, cut-offs towards the lower end of
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that which is used in clinical practice (200 and 15 respectively). Blood neutrophils and serum Total

IgE produce PPVs of 0.508 and 0.546 respectively (Table 3.6).

Table 3.4  Area Under the Curve and Positive Predictive Value for Clinical T2 Biomarkers in

Predicting Sputum Eosinophils >2% Biomarkers Using F1 Score Optimised Cut-offs

Variable Cut-off AUC PPV

Blood Eosinophil 200 0.664 0.633
Fraction of Exhaled Nitric Oxide (FeNO) @ 15 0.639 0.587
Blood Neutrophils 2.6 0.510 0.508
Serum Total IgE 19.1 0.573 0.546

3.3.3.3 Effect of OCS

Severe asthma patients are commonly treated with oral prednisolone (Table 3.4) due to their anti-
inflammatory effect. The AUC of a blood eosinophil count of >300 for predicting sputum
eosinophils >2% is 0.723 when patients are not on regular oral prednisolone; this drops to 0.630
when patients are on regular oral prednisolone (Figure 3.9). Similarly, the AUC for FeNO >20 for
predicting sputum eosinophils >2% is 0.720 when patients are not on regular oral prednisolone

but drops to 0.578 for patients who are (Figure 3.10).
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Predicting Sputum Neutrophilia with Clinical Biomarkers

The iterative approach (described in 3.2.2) for identifying optimal biomarker cut-offs for

predicting sputum eosinophils >2% can be leveraged to predict sputum neutrophilia.

Regardless of the sputum neutrophil cut-off used to define the target phenotype, none of the

clinically available biomarkers produced an AUC of greater than 0.55 (Table 3.7, Table 3.8, Table

3.9).

Table 3.5

Table 3.6

Table 3.7

Area Under the Curve and Positive Predictive Values for for Biomarkers Predicting

Sputum Neutrophils >40% Using F1 Score Optimised Cut-offs

Abbreviations: AUC, area under the curver; PPV, positive predictive value; FeNO,

fraction of exhaled nitric oxide in breath; IgE, Immunoglobulin E

Variable Cut-off AUC PPV

Blood Eosinophil 0 0.480 0.558
Fraction of Exhaled Nitric Oxide (FeNO) 2 0.412 0.520
Blood Neutrophils 3.1 0.536 0.593
Serum Total IgE 10 0.499 0.572

Area Under the Curve and Positive Predictive Values for for Biomarkers Predicting

Sputum Neutrophils >61% Using F1 Score Optimised Cut-offs

Abbreviations: AUC, area under the curver; PPV, positive predictive value; FeNO,

fraction of exhaled nitric oxide in breath; IgE, Immunoglobulin E

Variable Cut-off AUC PPV

Blood Eosinophil 0 0.565 0.358
Fraction of Exhaled Nitric Oxide (FeNO) 5 0.469 0.293
Blood Neutrophils 4.5 0.522 0.322
Serum Total IgE 22.1 0.533 0.336

Area Under the Curve and Positive Predictive Values for Biomarkers Predicting

Sputum Neutrophils >76% Using F1 Score Optimised Cut-offs

Abbreviations: AUC, area under the curver; PPV, positive predictive value; FeNO,

fraction of exhaled nitric oxide in breath; IgE, Immunoglobulin E

Variable Cut-off AUC PPV
Blood Eosinophil 0.1 0.530 0.167
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Variable Cut-off AUC PPV

Fraction of Exhaled Nitric Oxide (FeNO) 7 0.489 0.147

Blood Neutrophils 7.9 0.518 0.159

Serum Total IgE 27 0.525 0.164
3.3.35 Combinations of Biomarkers

Blood eosinophil count thresholds of >200, >300 and >400 produce an AUC of 0.661, 0.748 and
0.719 respectively (Figure 3.7) whilst a FeNO of >20, >30 and >40 produce an AUC of 0.661, 0.693
and 0.647 respectively (Figure 3.8). Using a combination of biomarkers, in an additive or “either-

or” manner, produces similar AUC scores (Table 3.10).

Table 3.8  Area Under the Curve for Predicting Sputum Eosinophils >2% using a combination of
Clinical T2 Biomarkers, Blood Eosinophil count and/or Fraction of Exhaled Nitric

Oxide in exhaled breath

Blood Eosinophil  FeNO AUC using AUC using
Count AND conditions  OR conditions
>200 > 20 0.702 0.624
>200 >30 0.683 0.671
>200 >40 0.637 0.660
>300 > 20 0.754 0.660
>300 >30 0.704 0.738
>300 >40 0.648 0.738
>400 > 20 0.704 0.676
>400 >30 0.658 0.754
>400 >40 0.622 0.734

The metric most valuable to clinicians is likely to be the positive predictive value of these
biomarkers, rather than the AUC. Blood eosinophil count thresholds of >200, >300 and >400
produce a PPV of 0.633, 0.759, 0.877 respectively whilst a FeNO of >20, >30 and >40 produce a
PPV of 0.631, 0.726 and 0.729, respectively (Table 3.5). Combining biomarkers in and additive
manner leads to the highest positive predictive value, again, when using the highest available
thresholds (blood eosinophils >400 and FeNO >40): PPV of 0.962 (Table 3.11). Using the T2

biomarkers in an “either or” manner does not lead to an increase in positive predictive value.

Table 3.9  Positive Predictive Value for Sputum Eosinophils >2% using a combination of Clinical
T2 Biomarkers, Blood Eosinophil count and/or Fraction of Exhaled Nitric Oxide in

exhaled breath
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Blood Eosinophil ~ FeNO PPV using PPV using
Count AND conditions ~ OR conditions
>200 > 20 0.735 0.624
>200 >30 0.810 0.671
>200 >40 0.846 0.660
>300 > 20 0.889 0.660
>300 >30 0.917 0.738
>300 >40 0.939 0.738
>400 > 20 0.935 0.676
>400 >30 0.919 0.754
>400 >40 0.962 0.734
3.4 Discussion
34.1 The Airway Sampling in Severe Asthma Cohort Represents a Severe Asthma

Population

The Airway Sampling in Severe Asthma Cohort was established with the aim of characterising a

real-world severe asthma patient population. Patients in the cohort were recruited directly from a

tertiary NHS service %7, in which complex adult asthma patients receive the same high quality

standard of care 26 . All the patients were treated with high dose ICS, with some requiring

maintenance oral corticosteroids and/or biologic treatments. Despite this, their asthma was

poorly controlled with frequent exacerbations, high T2 biomarkers, poor lung function and poor

self-report questionnaire scores. The WATCH cohort has been established as a real-world cohort

of difficult to treat asthma patients?3®23° and broad similarities have been observed when

comparing to established severe asthma cohorts. As such, The Airway Sampling in Severe Asthma

Cohort is broadly similar to the WATCH cohort, except, primarily, with respect to higher objective

markers of disease severity: FeNO and blood eosinophil counts, consistent with established

severe asthma cohorts 1°240-246

One striking difference to the established literature is the fact that the Airway Sampling for Severe

Asthma cohort demonstrates an almost equal gender split, which contrasts the typically reported

2:1 ratio of females to males. In the WATCH cohort, functional co-morbidities are more commonly

observed in female patients 23, As per the inclusion criteria, these co-morbidities need addressing

and optimisation ahead of recruitment, which may have contributed to a sex difference in how

quickly new referrals to the asthma clinic were recruited to the study.
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Severe asthma cohorts in Southampton tend to be slightly older and treated with higher doses of
ICS than other cohorts 238240 |ikely reflecting the local demographics and clinical practice
respectively. High dose inhaled corticosteroid therapy has long been known to cause systemic
effects, specifically adrenal insufficiency 24728, however the risks have historically been
underappreciated, in part due to the lack of an alternative 2*°. More recently, with the advent of
novel steroid sparing agents, greater focus has been placed on steroid stewardship 2°°, such that
the rates of steroid therapy seen in this cohort will become less frequent. The impact of high dose
steroid therapy also has biological implications, including altering the airway inflammatory cell
profile 2> and possibly the airway microbiome 2°2, which may impact the generalisability of the

findings from this thesis.

3.4.2 Sputum Eosinophils Represent a Robust Phenotype but Existing Biomarkers have

Limitations

Consistency between the Airway Sampling in Severe Asthma Cohort and the established severe
asthma literature is substantiated by analysis of sputum inflammatory phenotypes. When patients
are stratified by sputum eosinophil and neutrophil counts, the eosinophilic phenotype is usually
most prevalent 192236 This is the case in the Airway Sampling in Severe Asthma Cohort, though the
proportions of each phenotype are more evenly distributed, possibly due to the higher doses of
prescribed ICS, which are known to suppress sputum eosinophilia 8. Nevertheless, patients with
sputum eosinophilia in the Airway Sampling in Severe Asthma Cohort suffer from the most
frequent exacerbations, have a later age of onset, more nasal polyps, higher FeNO, worse post BD
spirometry but greater lung function reversibility. This phenotype is entirely consistent with the

T2 High phenotype 7.

The importance of identifying frequent exacerbators cannot be understated in asthma. Sputum
eosinophilia is a treatable trait >3 but if not identified and/or left untreated, can lead to asthma
exacerbations, which can be fatal 24, have significant direct and indirect costs to society 2>>%°¢ and
lead to accelerated loss of lung function 2. As discussed extensively in the Introduction, blood
eosinophils and FeNO have become established surrogates for airway eosinophilia ©2°8, however,
it is recognised that these biomarkers are sensitive to steroid treatment 82> often leading to
underestimation of airway eosinophilia 2°°. Considering the high dose ICS treatment of patients in
this cohort, it is not surprising that the AUCs for FeNO and blood eosinophils for predicting
sputum eosinophilia in the Airway Sampling in Severe Asthma Cohort do not match the AUCs of
0.8 reported in patients with mild asthma (on low doses of steroid therapy) . This is reinforced
by the observation that prescription of maintenance oral steroids yields a further drop in AUC

performance for these biomarkers. There are numerous reasons why clinical practice forgives this
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limitation; amongst them are the fact that sensitivity to treatment can be repurposed
advantageously, such as in the FeNO Suppression Test 2, This limitation is nevertheless

important to consider when assessing novel biomarkers.

The observation that FeNO and Blood Eosinophils have moderately positive correlations with
sputum eosinophilia but only share a weak correlation with each other corroborates the fact that
they reflect distinct mechanisms 2¢1: blood eosinophils reflect IL-5 regulated migration of
eosinophils from bone marrow to the circulation 262 and FeNO the increased production of NO
due to IL-13 upregulation of inducible NO synthases in airway epithelial and inflammatory cells 263,
This distinction in mechanisms explains why, in addition to independently predicting an increased
risk of asthma exacerbation, an elevation in both biomarkers results in an additive effect to
exacerbation risk 8324, This distinction becomes acute and clinically relevant when we consider
biologic therapies. Anti-IL-5 treatments, such as Mepolizumab, lead to a reduction in blood
eosinophils but not FeNO 2%, whist anti IL-4/13 treatments, such as Dupilumab, lead to a
reduction in FeNO but not blood eosinophils 266. Unsurprisingly, therefore, blood eosinophils are
useful predictors for anti-IL-5 treatment response, but FeNO is not 267, This, in turn, underlines the
fact that sputum eosinophilia is heterogenous 8. As argued, for biomarkers for sputum

eosinophilia, this heterogeneity is important to consider when assessing novel biomarkers.

3.4.3 T2 Low Phenotypes Remain Poorly Defined

In the Airway Sampling in Severe Asthma Cohort, there are very few distinguishing features for
the T2 low asthma phenotypes. Paucigranular patients were more often obese females with high
disease burden despite relatively well-preserved lung function; a phenotype that has been
described across numerous cluster analyses 16238268 Qbesity, however, is commonly seen to be a
characteristic of patients with airway neutrophilia 2%°: a coalescence only observed in patients
with mixed eosinophilic and neutrophilic inflammation in the Airway Sampling in Severe Asthma
Cohort and not pure neutrophilic patients. Other commonly cited features of T2 low asthma
include older age %271 and association with smoking ?7?, features that are not observed in the
Airway Sampling in Severe Asthma Cohort. These characteristics are most commonly identified

when clustering on clinical characteristics, which may explain this discrepancy.

Existing clinical biomarkers are able to hint at biological heterogeneity in the eosinophilic but not
neutrophilic phenotype which remains poorly understood 273, In addition to being unable to
identify a clear neutrophilic phenotype, we are unable to find useful surrogate markers for airway

neutrophilia 88, Just as with sputum eosinophilia, this may suggest that the target is too poorly
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defined and that the airway neutrophils are themselves a biomarker for another process, possibly

the airway microbiome 208274

3.4.4 Conclusions

The data presented demonstrates that the Airway Sampling in Severe Asthma Cohort represents a
real-world severe asthma cohort, maximising the translational potential of the findings in this and
subsequent thesis chapters. Describing patients by the inflammatory cell counts in induced
sputum samples successfully identifies a phenotype of frequent exacerbators, characterised by
airway eosinophilia. However, inflammatory phenotyping is unsuccessful in stratifying patients
with airway eosinophilia in a meaningful way. These data corroborate the finding that existing
biomarkers for the sputum eosinophilic phenotype are good but have their limitations. Finally,
these data demonstrate evidence that sputum eosinophilia is likely heterogenous in itself and

warrants further description.
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Chapter 4 Granulocyte Activation Markers in Severe

Asthma

4.1 Introduction

As described and discussed in 1.4.1 and 3.4, quantitative cytometric analysis of induced sputum
samples is a useful and well established method for which to describe the airway inflammation in
severe asthma patients °%1%3 put it has been proposed that inflammatory phenotypes would be
better defined by granulocyte activity rather than granulocyte presence 2%°. Alongside a milieu of
proinflammatory chemokines and cytokines, eosinophils release four cationic and acid granule
proteins: major basic protein, eosinophil cationic protein (ECP), eosinophil-derived neurotoxin
(EDN) and eosinophil peroxidase by piecemeal degranulation, exocytosis or cytolysis in response
to external stimuli 27°. Neutrophils similarly release granule enzymes, such as Neutrophil Elastase

(NE) and Myeloperoxidase (MPO) 27,

Sputum MPO is associated with sputum neutrophilia 4’ and sputum ECP and EDN with sputum
eosinophilia 2”7. However, limiting the definition of an inflammatory phenotypes to sputum cell
percentages may underestimate their prevalence, because granulocytes that have degranulated
may be missed ?’8. Moreover, the proteins are themselves biologically active and produce local (in

chronic rhinosinusitis) inflammatory effects. 27°.

Compared to healthy controls, Sputum ECP and EDN is elevated in patients with asthma 2%° and
increases with asthma severity 2. Whether measurement of these proteins can discriminate
between inflammatory phenotypes or inform new inflammatory phenotypes has not been
assessed. Similarly, where serum measurement of these proteins increases with asthma severity
282,283 they have been assessed as diagnostic biomarkers but not for phenotyping in severe

asthma.

This chapter seeks to describe the granulocyte activation markers in the Airway Sampling in

Severe Asthma Cohort. The objectives of this chapter are

e Describe the granulocyte activation markers in the a priori defined sputum inflammatory
phenotypes in sputum and serum
e Assess the serum measures of granulocyte activation as biomarkers for sputum

inflammatory phenotypes
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e Use sputum measures of granulocyte activation to define new phenotypes

4.2 Chapter Specific Methods

4.2.1 Patient Population

The patients described in this chapter were recruited from the Airway Sampling in Severe Asthma

WATCH Sub-Study

4.2.2 Statistical Analysis

Statistical analysis was performed using Python scripting language (version 3.8.3) 2¥’. Clinical
characteristics were described using median and 95% confidence intervals with between group
comparisons by Mann Whitney U tests for continuous variables and absolute numbers with

percentages within each group and Chi Squared tests for categorical variables.

A Jenks optimization method was used to determine the best arrangement of sputum EDN
measures into two different classes. In order to prevent the algorithm from simply removing

outliers at the tail of the histogram, the algorithm excluded values in the 90 centile and above.

Clustering was performed on the granulocyte degranulation measures only: MPO, neutrophil
Elastase, EDN and ECP. These measures were scaled and then used to calculate the Euclidean
distance between each subject. Ward’s hierarchical clustering was used to stratify patients. Visual

inspection of the dendrogram was used to determine the number of clusters.

4.3 Results

43.1 Sputum Granulocyte Activation Markers Across Inflammatory Phenotypes

Eosinophil activation markers (ECP and EDN) in sputum were most elevated in the eosinophilic
phenotypes: mixed granular and eosinophilic; sputum MPO was highest in the neutrophilic
phenotypes: mixed granular and neutrophilic whilst Sputum Elastase was highest in eosinophilic

patients (Table 4.1).
Table 4.1  Granulocyte Activation Markers in Sputum Across Sputum Inflammatory Phenotypes

Continuous variables expressed as median [Q1, Q3] with differences measured by
Kruskal Wallis test. Abbreviations: MPO, myeloperoxidase; NE, neutrophil elastase;

EDN, eosinophil derived neurotoxin; ECP, eosinophil cationic protein
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Paucigranular Eosinophilic

N = 62) (n=71)
Sputum MPO 818.8 753.7

[414.3,1821.0] [440.2,1239.8]
Sputum NE 6.5[3.2,9.7] 8.2 [4.5,13.6]
Sputum EDN 113.4 917.5

[36.5,295.7] [331.6,1474.0]
Sputum ECP 67.1[17.4,264.9] 961.0

[353.4,1863.5]

Sputum Eosinophil Derived Neurotoxin (EDN)
Across Sputum Inflammatory Phenotype
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Figure 4.1

Sputum Eosinophil Derived
Neurotoxin (EDN)
Concentrations Across Sputum

Inflammatory Phenotypes

Abbreviations: PG,
paucigranular; E, eosinophilic;
N, neutrophilic; MG, mixed

granular

Neutrophilic Mixed Granular
(n =34) (n=27)
2137.0 1815.0
[1553.5,6176.5] [1134.0,4081.0]
4.4 [3.1,6.0] 4.8 [3.2,8.6]
273.8 1224.0
[159.5,810.3] [421.0,1729.0]
367.3 1149.0
[118.2,1412.0] [269.1,3269.0]
Sputum Eosinophil Cationic Protein (ECP)
Across Sputum Inflammatory Phenotype
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Figure 4.2  Sputum Eosinophil Cationic

Protein (ECP) Concentrations
Across Sputum Inflammatory

Phenotype

Abbreviations: PG,
paucigranular; E, eosinophilic;
N, neutrophilic; MG, mixed

granular

P-
Value

<0.001

0.017
<0.001

<0.001

On post hoc pairwise comparisons, there is no difference in sputum ECP or sputum EDN between

eosinophilic and mixed granular patients but both are increased compared to paucigranular
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patients consistent with an “eosinophilic distribution” (Figure 4.1 and Figure 4.2). Sputum ECP and
EDN are also increased in neutrophilic patients (though not to the same extent as eosinophilic or
mixed granular patients) compared to paucigranular patients (Figure 4.1 and Figure 4.2).

Sputum Myeloperxidase (MPO)
Sputum Elastase Across Sputum Inflammatory Phenotype

Across Sputum Inflammatory Phenotype
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Figure 4.3  Sputum Neutrophil Elastase (MPO) Concentrations Across

Concentrations Across Sputum

Inflammatory Phenotypes

Abbreviations: PG,
paucigranular; E, eosinophilic;
N, neutrophilic; MG, mixed

granular

Sputum Inflammatory

Phenotypes

Abbreviations: PG,
paucigranular; E, eosinophilic;
N, neutrophilic; MG, mixed

granular

Though sputum Elastase concentrations were statistically significantly different on Kruskal-Wallis

testing (Table 4.1), no statistically significant differences were seen on post hoc pairwise

comparisons (Figure 4.3).

Sputum MPO concentrations followed a neutrophilic distribution: higher in the Neutrophilic and

Mixed Granular groups compared to paucigranular and eosinophilic phenotypes but not

statistically significant difference between them (Table 4.1 and Figure 4.4).

4.3.2

Serum Granulocyte Activation Markers Across Inflammatory Phenotypes

There were no differences in serum activation markers between the sputum inflammatory

phenotypes other than Serum ECP (p= 0.016) with levels higher in paucigranular patients (57.4

(18.0,121.4)), double that of the eosinophilic, mixed granular and neutrophilic phenotypes, which
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were otherwise similar (25.9 (12.1,58.2), 27.0 (12.5,47.9) and 28.0 (13.3,55.4), respectively) (Table
4.2).

Table 4.2  Granulocyte Activation Markers in Serum Across Sputum Inflammatory Phenotypes

Continuous variables expressed as median [Q1, Q3] with differences measured by
Kruskal Wallis test. Abbreviations: MPO, myeloperoxidase; NE, neutrophil elastase;

EDN, eosinophil derived neurotoxin; ECP, eosinophil cationic protein

Paucigranular Eosinophilic Neutrophilic Mixed Granular P-

N =62) (n=71) (n=34) (n=27) Value
Serum MPO 289.5 235.7 246.0 243.5 0.157

[195.4,380.9] [167.9,308.2] [181.3,307.7] [177.0,337.5]
Serum NE 58.3[38.3,94.6] @ 39.2[28.2,78.8] | 37.9[33.0,55.1] 44.6[18.7,87.4]  0.132
Serum EDN 54.9[36.4,77.8] 42.0[33.3,55.6] 47.8[32.5,57.8] 42.2[35.7,61.2] 0.217
Serum ECP 57.4[18.0,121.4] 25.9[12.1,58.2] 28.0[13.3,55.4] 27.0[12.5,47.9] 0.016

There were no statistically significant differences in serum EDN, serum MPO or serum Elastase
across the sputum inflammatory phenotypes (Table 4.2). Serum ECP was increased in
paucigranular patients compared to the three other phenotypes, in whom there was no

statistically significant difference between each other (Table 4.2).

