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A neutral but polarizable particle at rest near a perfectly conducting plate feels a force normal to
the surface of the plate, which tends to pull the particle towards the plate. This is the well-known
Casimir-Polder force, which has long been theoretically proposed and experimentally observed. In
this paper, we explore the transverse frictional force on an atom moving uniformly parallel to a
perfectly conducting plate. Although many theoretical predictions can be found for the quantum
friction on a particle moving above an imperfect surface, the extreme situation with a perfectly
conducting plate seems to have been largely ignored by the theoretical community. We investigate
this ideal case as a natural extension of our previous work on quantum vacuum friction, and conclude
that there does exist a quantum frictional force on an atom moving above a perfectly conducting
plate, which we will abbreviate by PCQF. Like quantum vacuum friction, PCQF arises from the
interaction between the particle and the surrounding blackbody radiation. But, the behavior of
PCQF differs from the quantum vacuum friction, in that the vacuum fields are modified by the
perfectly conducting plate. Very interestingly, the distance dependence, the temperature dependence
and even the sign of the frictional force can depend on the polarization state of the atom. For an
isotropic atom with a static polarizability, the resultant frictional force is found to be negative
definite and therefore remains a true drag. Just above the surface of the plate, the magnitude of
the frictional force is twice that of the quantum vacuum friction in the absence of the plate.

I. INTRODUCTION

It is well known that, when a neutral but polarizable particle sits near a perfectly conducting (PC) plate, it feels
a force normal to the surface, pulling it towards the plate. This attractive force is often named after Casimir and
Polder, who predicted it back in 1948 [1]. The Casimir-Polder force was first experimentally confirmed by measuring
the deflection of a sodium atom beam passing through a gold cavity in 1993 [2]. Ever since, there have been many
more ingenious experiments, not only reassuring the existence of the Casimir-Polder force, but also detected the force
at different (non-retarded, retarded and thermal) regimes [3–6]. For review of the Casimir-Polder forces or the broader
context of Casimir interactions, see, for example, Refs. [7–10].

Here, we ask the question: will a force tangential to the surface of the PC plate arise when the particle moves
parallel to the plate?

Even though the subject of quantum friction (QF) with a dielectric surface has been much discussed in the literature,
this more idealized case involving a PC plate seems to have been largely ignored. The lack of discussion of this case
may be due to an “intuition” arising from the image particle picture. One might think that the interaction between
the particle and the PC plate can be entirely mimicked by the particle’s interaction with its image. As the particle
moves above the plate, the image moves below the plate. Because the plate is perfectly conducting, the image keeps
up with the particle and is always located at the mirror position of the particle. Consequently, any interaction between
the two would only lie in the direction normal to the surface of the plate and no force in the transverse directions could
possibly arise. This reasoning sounds convincing except that it ignores one important aspect: the particle interacts
with the blackbody radiation surrounding it even when the plate is taken away. Taking blackbody radiation into
account does result in a frictional force on the moving particle. The nonrelativistic discussion of frictional force on
particles moving in free space filled with only blackbody radiation can be traced back to the works of Mkrtchian et
al. [11] or even Einstein and Hopf [12]. Ever since, there has been considerable interest in the subject of blackbody
friction/quantum vacuum friction (QVF) [13–16]. Recently, we have also investigated such quantum vacuum frictional
effects on a particle moving with relativistic velocities, be it a nondissipative atom [17] or an intrinsically dissipative
nanoparticle [18]. Now, when a PC plate is added into the configuration, the vacuum field in the vicinity of the plate

∗ guoxinmike@ou.edu
† kmilton@ou.edu
‡ g.kennedy@soton.ac.uk
§ nima.pourtolami@gmail.com

https://orcid.org/0000-0003-4260-8818
https://orcid.org/0000-0002-7148-0609
https://orcid.org/0000-0003-4844-6231
https://orcid.org/0000-0002-8004-370X
mailto:guoxinmike@ou.edu
mailto:kmilton@ou.edu
mailto:g.kennedy@soton.ac.uk
mailto:nima.pourtolami@gmail.com


2

x

z

y
Tα

v

a

ε = ∞

FCP

F

FIG. 1. Illustration of an atom moving parallel to a PC plate.

will be different from that of the free space considered in Refs. [17, 18]. We therefore expect the QVF to be modified
and become spatially varying in the normal direction. For convenience of presentation, we will refer to this quantum
frictional force on a neutral particle passing above a PC plate as PCQF.

In this paper, we focus on calculating the PCQF for a nondissipative atom. This is somewhat simpler than the
calculation of PCQF for a dissipative nanoparticle, where the temperatures of the particle and of the environment enter
the problem independently. The discussion of PCQF for the dissipative nanoparticle is postponed to a subsequent
paper.

Throughout the paper, we set kB = c = ~ = 1 in the analytic expressions. SI units are reinstated in the numerical
evaluations.

II. GENERAL THEORY

The physical situation we consider is illustrated in Fig. 1. A PC plate lies in the x-y plane. An atom is at a distance
a from the plate and moves in the x direction with constant velocity v. The polarizability tensor of the atom is α(ω),
which could be dispersive in frequency and have different components corresponding to different polarization states of
the atom. Since the atom we consider is intrinsically nondissipative, α(ω) is a real quantity. The radiation background
is at finite temperature T . We assume the PC plate is in thermal equilibrium with the radiation background. Because
of its motion, the atom is not in equilibrium with the radiation. However, it is guaranteed, by the optical theorem
[19], to be in the nonequilibrium steady state (NESS) [20], and it does not have an independent temperature [17].