433 Serum Granulocyte Activation Markers as Biomarkers for Sputum Inflammatory

Phenotypes

Sputum EDN shared moderate positive correlations sputum eosinophils (r= 0.667, p<0.001) as
well as blood eosinophils and FeNO (0.468, p<0.001 and r = 0.417, p<0.001, respectively).
However, there was no correlation between serum EDN and sputum EDN, nor serum EDN with

sputum eosinophils, blood eosinophils or FeNO (Figure 4.5).
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Figure 4.5 Spearman Rank Correlations Between Serum and Sputum Eosinophil Derived
Neurotoxin (EDN) with each other, Sputum Eosinophils and Clinical T2 Biomarkers,

Blood Eosinophils and Fraction of Exhaled Nitric Oxide (FeNO)

Sputum ECP shared moderate positive correlations sputum eosinophils (r= 0.588, p<0.001) as well
as blood eosinophils and FeNO (0.448, p<0.001 and r = 0.407, p<0.001, respectively). Similar to
EDN, there was no correlation between serum ECP and sputum ECP. There was no correlation
between serum ECP and sputum eosinophils or FeNO, though a weakly negative correlation was

seen between serum ECP and blood eosinophils (Figure 4.6).
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Figure 4.6 Spearman Rank Correlations Between Serum and Sputum Eosinophil Cationic Protein
(ECP) with each other, Sputum Eosinophils and Clinical T2 Biomarkers, Blood
Eosinophils and Fraction of Exhaled Nitric Oxide (FeNO)

No correlations were seen between serum and sputum MPO and sputum eosinophils, blood

eosinophils or FeNO (Figure 4.7). Sputum MPO did share a moderately positive correlation with
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sputum neutrophils (r = 0.659, p<0.001) but not blood neutrophils. No correlations were observed

between serum MPO and either sputum or blood neutrophils (Figure 4.8)
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Figure 4.7 Spearman Rank Correlations Between Serum and Sputum Myeloperoxidase (MPO)
with each other, Sputum Eosinophils and Clinical T2 Biomarkers, Blood Eosinophils

and Fraction of Exhaled Nitric Oxide (FeNO)
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Figure 4.8 Spearman Rank Correlations Between Serum and Sputum Myeloperoxidase (MPO)

with each other as well as Sputum and Serum Neutrophils

There were weakly positive correlations between sputum elastase and sputum eosinophils, blood
eosinophils and FeNO (r = 0.250, p=0.007, r=0.214, p=0.016, r=0.199, p=0.023, respectively) but
nor correlations with sputum or blood neutrophils. There were no correlations between serum
elastase and sputum elastase or sputum eosinophils, sputum neutrophils, blood eosinophils,

blood neutrophils or FeNO (Figure 4.9 and Figure 4.10).
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Figure 4.9 Spearman Rank Correlations Between Serum and Sputum Neutrophil Elastase (NE)
with each other, Sputum Eosinophils and Clinical T2 Biomarkers, Blood Eosinophils
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Figure 4.10 Spearman Rank Correlations Between Serum and Sputum Neutrophil Elastase (NE)

with each other as well as Sputum and Serum Neutrophils

Applying the data driven approach to identify the optimal cut-off of measures (3.5.2), serum
markers of inflammatory cell activation are poor predictors of sputum eosinophils of >2%: none of
serum MPO, elastase, EDN or ECP achieved an AUC more 0.52 (Table 4.3). They are similarly
limited in predicting sputum neutrophils of >40% (Table 4.4), >61% (Table 4.5) and >76% (Table
4.6).

Table 4.3  Area Under the Curve and Positive Predictive Value for Serum Cell Activation

Biomarkers in Predicting Sputum Eosinophils >2%
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Table 4.4

Table 4.5

Table 4.6

Variable

Serum Myeloperoxidase (MPO)

Serum Elastase

Serum Eosinophil Derived Neurotoxin (EDN)

Serum Eosinophil Cationic Protein (ECP)

Area Under the Curve and Positive Predictive Value for Serum Cell Activation

Cut-off
74.82
8.585
24.8
4.581

Biomarkers in Predicting Sputum Neutrophils >40%

Variable
Serum Myeloperoxidase (MPO)
Serum Elastase

Serum Eosinophil Derived Neurotoxin
(EDN)

Serum Eosinophil Cationic Protein (ECP)

Area Under the Curve and Positive Predictive Value for Serum Cell Activation

Cut-off
131.7
12.39
14.18

4.654

Biomarkers in Predicting Sputum Neutrophils >61%

Variable
Serum Myeloperoxidase (MPO)
Serum Elastase

Serum Eosinophil Derived Neurotoxin
(EDN)

Serum Eosinophil Cationic Protein (ECP)

Area Under the Curve and Positive Predictive Value for Serum Cell Activation

Cut-off
117.3
12.39
18.35

5.848

Biomarkers in Predicting Sputum Neutrophils >76%

Variable
Serum Myeloperoxidase (MPO)
Serum Elastase

Serum Eosinophil Derived Neurotoxin
(EDN)

Serum Eosinophil Cationic Protein (ECP)

Cut-off
158.1
36.52
29.04

12.27

AUC

0.495
0.505
0.523
0.505

AUC

0.495
0.506
0.480

0.506

AUC

0.492
0.504
0.506

0.504

AUC

0.503
0.503
0.524

0.503

PPV

0.508
0.513
0.523
0.513

PPV
0.577
0.582
0.568

0.582

PPV

0.317
0.323
0.324

0.323

PPV

0.159
0.159
0.165

0.159

Chapter 4
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43.4 Defining Inflammatory Phenotypes Using Granulocyte Activation Markers

Sputum EDN and ECP show a moderate relationship with sputum eosinophils, and sputum MPO
with sputum neutrophils. This imperfect overlap indicates that they may be giving slightly
different information and the possibility that patients may be discordant e.g. have high sputum

eosinophils but low sputum EDN or low sputum eosinophils but high sputum EDN.

43.4.1 Defining Eosinophil Activation Phenotype

Visual inspection of scatterplots identifies of sputum eosinophil and sputum EDN (Figure 4.11)
and sputum ECP (Figure 4.12) demonstrates potential discordance. In patients with high sputum
eosinophils, there is a heterogeneity in sputum EDN and in patients with low sputum ECP, there is

heterogeneity in sputum eosinophils.
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Figure 4.11 Scatterplot with marginal Figure 4.12 Scatterplot with marginal
histograms of Sputum histograms of Sputum
Eosinophil Derived Neurotoxin Eosinophil Cationic Protein
(EDN) and Sputum Eosinophils (ECP) and Sputum Eosinophils

The histogram of sputum EDN indicates that this variable may lend itself well to exploration as a
dichotomous variable (right-hand y axis of Figure 4.11): there appears to be a bimodal distribution
with the first peak close to 0 and a second peak at around 1500 and reasonable numbers
associated with the second peak. By contrast, the histogram of sputum ECP (right-hand y axis of

Figure 4.12) only indicates a right skewed distribution which would not immediately lend itself to
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dichotomisation with the same being true for sputum MPO (Figure 4.13and Figure 4.14) A natural

break in sputum EDN was identified using a Jenks one dimensional clustering algorithm at 697

(Figure 4.15)
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Figure 4.13 Kernel Density Estimate Plot
visualizing the distribution of
Sputum Eosinophil Cationic

Protein (ECP)
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Figure 4.14 Kernel Density Estimate Plot

visualizing the distribution of
Sputum Myeloperoxidase

(MPO)
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Figure 4.15 Kernel Density Estimation Plot Visualising High and Low Sputum Eosinophil Derived

Neurotoxin (EDN) Defined by Identifying a Jenks Natural Break in the Distribution of
EDN

Table 4.7

Clinical Characteristics in Patients with Low and High Sputum Eosinophil Derived
Neurotoxin (EDN)

Continuous variables expressed as median [Q1, Q3] with differences measured by
Mann-Whitney U test. Categorical variables expressed as n (%) with differences
measured by chi-square test. Abbreviations: GORD, gastro-oesophageal reflux
disease; ICS, inhaled corticosteroid; BDPe, beclomethasone dose equivalent; OCS,

oral corticosteroids; Ig, Immunoglobulin E; IL-5, Interleukin 5; ACQ, asthma control
guestionnaire, HADSTOT, Hospital Anxiety and Depression Total Score; SNOT,
SinoNasal Outcome Score; FeNO, fraction of nitric oxide in exhaled breath; post BD,

post bronchodilator; FEV1, forced expiratory volume in 1 second; FVC, forced vital

capacity; FEF25-75%, forced expiratory flow at 25% to 75% of FVC

Low Sputum EDN High Sputum EDN

P Value
(n=131) (n=64)
Female Sex 74 (56.5) 29 (45.3) 0.188
Age 54.0 [44.0,66.0] 59.5 [52.2,68.0] 0.081
BMI 30.1[26.1,35.5] 27.6 [25.6,31.2] 0.027
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Never Smoker

Atopic

GORD

Nasal Polyps

Age of Onset
Exacerbations in the Last 12 Months
ICS (BDPe)

Maintenance OCS

Anti IgE

Anti IL-5

ACQ6

HADS

SNOT20

FeNO

PostBD FEV1 (% predicted)
PostBD FVC (% predicted)
PostBD FEV1/FVC

PostBD FEF25-75% (% predicted)
FEV1 Reversibility

Blood Neutrophils

Blood Eosinophils

Serum Total IgE

Sputum Neutophils

Sputum Eosinophils

Low Sputum EDN
(n=131)

81 (61.8)

83 (63.4)

82 (63.6)

28 (21.7)

15.0 [3.5,37.0]
1.0[1.0,3.0]
3000.0 [2000.0,3200.0]
56 (42.7)

14 (10.7)

20 (15.3)
2.3[1.5,3.1]
11.0 [6.8,16.0]
29.0 [16.2,45.0]
21.0[14.0,38.0]
78.3[62.3,93.6]
91.6 [77.3,102.7]
70.0 [62.5,80.0]
51.3 [35.8,83.1]
8.9[3.7,16.3]
5.2[4.2,7.0]
0.2[0.1,0.3]
77.7 [19.6,362.0]
45.9 [24.9,68.1]
0.9 [0.2,3.5]

High Sputum EDN
(n=64)

43 (67.2)

36 (56.2)
38(59.4)
20(31.7)

28.0 [6.5,49.0]
3.0[0.0,5.0]
3000.0 [2000.0,3125.0]
23 (35.9)

5(7.8)

4(6.2)
2.3[1.3,3.4]
9.0[6.0,15.0]
32.0[23.2,44.8]
35.0 [22.5,65.0]
68.0 [52.9,86.5]
91.6 [75.9,101.2]
62.5[51.7,69.2]
34.6 [21.7,59.5]
10.1 [3.6,17.4]
5.3[4.2,6.2]
0.3[0.2,0.6]
137.0 [37.4,289.9]
36.8 [22.3,66.6]
13.7 [4.1,31.0]

Chapter 4

P Value

0.601
0.424
0.684
0.183
0.153
0.116
0.897
0.451
0.705
0.117
0.904
0.236
0.423
<0.001
0.006
0.605
<0.001
<0.001
0.995
0.424
<0.001
0.309
0.484
<0.001

High sputum EDN was seen in 32.8% of patients. These patients had a higher FeNO (34.0 (22.5-

65.0) vs 21.0 (14.0-38.0), p<0.001), higher blood eosinophil count (0.3 (0.2-0.6) vs 0.2 (0.1-0.3),

p<0.001) and sputum eosinophils (13.7 (4.1-31.0) vs 0.9 (0.2-3.5), p<0.001). They also had worse

lung function in terms of postBD FEV1 (% predicted) (68.0 (52.0 - 86.5), vs 78.3 (62.3 - 93.6), p

=0.006) and postBD FEV1/FVC (62.5 (51.7 - 69.2) vs 70.0 (62.5 - 80.0), p<0.001). However, there

were no statistically significant differences between sputum EDN high and low patients in terms

T2 clinical characteristics, such as presence of nasal polyps or later age of onset, or of clinical

endpoints such as exacerbations or ACQ6 (Table 4.7).
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4.3.4.2 Discordance Between Eosinophil Presence and Activation

Patients were categorised in a 2 x 2 matrix of Sputum EDN low and high, using the 697 cut-off
described above) and sputum eosinophil low and high, using a 2% cut-off. 83 (42.56%) patients
had no evidence of eosinophil presence or of high activity and 50 (25.64%) patients had evidence
of eosinophil presence and high activity. 48 (24.62%) of patients had evidence of eosinophil
presence but not high activity and 14 (7.18%) of patients had no evidence of eosinophil but high

activity (Figure 4.16 ).
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Figure 4.16 Scatterplot of Sputum Eosinophils and Sputum Eosinophil Derived Neurotoxin (EDN).

Horizontal line delineates high and low EDN using the Jenks Natural Break at 697.

Vertical line delineates high and low sputum eosinophils using the 2% cut-off.

The clinical characteristics of patients categorised in this manner is described in Table 4.8. T2
characteristics, such as age of onset and presence of nasal polyps, are statistically significant
between these groups, as are objective markers of severity such as FeNO, post BD lung function
and exacerbation frequency. The non-eosinophilic (no eosinophils and no evidence of high
activity) patients have the youngest age of onset, fewest exacerbations, lowest FeNO and most
persevered post BD lung function. Patients with no eosinophils but high EDN appear most similar

to the non-eosinophilic group.

Table 4.8  Clinical Characteristics in Patients Stratified by Eosinophil Presence, using Sputum

Eosinophil Counts, and Activity, using Eosinophil Derived Neurotoxin (EDN)

Continuous variables expressed as median [Q1, Q3] with differences measured by
Kruskal Walis test. Categorical variables expressed as n (%) with differences
measured by chi-square test. Abbreviations: GORD, gastro-oesophageal reflux

disease; ICS, inhaled corticosteroid; BDPe, beclomethasone dose equivalent; OCS,
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oral corticosteroids; IgE, Immunoglobulin E; IL-5, Interleukin 5; ACQ, asthma control

guestionnaire, HADSTOT, Hospital Anxiety and Depression Total Score; SNOT,

SinoNasal Outcome Score; FeNO, fraction of nitric oxide in exhaled breath; post BD,

post bronchodilator; FEV1, forced expiratory volume in 1 second; FVC, forced vital

capacity; FEF25-75%, forced expiratory flow at 25% to 75% of FVC. Eosinophil; eos,

Sputum measure of eosinophil derived neurotoxin; SpEDN,

Female Sex

Age

BMI

Never
Smoker

Atopic
GORD
Nasal Polyps
Age of Onset

Exacerbation
s in the Last
12 Months

ICS (BDPe)

Maintenance
0CsS

Anti IgE
Anti IL-5
ACQ6
HADS
SNOT20

FeNO

PostBD FEV1
(% predicted)

PostBD FVC
(% predicted)

Sputum Eos
Low

AND SpEDN
Low

(n=83)
48 (57.8)

53.0
[42.0,62.5]

30.4
[26.1,34.5]

55 (66.3)

33 (39.8)
51 (63.0)
12 (14.8)
11.0[3.0,32.2]

1.0 [1.0,3.0]

3000.0
[2000.0,3500.0
]

32 (38.6)

9 (10.8)

12 (14.5)
2.3[1.5,3.0]
11.0[7.0,17.0]

32.0
[18.0,45.0]

19.0
[11.0,30.0]

84.9
[67.1,96.4]

93.1
[82.6,102.6]

Sputum Eos
Low

BUT SpEDN
High
(n=14)
8(57.1)

58.0
[49.2,64.5]

28.6
[26.1,30.9]

7 (50.0)

8 (57.1)
8 (57.1)
2 (14.3)
15.0 [3.0,40.0]

1.0[0.0,2.0]

3000.0
[2575.0,3000.0
]

3(21.4)

1(7.1)

2.4[1.5,3.1]
9.0 [7.0,10.0]

23.5
[16.8,42.2]

18.5
[12.8,27.8]

86.4
[74.0,96.5]

96.7
[86.4,109.7]

Sputum Eos
High
BUT SpEDN
Low

(n=48)
26 (54.2)

58.5
[46.8,69.2]

29.6
[26.6,35.6]

26 (54.2)

15 (31.2)
31 (64.6)
16 (33.3)

32.0
[13.0,41.0]

1.5[0.0,4.0]

3000.0
[2000.0,3000.0
]

24 (50.0)

5 (10.4)
8(16.7)
2.4[1.1,3.2]
10.0 [6.0,14.0]

23.0
[14.0,42.0]

32.0
[18.2,62.5]

70.5
[60.0,88.7]

86.9
[75.1,102.5]

Sputum Eos
High

AND SpEDN
High

(n=50)

21 (42.0)

60.0
[53.0,68.0]

27.4
[25.4,31.1]

36 (72.0)

20 (40.0)
30 (60.0)
18 (36.7)

29.5
[12.2,49.8]

3.0[1.0,6.0]

3000.0
[2000.0,3900.0
]

20 (40.0)

4(8.0)
4(8.0)
2.3[1.3,3.5]
8.0 [5.5,15.5]

33.0
[25.0,45.5]

42.0
[27.2,71.0]

63.9
[48.9,81.2]

915
[72.8,99.5]

Value

0.344
0.057

0.18

0.33

0.363
0.942
0.013
0.02

0.021

0.97

0.257

0.936
0.259
0.991
0.368
0.433

<0.00

<0.00

0.238
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PostBD
FEV1/FVC

PostBD
FEF25-75%
(% predicted)
FEV1
Reversibility

Blood
Neutrophils

Blood
Eosinophils
Serum Total
IgE

Sputum
Neutophils

Sputum
Eosinophils

Sputum Eos
Low

AND SpEDN
Low

(n=83)

73.0
[63.5,81.0]

62.1
[38.1,85.0]

7.1[2.9,12.6]
5.2 [4.2,7.1]
0.1[0.1,0.2]
57.1

[15.8,249.6]

45.9
[24.3,66.1]

0.4 [0.1,0.8]

Sputum Eos
Low

BUT SpEDN
High
(n=14)

68.0
[66.0,75.8]

64.8
[36.6,77.5]

3.9[-1.8,14.2]
4.8[3.9,6.2]
0.2[0.1,0.2]
132.7

[30.2,395.3]

68.9
[30.7,84.3]

0.8[0.6,1.3]

Sputum Eos
High
BUT SpEDN
Low

(n=48)

68.5
[56.8,76.2]

42.3
[31.3,75.6]

15.3[4.2,26.3]
5.5[4.3,6.7]
0.3[0.1,0.5]
149.0

[37.3,492.0]

45.3
[32.5,70.9]

5.0 [3.3,11.9]

Sputum Eos
High

AND SpEDN
High

(n=50)

60.0
[49.5,67.5]

315
[21.2,43.2]

11.3[4.1,17.4]
5.5 [4.2,6.4]
0.4 [0.3,0.6]
137.0

[40.4,280.7]

36.0
[21.6,55.8]

18.1[9.1,35.8]

Value

<0.00

<0.00

0.043

0.845

<0.00

0.062

0.087

<0.00

The two groups with high sputum eosinophil presence (i.e. low EDN and high EDN), of almost

equal numbers, have the latest age of onset, highest frequency of nasal polyps, highest FeNO and

worst post BD lung function. These features are worse in patients with high eosinophils and high

EDN activity, in comparison to patients with high eosinophils and low EDN. This is most notable in

terms of exacerbation frequency, 1.5 (0.0-4.0), in patients with high sputum eosinophils but low

EDN, similar to that of the non-eosinophilic and low EDN patients, 1.0 (1.0-3.0), contrasting

eosinophil high and EDN high patients who have an exacerbation frequency in the last 12 months

of 3.0 (1.0 — 6.0)(Figure 4.18).
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Figure 4.17 Sputum Eosinophil Derived

Neurotoxin (EDN) Across
Categories of Defined by
Eosinophil Presence and

Activity.

P values calculated from post-
hoc pairwise comparisons
corrected for multiple
comparisons by Benjamini-

Hochberg Procedure.
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Figure 4.18 Exacerbation Frequency Across

Categories of Defined by
Eosinophil Presence and

Activity.

P values calculated from post-
hoc pairwise comparisons
corrected for multiple
comparisons by Benjamini-

Hochberg Procedure.
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43.4.3

Defining Neutrophil Activation Phenotype

Chapter 4

Although, the density plot did not immediately lend itself to dichotomisation, the one-

dimensional clustering algorithm applied to EDN was applied to sputum MPO for the purposes of

an exploratory analysis. Patients were divided at a break of 844, with 102 (52.31%) patients

classified as low neutrophil activity and 93 (47.69%) as high neutrophil activity.

Patients with a high sputum MPO were more often male, older and had higher sputum

neutrophils but there were otherwise no other distinguishing clinical characteristics (Table 4.9)

There was a trend towards significance in blood neutrophilia being higher in patients with a high

sputum MPO.

Table 4.9

(MPQ) Calculated by Jenks Natural Breaks

Clinical Characteristics in Patients with Low and High Sputum Myeloperoxidase

Continuous variables expressed as median [Q1, Q3] with differences measured by

Kruskal Walis test. Categorical variables expressed as n (%) with differences

measured by chi-square test. Abbreviations: GORD, gastro-oesophageal reflux

disease; ICS, inhaled corticosteroid; BDPe, beclomethasone dose equivalent; OCS,

oral corticosteroids; IgE, Immunoglobulin E; IL-5, Interleukin 5; ACQ, asthma control

questionnaire, HADSTOT, Hospital Anxiety and Depression Total Score; SNOT,

SinoNasal Outcome Score; FeNO, fraction of nitric oxide in exhaled breath; post BD,

post bronchodilator; FEV1, forced expiratory volume in 1 second; FVC, forced vital

capacity; FEF25-75%, forced expiratory flow at 25% to 75% of FVC.