There exists two special frames in the problem: the rest frame of the atom, P, and the rest frame of radiation, R,
in which the background radiation is isotropic. It is more convenient to work in frame P and we find the quantum
frictional force (tangential component of the force) on the atom to be:1

F =

∫
dω

2π

d2k⊥
(2π)2

d2k̄⊥
(2π)2

(k̄x − kx) tr
[
α(ω) · = g′(ω,k⊥; a, a) ·α(ω) · = g′(ω, k̄⊥; a, a)

]
coth

βγ(ω + k̄xv)

2
, (2.1)

where γ = 1/
√

1− v2 is the relativistic dilation factor. Notice that the frequency in the thermal factor is Doppler
shifted. Both the atom’s polarizability tensor, α, and the Green’s dyadic, g′, in Eq. (2.1) are defined in frame P.
We put a prime on g′ here, because we will also refer to the Green’s dyadic defined in frame R, g, the explicit form
of which is recorded in Appendix B. In the actual calculation, each component of g′ needs to be expressed in terms
of a combination of different components of g, using the Lorentz transformation for the Green’s dyadic detailed in
Appendix A. The inverse temperature of the radiation, β = 1/T , is defined in the rest frame of radiation, R. Finally,

1 The friction on an atom moving above a general planar surface has actually been calculated in Ref. [17] and tabulated for different
polarization states in Appendix D therein. These can be shown to be equivalent to Eq.(2.1) using the transformations listed in Appendix
A.
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=g refers to the anti-Hermitian part of the Green’s dyadic, of which the components are

(=g)ij(ω,k⊥; z, z̃) =
gij(ω,k⊥; z, z̃)− g∗ji(ω,k⊥; z̃, z)

2i
=
gij(ω,k⊥; z, z̃)− gji(−ω,−k⊥; z̃, z)

2i
. (2.2)

The quantum friction in Eq. (2.1) is in fact the x component of the Lorentz force on a moving dipole quantized
using the fluctuation-dissipation theorem (FDT). Because the atom is intrinsically nondissipative, the frictional force
is second order in α like that discussed in Ref. [17]. There are two contributions to the force: the k̄x term comes from
the field fluctuations directly while the kx term comes from the induced dipole fluctuations. Although entering the
friction formula with different signs, the two contributions do not cancel each other due to the Doppler shifting of the
frequency in the coth factor. We consider only a reciprocal point particle, that is, one for which the polarizability tensor
is symmetric, αij = αji. Then, a relative velocity between the particle and the surrounding blackbody background
is necessary for any transverse force to arise.2 Even at zero temperature, the quantum friction does not vanish in
general. But we have learned from our previous investigations that if the background is just free space, the resultant
QVF does vanish at zero temperature [17, 18].

The matrix structure under the trace in the integrand is in general complicated. Even for an isotropic atom, there
will be contributions to the quantum friction that mix the different diagonal polarization states of the atom and pick
up the off-diagonal components of g′.3 Moreover, each component of g′ is still to be re-expressed as a combination
of the different components of g in the actual calculation. However, the special background indicated in Fig. 1 has
several features which greatly help to simplify the calculation. In the presence of the PC plate, g is found using the
general expressions in Appendix B to be

gPC(ω,k⊥; a, a) =


ω2−k2x

2κ (1− e−2κa) −kxky2κ (1− e−2κa) − i
2kxe

−2κa

−kxky2κ (1− e−2κa)
ω2−k2y

2κ (1− e−2κa) − i
2kye

−2κa

+ i
2kxe

−2κa + i
2kye

−2κa k2

2κ (1 + e−2κa)

 (2.3)

with κ =
√
k2 − ω2. Similar to the vacuum background, the permittivity of a PC plate, ε → ∞, is invariant

under a Lorentz transformation in the x direction. As a result, g′ is found to be identical to g when applying the
transformations listed in Appendix A:

g′PC(ω,k⊥; a, a) = gPC(ω,k⊥; a, a). (2.4)

That is, for this special case, we can replace g′ in Eq. (2.1) with g in Eq. (2.3). In addition, terms containing the
product of gxy and gyx or gyz and gzy do not contribute to the friction due to their oddness in ky. For simplicity
of analysis, we will assume the polarizability tensor of the atom to be diagonal throughout the paper. Then, the
only contribution to the friction involving the off-diagonal components of the Green’s dyadic, which mix different
components of the polarizability tensor, is

FXZ = 2

∫
dω

2π

d2k⊥
(2π)2

d2k̄⊥
(2π)2

(k̄x − kx)αxx(ω)(=g)PC
xz (ω,k⊥; a, a)αzz(ω)(=g)PC

zx (ω, k̄⊥; a, a) coth

[
β

2
γ(ω + k̄xv)

]
. (2.5)

Here and in the rest of the paper, we use a superscript on F to specify contributions from different polarization states
of the atom. In fact, FXZ turns out to be the most interesting contribution to the frictional force, because it actually
corresponds to a push instead of a drag.

Before presenting the results we obtain for PCQF, let us stress that no PCQF arises at zero temperature. In
Appendix C, we prove that the zero temperature QF is absent not only for the vacuum case and the PC case, but
also for the broader class of diaphanous materials 4.

III. EXACT RESULTS AND VARIOUS LIMITS

We see from the starting formula Eq. (2.1) that each contribution to the frictional force is proportional to the
product of two nonvanishing components of the polarizability tensor. For an atom with a diagonal polarizability

2 For a nonreciprocal point particle which is not in thermal equilibrium with the environment, self propulsion can be induced even if the
particle is initially at rest. We will explore the fluctuation-induced effects for such a nonreciprocal particle in Ref. [21]. In addition, self
propulsion is also possible for extended objects made up of reciprocal but nonuniform materials. See, for example, Ref. [22] by Reid et
al.

3 The effective polarizability, α̂ = α·Γ·α, as defined in Ref. [17], can acquire off-diagonal components through the off-diagonal components
of the Green’s dyadic, even when the intrinsic polarizability of the atom, α, is diagonal.

4 A material is diaphanous if its permittivity, ε, and permeability, µ, satisfy εµ = 1.
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tensor, most of the contributions that mix the components of the tensor can be ruled out based on the symmetry of
the integrand in Eq.(2.1). There are actually only four nonvanishing contributions left. They are proportional to α2

xx,
α2
yy, α2

zz, αxxαzz and will be denoted as FXX, FYY, FZZ and FXZ, respectively.

Crucial to the calculation is finding the anti-Hermitian part of the relevant components of gPC. It can be seen from
Eq. (2.3) that = gPC = 0 unless the propagation wave number κ develops an imaginary part. Since the integrand in
Eq. (2.1) involves the product of two Green’s dyadics evaluated at (ω,k⊥) and (ω, k̄⊥), respectively, the integration
is restricted to regions where the propagation wave numbers associated with both Green’s dyadics become imaginary,

κ→ −i sgn(ω)
√
ω2 − k2, k2 < ω2, κ̄→ −i sgn(ω)

√
ω2 − k̄2, k̄2 < ω2. (3.1)

The branches need to be chosen so that the Green’s dyadic is retarded.5 The anti-Hermitian parts of the relevant
components of the Green’s dyadic therefore read

(=g)xx(ω,k⊥; a, a) = Im gxx(ω,k⊥; a, a) = sgn(ω)
ω2 − k2

x

2
√
ω2 − k2

[
1− cos

(
2
√
ω2 − k2a

)]
, (3.2a)

(=g)yy(ω,k⊥; a, a) = Im gyy(ω,k⊥; a, a) = sgn(ω)
ω2 − k2

y

2
√
ω2 − k2

[
1− cos

(
2
√
ω2 − k2a

)]
, (3.2b)

(=g)zz(ω,k⊥; a, a) = Im gzz(ω,k⊥; a, a) = sgn(ω)
k2

2
√
ω2 − k2

[
1 + cos

(
2
√
ω2 − k2a

)]
, (3.2c)

(=g)xz(ω,k⊥; a, a) = −(=g)zx(ω,k⊥; a, a) = −i sgn(ω)
kx
2

sin
(

2
√
ω2 − k2a

)
. (3.2d)

The off-diagonal components of =g are different from the diagonal components in several respects. First of all, they
are purely imaginary. Second, they are odd in kx. As a result, in Eq. (2.1), FXZ contributes to the total friction
through the −kx term, while FXX, FYY and FZZ all contribute through the k̄x term. It is precisely the apparent
minus sign in the −kx term that renders FXZ positive, corresponding to a push instead of a drag.6 Third, they do not
contain terms independent of the atom-plate separation, a, as those in the diagonal components. These terms reflect
the vacuum contributions. So, the off-diagonal components do not contribute to the QVF discussed in Ref. [17].

Without any further assumptions, we insert Eq. (3.2) into Eq. (2.1) and integrate kx, ky and k̄y analytically. With
a further change of variable, k̄x = ωu, we find the contribution to the PCQF from the PQ polarization states can be
written as

FPQ =
1

32π3

∫ ∞
0

dω αpp(ω)αqq(ω)ω7FPQ(x, v, b), (3.3)

and for each contribution, FPQ reads

FXX(x, v, z) =

{
4

3
− 2

x3

[
x cosx+ (x2 − 1) sinx

]}∫ 1

−1

duu
(
1− u2

) [
1− J0

(
x
√

1− u2
)] 1

exγ(1+uv)b − 1
, (3.4a)

FYY(x, v, z) =

{
4

3
− 2

x3

[
x cosx+ (x2 − 1) sinx

]}
×
∫ 1

−1

duu

[
1

2
(1 + u2)− J0

(
x
√

1− u2
)

+

√
1− u2

x
J1

(
x
√

1− u2
)] 1

exγ(1+uv)b − 1
, (3.4b)

5 Here, we are using the retarded Green’s dyadic as opposed to the advanced Green’s dyadic. The word “retarded” can also refer to the
effect of retardation or a finite velocity of light, which we also incorporate in our calculations.

6 Physically, the −kx term comes from the induced dipole fluctuations, while the k̄x term comes from the direct field fluctuations. In the
QVF case, these two different contributions also occur and they are called F ′II and F ′I , respectively, in Ref. [17]. There, F ′II vanishes,

which reflects the fact that the dipole radiation emitted by the atom is isotropic. Here, the fact that FXZ exists through the −kx term
indicates that the dipole radiation in the x direction is no longer isotropic when the PC plate is present. Furthermore, the positive sign
of this contribution reflects that the corresponding dipole radiation emitted backward must exceed that emitted forward.
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FZZ(x, v, z) =

{
4

3
− 4

x3
[x cosx− sinx]

}
×
∫ 1

−1

duu

[
1

2
(1 + u2) + u2J0

(
x
√

1− u2
)

+

√
1− u2

x
J1

(
x
√

1− u2
)] 1

exγ(1+uv)b − 1
, (3.4c)

FXZ =− 2

{
2

x4

[
−3x cosx− (x2 − 3) sinx

]}∫ 1

−1

duu
√

1− u2J1

(
x
√

1− u2
) 1

exγ(1+uv)b − 1
. (3.4d)

Here, we have introduced a dimensionless frequency scaled by the distance a,

x = 2ωa, (3.5)

as well as a dimensionless inverse temperature also scaled by a,

b =
β

2a
=

1

2aT
. (3.6)

So far, the expressions we have for PCQF in Eq. (3.4) are exact and involve the dynamical polarizability of the
atom. For frequencies smaller than the lowest excitation energy of the atom, the dynamical polarizability, α(ω),
can be replaced by the static polarizability [23], α(0). Due to the common exponential factors in Eq. (3.4a)–(3.4d),
the high frequency modes with βω = xb � 1 will be cut off and do not significantly contribute to the ω integral.
Therefore, so long as the temperature is not high enough to excite the atom to its higher energy states, we can work
in the static limit, where we substitute the polarizability with its static value. This allows us to take the product of
the polarizabilities out of the ω integral in Eq. (3.3):

FPQ =
αpp(0)αqq(0)