Female Sex
Age

BMI

Never Smoker
Atopic

GORD

Nasal Polyps
Age of Onset

Exacerbations in the
Last 12 Months

ICS (BDPe)

Low Sputum MPO
(n=102)

65 (63.7)

53.0 [42.0,62.0]
29.4 [26.0,33.5]
60 (58.8)

35 (34.3)

59 (59.0)

27 (27.0)
20.0[5.0,41.0]
2.0[1.0,4.0]

3000.0
[2000.0,3840.0]

High Sputum MPO
(n=93)

38 (40.9)

61.0 [52.0,68.0]
29.1[25.7,34.6]
64 (68.8)

41 (44.1)

61 (65.6)

21 (22.8)

16.0 [4.0,43.0]
2.0[0.0,4.0]

3000.0
[2000.0,3000.0]

P Value

0.002
<0.001
0.523
0.127
0.211
0.427
0.617
0.905
0.412

0.429
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Low Sputum MPO High Sputum MPO P Value
(n=102) (n=93)
Maintenance OCS 41 (40.2) 38 (40.9) 0.959
Anti IgE 7 (6.9) 12 (12.9) 0.238
Anti IL-5 16 (15.7) 8 (8.6) 0.199
ACQ6 2.5[1.5,3.2] 2.3[1.3,3.0] 0.431
HADS 11.0 [6.0,16.0] 10.0 [6.0,15.0] 0.341
SNOT20 30.0[19.0,45.0] 29.0 [15.5,45.0] 0.640
FeNO 25.0[15.0,50.8] 26.0[17.0,43.0] 0.835
PostBD FEV1 (% 74.9 [62.7,92.7] 77.4 [56.2,91.0] 0.457
predicted)
PostBD FVC (% 91.7 [81.7,100.7] 91.4 [75.3,105.2] 0.806
predicted)
PostBD FEV1/FVC 69.0 [61.0,78.0] 66.0 [56.0,77.0] 0.174
PostBD FEF25-75% (% 45.4 [31.5,81.3] 46.1 [28.1,69.7] 0.394
predicted)
FEV1 Reversibility 8.1[3.2,17.6] 9.6 [3.8,16.1] 0.951
Blood Neutrophils 4.8 [3.9,6.6] 5.6 [4.5,6.7] 0.087
Blood Eosinophils 0.2 [0.1,0.4] 0.2 [0.1,0.4] 0.56
Serum Total IgE 89.7 [29.0,359.9] 104.9 [21.2,280.7] 0.921
Sputum Neutrophils 36.4 [19.0,53.5] 54.5 [35.8,73.0] <0.001
Sputum Eosinophils 2.1[0.4,14.3] 1.5[0.5,7.8] 0.706

The one-dimensional clustering algorithm divided patients into similarly sized groups, indicating
that the cut (844) was close to the population median (1020.5). In order to force the
dichotomisation of sputum MPO, patients were divided into equal sputum MPO tertiles with a

view to comparing high and low sputum MPO patients (Figure 4.19).
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Sputum Myeloperxidase (MPO) Tertiles
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Figure 4.19 Boxplot of Sputum Myeloperoxidase in Patients Stratified into Equal Tertiles

Consistent with the one-dimensional clustering, high sputum MPO (Table 4.9) was associated with

older males.

They have a high proportion of never smokers and the least bronchodilator

reversibility but little else to distinguish them from other patients (Table 4.10).

Table 4.10

Female Sex

Clinical Characteristics in Patients with Low, Mid and High Sputum Myeloperoxidase

(MPO), calculated from MPO Tertiles

Continuous variables expressed as median [Q1, Q3] with differences measured by
Kruskal Walis test. Categorical variables expressed as n (%) with differences
measured by chi-square test. Abbreviations: GORD, gastro-oesophageal reflux
disease; ICS, inhaled corticosteroid; BDPe, beclomethasone dose equivalent; OCS,
oral corticosteroids; Igg, Immunoglobulin E; IL-5, Interleukin 5; ACQ, asthma control
questionnaire, HADSTOT, Hospital Anxiety and Depression Total Score; SNOT,
SinoNasal Outcome Score; FeNO, fraction of nitric oxide in exhaled breath; post BD,
post bronchodilator; FEV1, forced expiratory volume in 1 second; FVC, forced vital

capacity; FEF25-75%, forced expiratory flow at 25% to 75% of FVC.

Lowest Sputum Mid Sputum Highest Sputum P Value
MPO Tertile MPO Tertile MPO Tertile

(n=56) (n=56) (n=56)

43 (76.8) 25 (44.6) 22 (39.3) <0.001
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Age

BMI

Never Smoker
Atopic

GORD

Nasal Polyps
Age of Onset

Exacerbations in
the Last 12
Months

ICS (BDPe)

Maintenance OCS
Anti IgE

Anti IL-5

ACQ6

HADS

SNOT20

FeNO

PostBD FEV1 (%
predicted)

PostBD FVC (%
predicted)

PostBD FEV1/FVC

PostBD FEF25-
75% (%
predicted)

FEV1 Reversibility
Blood Neutrophils
Blood Eosinophils

Serum Total IgE

Sputum
Neutrophils

Sputum
Eosinophils
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Lowest Sputum
MPO Tertile
(n=56)

50.5 [40.8,59.2]
27.7 [24.8,32.7]
35 (62.5)

38 (67.9)

28 (51.9)

16 (29.1)
18.5[3.0,37.0]
3.0[1.0,5.0]

3000.0
[2000.0,3840.0]

22 (39.3)

3 (5.4)

9(16.1)
2.3[1.3,3.2]
11.0 [5.0,16.0]
32.0[23.0,43.0]
25.0 [14.0,64.5]
74.5 [63.5,90.5]

92.2 [85.5,101.3]
66.0 [56.0,77.0]

41.9 [29.0,72.0]

11.9 [4.7,18.9]
4.8[3.8,6.9]

0.2 [0.1,0.4]
75.6 [22.7,304.8]

24.3[14.2,42.2]

1.9 [0.3,26.3]

Mid Sputum
MPO Tertile
(n=56)

62.5 [52.8,69.2]
29.9 [26.8,34.4]
32(57.1)

32 (57.1)

38 (67.9)

16 (28.6)
29.0[5.0,50.5]
2.0[0.0,4.0]

3000.0
[2490.0,3605.0]

22 (39.3)

9 (16.1)

5(8.9)
2.2[1.3,3.0]
10.0 [7.0,16.0]
26.0 [22.0,45.0]
27.0[17.5,51.0]
74.3 [58.9,88.1]

87.1[74.5,102.5]

68.0 [61.8,78.0]
41.4 [32.5,76.1]

11.7 [6.5,21.1]
5.0 [4.4,6.1]
0.3[0.1,0.4]

148.9
[39.8,311.7]

41.1[26.9,51.6]

5.1[0.9,15.2]

Highest Sputum
MPO Tertile

(n=56)

60.0 [50.0,67.2]
29.4 [25.7,34.8]
40 (71.4)
33 (58.9)
38 (67.9)
11 (20.0)
15.5[3.0,34.8]
1.0 [0.0,3.0]

2960.0
[2000.0,3000.0]

25 (44.6)
5(8.9)

6 (10.7)

2.6 [1.5,3.2]
9.0 [5.0,16.0]
29.0 [10.0,46.5]
24.5[15.8,42.0]
81.9 [55.9,91.8]

93.1[77.0,108.1]
66.0 [54.0,75.5]

47.8[26.3,73.3]

5.5[1.1,9.9]
5.9 [4.6,7.5]
0.2[0.1,0.3]
62.5 [17.5,244.6]

67.8 [46.4,78.8]

1.1[0.4,5.6]

P Value

0.001
0.279
0.021
0.459
0.136
0.473
0.285
0.143

0.101

0.801
0.160
0.478
0.891
0.571
0.500
0.776
0.824

0.303

0.666

0.873

0.004
0.142
0.166
0.337

<0.001

0.013



Chapter 4

4.4 Discussion

44.1 Serum Activity Relates to Airway Activity

Generally we find that serum and sputum EDN and ECP poorly correlate between compartments,
contrasting the relationship between blood and sputum eosinophils, which likely represents the
migration of eosinophils from bone marrow to the airways via the bloodstream 22, Rather, we
observe that ECP and EDN measures only correlate with eosinophil numbers in the same
compartment (blood or sputum). This is consistent with the finding that the predictive power or
blood EDN for predicting anti IL-5 response is largely due to its correlation with blood eosinophil
counts 28 and that sputum eosinophil counts are not good predictors of Mepolizumab
response?®’. This finding is in keeping with the premise that the ECP and EDN should be released
in response external stimuli 275, i.e. at the site of its activity rather than in the bloodstream

through transit.

Curiously, therefore, we find that paucigranular patients had the highest levels of serum ECP. This
suggests that there is some form of eosinophil mediated systemic inflammation. This phenotype
has a higher BMI (Table 3.4), which has numerous reported links to eosinophilia: blood
eosinophilia has been associated with obesity and metabolic syndrome 22>, waist-to-hip ratio with
IL-5 28 and, in a large population study, BMI was found to increase with ECP 282, Serum ECP likely

reflects this systemic inflammatory process rather than airway inflammation.

4.4.2 Sputum Eosinophil Measurement Remains Important to Asthma Phenotyping

The EDN dichotomisation identifies a cohort of patients with T2 high features, however this does
not appear as clinically distinct as using sputum eosinophils. This may simply reflect a poorly
defined cut-off. The one-dimension clustering identified a cluster close to the median value, which
may not force separation well enough. Alternatively, the patients in this study were characterised
whilst stable, outside of an exacerbation state. It is possible, under these conditions, the sputum
eosinophils have yet to degranulate and release the proteins contained within. If so, cell numbers
may in fact be more relevant than activation markers, which corroborates the wealth of data

surround airway eosinophils and risk of exacerbations #2.

443 Conclusions

To summarise, there is heterogeneity of granulocyte activation in this severe asthma cohort but
activation markers in serum are not related to activation markers in sputum. As such serum

activation markers have only a limited role in phenotyping severe asthma. Examination of sputum
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activation markers identify two eosinophilic phenotypes, one of which is characterised by high
granulocyte activity; it is likely that they represent distinct underlying mechanisms. The role of

sputum neutrophils remains unclear and the T2 low phenotypes remain poorly defined.
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Chapter 5 Airway Microbiome in Severe Asthma

5.1 Introduction

In Chapter 3 and Chapter 4, it has proven difficult to define T2 low phenotypes using granulocyte
cell counts or granulocyte activation markers. The association, however, between sputum
neutrophilia and airway colonisation by potentially pathogenic bacteria 2°® suggest that host-
microbial interactions are a better way to understand these poorly-characterised asthma
endotypes 2%, Over the past decade, a number of studies utilising culture-independent techniques
(based on sequencing the variable regions of bacterial 16S ribosomal RNA genes) have described
differences in the airway microbiome between asthma and healthy controls 209287288285 gnd

differences between inflammatory phenotypes in asthma patients 236:282.2%,

Firmicutes, such as Streptococcus are associated with airway eosinophilia 2% whilst neutrophilic
phenotypes have been associated with an increased abundance of proteobacteria, such as
Haemophilus, Moraxella and Pseudomonas 2%%2362%1 |ncreased Proteobacteria with parallel
reduction in Bacteroidetes and Fusobacteria commensals are consistently associated with
asthma?®”.2°2_ This profile of airway colonisation is associated with increased risk of asthma
development (if colonised in early life)?%32%4, increased risk of asthma exacerbations 2°° as well as

reduced lung function and sputum neutrophilia?°2%,

Here, | describe the airway microbiome in the Airway Sampling in Severe Asthma Cohort. The

objectives of this chapter are:

e Describe the airway microbiome in the a priori defined sputum inflammatory phenotypes

e Identify and describe a phenotype of patients characterised by excessive Haemophilus
colonisation

e Assess existing biomarkers for the identification of patients who are colonised with

Haemophilus
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5.2 Chapter Specific Methods

5.2.1 Patient Population

The patients described in this chapter were recruited from the Airway Sampling in Severe Asthma

WATCH Sub-Study.

5.2.2 DNA Extraction

DNA was extracted from whole sputum on the Qiacube DNA extraction machine using the DNeasy
PowerSoil Pro Kit 250 in two batches. The V3-V4 region of the 16S rRNA gene was amplified from
sputum DNA; the resulting DNA amplicon underwent paired end 300bp microbiome sequencing
on the lllumina MiSeq platform (Illumina, San Diago, USA), amplifying the V3 and V4 region of the
16S rRNA gene. This work was done by collaborators at the University of Dundee who provided

demultiplexed (split by sample) FASTQ Files/

5.2.3 Data Pre-Processing

The demultiplexed (split by sample) FASTQ Files were processed using the DADA?2 pipeline 7 in R
Programming language on the Southampton IRIDIS 5 High Performance Computing Facility.
Sequences were clustered into amplicon sequence variants (ASV) table (described in 5.3.1); each

Run was processed separately.

5.2.3.1 Primer Removal

Primers were removed from each FASTQ file using scripts adapted from the DADA2 ITS Pipeline
Workflow (1.8) (https://benjjneb.github.io/dada2/ITS workflow.html) due to the variable length

of primer sequences.

Table 5.1  Primer Identification in Runl Before Removal

Forward Complement Reverse ReverseComplement
FWD.ForwardReads 116 0 0 0
FWD.ReverseReads 0 0 0 0
REV.ForwardReads 0 0 0 0
REV.ReverseReads 56 0 0 0
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Table 5.2 Primer Identification in Run2 Before Removal

Forward Complement Reverse ReverseComplement
FWD.ForwardReads 0 0 0 0
FWD.ReverseReads 0 0 0 0
REV.ForwardReads 0 0 0 0
REV.ReverseReads 0 0 0 0

5.2.3.2 Filter and Trimming

W00004_S1_L001_R1_001 fastq.gz W00012_S2_L001_R1_001 fastq.gz
409

Bl - - = TEET
304
204

104 —, F100%
|| |
| |

o
E 04 Reads: 122041 ' Reads: 119705 — Lo
h
> WO00013_S3_L001_R1_001 fastq.gz WO00030_S4_L001_R1_001 fastq.gz
T 40
S e reesss————
304
20 1
101 = . — ! ! L100%
I |
| |
|l |I
04 Reads: 120163 - Reads: 122627 — 0%
0 100 200 300 0 100 200 300
Cycle

Figure 5.1  Quality Profile for Four Forward Reads in Run 1.The green line represents the mean
quality score at each position. The orange lines represent the quartiles of the quality
score distribution. The red line shows the scaled proportion of reads that extend to
at least that position — flat in these plots as lllumina reads are typically all the same

length)
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WO00004 S1_L001_R2 001.fastq.gz W00012_S2 L001_R2_001.fastq.gz
40
| ———i= . | i
===1 H i F'ﬂlll
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20

L —1 — —\ F100%
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S 04 Reads: 122041 Reads: 119705 T r0%
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Figure 5.2 Quality Profile for Four Reverse Reads in Run 1.The green line represents the mean

quality score at each position. The orange lines represent the quartiles of the quality
score distribution. The red line shows the scaled proportion of reads that extend to

at least that position — flat in these plots as lllumina reads are typically all the same

length)

Samples were trimmed using the median read length of forward and reverse reads on the first

FASTQ file in each run, as per the University of Dundee protocol. Samples were trimmed to 281,

277 bases in the forward and reverse reads respectively for both Run 1 and Run2. Visual

inspection of Quality Plots generated for each forward and reverse FASTQ (first four samples

illustrated) indicates that the Phred score (a measure of base quality i.e. the chance that the base

has been correctly labelled) at these thresholds for the first four samples remains above 20. A

Phred Score of 20 indicates the likelihood of finding 1 incorrect base call among 100 bases. In

other words, the precision of the base call is 99%. Compared to forward reads, the reverse reads

are of worse quality, especially at the end, which is common in lllumina sequencing.
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Learning Error Rates

Chapter 5

The DADA?2 algorithm applies a parametric error model to learn the error rates of every amplicon

dataset: This error model quantifies the rate at which an amplicon read is produced from a

sample sequence as a function of sequence composition and quality 2’. Each plot (Figure 5.3)

displays the error rates for transition from between each base. Each point represents the

observed error rates for each consensus quality score with the black line representing the

estimated error rates after convergence of the machine-learning algorithm. For each transition,

the error frequency declines as the consensus quality score increases; moreover, the estimated

error rates (black line) are a good fit for observed error rates (points). These observations give

confidence in proceeding with pre-processing.
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represents the observed error rates for each consensus quality score. The black line
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5.2.34

shows the estimated error rates after convergence of the machine-learning

algorithm. The red line shows the error rates expected under the nominal definition

of the Q-score.
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Error Rates for Each Possible Transition in the Reverse Reads of Run 1 Each point

represents the observed error rates for each consensus quality score. The black line

shows the estimated error rates after convergence of the machine-learning

algorithm. The red line shows the error rates expected under the nominal definition

of the Q-score.

Sample Inference and Taxonomic Classification

The sample inference algorithm central to the DADA2 toolkit was applied to each forward and

reverse read, which were then merged. Chimera sequences (artifact sequences formed by two or

more biological sequences incorrectly joined together) were removed. Taxonomic classifications
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were assigned to each amplicon sequence variant (ASV) from the SILVA_SSU r138_ 2019 library
using the IDtaxa algorithm 2%, The DECIPHER package 2°° was used to maintain alignment quality

across the multiple sequences and phangorn package used to construct a phylogenetic tree 3%,
5.2.3.5 Phyloseq Object Curation

A Phyloseq 3% object for each Run was constructed from the Amplicon Sequence Variant (ASV
table), taxonomy table, clinical metadata and phylogenetic tree. The following contaminant
identification step was performed in each Run-specific Phyloseq object independently of each
other. Contaminants were identified using the decontam package 3% in R: 236 and 37 ASVs were
identified as contaminants in Runs 1 and 2 respectively (Figure 5.5). A further 3 and 1
contaminants in Runs 1 and 2 respectively due to their presence in the negative controls (Figure

ASV142 AsSVE2

1e+00=-

le-02-

Frequency

L
]
| g
L]
a asme 1 + asgam a ame * , As mpemmm
01 1.0 10.0 100.0 0.1 1.0 10.0 100.0

DNA Concentration (PicoGreen fluorescent intensity)

5.6).

Figure 5.5 Model of Two Contaminant Sequence Features in Run 1 constructed using decontam.

The dashed black line represents a model of a noncontaminant sequence feature for

which frequency is expected to be independent of the input DNA concentration. The

red line shows the model of a contaminant sequence feature, for which frequency is

expected to be inversely proportional to input DNA concentration. In this diagram,

ASV 142 and ASV82 fit the red line (contaminant model)
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Figure 5.6  Prevalence of Contaminants in Samples and Controls Samples identified as
Contaminants (blue) are more prevalent in Negative Controls than in True Samples in

Run 1

Following decontamination, the Phyloseq objects were merged, retaining only overlapping taxa.
This resulted in the exclusion of 270 taxa, which were determined to have a high risk of

representing run specific contaminants.

Taxa were then removed if a phylum could not be assigned, as these taxa are likely to represent
artefact sequences that do not exist in nature. Next, the prevalence of each taxa was calculated:
this was defined as how many samples that taxon appeared in. The prevalence of each Phylum
was calculated by summing the prevalence of each affiliated taxa. Phylum that were lowly
prevalent in both runs were filtered and taxa not seen more than 3 times in at least 10% of
samples were removed. This step was included to limit the FDR penalty paid when testing lower
powered taxa seen in a small number of samples and better meet statistical model assumptions:
retaining taxa with a small mean and trivially large coefficient of variation risk skewing

downstream statistical analysis. Chloroflexi, Cyanobactera, Deinococcota and Desulfobacterota
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were lowly abundant in Run 1 and not present at all in Run 2. Taxa from these Phylum were

therefore removed.

Phylum Sum Prevalence of Sum Prevalence of
Taxa Within Phylum Taxa Within Phylum
(Run1) (Run 2)

Actinobacteriota 5965 1115

Bacteroidota 2706 984

Campilobacterota 478 98

Chloroflexi 6 0

Cyanobacteria 8 0

Deinococcota 4 0

Desulfobacterota 31 0

Firmicutes 12867 2114

Fusobacteriota 2459 472

Patescibacteria 752 137

Proteobacteria 2793 639

Spirochaetota 581 67

Synergistota 201 11

5.2.3.6 Batch Correction

Combat_seq batch correction was applied to the raw count matrix, using sputum eosinophilia as a
proxy for case:control subsetting. Any negative values generated from this process were adjusted
to 0: these counts represent “less than one” after rescaling and this adjustment prevents non-
sensical values whilst having negligible impact on downstream statistical analysis. Batch
correction was assessed by visual inspection of a Non-metric Multi-dimensional Scaling (NMDS)

plot using a Bray-Curtis Distance measure of samples.

5.2.4 Rarefaction and Relative Abundance

Depending on the downstream analysis, four phyloseq objects were used. The first using absolute
abundances of taxa; the second using relative abundances (taxa expressed as a percentage of all

taxa in a sample) and the third log transformed absolute abundances.

A common concern in ecological analyses, such as described herein, is that species richness
increases with sample size. In order to remove this effect, rarefaction can be applied, but has its
limitations 3%, in which all samples are limited to the same minimum sample size. This cutoff was

determined by plotting rarefaction curves and used to generate a rarefied object.
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5.2.5 Statistical Analysis

5.2.5.1 Ordination

The microbial data was ordinated using Multidimensional scaling (MDS) on Bray Curtis
dissimilarity distances (quantification of the compositional dissimilarity between two samples) of
rarefied data. The Bray Curtis distance is preferred in microbial analysis due to its relative
tolerance of sparse data. Clustering algorithms were applied to this ordinated data as described in

4.2.

5.2.5.2 Permutational Multivariate Analysis of Variance

Permutational Multivariate Analysis of Variance was used to investigate variance across partitions
in distance matrices such as across inflammatory phenotypes. This was conducted using the vegan

package in R. Pairwise calculations were conducted using the pairwise_adonis package.

5.2.5.3 Unsupervised Clustering

Clustering was performed on the first principal components to capture 95% of variance in the
original data by Partitioning Around Medoids (PAM) and Ward’s Hierarchichal clustering on bray
Curtis distances. The optimum number of clusters was identified using a variety of indices:
average silhouette width, gap statistic and total within-cluster sum of square. Cluster assignment

was internally validated by assessing cluster assignment agreement with the Rand Index.

5.2.5.4 Differential Expression

Differential abundance analysis was performed using DESeq2. Sex, ICS and mOCS were included in
the model when comparing between clusters. Clusters were compared in a pairwise manner and

visualised using a volcano plot using the EnhancedVolcano package.

5.2.5.5 BLAST

Nucleotide sequences from the ASVs of interest were submitted to the BLAST website 3% and
referenced against the “rRNA_typestrains/16S_ribosomal_RNA” database. Though taxonomic
assignment on short amplicon reads such as by BLAST allows the opportunity for species

identification, it has a very high false positive rate.
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5.3 Results

5.3.1 Patient Population

The patients described in this chapter were recruited from the Airway Sampling in Severe Asthma
WATCH Sub-Study. Sputum 16S sequencing was available in 119 patients. Patients with sputum
microbiome data were not demographically different to those without , however, they did have
significantly worse disease, as represented by worse spirometry and sputum eosinophilia; they

were also statistically less frequently atopic.

Table 5.3  Clinical Characteristics of Patients with and without 16S Sequencing Data

Continuous variables expressed as median [Q1, Q3] with differences measured by
Mann-Whitney U test. Categorical variables expressed as n (%) with differences
measured by chi-square test. Abbreviations: ICS, inhaled corticosteroid; BDPe,
beclomethasone dose equivalent; FeNO, fraction of nitric oxide in exhaled breath;
post BD, post bronchodilator; FEV1, forced expiratory volume in 1 second; FVC,
forced vital capacity; FEF25-75%, forced expiratory flow at 25% to 75% of FVC; ACQ,
asthma control questionnaire, HADSTOT, Hospital Anxiety and Depression Total

Score; SNOT, SinoNasal Outcome Score

16S available 16S not available P-Value

(n=119) (n=76)
Sex (% Female) 61 (51.3) 42 (55.3) 0.690
Age 55.0 [44.0,65.0] 58.0 [47.0,69.0] 0.258
BMI 29.4 [25.6,34.8] 29.1 [25.9,33.4] 0.983
Smoker (% Never) 74 (62.2) 50 (65.8) 0.447
Atopy 65 (54.6) 54 (71.1) 0.032
Age of Onset 15.0[3.0,35.5] 23.0[7.0,48.5] 0.165
Exacerbations in Last 12
months 2.0[1.0,4.0] 1.0[0.0,3.0] 0.168
ICS (BDPe) 3000.0 3000.0

[2000.0,3500.0] [2000.0,3000.0] 0.688
FeNO 27.0[17.0,48.0] 23.0[14.8,45.0] 0.391
Blood Eosinophil Count 0.2 [0.1,0.5] 0.2[0.1,0.3] 0.034
Sputum Eosinophil % 2.6 [0.5,15.6] 1.5[0.2,6.8] 0.067
Sputum Neutrophil % 40.5 [23.1,66.8] 49.8 [34.3,68.0] 0.141
PostBD FEV1 73.3 [54.9,88.0] 80.0 [65.2,97.5] 0.007
PostBD FEV1/FVC 65.0 [54.0,76.5] 70.0 [64.0,80.0] 0.003
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PostBD FEF25-75 %predicted
ACQ6

16S available
(n=119)

39.8 [27.7,69.4]
2.5[1.5,3.3]

HADSTOT 10.0 [6.0,16.0]
SNOT20 32.0[22.5,46.5]
5.3.2 Data Pre-Processing Results

16S not available
(n=76)

54.9 [38.2,89.6]
2.2[1.1,3.0]

10.0 [6.0,15.0]
27.0[15.0,45.0]

P-Value

0.001
0.198
0.674
0.273

The average number of raw reads per sample from both runs was >100,000. The majority of reads

were lost at the filtering step (Table 5.4 and Table 5.5) and on merging. However, there were, on

average, more than 40,000 reads per sample in both Runs.

Table 5.4  Mean Read Counts at Each Pre-processing Step in Run 1
Input Filtering Denoising  Denoising
Forward Reverse
Number of 127178.19 60318.09 57236.67 54923.46
Reads
Percentage 52.57 5.11 8.94 21.52
of Reads
Lost
Table 5.5 Mean Read Counts at Each Pre-processing Step in Run 2
Input Filtering Denoising  Denoising
Forward Reverse
Number of 135108.2 61223.33 56034.13 52188.73
Reads
Percentage 54.69 8.48 14.76 30.28
of Reads
Lost

Merging

47340.33

Merging

42683.97

Chimera
Removal

44713.09

5.55

Chimera
Removal

41414.33

2.97

The sequencing depths for samples ranged from 19758 to 59912 in Run 1 and 28,749 to 45110 in

Run2. Histograms of sequencing depths from each run (Figure 5.8 and Figure 5.9) demonstrated a

normal distribution with no evidence of samples with excessively poor read depth that would

require exclusion.
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Sequencing Depth for Run1
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Figure 5.7 Histogram of Sequencing Depth for Samples in Run 1
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Figure 5.8 Histogram of Sequencing Depth for Samples in Run 2

5.3.2.1 Batch Effect

The clinical characteristics of patients in Run 1 and Run 2 were broadly similar other than Run2
having fewer patients with co-morbid GORD and fewer patients treated with maintenance OCS.

There were also trends towards lower BMI and more preserved lung function (Table 5.5).
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Nevertheless, there was a similar distribution of inflammatory phenotypes across the two runs:

41.30% and 40.74% eosinophilic in Run 1 and 2 respectively (Table 5.5).

Table 5.6  Clinical Characteristics of patients with 16s rRNA samples in Runl and Run2
Continuous variables expressed as median [Q1, Q3] with differences measured by
Kruskal Walis test. Categorical variables expressed as n (%) with differences
measured by chi-square test. Abbreviations: GORD, gastro-oesophageal reflux
disease; ICS, inhaled corticosteroid; BDPe, beclomethasone dose equivalent; OCS,
oral corticosteroids; IgE, Immunoglobulin E; IL-5, Interleukin 5; ACQ, asthma control
guestionnaire, HADSTOT, Hospital Anxiety and Depression Total Score; SNOT,
SinoNasal Outcome Score; FeNO, fraction of nitric oxide in exhaled breath; post BD,
post bronchodilator; FEV1, forced expiratory volume in 1 second; FVC, forced vital
capacity; FEF25-75%, forced expiratory flow at 25% to 75% of FVC
Run1 Run 2 P Value
(n=92) (n=27)
Female Sex 49 (53.3) 12 (44.4) 0.557
Age 58.0 [48.0,65.0] 50.0[39.0,65.5] 0.259
BMI 30.2 [26.0,35.5] 27.0[25.6,30.3] 0.075
Never Smoker 59 (64.1) 15 (55.6) 0.716
Atopic 49 (53.3) 16 (59.3) 0.741
GORD 29 (31.5) 18 (66.7) 0.002
Nasal Polyps 18 (19.6) 5(18.5) 0.89
Age of Onset 12.5[0.0,33.0] 6.0[0.0,29.0] 0.513
Exacerbations in the 2.0[0.8,4.2] 1.0[0.0,3.0] 0.18
Last 12 Months
ICS (BDPe) 3000.0 3000.0 0.473
[2000.0,3275.0] [2000.0,3250.0]
Maintenance OCS 38 (41.3) 12 4 (14.8) 0.021
Anti IgE (13.0) 12 2(7.4) 0.734
Anti IL-5 (13.0) 2.5 0 0.066
ACQ6 [1.5,3.2] 2.7[1.2,3.2] 0.965
HADS 10.0 [5.0,16.0] 9.0 [5.5,15.5] 0.765
SNOT20 23.0[0.0,39.2] 24.0 [3.5,40.5] 0.794
FeNO 26.5[17.0,48.2] 27.0[14.0,42.0] 0.587
PostBD FEV1 (% 67.8 [53.7,86.1] 82.9[70.9,92.8] 0.028
predicted)
PostBD FVC (% 88.6 [76.9,99.8] 94.2 [88.7,106.4] 0.071
predicted)
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PostBD FEV1/FVC

PostBD FEF25-75% (%
predicted)

FEV1 Reversibility

Sputum
Eosinophils >2%

Sputum
Neutrophils >61%

Seurm IgE
Serum MPO
Serum Elastase
Serum EDN
Serum ECP

Sputum
Neutrophils %

Sputum Eosinophils %
Sputum MPO

Sputum Elastase]
Sputum EDN
Sputum ECP

Run 1

(n=92)
65.0[52.0,75.2]
38.2 [26.0,67.3]

1.1[0.0,9.2]
49 (53.3)

28 (30.4)

77.5[26.2,283.0]
232.1[169.7,309.2]
38.4 [26.4,66.3]
41.4 [30.1,63.7]
31.0[12.0,62.0]
40.4 [22.1,66.6]

2.7 [0.6,15.1]

1106.0
[533.6,2093.2]

5.9[3.1,9.5]
366.2 [154.0,1468.8]
517.8 [126.4,1715.8]

Run 2
(n=27)
66.0 [60.0,79.0]
46.5 [32.9,76.1]

0.0 [0.0,11.9]
14 (51.9)

8(29.6)

69.0 [18.2,638.5]
259.7 [167.9,310.1]
47.0 [30.0,72.7]
44.9 [35.7,58.0]
20.2 [13.8,54.2]
40.5 [24.8,66.6]

2.2 [0.5,14.0]
873.7 [409.4,3358.0]

5.6 [3.2,14.1]
796.9[126.1,1381.0]
844.3 [75.0,1447.5]

P Value

0.13
0.09

0.72

0.739
0.859
0.493
0.646
0.775
0.487

0.666
0.889

0.894
0.889
0.944
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Following batch correction, no separation was identified between the runs on visual inspection of

NMDS plot using Bray-Curtis Distance (Figure 5.10).

Batch Effect
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Figure 5.9 Batch Effect Before (left) and After (right) Filtering and CombatSeq
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5.3.2.2 Rarefaction

On plotting the rarefaction curves (Figure 5.10), plateauing of the number of new species

identified occurs at around 10,000, indicating good representation of the microbial community at

this size.
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Figure 5.10 Rarefaction Curves for Samples

5.3.2.3 Summary of Pre-Processing Events

In summary, an average of 40,000 reads per sample were used to construct an amplicon sequence
variant (ASV) table containing 5291 unique taxa. 5059 taxa were removed (Figure 5.11), leaving

232 taxa in 119 samples on which downstream microbial analysis was performed.
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» Decontamination
5016"taxa

» Unidentifiable or lowly prevalent Phylum
253(;'taxa

» Lower powered Taxa in Few Samples
232‘;axa

Figure 5.11 Summary of Taxa Filtering

5.3.3 Microbial Description of Cohort

In assessing the relative abundances of ASVs, the most abundant Phylum in the cohort was
Firmicutes (Figure 5.12) and most abundant Genus identified in the sputum of this cohort was
Streptococcus, followed by Rothia and Haemophilus (Table 5.6). Almost a quarter of bacteria

identified belonged to a Genus that had a relative abundance of less that 1%.
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Relative Abundance of Phyla in Each Sample

100

75 Phylum

B <%

. Actinobacteriota
. Bacteroidota
. Firmicutes
. Fusobacteriota

25 . Proteobacteria

0

Figure 5.12 Relative Abundance of Phylum per Sample. Each column represents a sputum
sample. The distribution of colours in each column reflects the relative abundance of

different Phyla in that sample.

Table 5.7  Relative Abundance of Genus in Overall Cohort

Genus Relative Abundance (%)

Streptococcus 36.99

Rothia 12.62
Haemophilus 11.81
Veillonella 8.84
Actinomyces 4.29
Gemella 2.88
Other 22.58
5.3.4 Microbial Differences Between Inflammatory Phenotypes

Exploratory analysis of rarefied microbial data shows no differences in alpha diversity metrics
between the inflammatory phenotypes (Figure 5.14). Accordingly, an NMDS plot using Bray Curtis
distances on rarefied data shows no separation between inflammatory phenotypes (Figure 5.13).
Permutational Analysis of variance on bray Curtis distance indicates that the inflammatory
phenotypes are statistically distinct (Table 5.6), however, on pairwise comparisons, no single

phenotype emerges as distinctive (Table 5.7).
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Figure 5.13 Alpha Diversity Measures Between Sputum Inflammatory Phenotypes
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Differences in Sputum Microbiome
Between Severe Asthma Inflammatory Phenotypes

0.54

0.04

NMDS Axis 2

-0.51
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® Eosinophilic

® Neutrophilic
Mixed Granulocytic

[ ]

1.0 0.5 0.0 05 1.0
NMDS Axis 1

Figure 5.14 NMDS Plot of Differences in Sputum Microbiome Between Inflammatory Phenotypes

using Bray Curtis distance.

Table 5.8  Permutational Analysis of variance using distance matrices

Df SumsOfSgs MeanSgs F.Model R2 Pr(>F)
Sputum Inflammatory 3 1.182 0.394 1.567 0.039 0.007
Phenotype
Residuals 115 28.912 0.251 NA 0.960 NA
Total 118 30.094 NA NA 1 NA
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Table 5.9  Permutational Analysis Pairwise Comparisons

Pairwise Comparison corrected p value
Eosinophilic vs Mixed 0.066
Eosinophilic vs Neutrophilic 0.018
Eosinophilic vs Pauciceulluar 0.662
Neutrophilic vs Mixed 0.127
Neutrophilic vs Pauciceulluar 0.152
Mixed vs Pauciceulluar 0.012

As Haemophilus was of particular interest, direct correlations between this genus and airway
inflammatory cells were assessed: there was no statistically significant linear correlation between

abundance of Haemophilus and sputum eosinophils or neutrophils (Figure 5.15).

Carrelatman between Haemophilus (log ransformesd) and Correlation between Haemophslus (kg transformed) and
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Figure 5.15 Spearman Rank Correlations Between Haemophilus and Sputum Inflammatory Cells

5.3.5 Clustering Patients on Airway Microbiome

Analyses in this chapter have thus far related bacterial abundance to clinically defined
parameters. Clustering was employed to identify microbial data driven arrangements against

which clinical parameters could be described.

Optimal Number of Clusters by Silhouette Width Optimal Number of Clusters by Gap Statistic Optimal Number of Clusters by Total Within Sum of Square
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Figure 5.16 Optimum Number of Clusters in Microbiome Data Using Silhouette Width, Gap
Statistic and Total Within Sum of Squares
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Using the silhouette width, the optimum number of clusters in the microbiome data was
determined to be three. This was corroborated by the Gap Statistic and Total Width Sum of

Squares which indicated the optimal number to be between 2 and 5.

Hierarchichal clustering and Partition Around the Medioids were employed, as previously
described, the rand score of 0.8 suggested strong cluster consensus between Hierarchical and
Partition Around the Medioids. The Calinski Harabaz Index for clusters density was 10.34 and
10.21 respectively, indicating that Hierarchical clustering produces marginally more coherent
clusters. Further analysis was therefore focussed on 3 clusters produced by Hierarchical

clustering.

5.3.5.1 Hierarchical Clusters

Alpha diversity was compared between these three clusters using rarefied abundances. Cluster 3
appears distinct to the other two clusters with low alpha diversity (Figure 5.17). This cluster is
dominated by the Proteobacteria Phylum (Figure 5.18) and Haemophilus Genus (Figure 5.19).
Cluster 1 and 2 are subtly different with reduced diversity in Cluster 2 compared to 1, though the
relative abundance barplot does not indicate any major differences between the clusters (Figure

5.19).
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Shannon Diversity Across Microbial Clusters
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Phylum

1 2 3
100
Phylum
75 B <%
Actinobacteriota
Bacteroidota
X 50
Firmicutes
Fusobacteriota
25 Patescibacteria
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Figure 5.18 Relative Abundance of Phylum Across Clusters.

Each column represents a sample, which have been stratified according to Cluster
assignment. The distribution of colours in each column reflects the relative

abundance of different Phyla in that sample.

Genus
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Figure 5.19 Relative Abundance of Genus Across Clusters.

Each column represents a sample, which have been stratified according to Cluster
assignment. The distribution of colours in each column reflects the relative

abundance of different Genus in that sample.

Further interrogation of the microbial differences was assessed by measuring the differential
abundance of taxa between clusters using DESeq2. Relatively few taxa are differentially expressed

between Cluster 1 and 2. Cluster 1, which has the highest alpha diversity has increased Rothia
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(ASV 25) compared to Cluster 2; whilst Cluster 2 had increased Streptococcus (ASV2, ASV3),
Lactobacillus (ASV193) and Actinomyces (ASV255).

Streptococcus (ASV4) and Haemophilus (ASV5) are increased in Cluster 3 compared to both
Clusters 1 and 2. Additionally, Actinomyces (ASV75) and Lactobacillus (ASV193) is increased in
Cluster 3 compared to Cluster 1. Compared to Cluster 3, Rothia (ASV16) is increased in Cluster 1.
Similarly, compared to Cluster 3, Prevotella (ASV97), Rothia (ASV177), Streptococcus (ASV200) is

increased in Cluster 2.

Taxa Taxa Taxa

Cluster 1 vs Cluster 2 Cluster 1 vs Cluster 3 Cluster 2 vs Cluster 2
EnhancedVoicano EnhancedVoicano EnhanceaVolcano
@® NS Log, FC p-value @ p-value and log; FC ® NS Log; FC p-value @ p-value and log; FC ) NS @ Log; FC p-value @ p-value and log; FC
| i 151 ! E E E
i ] 1 1 159 1 1
| ] 1 [
o 101 ! a o Vs o b oo
» ASV 1
° ASV25 | S . . Agvass o 10 o psva =104 o ASVE
2 || Asvz asvids 2 o 2 o
5 | ] - ASvi6 I ASV1Q3 - ! !
T R ! Jo o ASVIe 1 . e ! ASV200 [
. ot | 5 i E ASYTS 5 Tasva77 Asver 1 1
o e’ | i ¢ i . [
ol Ip = als | | . % S |
VAL e e} nalgel ic ot
04 M ! 01 W 0 Yot
T T T T T T T T T T T T T
-5 0 5 10 -10 -5 0 5 10 -5 0 5 10
Log; fold change Log; fold change Log; fold change
total = 232 variables total = 232 variables total = 232 variables

Figure 5.20 Volcano Plot illustrating the differential abundance of taxa

A: Cluster 1 and Cluster 2; B: Cluster 1 and Cluster 3; C: Cluster 2 and Cluster 3.

The differential expression analysis corroborates relative abundance plots indicating Haemophilus
to be characteristic of Cluster 3. ASV5, identified as Haemophilus, was cross-referenced against
the rRNA_typestrains/16S_ribosomal_RNA database using BLAST in order to identify it’s
Haemophilus species. The top hit was Haemophilus influenzae and Haemophilus aegypticus (Table

5.10).

Table 5.10 Top hits for species identification of ASV5 using BLAST

Scientific Name Total Score
Haemophilus influenzae 773
Haemophilus aegyptius ATCC 11116 773
Haemophilus aegyptius 750
Haemophilus haemolyticus 739
Haemophilus seminalis 739
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There are few clinical characteristics that differ between the three clusters (Table 5.11). Though it
does not reach statistical significance, Cluster 1 has the highest sputum eosinophils. These
patients also have the highest proportion of nasal polyposis, are accordingly on higher levels of T2
directed therapy (maintenance oral steroids and anti IgE therapy) and there is a trend towards
higher FeNO levels. Cluster 3 is characterised by higher sputum neutrophils and there is a trend
towards poorer lung function. However, there are no other discerning clinical characteristics by
which to otherwise identify them. Notably, however, Cluster 3 does not appear to on higher levels
of T2 supressing therapy, such as Cluster 1. Cluster 2 appears, clinically, to have pauci-cellular

airway inflammation.