32π3(2a)8
fPQ(v, b), fPQ(v, b) =

∫ ∞
0

dxx7FPQ(x, v, b), (3.7)

where the dimensionless functions fPQ now characterize contributions to PCQF from different polarization states.
Note the magnitude of b determines the dominating modes of the x integral in Eq. (3.7). For b� 1, it is dominated

by the large x modes, where the complicated x dependences in the integrands become subdominant and drop out,

except for the common factor of x7

exγ(1+uv)b−1
. As a result, the diagonal contributions FXX, FYY and FZZ become

distance independent and proportional to T 8. Indeed, for b� 1, the diagonal contributions of PCQF precisely reduce
to the corresponding contributions of QVF in Ref. [17]. On the other hand, FXZ, which is proportional to T 4/a4,
becomes completely negligible in comparison to the diagonal contributions. To sum up, the contributions to PCQF
in the small b limit read

FPQ
b�1 =

α2
pp(0)

32π3(2a)8
fPQ
b�1(v, b), fPQ

b�1(v, b) =


− 4Γ(8)ζ(8)

3b8
32
105γ

4v(7 + 3v2), PQ = XX

− 4Γ(8)ζ(8)
3b8

32
105γ

6v(14 + 37v2 + 9v4), PQ = YY,ZZ

16Γ(4)ζ(4)
b4

v
γ4 , PQ = XZ.

(3.8)

As is shown in Eq. (3.8), unlike the diagonal contributions which monotonically increase with velocity, we find FXZ

vanishes when the velocity approaches the speed of light. Since the small b limit of FXZ has not been worked out in
Ref. [17], we show how to obtain it analytically in Appendix E.

It is not so surprising that the small b limit of PCQF coincides with QVF. Small b values correspond to large
distances or high temperatures. When the atom is far away from the PC plate, it is obvious that PCQF should reduce
to QVF. In the case of high temperatures (but not so high to ionize the atom), the atom interacts with photons of
very high frequency. It therefore mainly probes the very short distances around it and, effectively, does not feel the
PC plate. That is, in the high temperature limit, the distribution of energy eigenvalues of photons interacting with
the atom is insensitive to the presence of the plate.

Since quantum vacuum friction has been explored for a nondissipative atom in Ref. [17], the new physics really
lies in the large b limit, the short-distance or low-temperature behavior of PCQF. For b � 1, the small x modes
dominate the integrals. We can therefore expand the integrands in powers of x before carrying out the integrals.
Quite interestingly, the integrands for various polarization states exhibit different leading power behavior in x, which
determines the distance and temperature dependences of their contributions to PCQF. After expansion in x, both the
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x and u integrals can be done exactly if we keep only the leading in b terms. (Appendix E contains an approach to
derive the asymptotic expression for FXZ in the large b limit as well.) For b� 1, the resultant PCQF is found to be

FPQ
b�1 =

αpp(0)αqq(0)

32π3(2a)8
fPQ
b�1(v, b), fPQ

b�1(v, b) =



−Γ(12)ζ(12)
15b12

64
3465γ

6v(99 + 110v2 + 15v4), PQ = XX

−Γ(12)ζ(12)
15b12

32
3465γ

8v(297 + 1034v2 + 625v4 + 60v6), PQ = YY

− 8Γ(8)ζ(8)
3b8

64
105γ

6v(14 + 37v2 + 9v4), PQ = ZZ

2Γ(10)ζ(10)
15b10

8
63γ

6v(21 + 30v2 + 5v4), PQ = XZ.
(3.9)

Since the results shown in Eq. (3.9) are for the large z limit, it is apparent that FZZ dominates over the contributions
from the other polarizations. In this limit, FZZ is independent of distance a and proportional to T 8, just as is the case
for QVF. In fact, we find FZZ is precisely four times the corresponding QVF contribution shown in Eq. (3.8). The
next leading contribution, FXZ, is proportional to a2T 10 with an overall positive sign, suggesting that this particular
contribution corresponds to a push instead of a drag. The smallest contributions, FXX and FYY, are both proportional
to a4T 12. On closer examination of Eq. (3.9), we also observe that fYY is always greater than fXX, for arbitrary
velocities.

Interestingly, these behaviors of PCQF may be easily understood from the image particle picture criticized in the
Introduction. In fact, there is nothing wrong with replacing the PC plate by an image particle moving synchronously
with the actual particle. We only need to keep in mind that both particles would interact with the surrounding
photon bath, so that a frictional force does indeed arise. Following this line of reasoning, the image particle would
double the normal component of the fluctuation-induced field, Ez, but eliminate the tangential components, Ex and
Ey, at the surface of the PC plate. Since these fluctuation-induced frictional forces are proportional to the product
of the relevant fields, FZZ is therefore quadrupled while the other contributions are all suppressed when the distance
between the particle and the PC plate approaches zero.

We have been advised by Matthias Krüger that the physics here is analogous to a classical situation in hydrody-
namics. For example, the authors of Ref. [24] studied colloidal particles driven through a suspension of mutually
noninteracting Brownian particles and the corresponding frictional force induced by the nonequilibrium fluid struc-
ture. (The flow field comoving with the colloidal particles is not in equilibrium with the Brownian particles.) They
found that the frictional force on a single colloidal particle traveling along a wall (analogous to the PC plate in our
case) is precisely the same as that on two colloidal particles driven side by side. The authors also found an enhance-
ment of the friction due to the wall/image colloidal particle in comparison to the friction on an isolated colloidal
particle. From the density plot of the solute Brownian particles, they interpret this increase in friction as the result
of more Brownian particles aggregating in front of the colloidal particles when the wall/image particle is present. An
analogous interpretation applies to what we see here in this paper. That is, the electromagnetic energy density is
stronger near the PC plate.

So far, both the small b results in Eq. (3.8) and the large b results in Eq. (3.9) are exact in velocity. Another
question is whether we can obtain the nonrelativistic (NR) limit analytically without assuming anything about b.
This is possible as long as the dynamical polarizability is still replaced by its static value. We illustrate the procedure
of obtaining the NR limit for FXZ, valid for all b values in Appendix D. It turns out that all contributions to PCQF
start with a term linear in v in the NR limit.