Table 5.11 Clinical Characteristics Between Clusters

Cluster 1 Cluster 2 Cluster 3 P-

(n=37) (n=66) (n=16) Value
Run (% Run 1) 31 (83.8) 48 (72.7) 13 (81.2) 0.403
Sex (% Female) 20 (54.1) 33 (50.0) 5(31.2) 0.298
Age 53.0 [40.0,61.0] 56.5 [49.0,67.8] 56.0 [45.8,65.2] 0.296
BMI 29.1 [26.1,34.7] 29.6 [26.5,34.5] 29.4[25.1,35.2] 0.965
Never Smoker 28 (75.7) 37 (56.1) 9 (56.2) 0.289
Atopic 22 (59.5) 34 (51.5) 9 (56.2) 0.732
GORD 21 (56.8) 42 (63.6) 9 (56.2) 0.737
Nasal Polyps 25 (67.6) 54 (81.8) 15 (93.8) 0.02
Age of Onset 4.0 [0.0,28.0] 12.0[0.0,34.2] 16.5[9.0,33.2] 0.227
Exacerbationsinthe | 1.0[0.0,5.0] 2.0[0.0,3.0] 2.0[0.0,6.0] 0.862
Last 12 Months
ICS (BDPe) 3000.0 3000.0 3000.0 0.685

[2000.0,3840.0] [2000.0,3000.0] [2000.0,3125.0]
Maintenance OCS 26 (70.3) 23 (34.8) 7 (43.8) 0.002
Anti IgE 9 (24.3) 5(7.6) 0 0.012
Anti IL-5 5(13.5) 5 (7.6) 2(12.5) 0.594
ACQ6 2.5[1.2,3.3] 2.5[1.7,3.0] 2.5[1.5,3.7] 0.822
HADS 8.0 [3.0,14.0] 10.0 [6.0,14.0] 16.5 [6.8,24.0] 0.145
SNOT20 14.0[0.0,33.0] 25.0 [4.0,45.0] 2.5[0.0,32.5] 0.13
FeNO 35.0[20.0,57.0] 25.5[14.0,47.5] 22.5[15.8,39.2] 0.13
PostBD FEV1 (% 62.1 [54.8,88.0] 76.2 [63.8,89.1] 56.3 [38.8,83.4] 0.105
predicted)
PostBD FVC (% 89.9 [72.2,97.5] 93.1[83.1,102.0] 76.8 [60.2,95.5] 0.06
predicted)
PostBD FEV1/FVC 64.0 [54.0,76.0] 66.0 [60.0,76.8] 59.5 [45.0,76.0] 0.443
PostBD FEF25-75% 32.9[27.9,69.7] 42.9[29.7,73.8] 39.0[14.9,54.4] 0.26

(% predicted)

92



FEV1 Reversibility
Blood Neutrophils
Blood Eosinophils
Serum Total IgE

Sputum Neutrophils
(%)

Sputum Eosinophils
(%)

Cluster 1

(n=37)

0.0 [0.0,9.2]

4.9 [4.4,6.4]

0.3 [0.1,0.5]
132.1[42.0,349.4]
28.4 [18.0,58.6]

6.1[0.6,26.6]

Cluster 2

(n=66)
2.1[0.0,12.8]
5.2 [4.3,6.4]

0.2 [0.1,0.4]
72.5[24.7,294.4]
38.6 [24.2,56.8]

1.6 [0.5,10.0]
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Cluster 3

(n=16)

0.0 [0.0,1.2]

6.2 [5.2,7.5]

0.2 [0.2,0.4]
40.8 [11.7,324.3]
73.4 [54.6,87.0]

1.6 [0.6,5.7]

P-
Value
0.244
0.204
0.432
0.461
<0.00

0.181

There are no differences in serum activation markers between the three microbial clusters (Table

5.12). However, sputum MPO is markedly increased in Cluster 3, as is sputum ECP; sputum

Elastase and sputum EDN are not increased in Cluster 3 (Table 5.13). Sputum ECP is highest in

Cluster 3 and lowest in Cluster 2.

Table 5.12 Serum Activation Markers Between Microbial Clusters

Serum MPO
Serum Elastase
Serum EDN
Serum ECP

Cluster 1

(n=37)

247.7 [166.8,313.9]
46.5 [28.2,65.2]
40.9 [29.5,61.9]
31.6 [11.6,62.0]

Cluster 2

(n=66)

234.8 [173.6,311.0]
38.9[28.4,72.6]
42.1 [34.7,61.0]
24.3 [13.6,61.5]

Table 5.13 Sputum Activation Markers Between Microbial Clusters

Sputum MPO

Sputum Elastase
Sputum EDN
Sputum ECP

5.3.6

Confirming the observations from Table 5.9, T2 biomarkers, Blood Eosinophils and FeNO, poorly

Cluster 1
(n=37)

729.4 [466.4,2029.0]

5.93.6,10.2]
801.5 [194.8,1577.0]
792.0 [171.0,1881.0]

Cluster 2
(n=66)
879.8 [472.0,1914.8]

7.0[2.7,10.3]
336.9 [112.9,1267.2]
378.2 [96.9,1286.5]

Biomarkers for the Haemophilus Cluster

Cluster 3

(n=16)
212.8[165.1,250.2]
39.0 [25.0,87.0]
43.2 [29.8,58.8]
22.2[10.3,68.8]

Cluster 3
(n=16)

2728.0
[2078.2,8273.2]

4.8 [3.1,5.5]

958.3 [254.2,1465.0]

1380.0
[1021.7,2286.5]

predict the Haemophilus Cluster of patients. Recycling the code from Chapter 4 Granulocyte

Value

0.683
0.957
0.872
0.883

Value

<0.00

0.174
0.206
0.027
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Activation Markers in Severe Asthma, none of the currently available biomarkers, or the serum

activation markers are able to identify patients with Haemophilus (Table 5.14).
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Table 5.14 Biomarkers for Predicting the Haemophilus Cluster

Variable Cutoff  AUC PPV
Blood Neutrophils 5.20 0.63 0.19
Blood Eosinophil 0.70 0.59 0.33
Serum Total IgE 505.00 0.56 0.22
Serum Myeloperxidase (MPO) 117.30 0.54 0.14
Serum Elastase 80.59 0.57 0.22
Serum Eosinophil Derived Neurotoxin (EDN) 0.00 0.50 0.13
Serum Eosinophil Cationic Protein (ECP) 4.54 0.51 0.14
Fraction of Exhaled Nitric Oxide (FeNO) 5.00 0.51 0.14

5.4 Discussion

5.4.1 Importance of Haemophilus

Clustering patients on their airway microbiome identifies a unique cluster of patients with loss of
diversity due to an increased relative abundance of Haemophilus. Consistent with other asthma
cohorts, these patients were associated with an increase in sputum neutrophilia?®”:28%3% The
relationship between airway microbiome and asthma inflammatory phenotypes is undoubtedly

complex and bi-directional®®® but the observation that this neutrophilia is associated with
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increased MPO indicates an innate immune response. MPO plays an important role in the

microbicidal activity of phagocytes 3%7 through a variety of mechanisms, including NETosis 38,

Ideally, as the Haemophilus genus demonstrates a high level of genomic diversity3%, sequencing
to species depth would confirm that the causative organism is Haemophilus influenzae.
Taxonomic assignment on short amplicon reads (such as by using BLAST) has a high false positive
rate but corroborates a growing body of evidence from modern culture-independent techniques
for microbial profiling of the lower airways in the importance of H. influenzae?08236.274310,
Identification of this cohort of patients would be clinically salient as treatment with Azithromycin
(macrolide antibiotic) is predicted by baseline colonisation with Haemophilus influenzae3'* and

can reduce its bacterial load3!?, thus representing a treatable trait.

Of course, increases in Haemophilus is associated with loss of bacterial diversity and it may be this
that is the mechanistically salient feature 312, Cluster 3 in this analysis was characterised by loss
Rothia as much as increase in Haemophilus. Rothia species have been identified as having anti-
inflammatory effects3!* and it could be hypothesised that the airway neutrophilia seen in this

cluster might be more directly related to that than Haemophilus.

Cross-sectional correlations, such as in this study design, are ill suited to exploring this further, but
longitudinal profiling of the airway microbiome in asthma is challenging. Broadly, the microbiome
appears relatively stable over 18 months3!?, unless treated with antibiotics®'2. In COPD, airway
colonisation with Haemophilus has been demonstrated to vary from days to years3*-3'7 and, in

asthma the expression of factors that promote neutrophilia appear to shift over time318,

5.4.2 Co-morbid Bronchiectasis

One of the limitations of this study is that patients in this study were not radiologically screened
with high resolution computed tomography (HRCT) for bronchiectasis, which is an airways disease
characterised by chronic cough, expectoration and increased susceptibility to infection3!°,
Bronchiectasis commonly occurs co-morbidly with severe asthma3?’, possibly as a reflection of a
partial immunodeficiency derived from chronic corticosteroid therapy3?!. Though the patients in
this study were screened clinically, it is plausible that some of the differences between

phenotypes (and clusters) is driven by unrecognised bronchiectasis.

It is widely recognised that airways diseases commonly overlap, and fixation on clinical labels
should move towards focus on treatable traits3?2. Bronchiectasis shares many of the
characteristics described by the Haemophilus cluster3?332> and so it is plausible that they might

also benefit from similar therapies, such as antibiotic (rather than exclusively steroid) therapy 32°.
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5.4.3 Airway Microbiome Provides Granularity to Sputum Inflammatory Phenotypes

Historically studies have described the microbial characteristics across clinically defined
phenotypes, identifying airway neutrophilia to associate with increased Haemophilus and
Moraxella taxa?°®23¢, Such a clear relationship does not emerge from this data, which appears
slightly more nuanced: neutrophilic airways do not always have increased abundance of
Haemophilus but airways with increased abundance of Haemophilus are always neutrophilic,

consistent with recent cluster analyses310327,

This would suggest that there are heterogenous mechanisms underlying sputum neutrophilia.
Corticosteroids are known to improve the survival of neutrophils?®® and, at least in some patients,
withdrawal of inhaled corticosteroids is associated with decrease in sputum neutrophils?>%. A
variety of other factors have been associated with sputum neutrophilia, including
smoking/pollution and obesity/insulin resistance3?®. These heterogenous mechanism likely

underlie the reason for the failure of therapeutics targeting neutrophil recruitment have not been

proven successful?’3,

5.4.4 Lack of Biomarkers

Ultimately, identification of target patients is essential for the implementation of targeted
therapies, however, our findings demonstrate that there are currently no good biomarkers
available to do this. As described in previous chapters, there are no good biomarkers for sputum
neutrophilia (Chapter 3.3.3.4) and even then, sputum neutrophilia is a poor proxy for the
Haemophilus cluster. Rather than predicting sputum neutrophilia, it is critical to develop a well
validated biomarker for this Haemophilus cluster, which could now be considered a treatable

trait.
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Chapter 6 Exhaled VOCs in Severe Asthma

6.1 Introduction

The preceding chapters (Chapter 3, 4, 5) describe the heterogeneity of severe asthma, the
complexity of airway biology and limitations of existing clinical biomarkers. As detailed in Chapter
1, exhaled breath biomarkers are and attractive solution to the challenge of identifying
biomarkers for severe asthma due to their direct contact with the organ of interest and ease of
collection. This enthusiasm is bolstered by the report from a number of asthma studies

demonstrating sensitivity of exhaled VOCs to airway biology*3.

One of the major limitations to breathomics is the lack of standardisation, which extends to data
analysis. In contrast to microbial analysis, for example, a consensus framework exists for almost
all aspects basic analysis (as detailed in Chapter 5). Though there has been no consensus approach
for assessing sensitivity to airway inflammation, the majority of breathomics studies pair feature
reduction techniques with a supervised machine learning model for classification. In the absence
of guidelines/consensus on approaches, an analytical pipeline needs to be developed and

validated.

Feature reduction is commonly performed in breathomics, through Principal Component
Analysis®3®, Broadly, linear dimensionality reduction techniques transform the features into a new
set of lower dimension features, whilst attempting to retain the variance of the data. Such an
approach assumes that all of the original features are of equal value (or does not assume that any
feature is more/less important than another). Less frequently, studies have used feature selection
techniques ', in which features are eliminated according to a particular criterion. One of the
functions of feature selection is to optimise the signal to noise ratio. The combination of study
characteristics (many features, few observations) risks model overfitting 32° and false discovery 33°

but feature selection by a relevant criterion need not be restricted to machine learning.

Noisy VOCs are difficult to identify in cross-sectional analyses but might be easier to identify in
longitudinal studies. VOCs that do not change with a stressor (e.g. during an asthma exacerbation)
are likely not be important to it. Such a study design would be relevant to asthma but challenging
to deliver. The opposing hypothesis, though less elegant, may nonetheless be valuable: VOCs that

change (excessively) during a clinically stable state are likely not to be relevant to the that
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physiology. It is recognised that a number of exhaled VOCs are unrelated to airway biology but
related to transient factors such as diet 2%, exercise 2?*; such VOCs would be transient during the
clinically stable state. Transient VOCs, might be identifiable on repeat sampling and could inform

feature selection for cross-sectional analyses.

Prior to attempting to predict the novel Haemophilus phenotype described in Chapter 5, the
eosinophilic phenotype will be used to benchmark the machine learning classifier. This is the the
most suitable phenotype for this purpose as, despite the limitations described in Chapter 3, it
remains relatively robust and has the advantage of being used in multiple other studies described

in the literature.

The objectives of this chapter are:

Describe the VOCs present in the exhaled breath of severe asthma patients

e Describe the nature of variance in repeat breath samples and describe the short-term
repeatability of VOCs

e Describe the relationship between VOCs and sputum eosinophilia

o Define a framework for training VOC machine learning classifier models on breath
samples from the cross-sectional arm and testing on the first breath samples from the
repeatability arm

e Evaluate the performances of VOC models for predicting the sputum eosinophilic
phenotype

e Evaluate the performances of VOC models that incorporates feature selection using

measures of short-term repeatability for predicting the sputum eosinophilic phenotype

6.2 Chapter Specific Methods

6.2.1 Breath Sampling in Severe Asthma WATCH Sub-Study

This study was designed in order to pair breath samples to sputum samples collected in the

Airway Sampling of Severe Asthma Patients sub-study and clinical characterisation of the WATCH
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Study (Chapter 2.3). As sputum induction can cause airway irritation 1%, breath samples were
collected either before sputum induction or at least 48 hours after sputum induction, in order to
not be confounded by the airway irritation due to sputum induction. There was a maximum of

seven days between sputum induction and starting breath sampling.

The Breath Sampling of Severe Asthma Patients study had two arms: “cross sectional” and

“repeatability”.
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Cross Sectional

Arm Window for Repeating Sputum Induction

Clinical Characterisation
Sputum Induction

Breath Sampling

Repeatability Arm

Window for Starting Repeat Breath Sampling

Clinical Characterisation
Sputum Induction

Day O i | Z 3 1 5 6 &

Figure 6.1 Schema for Breath Sampling in each arm

In the cross-sectional arm (Figure 6.1), the full characterisation schedule was performed on the
same morning, starting with breath sampling and ending with sputum induction. In some cases, in
order to obtain a viable sputum sample, it was necessary to repeat sputum induction on a second
date. If so, this was done within 7 days of breath sampling. Subjects were excluded from the

analysis if a viable sputum sample was not obtainable.
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In the repeatability arm (Figure 6.1), breath sampling was dissociated from the full
characterisation schedule. Once a viable sputum sample was obtained, subjects would return to
provide breath samples on five consecutive days, starting within 7 days of sputum induction;

these breath samples were collected at the same time of day on each occasion.

The first breath sample from the repeatability arm of the study will be collected a maximum of
seven days apart from sputum induction, which is true of breath samples from the cross-sectional

arm of the repeatability study.

6.2.2 Patient Recruitment

Recruitment to the breath sampling sub-study were identical to the airway sampling sub-study.
There were no restrictions to the cross-sectional or repeatability arms of the breath sampling sub-

study.

6.2.3 Breath Sampling

6.2.3.1 Breath Collection

All breath samples were collected within the same room. Breath samples were collected using the
ReCIVA Breath Sampler (Owlstone Medical Ltd.). Exhaled breath was collected onto a Breath
Biopsy Cartridge, which consists of four Tenax TA/Carbograph 5TD sorbent tubes (Markes
International). The ReCIVA Breath Sampler monitored subjects’ tidal breathing pattern in real
time, using CO2 concentration and pressure sensors. Dynamically determined gates using the real-
time pressure levels triggered the sampling pumps to collect breath. Each pump pulled pressure-
gated exhaled breath through two sorbent tubes, with 1473 ml being collected on each tube. Each

pair of tubes was later combined to give a single sample for TD-GC-MS analysis.

6.2.3.2 Breath Analysis

Samples analysed by Owlstone Ltd: first, they were dry purged to remove excess water and
desorbed using a TD100-xr thermal desorption autosampler (Markes International) and
transferred onto a Quadrex 007-624 column (30 m x 0.32 mm x 3.00 um) using splitless injection.
Chromatographic separation was achieved via a programmed method (40-250°C in 84.5 min at 3.0
mL/min) on a 7890B gas chromatography (GC) oven (Agilent Technologies) and mass spectral data

acquired using an electron impact ionization time-of-flight (TOF) BenchTOF high definition mass
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spectrometer (MS) (Markes International). Each sample consisted of two sorbent tubes, both of
which were desorbed into the Thermal Desorber cold trap for a single analysis. A cleaning method

was run in between each sample to prevent carry-over.

A quality control sample (sorbent tube spiked with a known mixture of chemicals) was run in
between every four subject breath samples to monitor the stability of instrumentation. A blank
tube was run every four samples and after every quality control sample to monitor background. A
set of four samples, quality control samples, and blank tubes are denoted as an “analytical

sequence.”

6.2.3.3 Breath Data Pre-Processing

Retention time shifts due to column events were corrected using retention time of QC
compounds in QC samples. For each QC sample, a piece-wise linear function was constructed by
comparing QC compound retention times in the sample to the compound-specific medians across
all QC samples. This piece-wise linear function was then applied to the retention time axis of
breath samples that were analysed immediately after the QC sample. Small deviations in peak
area, introduced by retention time alignment, was corrected using the scaling factors derived

from the piece-wise linear functions.

Untargeted feature extraction was performed for samples that passed all curation checks. TD-GC-
MS chromatograms were converted into molecular feature (MF) lists for statistical analysis.
Whenever a feature was below the limit of detection (LOD), the baseline for that feature was
integrated instead to give a minimum value. If a feature could not be reliably quantified due to
issues not associated with LOD (e.g. interference from neighbouring peaks), no baseline

integration was performed, and the feature was marked as non-LOD missing.

Features were excluded from downstream analysis if they were not present in at least 80% of
samples of each inflammatory phenotype. Each feature was assigned a tentative ID by
comparison to the National Institute of Standards and Technology (NIST) mass spectra standard

reference database (2017). A tentative ID was assigned if the match score was > 85%.

6.2.4 Statistical Analysis

Statistical analysis was performed using Python scripting language (version 3.8.3) 2*’. Clinical

characteristics were described using median and 95% confidence intervals with between group
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comparisons by Mann Whitney U tests for continuous variables and absolute numbers with

percentages within each group and Chi Squared tests for categorical variables.

Unsupervised clustering was performed as described in 5.2.5.3.

6.2.5 Data Transformation

For the exploratory analysis of the breath data, in order to maximise sample number, samples
from Visit 1 of the repeatability arm were combined with samples from the cross-sectional arm of

the study. Pre-processing steps were performed in all samples together.

For all other analyses, pre-processing was performed in the samples in the cross-sectional study
and these parameters were applied independently to data from each Visit in the repeatability
arm. The repeatability analysis compares VOCs across visits and the machine learning prediction
models used Visit 1 as the test set and the cross-sectional data used as the training set. Pre-
processing in the above manner prevents data leakage (e.g., data from the test set contributing to

pre-processing of the training set).

Data was log transformed in order to try to achieve a gaussian distribution and then scaled such

that each feature was given a range between 0 and 1

6.2.6 Batch Effect

Principal Component Analysis (PCA) (sklearn.decomposition.PCA) was used to explore the breath
data. Breath features were reduced to principal components, where each principal component
attempts to capture the maximum variance in data. The first two principal components were
visualised in a scatterplot in order to investigate the impact of technical measures: proportion of
target volume collected, breath sampling duration, GCMS platform, storage duration and the

resolution between similar standards measured prior to each sample.

Batch correction was performed using pycombat.

6.2.7 Descriptive Analysis of Cross-Sectional Data

Each molecular feature was assigned a structural category using the contextual expertise of Dr

Paul Afolabi and Dr Grielof Koster.
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The absolute abundances of VOCs was assessed using transformed and batch corrected data

without scaling.

A correlation matrix for all VOCs was constructed using Pearson’s correlation coefficients and
visualised as a graph using Cytoscape 33%. Each node represents a molecular feature, which was
labelled with its tentative ID. Each line between the nodes (edge) represents a positive correlation
coefficient with a p value <0.05; the thickness of the edge reflects the strength of correlation
(thicker line represents a stronger correlation). The clusterMaker2 332 plug in was used, using a

GLay network partitioning algorithm, to identify clusters within the graph

Relationships between the abundance of VOCs and log transformed Sputum Inflammatory cell

counts were performed using Pearson’s correlations

For differential expression analyses, data was exported to R for analysis using the limma package.
limma uses an empirical Bayes method to moderate the standard errors of the estimated log-fold
changes. This results in more stable inference and improved power 333, Sex and FEV1/FVC ratio

was accounted for in the differential expression model. Volcano plots were constructed using the
EnhancedVolcano library, which visualise the logfold change and p value for any VOCs found to be

differentially abundant.

6.2.8 Principal Component Analysis

Principal Component Analysis was used for exploratory data analysis. A bar chart was used to
visualise the cumulative percentage of variance captured by successive principal components. The
first ten principal components were correlated (using Pearson’s Correlation coefficient) to a
restricted set of clinical characteristics and visualised as a heatmap: Non-significant correlations
were coloured grey/white, positive and negative correlations with p-value < 0.05 in red and blue,

respectively.

PCA plots were constructed from the first two principal components, where each point represents
a breath sample. Ellipses were constructed and positioned using the mean and coefficient of
variation of the principal components within the grouping of interest as a representation of a 95%

confidence interval. Hierarchichal Clustering of Repeat Sample Visits

A supervised machine learning approach was applied to the data in the Repeat data. Ward’s
hierarchical clustering on Euclidean distances between the VOC features was used to identify 14

clusters (to match the 14 subjects).
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6.2.9 Within Subject Variability

“Between Visit” and “Between Subject” variation was calculated for each molecular feature using
the coefficient of variation (scipy.stats.variation). “Between Visit” variability (or Within Subject)
attempts to capture the variation of each molecular feature in the same individual but measured
at different visits. A coefficient of variation was calculated across Visits 1-5 for each patient. From
those fourteen CVs, the average (median) value was extracted) (illustrated by MF X in Figure).
“Between Subject” variability (or Within Visit) attempts to capture the variation of each molecular
feature across individuals. For each patient, the average (median) value for each molecular
feature across Visits 1-5 was calculated and a coefficient of variation taken from these (illustrated

by MF Z in Figure 6.2).