IV. NUMERICAL RESULTS

As one of the contributions, FXZ, is positive (a push), while the others are all negative (a drag), a natural question
arises: could the overall “frictional” force on an atom ever flip sign and therefore become a push? Of course, from
Eq. (3.8) and Eq. (3.9), we can already conclude that the overall PCQF is negative definite in both the small b
(vacuum/high-temperature) limit and large b (short-distance/low-temperature) limit. But, there is no convincing
argument just from the analytic results suggesting that PCQF cannot switch sign in the intermediate b regime.
Therefore, we resort to numerical methods to ascertain the sign of PCQF.

We will here mainly consider atoms in their ground states, the polarizability of which is normally quite isotropic7

and can be well approximated by its static value, α(ω) = α(0)1. For such isotropic atoms, the sign of the PCQF is

7 Closed-shell atoms are almost exactly isotropic [25]. Even for open-shell atoms, the anisotropy is typically small compared to the
isotropic part of the polarizability. Among the elements in a certain period, the anisotropy is largest when the first p electron is added
[23].
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FIG. 2. The absolute values of the dimensionless functions fPQ in Eq. (4.1) are shown as functions of b for fixed velocity
(v = 0.5). The numerical results are computed directly using Eq. (3.4) and Eq. (3.7). Their small b and large b approximations
are obtained from Eq. (3.8) and Eq. (3.9), respectively. Since the small b approximation for fZZ and fYY is identical, the dashed
purple line overlaps with the dashed red line. As is seen, the small b approximation of FXZ cannot give a good description of
the numerical data beyond b = 1. A further detailed plot is provided in Appendix E, where the agreement between the analytic
approximation and the numerical data for FXZ is more clearly demonstrated for smaller b values.

determined by the sum of the dimensionless functions introduced in Eq. (3.7):

F ISO =
α2(0)

32π3(2a)8
f ISO(v, b), f ISO(v, b) = fXX(v, b) + fYY(v, b) + fZZ(v, b) + fXZ(v, b). (4.1)

We show the absolute value of these dimensionless functions across their transition region in Fig. 2. Starting from
small b values, the total frictional force on the isotropic particle is dominated almost evenly between the ZZ and YY
contributions. But as b grows larger, the weight of the YY contribution decays so that the ZZ contribution solely
dominates the entire frictional force. As for the unique positive contribution from the XZ polarization, it is completely
negligible when b is small but it eventually surpasses the contributions from the XX and YY polarizations for large
b. Nonetheless, it never dominates the ZZ polarization. The asymptotic (in b) expressions in Eq. (3.8) and Eq. (3.9)
are consistent with these behaviors and the agreement with the numerical data in their supposedly valid regimes are
also clearly illustrated in the figure. So, we can conclude that the total PCQF on an isotropic atom is always a drag,
since it cannot change sign even in the intermediate b regime.

Another interesting aspect of the force is, of course, its magnitude. Fluctuation induced forces are typically small.
But, is the PCQF possibly accessible to experiment? Here, we estimate PCQF on a cesium (Cs) atom, which has

the largest static polarizability,8 according to Ref. [25], αCs(0) = 59.3 Å3. Because the expression (3.7) we use
for numerical calculation is obtained in the static limit, the corresponding numerical results are only expected to
be appropriate when the atom is in its ground state, that is, up to the temperature that corresponds to the first
excitation energy of the Cs atom, T1 = 16 100 K,9 beyond which a model for its dynamical polarizability is needed. In
Fig. 3, we show the magnitude of the total frictional force on a Cs atom up to T1, fixing velocity and distance. The
friction clearly exhibits a power-law dependence on temperature. This is no surprise because we already know that
the frictional force should behave as T 8 in both the large b (low T ) and small b (high T ) regimes.

Of course, PCQF also depends on the distance between the atom and the plate, distinguishing it from QVF.
Considering the size of the Cs atom10, we should keep the distance greater than 1 nm to avoid additional surface

8 Within a period, the alkali metal atoms generally have the biggest polarizabilities. They are also supposed to have very tiny anisotropy
because their valence electrons are in s states [23]. Cs has the largest polarizability among the alkali metal atoms.

9 This temperature and the ionization temperature used later are obtained from the first excitation energy of Cs listed in Ref. [26].
10 Cesium also has the largest covalent radius (244 pm) among the nonradioactive atoms according to Ref. [27].
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with a magnitude of 1.30 × 10−25 N.
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FIG. 4. The magnitude of the total frictional force, along with its contributions from different polarizations, on a Cs atom
moving at v = 0.5 c and at its first excited temperature T = 16 100 K is plotted as a function of distance. The largest magnitude
of the total friction shown by the black dots is for a = 1 nm, being 1.57 × 10−25 N.

effects. We therefore show the magnitude of PCQF for a Cs atom as a function of distance in Fig. 4, from 1 nm to
1µm, fixing the velocity at v = 0.5 and temperature at T = T1. It is seen that the total friction is only doubled
when the distance is reduced from 1µm to 1 nm. This can be well understood from the asymptotic behavior of the
dominant contributions: the ZZ contribution quadruples, yet the YY contribution vanishes at small distances, which
is also clearly illustrated in the figure.

Finally, PCQF depends on the velocity of the atom. As is shown in Fig. 5a, the magnitude of the frictional force is
linear in v for very small velocities; however, the velocity dependence becomes more prominent for larger velocities.
In Fig. 5b, we not only plot the total frictional force at the first excitation temperature, T1 = 16 100 K, but also
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FIG. 5. The velocity dependence of the magnitude of the total frictional force on a cesium atom at a distance of a = 10 nm
away from the PC plate. (a) At the first excitation temperature, T1 = 16 100 K, the frictional force is plotted as a function
of velocity, for v/c ∈ [0.005, 0.100]. The red dots show the exact numerical results based on Eq. (3.7) and Eq. (3.4). The
blue solid line shows the term linear in v obtained using the nonrelativistic approximation detailed in Appendix D. (b) In the
more relativistic regime, v/c ∈ [0.100, 0.995], the red dots show the total frictional force at the first excitation temperature,
T1 = 16 100 K, while the purple dots show the numerical results extrapolated to the ionization temperature, Ti = 45 100 K.
For the maximum velocity shown in the figure, v = 0.995, the magnitude of the total friction is 1.66 × 10−19 N at T1 and
6.30 × 10−16 N at Ti.

extrapolate our numerical results to the ionization temperature of the cesium atom, Ti = 45 100 K [26]. Above Ti,
the outermost electron will be stripped off the atom so that the cesium atom cannot stay neutral. It is therefore not
feasible experimentally to detect the quantum friction on an atom above its ionization temperature. In between T1

and Ti, the atom can be excited, though not ionized. Now, the frequencies corresponding to the transition of the
atom’s internal energy levels become important in evaluating PCQF. At these frequencies, the polarizability of the
atom develops an imaginary part [28], which results in a PCQF that is first order in the polarizability. This effect
is not included in the results we show for T = Ti. In addition, by employing the static value for the polarizability,
we underestimate the magnitude of the second order PCQF, because atoms in excited states, e.g., Rydberg atoms11,
tend to have much larger polarizabilities.