Patient Visit MF X MFY MF Z
A 1 Xa1 Ya1 Zpg
A 2 Xa2 Ya2 Zps
A 3 Xa3 Yas3 Zp3
B 1 X1 Va1 Zg4 Variation
B 2 Xa2 Yoo Zy,
B 3 Xg.3 Yg.3 Zg4 Average
c 1 Xc1 Yeu Zcq
c 2 Xc2 Yo Zc,
C 3 Xc3 Yea JAE

Figure 6.2 Illustration of How Within and Between Variability in VOCs was Calculated

Any VOC with a mean between-subject variability of 230% was considered potentially
discriminatory. Any VOC with a mean within-subject variability of 230% was considered
inconsistent. These criteria were used to categorise VOCs into four categories: “Conserved”: low
variability within subjects and between subjects, “Erratic”: high variability within subjects and
between subjects, “Potential biomarkers”: low variability within subjects but high variability
between subjects, and “Noisy”: high variability within subjects but low variability between

subjects.
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6.2.10 Supervised Machine Learning for Classification

6.2.10.1 Training and Test Sets

Breath samples collected from the cross-sectional arm of the study were used as the training set
(n=60) and the first breath sample from the repeat arm of the study were used as the test set
(n=14). As described in 1.2.2, pre-processing was conducted in such a way that there was no data

leakage from the test set to the training set.

6.2.10.2 Prediction Outcome

Patients were phenotyped according to their sputum inflammatory cell counts: eosinophilia was

defined as sputum eosinophils 22% and non-eosinophilia as sputum eosinophils <2%.

6.2.10.3 Model Construction

XGBoost (eXtreme Gradient Boosting) is an implementation of gradient boosted decision trees 334,
Tree based ensemble algorithms are well suited to biological data due to their tolerance of non-
gaussian data distributions, multi-collinearity of features and outliers. We chose to apply XGBoost
to our data due to its predictive accuracy and recent successful application of random forests
(parallel ensemble of decision trees) to asthma breathomics data '¥’. Boosting describes an
ensemble technique in which predictions from new models are sequentially combined to improve
the overall performance of the model. Gradient boosting specifically describes the use of a

gradient descent algorithm to minimize loss when adding new models.

Each model was tuned to optimise for cross entropy loss using a Bayesian Optimisation algorithm
335, which builds a probability model to search over the most promising model hyperparameters
(the number of tress, maximum tree depth, L1 regularization term on weights, L2 regularization
term on weights, the minimum sum of weights of all observations required in a child, the
minimum loss reduction required to make a split) for the objective function, within a threefold

cross validation.

6.2.10.4 Feature Selection

Feature selection was performed using the feature importance tool within the eXtreme Gradient

Boosting algorithm. Feature importance was defined using gain, which is a measure of how much
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the classification metric improves following branching using that feature. The optimal set of
features was calculated by splitting the training set such that models could be trained on different
subsets of features. The minimum number of features producing the best accuracy were selected

to be assessed in the test set.

6.2.10.5 Model Evaluation

The predictive performance of each developed model was evaluated on the test set using
prediction measures of discrimination (area under the receiver operating curve, AUC). Where an
AUC of >0.6 was achieved, sensitivity, specificity, positive and negative predictive values (PPV and

NPV were calculated

6.3 Results

6.3.1 Patient Population

Recruitment to the Breath Sampling of Severe Asthma study commenced in November 2018, at
which time, 81 patients had provided a viable sputum sample to the Airway Sampling of Severe
Asthma Study. During the period in which patients were recruited to the Airway Sampling and
Breath Sampling studies, in parallel, 113 patients provided a viable sputum sample. A paired
breath sample was collected in 74 patients (65.5%). Instances of sputum samples collected
without paired breath samples were due, exclusively, to lack of availability of breathomics

consumables (Figure 6.3)
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Successful Sputum Induction
(n=194)

Unable to collect breath sample

Paired Breath Sample
(n=74)

A

Single Breath Sample Repeated Breath
Samples
(n=60) (n=14)

Figure 6.3 Consort Diagram of Patients with Paired Sputum and Breath Samples

6.3.1.1 Patients Providing a Breath Sample vs Patients that did not

The only statistically significant difference between those patients providing a breath sample and
those that did not as an increase in prescribed ICS in (3000 (2762-3900) vs 3000 (2000-3000)
respectively, p=0.047) (Table 6.1).

Table 6.1  Comparison of Patients with and without Breath Samples

Continuous variables expressed as median [Q1, Q3] with differences measured by
Mann-Whitney U test. Categorical variables expressed as n (%) with differences
measured by chi-square test. Abbreviations: ICS, inhaled corticosteroid; BDPe,
beclomethasone dose equivalent; FeNO, fraction of nitric oxide in exhaled breath;
post BD, post bronchodilator; FEV1, forced expiratory volume in 1 second; FVC,
forced vital capacity; FEF25-75%, forced expiratory flow at 25% to 75% of FVC; ACQ,
asthma control questionnaire, HADSTOT, Hospital Anxiety and Depression Total

Score; SNOT, SinoNasal Outcome Score

No Breath Breath Sample P-Value

(n=121) (n=74)
Sex (% Female) 70 (58.3) 33 (44.6) 0.086
Age 58.0 [43.0,67.0] 56.0 [49.0,64.8] 0.774
BMI 30.2 [26.4,34.8] 28.1 [25.2,32.6] 0.071
Smoker (% Never) 71 (59.2) 53 (71.6) 0.168
Atopy 74 (61.7) 45 (60.8) 0.974
Age of Onset 20.0[7.0,40.0] 14.5 [3.0,43.5] 0.548
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No Breath Breath Sample P-Value
(n=121) (n=74)
Exacerbations in Last 12 2.0[1.0,4.0] 1.0 [0.0,3.0] 0.242
months
ICS (BDPe) 3000.0 3000.0 0.047
[2000.0,3000.0] [2762.0,3900.0]
FeNO 23.0[15.0,45.0] 28.0[17.0,46.0] 0.25
Blood Eosinophil Count 0.2 [0.1,0.4] 0.3[0.1,0.4] 0.079
Sputum Eosinophil (%) 1.5[0.5,8.4] 3.1[0.5,13.2] 0.286
Sputum Neutrophil (%) 43.2 [24.9,62.4] 45.9 [24.0,73.6] 0.399
PostBD FEV1 75.9 [61.6,92.2] 77.5[57.4,90.9] 0.566
PostBD FEV1/FVC 68.5[61.0,78.0] 66.0 [56.0,77.0] 0.304
PostBD FEF25-75 %predicted 46.2 [31.5,79.6] 41.7 [28.4,71.8] 0.501
ACQ6 2.2[1.3,3.0] 2.7[1.5,3.3] 0.126
HADSTOT 10.0 [6.0,15.2] 10.0 [6.0,16.0] 0.88
SNOT20 28.0[17.2,45.2] 32.0[21.0,45.0] 0.407
6.3.1.2 Patients Providing Repeat Breath Samples vs Patients Providing a Single Breath

Sample

Patients took part, mutually exclusively, to the Cross Sectional and Repeat Sampling arms of the

study (Figure 6.1). There were no statistically significant differences between patients providing a

single breath sample and those that provided repeat breath samples (Table 6.2).

Table 6.2  Comparison of Patients Providing a Single and Repeat Breath Sample

Continuous variables expressed as median [Q1, Q3] with differences measured by

Mann-Whitney U test. Categorical variables expressed as n (%) with differences

measured by chi-square test. Abbreviations: ICS, inhaled corticosteroid; BDPe,

beclomethasone dose equivalent; FeNO, fraction of nitric oxide in exhaled breath;

post BD, post bronchodilator; FEV1, forced expiratory volume in 1 second; FVC,

forced vital capacity; FEF25-75%, forced expiratory flow at 25% to 75% of FVC; ACQ,

asthma control questionnaire, HADSTOT, Hospital Anxiety and Depression Total

Score; SNOT, SinoNasal Outcome Score
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Sex (% Female)
Age

BMI

Smoker (% Never)
Atopy

Age of Onset

Exacerbations in Last 12
months

ICS (BDPe)

FeNO

Blood Eosinophil Count
PostBD FEV1

PostBD FEV1/FVC

PostBD FEF25-75 %predicted

ACQ6

HADSTOT

SNOT20
6.3.2 Pre-Processing
6.3.2.1 Data Transformation

Broadly, most features demonstrate a right skew distribution, which was successfully transformed

Single Breath
(n = 60)

28 (46.7)

57.5 [49.0,65.5]
28.7 [26.2,33.5]
42 (70.0)

39 (65.0)

16.0 [3.0,49.2]
2.0[0.0,3.0]

3000.0
[2900.0,3860.0]

27.0[15.5,43.5]
0.3[0.1,0.4]
76.7 [59.7,89.5]
66.0 [56.0,77.2]
40.6 [28.6,72.9]
2.7[1.5,3.3]
10.0 [6.0,16.0]
30.5 [20.2,45.0]

Repeat Breath
(n=14)

5(35.7)

54.0 [51.2,60.2]
25.0 [23.3,31.5]
11 (78.6)

6 (42.9)

14.0 [5.2,30.2]
1.0 [0.0,3.0]

2920.0
[2529.0,3900.0]

38.5[29.8,50.8]
0.2[0.1,0.4]
81.5[45.6,92.9]
66.0 [54.5,74.5]
55.0 [25.2,68.6]
2.5 [1.6,3.5]
11.0 [6.0,14.0]
32.0[30.0,59.0]

by log transformation into a gaussian-like distribution (Figure 6.4)
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P-Value

0.657
0.46

0.082
0.703
0.221
0.68

0.456

0.451

0.145
0.894
0.751
0.907
0.989
0.809
0.827
0.226
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Before and After Transformation on 3 Random Measures
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Figure 6.4 Distributions of three random VOCs before and after log transformation
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6.3.2.2 Batch Effect

Proportion of Target Volume Collected

Breath Sampling Duration (seconds)
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There was minimal separation in samples across target volume collected, breath sampling

duration and storage duration (Figure 6.5). However, there was distinct separation on the PCA

plots across the GCMS platform used, which was carried over to the resolution measures This is

confirmed using boxplots comparing the measurements of the same VOCs across the GCMS

platform on which it was analysed (Figure 6.6). This batch effect was resolved by pycombat

(Figure 6.7)
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Batch Effect Across Random Examples
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Figure 6.6 Boxplot Demonstrating Batch Effect seen Across Instrumentation for two Random

Molecular Features

Blue represents one instrument and orange another instrument. Abundances have

been transformed and scaled
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Batch Effect Across Random Examples After Correction
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Figure 6.7 Boxplot Demonstrating Resolution of Batch Effect seen Across Instrumentation for

two Random Molecular Features

Blue represents one instrument and orange another instrument. Abundances have

been transformed and scaled

6.3.3 Exploratory Analysis of Cross-Sectional Data

Cross sectional data (n=74) was compiled from samples in the cross-sectional arm (n=60) and visit

1 from the repeated sampling arm (n=14) of the study

6.3.3.1 Abundance

Over a third (42.7%) of the VOCs identified in the exhaled breath samples could be categorised as
alkanes or terpenoids. In terms of absolute concentrations, aromatic esters (Furan-2-methyl and
Furan-3-methyl) were most abundant, appearing in exhaled breath at a median concentration of
4,708,940 [range 2,354,471.37 - 7,063,410.03] parts per billion (ppb) (Figure 6.5), 10,000 times
the concentration of the next identified category, halogenated hydrocarbons, 443.60 [443.60 -
443.60] ppb (Table 6.3).
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Abundance and Frequency of VOCs in exhaled breath belonging to structural

categories defined by Dr Afolabi and Dr Koster.

Category of Volatile Organic
Compound

Alkane

Terpenoid

Aldehyde

Aromatic hydrocarbon

Ketone

Halogentaed hydrocarbon

Organic sulfide

Alcohol

Aromatic ester

Fluronated benzene

Halogentaed aromatic hydrocarbon
Cyano compound

Di-ether

Ester

Halogenated aromatic hydrocarbon
Halogenated hydrocarbon
Monoterpene

Organoselenium compound
Organosilicon compound

Unknown

6.3.3.2 Network Analysis

Count

=N
N -

R R, R R R R R R R NNNPMMOOON NN

Median Abundance (ppb) and [range]

3.17 [2.18 - 4.96]

6.05 [4.20 - 8.50]

10.10 [4.26 - 165.39]

1.68 [1.52 - 2.20]

6.02 [4.86 - 36.63]

10.95 [9.74 - 20.93]

62.41[20.91 - 111.88]

13.24 [10.78 - 34.62]
4,708,940.70 [2,354,471.37 - 7,063,410.03]
8.54 [7.31-9.76]

9.70 [6.07 - 13.34]

73.56 [73.56 - 73.56]

9.45 [9.45 - 9.45]

24.93 [24.93 - 24.93]

8.99 [8.99 - 8.99]

443.60 [443.60 - 443.60]

6.86 [6.86 - 6.86]

227.60 [227.60 - 227.60]

143.61 [143.61 - 143.61]
11,380.38 [11,380.38 - 11,380.38]

Co-abundance of VOCs in exhaled breath (Figure 6.8) was visualised using a graph network of

correlations. Clusters within the graph broadly map to the chemical structure categories defined

by Dr Afolabi and Dr Koster: monoterpenes (light blue), alkanes (yellow), which includes aromatic

hydrocarbons that also cluster closely to one another, aldehydes (green) and aromatic esters

(purple). Based upon this network, the single unidentified compound is likely to be an aldehyde.
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Figure 6.8 Network Representation of a Correlation Matrix of Exhaled VOCs

Each node represents a molecular feature and each line the correlation between

those molecular features; the thickness of the line represents the strength of the

correlation. The colour of the node represents cluster assignment

6.3.3.3 Principal Component Analysis

Feature reduction by Principal Component Analysis demonstrates that 66.58% of variance of

variance in the original feature set was explained by the first ten principal components; 28.41%

was explained by the first two (Figure 6.9).
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Figure 6.9 Variance Explained by First 10 Principal Components of the Cross Sectional Data

PC1 captures the majority of variance in the VOC dataset, however it does not appear to correlate

to any salient clinical characteristics. Sex correlates with second principal component. Subsequent

principal components relate to oral corticosteroid use, duration of asthma disease; PC4 and PC5

correlate with objective markers of T2 inflammation (Figure 6.10).
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Figure 6.10 Heatmap of correlation between clinical characteristics and the first 10 principal

components from the Cross Sectional Data.

Non-significant correlations in grey/white, positive and negative correlations with p-
value < 0.05 in red and blue, respectively. * Sputum Eosinophils and Sputum
Neutrophil Percentages log transformed. Volatile organic compounds (VOCs),
principal component (PC), maintenance oral corticosteroid treatment dose (mOCS),
post bronchodilator ratio between forced expiratory volume in 1 s and forced vital
capacity (Post BD FEV1/FVC), eosinophils (Eos), neutrophils (Neut), Fraction of
exhaled Nitric Oxide (FeNO).

6.3.3.4 Unsupervised Clustering on VOCs

Silhouette width indicates the optimal number of clusters in this dataset is 2, corroborated by the
gap statistic and total within sum of squares (Figure 6.11). As per previous analysis, Hierarchical
clustering and Partition Around the Medioids were explored as clustering techniques. There was
minimal cluster consensus however (rand index 0.53). The Calinski Harabaz Index, a measure of
cluster tightness, was similar between the two clustering techniques (9.02 and 10.84,

respectively) indicating similar clustering performance.
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Optimal Number of Clusters by Silhouette Width Optimal Number of Cluslers by Gap Stalistic Opiimal Number of Clusters by Total Within Sum of Square
o1z

Humber of Chsters

Figure 6.11 Measures of Optimal Number of Clusters in VOC Data.

A. Silhouette Width, B Gap Statistic, C Total Within Sum of Squares

Comparison between the PAM defined clusters (which had the higher Calinski Harabaz Index)

indicated that there were few clinical and physiological differences between the two similarly

sized clusters (Table 6.4). There were significant differences in spirometry; post bronchodilator

spirometry was more impaired in Cluster 2 than Cluster 1 (p=0.043). This difference was

accompanied by trends towards loss of diversity and increased exacerbation frequency in Cluster

2.

Table 6.4  Clinical Characteristics Across VOC Clusters Continuous variables expressed as

median [Q1, Q3] with differences measured by Mann-Whitney U test. Categorical

variables expressed as n (%) with differences measured by chi-square test.

Abbreviations: GORD, gastro-oesophageal reflux disease; ICS, inhaled corticosteroid;

BDPe, beclomethasone dose equivalent; OCS, oral corticosteroids; IgE,

Immunoglobulin E; IL-5, Interleukin 5; ACQ, asthma control questionnaire, HADSTOT,

Hospital Anxiety and Depression Total Score; SNOT, SinoNasal Outcome Score; FeNO,

fraction of nitric oxide in exhaled breath; post BD, post bronchodilator; FEV1, forced

expiratory volume in 1 second; FVC, forced vital capacity; FEF25-75%, forced

expiratory flow at 25% to 75% of FVC;

Cluster 1 Cluster 2 P-Value
(n=44) (n=30)
Female Sex 21 (47.7) 12 (40.0) 0.676
Age 55.0 [49.0,62.2] 58.0 [50.5,66.5] 0.7
BMI 27.8 [25.8,31.0] 29.0 [23.9,36.7] 0.745
Never Smoker 33 (75.0) 20 (66.7) 0.735
Atopic 30 (68.2) 15 (50.0)
0.183
GORD 21 (47.7) 14 (46.7)
0.883
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Nasal Polyps

Age of Onset

Exacerbations in the Last 12
Months

mOCS
ICS (BDPe)
Anti IgE

Anti IL-5

ACQ6

HADS

SNOT20

FeNO

PostBD FEV1 (% predicted)
PostBD FVC (% predicted)
PostBD FEV1/FVC

PostBD FEF25-75% (% predicted)

FEV1 Reversibility
Blood Neutrophils
Blood Eosinophils
Serum Total IgE
Sputum Neutophils
Sputum Eosinophils
Sputum MPO
Sputum NE

Sputum EDN
Sputum ECP
Observed a Diversity
Chao a Diversity
Shannon a Diversity

Simpson a Diversity
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Cluster 1
(n=44)
14 (32.6)

15.0 [3.5,38.5]
1.0[0.0,3.0]

18 (40.9)
3000.0 [2814.0,3840.0]
5(11.4)

2(4.5)

2.6 [1.4,3.3]

10.0 [6.0,13.0]
29.5[20.8,44.2]
29.0[17.5,47.5]
79.2 [61.8,93.6]
92.7 [81.2,101.2]
66.5 [56.8,79.2]
51.7 [32.6,85.0]
10.9 [3.4,20.5]
5.2[4.2,6.3]
0.3[0.1,0.4]

159.6 [31.0,366.4]
49.9 [24.0,76.3]
2.7[0.4,11.8]
1134.0 [489.4,2100.5]
6.1[3.4,11.7]
656.4 [149.1,1133.0]
555.2 [92.0,1543.0]
137.0 [103.0,147.5]
153.5 [119.9,167.8]
3.3[2.9,3.6]
0.9[0.9,1.0]

Cluster 2
(n=30)
4 (13.8)

14.0 [3.0,49.5]
3.0[1.0,4.0]

14 (46.7)
3000.0 [2575.0,3980.0]
4(13.3)

5(16.7)

2.7[2.1,3.3]
11.5[7.0,16.8]

35.0 [25.5,48.5]
28.0 [17.8,45.8]
64.5 [48.9,88.2]
89.7 [72.3,104.8]
63.0 [52.5,70.0]
39.4[19.1,60.9]
12.7[8.7,17.1]
5.4[4.7,7.0]

0.2 [0.1,0.5]

131.8 [24.8,279.6]
45.6 [22.6,70.8]
3.7[0.5,15.8]

979.6 [603.4,1844.5]
8.6 [2.9,11.8]

474.2 [184.1,1471.5]
916.0 [144.6,1747.5]
100.0 [72.0,146.0]
113.1[89.0,161.0]
3.1[2.5,3.5]

0.9 [0.8,0.9]

P-Value

0.127
0.956

0.062

0.801
0.969

0.112
0.464
0.193
0.32
0.982
0.043
0.324
0.211
0.025
0.709
0.481
0.907
0.817
0.886
0.72
0.984
0.932
0.527
0.43
0.158
0.118
0.276
0.2
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6.3.4 Exploratory Analysis of Repeat Data Samples

Repeat data (n=70) was compiled from samples from 14 patients in the repeated sampling arm

(n=14) of the study who each provided 5 samples.

6.3.4.1 Principal Component Analysis

Feature reduction by Principal Component Analysis demonstrates that 76.89% of variance of
variance in the original feature set was explained by the first ten principal components; 32.75%

was explained by the first two (Figure 6.12).

Explained Variance Across Principal Components
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Figure 6.12 Variance Explained by first 10 Principal Components

Subject ID was correlated with the first three principal components but visit number (i.e. day of
the week) did not correlate with any of the first ten principal components (Figure 6.13).
Contrasting the cross-sectional PCA, the first principal component also correlates with typical T2
characteristics, such as atopy, FeNO, sputum eosinophils and obstructed lung function
obstruction. This is simply a confounder correlating with Subject ID (50% of these patients had

sputum eosinophilia).
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Correlation Between Clincial Characteristics and First 10
Principal Components from VOCs in Repeat Breath Samples
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Figure 6.13 Heatmap of correlation between clinical characteristics and the first 10 principal

components.

Non-significant correlations in grey/white, positive and negative correlations with p-
value < 0.05 in red and blue, respectively. * Sputum Eosinophils and Sputum
Neutrophil Percentages log transformed. Volatile organic compounds (VOCs),
principal component (PC), maintenance oral corticosteroid treatment dose (mOCS),
post bronchodilator ratio between forced expiratory volume in 1 s and forced vital
capacity (Post BD FEV1/FVC), eosinophils (Eos), neutrophils (Neut), Fraction of
exhaled Nitric Oxide (FeNO).