V. CONCLUSIONS AND OUTLOOK

In this paper, we calculate the frictional force induced by fluctuations of the electromagnetic field on a neutral,
nondissipative atom moving parallel to a perfectly conducting (PC) plate, which we term PCQF for brevity. This
friction exists in second order in the polarizability of the atom and reduces to the quantum vacuum friction previously
explored [17] in the limit of large distance from the plate or high temperature. At short distances or low temperatures,
however, the PC plate modifies the behavior of the frictional force. For an isotropic atom, the frictional force is found
to be negative definite (a drag) and twice the magnitude of the quantum vacuum friction felt by the same atom
moving through blackbody radiation without a PC plate. Interestingly, the contribution to PCQF from a particular
polarization state of the atom is positive (a push). However, this contribution turns out to be always subdominant
to the negative contributions from the other polarization states. As a result, the total transverse force on the moving
atom remains a drag. The magnitude of the friction seems to be too tiny to be observed unless the atom is made
to move in a very hot background, at very high velocities. It is then fitting to make some comments about the
experimental conditions on temperature and velocity.

First, the temperature is absolutely bounded by the ionization temperature of the atom, Ti, because the atom will
no longer stay neutral above Ti. In this paper, we have used a static polarizability for the atom in the numerical

11 Even though Rydberg atoms possess much larger polarizabilities, which presumably will enhance the resulting frictional effect, we are
unsure whether they could be appropriate candidates for experimental consideration, because blackbody radiation induces transitions
to lower n states and reduces the lifetime of the Rydberg states. Even at room temperature, transitions induced by blackbody radiation
can contribute more to the decay rate than the spontaneous transitions [29]. At higher temperatures, the transition rate induced by
blackbody radiation is even larger.
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calculations, which can only be justified if the atom remains in its ground state. The temperature is therefore further
bounded by the temperature, T1, corresponding to the first excitation energy of the atom. In principle, however,
one can calculate PCQF on the atom up to its ionization temperature if its dynamical polarizability is known for a
sufficiently wide frequency spectrum.

Of course, for experiments, the material which approximates a PC plate is very likely to give a more restrictive
bound on the temperature. For example, the standard candidate, gold, will melt at 1337 K. Even if one could imagine
using liquid metals to mimic the perfectly conducting plate, the temperature is still bounded by the boiling point of
the metal. Tungsten has the highest boiling point among metals, 6203 K, which is still much lower than the typical
ionization temperature, Ti, of an atom. (For the cesium atom discussed in the paper, Ti = 45 100 K.) This reality
might motivate us to study PCQF for situations when the plate is not in thermal equilibrium with the radiation
background. For the Casimir-Polder force (the force normal to the plate), such a scenario has been studied both
theoretically [30] and experimentally [4].

Another apparent challenge to any feasible experiment is accelerating neutral atoms to relativistic velocities. But,
in fact, it is possible nowadays to manipulate the conventional ion accelerators so that fast ions can be converted to
neutral atoms with little change in momentum. For example, in Ref. [31], the maximum kinetic energy obtained for
a copper atom is 1 MeV, which is equivalent to a velocity of 0.0058, after conversion using the relativistic formula for
kinetic energy, K = (γ − 1)m.

This paper only considers a very idealized background with the PC plate. For a surface with a real finite index of
refraction, n, there will be induced Cherenkov friction [32] on the moving particle if it moves at a velocity above the
Cherenkov threshold, v > 1/n. If one further allows the surface to have dissipation, which is unavoidable in reality
and perhaps induces an even greater frictional effect, the problem becomes complicated by the presence of several
different mechanisms that give rise to friction. Ref. [33] provides a recent overview of this complicated subject with
many useful references; however, it mainly focuses on only zero-temperature effects. Other works, like Ref. [34], do
include finite-temperature effects but the discussion is restricted to only the nonrelativistic regime. In the future,
we intend to calculate the quantum friction associated with a dispersive and dissipative surface fully for arbitrary
temperatures and relativistic velocities. Alternatively, one could still assume a perfectly conducting boundary but
allow the moving particle itself to be intrinsically dissipative. The resulting PCQF will then be a modification of the
quantum vacuum friction studied in Ref. [18], where an independent temperature of the particle comes into play. We
will discuss such PCQF in a subsequent paper.
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Appendix A: THE TRANSFORMATION OF THE REDUCED GREEN’S DYADIC

In this appendix, we provide the connection between the reduced Green’s dyadic in frame P, g′, and that in frame
R, g. It is straightforwardly obtained by considering the Lorentz transformation of the electromagnetic field and
applying the FDT in both frames consistently. Note the transformation of the material properties like ε or µ is never
invoked because we eventually express the quantum friction in terms of g instead of g′.

In writing down the connection between g and g′, we will use (ω′,k′⊥) for the frequency and momentum in the
atom’s rest frame (P), and (ω,k⊥) for those transformed into the rest frame of the radiation (R),

ω = γ(ω′ + k′xv), kx = γ(k′x + ω′v), ky = k′y. (A1)

Below all components of g′ are expressed in terms of components of g:
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g′xx(ω′,k′⊥; z, z̃) = gxx(ω,k⊥; z, z̃),

g′yy(ω′,k′⊥; z, z̃) =
1

(ω′ + k′xv)2

(
ω′

2

γ2
gyy + k′y

2
v2gxx +

ω′

γ
k′yvgxy +

ω′

γ
k′yvgyx

)
(ω,k⊥; z, z̃),

g′zz(ω
′,k′⊥; z, z̃) =

1

(ω′ + k′xv)2

(
ω′

2

γ2
gzz + v2∂z∂z̃gxx + i

ω′

γ
v∂z̃gzx − i

ω′

γ
v∂zgxz

)
(ω,k⊥; z, z̃),

g′xy(ω′,k′⊥; z, z̃) =
1

ω′ + k′xv

(
ω′

γ
gxy + k′yvgxx

)
(ω,k⊥; z, z̃),

g′yx(ω′,k′⊥; z, z̃) =
1

ω′ + k′xv

(
ω′

γ
gyx + k′yvgxx

)
(ω,k⊥; z, z̃),

g′zx(ω′,k′⊥; z, z̃) =
1

ω′ + k′xv

(
ω′

γ
gzx + iv∂zgxx

)
(ω,k⊥; z, z̃),

g′xz(ω
′,k′⊥; z, z̃) =

1

ω′ + k′xv

(
ω′

γ
gxz − iv∂z̃gxx

)
(ω,k⊥; z, z̃),

g′yz(ω
′,k′⊥; z, z̃) =

1

(ω′ + k′xv)2

(
ω′

2

γ2
gyz − ik′yv2∂z̃gxx + i

ω′

γ
v∂z̃gyx −

ω′

γ
k′yvgxz

)
(ω,k⊥; z, z̃),

g′zy(ω′,k′⊥; z, z̃) =
1

(ω′ + k′xv)2

(
ω′

2

γ2
gzy + ik′yv

2∂zgxx − i
ω′

γ
v∂zgxy −

ω′

γ
k′yvgzx

)
(ω,k⊥; z, z̃). (A2)

Appendix B: THE FORM OF THE REDUCED GREEN’S DYADIC

In this appendix, we give the explicit form of the reduced Green’s dyadic used in the paper.
The Green’s dyadic Γ(r, r̃;ω) in frequency space satisfies the following differential equation,[

−ε(r;ω) +
1

ω2
∇× µ−1(r;ω) ·∇×

]
Γ(r, r̃;ω) = 1δ(r − r̃). (B1)

where ε(r;ω) and µ(r;ω) are the permittivity and permeability at the field point r. In deriving Eq. (B1), we have
ignored the spatial dispersion effects so that these susceptibilities are local in space. The geometry of the problem we
consider possesses translational symmetry in the x-y plane, which permits us to Fourier transform the Green’s dyadic
in these spatial directions,

Γ(r, r̃;ω) =

∫
d2k⊥
(2π)2

eik⊥·(r⊥−r̃⊥)g(z, z̃;ω,k⊥). (B2)

In this paper, we always evaluate the Green’s dyadic at the position of the particle, where the permittivity and the
permeability become scalars and take the vacuum value, ε = µ = 1. The reduced Green’s dyadic g then takes the
special form

g(z, z̃;ω,k⊥) =


k2x
k2 ∂z∂z̃g

H +
k2y
k2ω

2gE
kxky
k2 ∂z∂z̃g

H − kxky
k2 ω2gE ikx∂zg

H

kxky
k2 ∂z∂z̃g

H − kxky
k2 ω2gE

k2y
k2 ∂z∂z̃g

H +
k2x
k2 ω

2gE iky∂zg
H

−ikx∂z̃gH −iky∂z̃gH k2gH

. (B3)

The scalar Green’s functions that construct the Green’s dyadic consist of a bulk part and a scattering part,

gE,H(z, z̃;ω, k) =
1

2κ
e−κ|z−z̃| +

rE,H

2κ
e−κ(z+z̃), (B4)

with the reflection coefficients

rE =
κ− κ′/µ
κ+ κ′/µ

, rH =
κ− κ′/ε
κ+ κ′/ε

. (B5)
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Here, ε and µ are the permittivity and permeability of the reflecting surface, which is assumed to be homogeneous
and isotropic for simplicity, and κ and κ′ are the propagation wave numbers associated with the vacuum and the
surface, respectively, given by

κ2 = k2 − ω2, κ′2 = k2 − ω2εµ. (B6)

In certain regions for ω and k⊥, these wave numbers could develop an imaginary part, which is crucial for discussions
of dissipative forces like quantum friction. In those regions, the branch is so chosen that the retarded requirement of
the Green’s dyadic is guaranteed,

κ→ −i sgn(ω)
√
ω2 − k2, ω2 > k2; κ′ → −i sgn(ω)

√
ω2εµ− k2, ω2εµ > k2. (B7)

Note that κ becomes odd in ω in the region where it develops an imaginary part.
In the perfectly (electrically) conducting limit for the surface considered in this paper, the permittivity and perme-

ability take the extreme values [35],

ε→∞, µ→ 0 (B8)

so that the reflection coefficients simplify to be

rE,H = ∓1. (B9)

Appendix C: THE ABSENCE OF ZERO TEMPERATURE QUANTUM FRICTION IN THE PRESENCE
OF A DIAPHANOUS MEDIUM

In this appendix, we supply a proof for why no zero temperature QF should arise for the vacuum case and the PC
case. Further, we extend the claim to include any diaphanous, nondissipative medium with the property εµ = 1.

The general QF for an atom, Eq. (2.1) can be rewritten as the following when the temperature is set to be zero:

F = 2

∫ ∞
0

dω

2π

∫
d2k⊥
(2π)2

d2k̄⊥
(2π)2

k̄x tr
[
α(ω) · = g′(ω,k⊥; a, a) ·α(ω) · = g′(ω, k̄⊥; a, a)

] [
sgn(ω + k̄xv)− sgn(ω + kxv)

]
.