A PCA plot of breath samples (visualising the first two principal components) corroborates the
findings from the heatmap (Figure 6.10) that breath samples from the same patient are closely
related. but do show some within-subject variability, as illustrated by the ellipses (Figure 6.14).
The size of each ellipsis (representing an individual subject) relative to the spread of all breath
samples illustrates that within-subject variability is a fraction of the variability seen across all
breath samples. The ellipses are closely connected and, in most cases, overlap, indicating that
breath samples from different individuals share some characteristics. When constructing ellipses

to represent the day of the Visit, we see no separation (Figure 6.15).
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Principal Component Analysis Plot of Repeated Breath Samples
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Figure 6.14 PCA plot of all 70 breath samples with ellipses representing subject identifiers (n =
14)

. Principal Component Analysis Plot of Repeated Breath Samples By Visit

0.5

oo

Principal Component 2
{accounting for 12.77% varnance)

-2 -1 a 1 2 3
Principal Component 1
(accounting for 19.98% variance)

Figure 6.15 PCA plot of all 70 breath samples (5 samples from 14 subjects) with ellipses

representing the day of the week on which the sample was collected
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6.3.4.2 Clustering

When hierarchical clustering of the 70 breath samples was applied to identify 14 clusters, 11
clusters contained all five breath samples from the same patient; the remaining three cluster

contained a combination of breath samples from different patient (Figure 6.16)

Patient Visits

Molecular Feature

Figure 6.16 Heatmap of VOC Abundance in 80 Breath Samples From 14 Patients.

Columns represent VOCs, rows represent patient visits. Rows ordered according to
hierarchical clustering of molecular features using Ward’s method on Euclidean
distances. Colour bar on y axis indicates subject ID (i.e. blocks of colours indicate that

visits from the same patient have clustered together).

6.3.5 Within Subject Variability

Cross-sectional analysis allows for identification of VOCs that vary between subjects, the data

from the repeat sampling visit allows for identification of VOCs that vary within subjects.

124



Chapter 6

The majority of VOCs (62, 69.66%) had a mean within-subject variation of <30% (Figure 6.17). Of
these, 14 VOCs (15.73% of total) were found to be “Conserved”, that is, they showed low
variability within subjects and between subjects. 30.35% of VOCs (n = 27) were found to be
“Erratic”, that is, they showed high variability within subjects and between subjects. The
remaining 53.93% of VOCs (n = 48) showed low variability within subjects but high variability

between subjects (“Potential Biomarker”).

Within Subject and Between Subject Variability of VOCs
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Figure 6.17 Scatterplot of within-subject variability and between-subject variability for each VOC.
Cutoffs at 0.3 for both Within and Between Subject Variability

The VOC types described in Table 6.1 had broadly similar relative frequencies of “Erratic”,

“Conserved” and “Potential Biomarker” assignments. Of note, 52.4% of alkanes were categorised

as “potential biomarkers” but, in parallel, 38.1% were categorised as “erratic”. The majority of

aldehydes (57.1%) were erratic.
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Proportion of Vaniance Grouping for each Family of VOCs
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Figure 6.18 Proportion of repeatability assignments in each VOC category

6.3.6 Relationship With Granulocyte Counts

PCA analysis identifies some relationship between VOCs and granulocyte count and VOC
abundance but this is weak (Figure 1.9). Prior to training machine learning predictors, a number of

approaches were used to further understand this.
6.3.6.1 Pearson’s Correlation

Weak correlations are observed between VOCs and sputum granulocyte counts. The strongest
correlation with sputum eosinophil was negative: 1,4 dioxane (Table 6.5). There was only one

significant correlation with sputum neutrophils: Undecane, 3-methyl (Table 6.6).

Pearson’s Correlation P Value
1,4-Dioxane -0.330 0.004
2-Butanone -0.320 0.006
Pentane, 3-methyl- 0.251 0.031
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Pearson’s Correlation P Value

Phenol 0.249 0.033
1-Propene, 1-(methylthio)-, 0.245 0.035
(E)-

n-Hexane -0.236 0.043
Bicyclo[3.1.0]hex-2-ene, 4- 0.235 0.044
methylene-1-(1-methylethyl)-

Sulfide, allyl methyl 0.233 0.046

Table 6.5  Significant Correlations Between log transformed Sputum Eosinophils and VOC

Abundance

Pearson’s Correlation P Value

Undecane, 3-methyl -0.341 0.003
Table 6.6  Significant Correlations Between log transformed Sputum Neutrophils and VOC

Abundance

6.3.6.2 Differential Abundance

Differential abundances of VOCs between sputum eosinophilic and sputum neutrophilic patients,
when adjusted for sex and spirometry, identified only minor log fold changes with p values only
reaching significance without correcting for false discovery. 1-Hexanol, 2-ethyl- was decreased in
eosinophilic patients, whilst Benzene and Thiophene, 3-methyl- were increased (Figure 6.19).
Heptanal, .beta.-Pinene and identified (suspected aldehyde (Figure 6.8)) MF were increased in

neutrophilic patients (Figure 6.19).
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Figure 6.19 Volcano Plots of Differential Abundance of VOCs in inflammatory Phenotypes

corrected for Sex and FEV1.

A = Non-eosinophilic vs Eosinophilic. B = Non-neutrophilic vs Neutrophilic. MF71 = 1-
Hexanol, 2-ethyl-, MF18 = Benzene, MF29 = Thiophene, 3-methyl-, MF 47 = Heptanal,
MF51 = No NIST identification, MF56 = .beta.-Pinene

6.3.6.3 Principal Component Analysis

A PCA plot of breath samples in the cross-sectional data (visualising the first two principal
components) corroborates shows no separation between sputum eosinophilic and non-
eosinophilic patients (Figure 6.20) nor between sputum neutrophilic and non-neutrophilic

patients (Figure 6.21).
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2o Principal Component Analysis Plot of Breath Samples By Sputum Eosinophilia
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Figure 6.20 PCA Plot of Breath Samples Separated by Sputum Eosinophils >2%.

20 Principal Component Analysis Plot of Breath Samples By Sputum Neutrophilia
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Figure 6.21 PCA Plot of Breath Samples Separated by Sputum Neutrophils >61%.
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6.3.7 Machine Learning Classifier

An XGBoost classifier was trained on all 89 VOCs in the training set and assessed on the test set. A
model using default settings achieved an AUC for predicting sputum eosinophilia (>2%) of 0.357

(Figure 6.22); following hyper-parameter optimisation, this improved to 0.429 (Figure 6.23).
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Figure 6.22 Confusion Matrix and ROC Curve for XGB Classifier Trained on All VOCs
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Figure 6.23 Confusion Matrix and ROC Curve for Hyperparameter Optimised XGB Classifier
Trained on All VOCs

From the 89 features, the most important features (determined by ‘gain’) were selected (Figure
6.24). A classifier trained on these features achieved an AUC for predicting sputum eosinophilia
(>2%) of 0.5 (Figure 6.25); following hyper-parameter optimisation, this dropped to 0.429 (Figure
6.26).
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Figure 6.24 Feature Importance for All VOCs in the XGB Classifier
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Figure 6.25 Confusion Matrix and ROC Curve for XGB Classifier Trained on Important VOCs

Identified from All VOCs

131



Chapter 6

Confusion Matrix ROC Curve

08

False

06

Actual Values
Tue Positive Rate

02

Tue

-20 00

False 0.0 02 04 0.6 08 10
Predicted Values False Positive Rate

Figure 6.26 Confusion Matrix and ROC Curve for Hyperparameter Optimised XGB Classifier
Trained on Important VOCs Identified from All VOCs

In summary, although there is evidence on PCA that VOCs are sensitive to sputum eosinophilia,
this appears to be weak. Consequently, in this analysis, machine learning classifiers are unable to

predict the sputum eosinophilic phenotype in an independent test cohort.

6.3.8 Restricting to Stable Features

Using the within-subject variation findings described in 1.3.5, the clustering approach described in
1.3.4.2 was repeated on the 70 breath samples from the 14 patients, excluding erratic VOCs.
When using all VOCs, 11 clusters were perfect (cluster composed of all samples from a single

patient, (Figure 6.16)); when restricting to non-erratic VOCs, this improves to 12 (Figure 6.27).
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Patient Visits

Molecular Feature

Figure 6.27 Heatmap of VOC Abundance in 80 Breath Samples From 14 Patients restricted to 62

features that were not erratic.

Columns represent VOCs, rows represent patient visits. Rows ordered according to
hierarchical clustering of molecular features using Ward’s method on Euclidean
distances. Colour bar on y axis indicates subject ID (i.e. blocks of colours indicate that

visits from the same patient have clustered together).

6.3.8.1 Machine Learning Classifier

An XGBoost classifier was trained on the non-erratic 62 VOCs in the training set and assessed on

the test set. A model using default settings achieved an AUC for predicting sputum eosinophilia
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(>2%) of 0.286 (Figure 6.28); following hyper-parameter optimisation, this dropped to 0.214
(Figure 6.29).
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Figure 6.28 Confusion Matrix and ROC Curve for XGB Classifier Trained on All VOCs
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Figure 6.29 Confusion Matrix and ROC Curve for Hyperparameter Optimised XGB Classifier
Trained on All VOCs

From the 62 features, the most important features (determined by ‘gain’) were selected (Figure
6.30). A classifier trained on these features achieved an AUC for predicting sputum eosinophilia
(>2%) of 0.571 (Figure 6.31); following hyper-parameter optimisation, this improved to 0.643
(Figure 6.32).
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Figure 6.31 Confusion Matrix and ROC Curve for XGB Classifier Trained on Important VOCs

Identified from All VOCs
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Figure 6.32 Confusion Matrix and ROC Curve for Hyperparameter Optimised XGB Classifier
Trained on Important VOCs Identified from All VOCs

The final model had an accuracy of 0.64, sensitivity 0.43, specificity 0.86, f1 score of 0.57, PPV
0.86 and NPV 0.60. The most important VOCs to contribute to the most successful model
(Hyperparameter Optimised XGB Classifier Trained on Important VOCs ldentified from All VOCs)

include butane, 2-methyl and pentane (Table 6.7).

VOoC Feature Importance
2-Pentanone 0.288
4-Heptanone 0.264
Octane, 1-chloro- 0.240
2,3,4-Trifluorobenzoic acid, 4-nitrophenyl 0.208
ester

Table 6.7  Feature Importance of VOCs used in the Hyperparameter Optimised XGB Classifier

Trained on Important VOCs Identified from All VOCs

6.4 Discussion

The VOCs identified in this cohort are consistent with those reported by other studies®3¢ and
otherwise broadly consistent with the established literature, which commonly describes
aldehydes, aromatic hydrocarbons and ketones®¥’. The breath samples in our cohort were

dominated, in absolute terms by aromatic esters. These compounds have been associated with
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asthma and furan based cyclic compounds have been identified as possible biomarkers of asthma
338 This would explain it’s high abundance in this cohort, though this interpretation is limited by a

lack of healthy control group.

6.4.1 Cautious Interpretation of Co-abundance analysis

The co-abundance analysis provides a very basic quality control check for the study. The graph
illustrated is rich with nodes and edges, demonstrating that there is a structure to the exhaled
breath profile across all the patients. This is best illustrated by considering an opposing finding: if
no statistically significant correlations were observed, this might indicate that exhaled VOC
profiles are totally inconsistent from patient to patient. This would undermine any attempt at

searching this matrix for a biomarker.

More detailed interpretation of the co-abundance analysis should be done cautiously. Simply, this
demonstrates that the abundance of VOCs which have been identified as structurally similar are
correlated. One explanation might relate to the fact that putative identifications were made
against the NIST library but not confirmed against pure chemical standards: VOC identifications
were made if there was >85% match and so structurally similar compounds could be mistaken for

one another.

If the putative identifications are accurate then the analysis indicates there might be value in
describing exhaled breath in less granular terms i.e., by VOC class rather than VOC. The
Proteobacteria:Firmicutes ratio is a summary statistic of the airway microbiome 3?7 that shows
potential utility, despite only capturing Phylum level data (as opposed to Genus or Species levels
of identification that are possible by 16S or metagenomic approaches respectively). This would,
for all intents and purposes, be a form of feature reduction. To take the microbial comparison
further, future analyses of breath volatile might also be explore summary measures such as

diversity.

6.4.2 Repeat Analysis Identifies Consistency in Breath VOC Profiles

Breath sampling by the ReCIVA device has been successfully used in acutely breathless patients 33°
indicating it to be easy to perform. Nevertheless, to our knowledge, this study is the first to report
that repeated breath sampling (more than twice) is feasible in a severe asthma cohort. This is not

surprising?® but affirms one of the oft quoted advantages of breathomics for airways disease.
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As with the co-abundance analysis of cross-sectional samples, PCA analysis of the repeated
samples serve as a very basic quality control check for the study. Modern dimension reduction
techniques, like t-SNE and UMAP, have become popular, due to their use of non-linear techniques
in order to maximise local structure separation. PCA was preferred in this analysis because it
maintains global structure; we are able to visualise that intra-patient variability of breath samples
is less then inter-variability of breath samples. We also observe that some patients are more
closely related to one another than others indicating that there is similarity and heterogeneity in

exhaled breath profiles.

6.4.3 Heterogeneity in Within Subject Variance

Breathprints from e-nose shows some between day repeatability 37 34°, However, these were
from just two samples taken, on average, 14 days part. To our knowledge, this is the first report of
individual VOCs measured by GCMS to be reported from multiple visits. The within subject
variability of VOCs is highly heterogenous (Figure 6.22). As discussed in Chapter 6.1, a number of
factors can contribute to this variability. It is possible that the heterogeneity may also reflect
analytical sensitivity or indeed true biological variation but would regardless lead to excessive

noise that would drown out signals of interest.

Hierarchical clustering of repeat breath samples demonstrates that restricting to non-erratic VOCs
does lead to detrimental signal loss: similarities in breath samples from the same patient was
identified in the reduced feature set. Moreover, the predictive performance of supervised
machine learning models was improved, when compared to a full feature set. It should be noted
that a mean cutoff of 30% coefficient of variation is very lenient and would not be acceptable in
other fields. The purpose of this analysis was to reduce noise rather than eliminate it altogether.
VOCs are inherently volatile and stringent cutoffs would have been prohibitive for biomarker
discovery. Ultimately, it is unlikely that any clinically translatable VOC biomarker will based on a
single VOC, rather it is likely to be a panel of VOCs. As such it is not the variability of individual
VOCs that is important but the variability of that signature. Furthermore, once a signature is
identified, the methodology can be adapted to improve the repeatability of that signature, as in

the case of exhaled nitric oxide (FeNQ) 80342,
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6.4.4 Relationship with Airway Inflammation

A variety of approaches were used to relate the VOC profile to airway inflammation but none
were conclusive. Only weak correlations and differential expression were seen in relation to
sputum eosinophilia. PCA indicated that T2 inflammation was correlated with the fourth and fifth
PC (Figure 6.8) but this was, as with the other analyses, only weak. These findings resonate with
previous reports that airway inflammation is rarely captured in the first principal component 34
VOCs important to the prediction of sputum eosinophilia were only identified through aggressive
feature selection. This is consistent with the PC loading analysis, which demonstrates airway

inflammation to only relate to a small amount of variation seen in exhaled breath.

The VOC most important to airway eosinophilia was 2-pentanone, a ketone. This compound has
not previously, to our knowledge, been associated with airway eosinophilia, continuing the
disappointing trend of failure to externally validate 3*3. At least some of this is likely due to
methodological heterogeneity but there is supportive evidence for our finding. Measures of 2-
pentanone are higher in exhaled breath than parallel ambient air samples, indicating that that it is
produced endogenously®*. Ketones, more generally, are thought to be the product of fatty acid
degradation3* and have been found to be produced by human bronchial epithelial cells34,
indicating that they may originate from the airways (though not necessarily exclusively). These
findings suggest that 2 pentanone directly relates to airway biology. Moreover, 2-pentanone
differentiates COPD from healthy controls 347. Though not strictly the same compound, 2-
hexanone, a six carbon ketone, is structurally similar to 2 pentanone and has been identified in

eosinophilic asthma patients 342,

6.4.5 Limitations

Ultimately, particularly when applying machine learning tools, this analysis is limited by a small
sample size. Nevertheless, all patients were well characterised and representative of a population
in which inflammatory phenotyping is clinically relevant. It would have been ideal for the analysis
of between day variability for feature selection to have been performed on a dataset independent
to the test set, however, due to the stringent pre-processing steps taken, the degree of data

leakage is likely to minimal.

The classification performance of classifier is not as strong as that observed in other studies 44 145,

in part, due to our commitment to a separate test cohort (as opposed to internal validation
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strategies) despite limited numbers. Of course, an AUC of 0.7 is not dissimilar to that of blood
eosinophils and FeNO (3.5.2 Predicting Sputum Inflammatory Phenotypes with Clinical
Biomarkers) and some of this limitation may relate to our hypothesis that the target variable is of

too little resolution.

6.4.6 Conclusions

In conclusion, this analysis demonstrates that there is a clear structure to the exhaled breath
profile. This matrix is incredibly complex but appears to show intra-individual consistency. The
similarities in findings from this analysis to that described in the literature gives confidence that

this dataset and analytical pipeline can be used for novel exploratory analysis
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Chapter 7 Exhaled VOCs as Novel Biomarkers

7.1 Introduction

In the preceding chapter (Chapter 6), a machine learning framework was established that was
able to predict the sputum eosinophilic phenotype in the severe asthma cohort of patients
characterised in this thesis. Chapters 3 and 4 demonstrated the limitations of inflammatory
phenotypes, particularly for patients with T2 low disease, which was poorly defined and lacking in
biomarkers. In Chapter 5, a T2 low phenotype was described, characterised by airway colonisation

with Haemophilus, but unidentifiable using existing biomarkers.

Bacteria are known to produce a variety metabolites, including those with a low molecular mass
(<300 Da), high vapor pressure and low boiling point (VOCs)3#°. This is corroborated by clinical
experience: pseudomonal wound infections have a characteristic odour, distinct from wound
infections due to other organisms 3°3>1, These VOCs have been catalogued 2!33%° and investigated
in exhaled breath, identifying the potential for breathomics to be used as biomarker respiratory

infections 352354,

In this final results chapter, the breath analysis pipeline developed in Chapter 6 is used to predict
the Haemophilus cluster defined in Chapter 5. Haemophilus dominant patients are of particular
interest as Haemophilus is associated with corticosteroid resistance 2°¢2% but may be amenable to
macrolide therapy 311312, Analysis will be restricted to non-erratic VOCs, as per the analysis in

Chapter 5

The objectives of this chapter are

e Review Exploratory Analysis of Breathomics using non-erratic VOCs
e Exploratory Analysis of Breathomics data in relation to microbial data

e Evaluate the performances of VOC models for predicting the Haemophilus phenotype
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7.2 Chapter Specific Methods

7.2.1 Patient Recruitment

All patients with sputum 16S samples and breath samples were included in this analysis

7.2.2 Supervised Machine Learning for Classification

Models were constructed as described in 6.2.10. However, when there are too few examples of
the minority class in the training set, the model is unable to effectively learn how to make
boundaries, moreover, it can lead to skewed evaluation metrics further impeding model training.
Consequently, oversampling by SMOTE (Synthetic Minority Oversampling Technique) was used
355, SMOTE was applied with k_neighbours of 2.

7.3 Results

7.3.1 Patient Population

Of the 74 patients in the Breath Sampling in Severe Asthma Study, only 52 patients had a paired

Haemophilus cluster assignment from sputum 16S analysis (Figure 7.1).
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Activation

Figure 7.1 Venn Diagram of Patients and Overlapping Samples.

Abbreviations: Granulocyte Activation (Activation), 16S Microbial Sequencing (16S),

Volatile Organic Compounds (VOC).

Comparing patients with and without paired 16S and breath data, patients with paired data had
statistically significantly elevated blood eosinophil count and worse small airways disease (as
measured by FEF25-75) (Table 1.1). Other parameters of disease severity (airway inflammatory

cell counts, exacerbation frequency and self-report scores were the same, as were demographic

and clinical characteristics.

Table 7.1  Clinical Characteristics of Patients with Paired Sputum 16S and Breath Data Available

vs Patients that did not
Continuous variables expressed as median [Q1, Q3] with differences measured by

Mann-Whitney U test. Categorical variables expressed as n (%) with differences
measured by chi-square test. Abbreviations: ICS, inhaled corticosteroid; BDPe,

beclomethasone dose equivalent; FeNO, fraction of nitric oxide in exhaled breath;

143



Chapter 7

post BD, post bronchodilator; FEV1, forced expiratory volume in 1 second; FVC,

forced vital capacity; FEF25-75%, forced expiratory flow at 25% to 75% of FVC; ACQ,

asthma control questionnaire, HADSTOT, Hospital Anxiety and Depression Total

Score; SNOT, SinoNasal Outcome Score

Sex (% Female)
Age

BMI

Smoker (% Never)
Atopy

Age of Onset

Exacerbations in Last 12
months

ICS (BDPe)

FeNO

Blood Eosinophil Count
Sputum Eosinophil (%)
Sputum Neutrophil (%)
PostBD FEV1

PostBD FEV1/FVC

PostBD FEF25-75 %predicted

Paired 16S and

Breath not available

(n=143)

82 (57.3)

58.0 [44.5,67.0]
29.8 [25.9,34.8]
49 (34.3)

92 (64.3)
21.0[7.0,42.0]

2.0[1.0,4.0]

3000.0
[2000.0,3000.0]

23.0[15.0,45.0]
0.2[0.1,0.4]

1.5 [0.5,8.6]

44.1[25.6,67.1]
78.0 [62.1,93.4]
69.0 [61.5,78.0]
46.7 [31.7,81.3]

ACQ6 2.3[1.3,3.0]

HADSTOT 10.0 [6.0,15.0]

SNOT20 29.5[17.2,45.0]
7.3.2 Exploratory Data Analysis through PCA

Paired 16S and
Breath available

(n=52)

21 (40.4)

55.0 [49.0,62.2]
28.5 [25.6,32.6]
12 (23.1)

27 (51.9)
12.0[3.0,33.5]

2.0[0.0,3.0]

3000.0
[2814.0,3840.0]

31.0[19.0,47.5]
0.3[0.1,0.5]
3.3[0.5,18.8]
42.3[22.7,70.0]
72.1[54.8,88.0]
64.0 [54.8,74.5]
38.6 [27.8,69.3]
2.7[1.5,3.3]
10.0 [5.0,16.0]
30.0 [23.0,43.8]

P-Value

0.053
0.690

0.130
0.252

0.160
0.102

0.534

0.236
0.131
0.044
0.231
0.682
0.111
0.034
0.066
0.149
0.720
0.758

Exploratory analysis in Chapter 5 was performed primarily through PCA, agnostic to the within-

subject variability of VOCs. PCA is highly sensitive to noise and so the analyses were repeated,

restricting to non-erratic VOCs. Variance in the new PCs shows a similar pattern to previously

(Chapter 6.3.3.3) with Sex being the major determinant of variation, followed by airway

obstruction. Airway inflammation appears to be captured by PC7 (Figure 1.2).
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Figure 7.2 Heatmap of correlation between clinical characteristics and the first 10 principal

components from the Cross Sectional Data, restricting to non-erratic VOCs.

Non-significant correlations in grey/white, positive and negative correlations with p-
value < 0.05 in red and blue, respectively. * Sputum Eosinophils and Sputum
Neutrophil Percentages log transformed. Volatile organic compounds (VOCs),
principal component (PC), maintenance oral corticosteroid treatment dose (mOCS),
post bronchodilator ratio between forced expiratory volume in 1 s and forced vital
capacity (Post BD FEV1/FVC), eosinophils (Eos), neutrophils (Neut), Fraction of
exhaled Nitric Oxide (FeNO).

7.3.2.1 Microbial Variables

PC1, which captures the majority of variance in exhaled VOC data correlates to the relative
abundance of Proteobacteria in the airways (Figure 1.3). PC1 also correlated with sex (Figure 1.2);
there was no difference in proteobacteria between sexes: median (IQR) for male 4.80% (3.10-

16.74), female 6.23% (3.35-8.27), Mann Whitney U statistic = 1766.0, p=0.495).
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Firmicutes

Figure 7.3
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Heatmap of correlation between Relative abundance of airway phylum and the first
10 principal components from the Cross Sectional Data, restricting to non-erratic

VOCs.

Non-significant correlations in grey/white, positive and negative correlations with p-
value < 0.05 in red and blue, respectively. * Sputum Eosinophils and Sputum
Neutrophil Percentages log transformed. Volatile organic compounds (VOCs),
principal component (PC), maintenance oral corticosteroid treatment dose (mOCS),
post bronchodilator ratio between forced expiratory volume in 1 s and forced vital
capacity (Post BD FEV1/FVC), eosinophils (Eos), neutrophils (Neut), Fraction of
exhaled Nitric Oxide (FeNO).

PCA Plot of exhaled VOCs shows some evidence of microbial cluster separation, specifically that of

the Haemophilus cluster, though this is minimal (Figure 1.2)
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. Principal Component Analysis Plot of Breath Samples By Sputum Eosinophilia
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Figure 7.4  PCA plot of all 70 breath samples with ellipses representing Microbial Clusters.

Cluster 1 (Red), Cluster 2 (Blue), Cluster 3 (Green)

733 Predicting Microbial Cluster using VOCs

A model trained on non-erratic VOCs achieved an AUC of 0.571 for predicting patients in the
Haemophilus clusters. This AUC improved to 0.857 when further feature selecting by feature
importance (gain). This model had an accuracy of 0.86, sensitivity 0.71, specificity 1.0, f1 score of
0.83, PPV 1.0 and NPV 0.77. The most important VOC to contribute to this model were Decane, 3-

methyl nonane and 1,3,5-Trifluorobenzene.
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Figure 7.5 Confusion Matrix and ROC Curve for an XGB Classifier Trained on non-Erratic VOCs

for predicting Patients in the Haemophilus Cluster
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Figure 7.6 Confusion Matrix and ROC Curve for an XGB Classifier Trained on Important Features
Determined from non-Erratic VOCs for predicting Patients in the Haemophilus

Cluster.

7.4 Discussion

74.1 Breath Volatile Sensitive to Airway Microbiome

The model for predicting the Haemophilus cluster has a very high classification metrics. In this
severe asthma population, this model has better classification performance than even FeNO and
blood eosinophils for predicting sputum eosinophilia, as described in Chapter 3 (though they have

utility beyond that single application 262¢7), The model for predicting Haemophilus outperforms
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the model for predicting sputum eosinophilia, demonstrating that the full potential for

breathomics may be understood when paired with molecularly defined phenotypes.

PCA analysis of non-erratic VOCs indicate that they are sensitive to the relative abundance of
sputum Proteobacteria, corroborated by the separation seen on the PCA plot of the Haemophilus
dominant cluster and its accurate prediction through breath classifier. That PC1 should be
correlated with the relative abundance of proteobacteria, albeit via a weak correlation, is
surprising, particularly as there is no parallel relation with sputum neutrophilia. One explanation
may be that the correlation between exhaled breath (PC1) and sputum proteobacteria may be
due to shared correlation with an unobserved variable. The oropharyngeal microbiome is
understood to be a major determinant of the lung microbiome 3°¢357 and, recognised to cause

halitosis, thus a major determinant of the exhaled breath profile 38,

Decane was the major determinant of the machine learning model that accurately predicted
Haemophilus colonisation in the test cohort. This has recently been identified in COPD as relating
to viral exacerbations through a combination of in vitro and in vivo experiments 3°°. The study
made a clear distinction, however, that decane was not associated with Haemophilus influenzae.
Indeed it was not identified from the headspace of pure cultures of Haemophilus 3%°. In addition
methodological heterogeneity, there might be biological reasons for this dissociation, based on
subtle physiological differences in asthma and COPD. Moreover, breath samples in this study

were taking during a stable state: Haemophilus was not involved in an acute exacerbation event.

Without doubt, the observation that Decane is associated with Haemophilus requires further
validation. Modern breathomics studies pair in vitro work with clinical sampling 343>, and would

complement the findings from this study.

7.4.2 Conclusions

Despite the aforementioned limitations, these findings demonstrate that exhaled VOCs may have
clinical utility for phenotyping severe asthma patients and identifying a group of patients
amenable to macrolide therapy 3. The accurate identification of these patients could be
important in avoiding unnecessary steroid therapy 3¢ and responsible antibiotic prescribing 362,
An extensive portfolio of future research is required to validate these findings and translate them

to a clinical setting.
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Chapter 8 Discussion

8.1 Summary of Thesis Findings

8.1.1 Deep Phenotyping of a New Severe Asthma Cohort

The aim of this thesis was to evaluate exhaled VOCs as a biomarker for T2 low mechanisms of
Severe Asthma. This was achieved by recruiting and clinically characterising a new cohort of
severe asthma patients (Chapter 3) who were deeply characterised based upon their airway
biology through measurements of sputum inflammatory cell activation (Chapter 4) and microbial
composition (Chapter 5). Stratifying patients traditionally across sputum inflammatory cell counts
confirmed that our cohort was consistent with existing cohorts. The analysis from this thesis
reiterated how poorly T2 low asthma was characterised and the limitations of existing clinical

biomarkers for predicting airway inflammation.

8.1.2 Description of a Haemophilus-MPO Cluster of Severe Asthma Patients

As described in Chapter 5, an association between airways disease and the airway microbiome
has long been recognised. The findings from this thesis are consistent with modern studies
describing a small haemophilus dominant cluster in severe asthma 319327, These patients are also
unique by their abnormal airway inflammation, characterised by sputum neutrophilia and sputum
MPO. It is increasingly appreciated that colonisation with haemophilus could represent a new
treatable trait for severe asthma 3% but there is a desperate lack of accurate biomarkers 3% by

which to identify these patients.

8.1.3 VOC Feature Selection by Within Patient Variance

Breathomics is still in its infancy and the breath samples collected and analysed as part of this
thesis (Chapter 6) represents, at the time of writing, membership to a relatively exclusive
collection of severe asthma cohorts 1°33%¢, Uniquely, however, this thesis describes the short-term
repeatability of exhaled VOC measurements in severe asthma patients. This understanding is

crucial in understanding the analytical validity of potential breathomics based biomarkers.

This repeated sampling was also used to develop and describe a novel feature reduction step:

VOCs are, by definition, volatile and the logistical and financial costs of recruiting and
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characterising enough patients to overcome the noise this introduces are prohibitive, particularly
whilst breathomics remains in its infancy. The analysis in Chapter 6 and Chapter 7 illustrate that

within-patient variance for feature selection improves classification by exhaled VOCs

8.1.4 Breathomics as a Biomarker of Airway Colonisation with Haemophilus in Severe

Asthma

Bringing together the aforementioned novel findings, the analysis described in this thesis (Chapter
7) identifies a potential role for exhaled VOC as a biomarker for patients colonised with
Haemophilus and potentially amenable to Macrolide antibiotic therapy. The breathomics findings
undoubtedly require validation but could represent a new precision medicine tool for severe

asthma.

8.2 Limitations

There are a number of limitations to the analyses described in this thesis, which are discussed,

where relevant, in the results chapters. Broader limitations are discussed herein.

8.2.1 Study Design and Sample Attrition

Though the Breath Sampling in Severe Asthma Study was designed with a priori intention of
investigating short term repeatability and discovery of predictors of airway inflammation, it
remains, for all intents and purposes a sub-study. The advantages of combining characterisation
efforts (logistical and financial) were balanced against the ceiling effect that a cross-sectional

study provides, primarily being limited to correlation alone.

Much like subject attrition, which is well recognised in clinical trials 3, the reasons for sample
attrition are heterogenous.. When trying to overlap samples, the accumulation of losses can have
multiplicative effect: in Chapter 7, just 52 patients were eligible for analysis, which severely

underpowers any statistical analysis.

A major reason for sample loss in the Breath Sampling in Severe Asthma Study was the limited
shelf life of breath sampling consumables. The study duration was extended, at cost, to improve
numbers but was curtailed by the Covid-19 pandemic. Whilst a relatively high attrition rate was

anticipated for sputum induction, it was grossly underestimated for breath sampling. This
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underestimation is somewhat representative of the perception of breathomics in academia: the

clinical utility of breath sampling hides the complexity of breath sampling study design.

Identifying solutions to improve the number of observations is not straightforward. Autonomy
over breath sampling consumables (e.g., reconditioning the TD tubes on which breath samples are
captured) and in house GC-MS analysis of breath samples was not possible at the start of the
study: neither the capability, protocols nor expertise had been established locally. External
collaboration and the logistical issues associated with this was therefore unavoidable. Extending
the study duration was not possible due to the pandemic but would have been prohibited by cost.
If, hypothetically, additional investment had been possible then, with retrospect, a multi-centre
study design might have been given stronger consideration. Breath samples are shown to vary

between sites *” and so this is not without (logistical) costs 3®.

Strong consideration was given to resorting to cross-validation (i.e., internally validating VOC
models) rather than keeping the repeat breath samples as a distinct test cohort. Cross validation,
specifically leave one out cross validation, is commonly applied to breathomics datasets 3¢ but
severely limits generalisability to the “real world” and is a major contributor the general lack of
replication of findings 3*3. Maintaining an a priori test cohort achieves a higher level of internal

validation 3% than cross validation but was, in this case, tempered by a reliance on imputation 3%,

True validation would require the replication of findings from a different group. The unique study
design for this study — restricting to severe asthma and pairing with sputum 16S sequencing —
limits these prospects. Thus, the analysis presented in this thesis represents a common trap for

this emerging technology: prioritisation of innovation over standardisation 338,

8.2.2 Limitations of Machine Learning

One of the major and recurring tools used in this thesis was clustering by classical methods of
hierarchical and partitioning around medioids. These approaches aim to group patients with
similar biology together and separate patients with distinct biology 21”. One of the risks of
clustering is that patients can be artificially forced apart rather than represented as existing on a
gradient, which speaks to the concern that machine learning algorithms will find clusters even
when none exist (or are at least not biologically/clinically meaningful) 3¢°. This effect is

confounded by complex datasets 37° (Garbage In, Garbage Out).
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Consideration had been given to applying topological data analysis approaches 37! to the data,
which have been successfully applied to biological data in severe asthma %8, The advantage of
TDA would have been to provide a two-dimensional representation that retains the essential
features of the original high-dimensional data set, which does not force patients apart. The main

obstruction to this approach was the limited numbers and noise of the breathomics data.

Concerns about artificial dichotomisation is mitigated by a constant appreciation that
unsupervised approaches are hypothesis generating rather than hypothesis testing. Moreover,
these approaches are useful tools by which to digest otherwise incomprehensibly highly
dimensional information 372. The utility and limitations of dimension reduction can be illustrated
by the widespread of adoption of scoring systems in clinical practice: e.g. the early warning
scoring system, which condenses various parameters of physiological function into a single digit

number 373,

VOC biomarker identification in this analysis was done by supervised machine learning classifiers,
which, like clustering, have their limitations. One of the limitations of tree based ensemble
models is that feature importance does not (without using an explainer) indicate direction: it is,
for example, unclear whether Decane is increased or decreased with Haemophilus abundance in
Chapter 7. Consequently, black boxes in clinical research are treated with deep suspicion 374373, An
additional problem with this lack of transparency is that it prohibits power calculations for future
studies. Though, there are tools to mitigate some of these issues (SHapley Additive exPlanations
(SHAP) 37¢ for explaining models and approaches to sample size prediction algorithms 377), the

optimal solution is not to rely solely on machine learning approaches. .

One of the reasons machine learning approaches have become central to systems biology
approach to understanding disease is their ability to handle multi-dimensional data °7°%. However,
supervised machine learning tools are designed to predict rather than describe biology. Ranking
by feature importance in a tree based model (such as XGBoost) reflects importance to the
prediction model rather than importance to the target variable. For example, as described by the
Network Representation of a Correlation Matrix of Exhaled VOCs (Figure 6.9), the abundance of
Decane correlates with other straight chain alkanes such as nonane and undecane. These VOCs
might be equally relevant to Haemophilus abundance but due to collinearity, would not add
further information to the prediction model beyond that provided by Decane and would therefore
be assigned low feature importance. This risks under-reporting of salient associations and may

hinder efforts at external validation.
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8.2.3 Normal Breath Profile

One of the major limitations of this study was that analysis and pre-processing was performed by
external collaborators. A normal exhaled breath profile has not been defined making it difficult to
quality check the data produced. This is compound by the fact that the published literature rarely
reports a full list of VOCs identified in their exhaled breath sample and their average abundances.
Sense checking by identifying VOCs present in this study and the reported literature (Chapter 6) is
prone to confirmation bias. A number of unusual compounds were also identified: sevoflurane, an
anaesthetic agent, as well as chlorinated and fluorinated compounds. These compounds may
represent misidentifications (Chapter 1.3) or contaminants but the inability to determine this is

challenging.

The within subject variance feature reduction step described in this study is an attempt to
mitigate this issue. One concern with removing erratic VOCs is that they may be biologically
salient. This argument can be reduced to a debate on balancing type 1 and type 2 error: including
erratic VOCs will undoubtedly lead to false positives whilst excluding them will likely lead to false

negatives. Due to the concerns described above, reducing type 1 error was prioritised.

8.3 Follow up Studies for the Breathomics Findings in this Study

Reporting in this thesis suffers from many of the traps that the published literature falls into.
Chiefly, molecular features were identified by comparing against the NIST library (Chapter 6.2.3.3)
but true identification requires comparing molecular features to chemical standards. The putative

identification of Decane should be verified before further validation work.

Next, as referenced throughout this discussion, biomarker prediction through classification alone
is insufficient. In order to follow up the results from this analysis, a number of complimentary
studies could be explored. Firstly, headspace experiments of culturing haemophilus or airway
epithelial cells infected with haemophilus would give mechanistic insight into the origins of
Decane. Headspace experiment methodology has been described 38378 and successfully used to
complement clinical samples 3°°. Of course, replicating the association between exhaled Decane
and airway Haemophilus in another cohort of asthma patients is critical. Longitudinal studies
describing the long term repeatability of Decane in persistently haemophilus colonised patients
and attenuation of the Decane signal in those in which haemophilus has been reduced/eliminated

would strengthen the correlative findings.
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If the Decane signal was validated through the measures described above, it is highly unlikely that
GCMS would be used in clinical practice; rather, breathomics is likely to be implemented in the
form of an electronic nose. One of the advantages of electronic noses is that it can be used “point
of care. The importance of this feature is likely overstated: clinical practice rarely uses
investigations with immediately available results, particularly in non-emergency situations (e.g.
cross-sectional imaging from the time of requesting to reporting, even in outpatient lung cancer
services, can take days-weeks). In this context, characterising patients in an outpatient setting,
collecting a breath sample and sending it away for analysis, would probably be acceptable. It is far
more likely that cost will be the prohibitive factor. The additional advantage of electronic noses
(online testing) is the avoidance of heterogeneity and variance introduced by breath sampling and
storage 9. It follows therefore that there would need to be further method development of an
electronic nose and standard operating procedure sensitive to Decane. This would then need to

be assessed again in a large-scale population.

The application of an exhaled Decane biomarker proposed by this thesis is to identify patients
with airway overabundance of Haemophilus. These patients are likely to respond to Azithromycin
therapy 3. Further studies would have to demonstrate that a Decane electronic nose was
superior to standard of care in informing Azithromycin prescription: possible endpoints for such a
study might include response rates to Azithromycin prescription, side-effect burden, anti-
microbial resistance. As Azithromycin is readily available and relatively cheap, a robust health

economic rationale would be required to justify the cost of a Decane electronic nose.

8.4 Future of Breathomics Research in Airways Disease

8.4.1 Standardisation

No treatise on breathomics would be complete without a call for standardisation, a call which has
been repeated many times 82 but appears unheard. Reluctance of the field to standardise likely
comes down to the rejection of what is current available to standardise to. Breath Sampling,
Sample Analysis and Data Analysis *°7 are useful headings to describe the main pillars of
breathomics. Optimisation of Sample Analysis and Data Analysis has largely been achieved or can
be borrowed from other fields (petrochemical 37° and other high-throughput omics analyses 3%,

respectively).
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Breath Sampling is the likely, therefore, the greatest challenge. The findings from this analysis
indicate that, despite collecting multiple breaths through a highly engineered sampler, there was
great day to day variability in the exhaled VOCs measured. Further engineering of the sampler or
restrictions on breath sampling (e.g on foods/drinks) risk making breathomics more expensive and
more difficult. The alternative would be a simpler breath sampling system, which might be easier
to adopt in larger numbers, but potentially sacrifice analytical validity. Rather than

standardisation, innovation in this aspect is critical.

Where standardisation is required is in study design and reporting. A number of well conducet
large scale breathomics studies have now been performed in asthma °11%7 but, despite this, there
is little in the way of shared or shareable data. Adherence to the TRIPOD recommendations on
reporting multivariable prediction models 2 and STARD guidelines on reporting of diagnostics

accuracy studies 8 is still desperately lacking®® and is perhaps the first priority.

8.4.2 Innovation

One of the strengths of this study was the focus on repeated breath samples, which remains an
under-utilised quality of breathomics in the existing literature. Challenge tests are common in
medicine, including the bronchodilator reversibility test for airways disease; repeated breath
sampling would facilitate a similar model for breathomics. In hepatology3®! and lung cancer
(NCT05510674) radiolabelled VOC probes are being explored as functional measures. These rely
on a priori knowledge of the specific mechanisms and applications to asthma may not be

immediately obvious.

Another strength of this study is the emphasis on novel endpoints. Assessment of biomarkers is
limited by the gold standard against which they are measured **°. In this thesis, breathomics
identified a biomarker describing a novel phenotype defined by 16S rRNA profiling of the airway
microbiome. Molecular endpoints are challenging due to the sample attrition described in
Chapter 8.2.1. and already evident in the literature!>3 . Moreover, strategies for combining
multiple omics platforms are poorly defined 3%2. Successful study endpoints, at least in the
imminent future are likely to be clinically rather than molecularly driven. These might include

longitudinal parameters (e.g. lung function decline), early diagnostics or 1.
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8.5 Conclusions

This thesis sought to understand whether exhaled VOCs could be used as a biomarker for airway
biology in severe asthma. Models for predicting airway inflammatory phenotypes and microbial
phenotypes were successfully constructed and found to have good predictive performance. In
Chapter 1, a rendition of the EGAPP qualities by which to judge a biomarker 1° was described: is
the test result true, meaningful or useful 7. Sputum eosinophilia and airway Haemophilus do not
describe the whole of airway biology but, representing, treatable traits they are undoubtedly
meaningful. Though the demand (usefulness) for novel biomarkers for these traits is less
convincing, ultimately, it is the question of whether the results are true that remains the greatest
challenge. As discussed, a host of further experimentation and validation is required in concert

with evolution of the field more generally.

Such a cautious and conditional affirmative is unsurprising given the relative immaturity of
breathomics. More mature molecular technologies than breathomics are yet to translate to the
asthma clinic. Breathomics easily captures the imagination and, small studies such as this, which
can advocate for the continued adoption of breathomics into large projects, such as U-BIOPRED

153 MRC-EMBER 1% and most recently in IMI-3TR (3tr-imi.eu) are critical for the field to develop.

As discussed, a combination of standardisation in reporting but innovation in practice is required
right now. A number of centres from across Europe have started to produce robust research

348,354,359,383 sych that we are likely to be entering a golden age of breathomics research.
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