(C1)
To obtain Eq. (C1), we have exchanged kx and k̄x for the second term in Eq. (2.1) and used the evenness of the
integrand under the total reflection of its frequency and wave vector arguments (ω,k⊥, k̄⊥) → (−ω,−k⊥,−k̄⊥). In
order to make the argument clearer, let us change the k⊥ and k̄⊥ into dimensionless variables using ω as a positive
scale,

kx = ωx, ky = ωy, k̄x = ωx̄, k̄y = ωȳ. (C2)

The frictional force now reads

F =
1

16π5

∫ ∞
0

dω ω5

∫
dxdydx̄dȳ x̄ tr [α(ω) · = g′(ω, ωx, ωy) ·α(ω) · = g′(ω, ωx̄, ωȳ)] [sgn(1 + x̄v)− sgn(1 + xv)] ,

(C3)
where we have suppressed the spatial z coordinates of the Green’s dyadics. The difference in the sgn functions can
be translated into limits for the x and x̄ integrals, leading to

F =
1

8π5

∫ ∞
0

dω ω5

∫
dydȳ

[∫ − 1
v

−∞
dx

∫ ∞
− 1
v

dx̄−
∫ ∞
− 1
v

dx

∫ − 1
v

−∞
dx̄

]
x̄ tr [α(ω) · = g′(ω, ωx, ωy) ·α(ω) · = g′(ω, ωx̄, ωȳ)] .

(C4)
By exchanging x and x̄ again for the second term inside the bracket of Eq. (C4), we find the frictional force becomes

F =
1

8π5

∫ ∞
0

dω ω5

∫
dydȳ

∫ − 1
v

−∞
dx

∫ ∞
− 1
v

dx̄ (x̄− x) tr [α(ω) · = g′(ω, ωx, ωy) ·α(ω) · = g′(ω, ωx̄, ωȳ)] . (C5)

Now, the limit on x prevents the vacuum propagation wave number of the first reduced Green’s dyadic, κ, from
developing an imaginary part, because of

κ2 = k2 − ω2 = ω2(x2 + y2 − 1) > 0, x < −1

v
. (C6)
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For the simplest vacuum situation where only the diagonal components of the Green’s dyadic contribute to the
integral (see Appendix A of Ref. [17] for a detailed discussion), the anti-Hermitian part reduces to the ordinary
imaginary part. But the only possible source of an imaginary part for the first Green’s dyadic in Eq. (C5), κ, is now
real definite. As a result, the zero temperature QVF vanishes.

For backgrounds other than vacuum, zero temperature quantum friction exists in general because the propagation
wave number associated with the medium can become imaginary since

κ′2 = k2 − ω2εµ = ω2(x2 + y2 − εµ) (C7)

does not have a definite sign. A diaphanous medium with the special property,

εµ = 1, (C8)

however, is an exception, for which the propagation wave number coincides with the vacuum one, κ′ = κ. This nice
coincidence renders the reflection coefficients to be real definite as long as ε and µ are real,

rE =
µ− 1

µ+ 1
=

1− ε
1 + ε

, rH =
ε− 1

ε+ 1
. (C9)

Therefore, the only source of the imaginary part in the scalar Green’s functions Eq. (B4) is still the κ as in the vacuum
case. It can be further checked that the anti-Hermitian part of g′ vanishes unless κ develops an imaginary part even
though the off-diagonal components of the Green’s dyadic and the transformation between g′ and g needs to be taken
into account. Again, recalling Eq. (C6), the zero temperature QF must be absent even if such a diaphanous medium
is present in the background.

Now, apparently, both the perfect conductor defined by Eq. (B8) and Eq. (B9) and the vacuum background can be
deemed as members of the family of diaphanous materials, for which the total reflection coefficient rE + rH = 0.

Appendix D: THE NONRELATIVISTIC LIMIT OF PCQF

In this appendix, we obtain the nonrelativistic (NR) limit of PCQF directly from the expressions in Eq. (3.4) and
Eq. (3.7), where we have already replaced the dynamical polarizability with the static polarizability. We will use FXZ

in particular as an example to illustrate the procedure:

FXZ =
αxx(0)αzz(0)

8π3(2a)8

∫ ∞
0

dxx3
[
3x cosx+ (x2 − 3) sinx

]
×
∫ 1

−1

duu
√

1− u2 J1

(
x
√

1− u2
) 1

exbγ(1+uv) − 1
. (D1)

In the NR limit, the exponential factor can be expanded in v. Keeping only up to the term linear in v, we obtain

FXZ =
αxx(0)αzz(0)

8π3(2a)8

∫ ∞
0

dxx3
[
3x cosx+ (x2 − 3) sinx

]
×
∫ 1

−1

duu
√

1− u2 J1

(
x
√

1− u2
)[ 1

exb − 1
− uv xbexb

(exb − 1)2

]
. (D2)

Note the term constant in v vanishes because of its oddness in u, as there should be no spontaneous quantum
propulsion for a reciprocal point particle. See Ref. [21]. We are left with the term linear in v as expected. The u
integral can then be easily carried out and we obtain

FXZ =
αxx(0)αzz(0)

16π3(2a)8
vI(b), I(b) = b

∫ ∞
0

dx

[
3x cosx+ (x2 − 3) sinx

]2
sinh2(xb/2)

. (D3)

Now we focus on I(b), which carries all the b dependence of FXZ, and rewrite it as

I(b) = −4

∫ ∞
0

dx
[
3x cosx+

(
x2 − 3

)
sinx

]2 d

dx

(
1

exb − 1

)
. (D4)
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Using integration by parts, this becomes

I(b) = 4

∫ ∞
0

dx
[
x
(
2x2 + 3

)
+ x2

(
x2 − 6

)
sin(2x) + x

(
4x2 − 3

)
cos(2x)

] 1

exb − 1

= 4

{∫ ∞
0

dx

(
2x3 + 3x

)
exb − 1

+

[
d4

dη4
− 4

d3

dη3
+ 6

d2

dη2
− 3

d

dη

] ∫ ∞
0

dx
sin(ηx)

exb − 1

}∣∣∣∣∣
η=2

= 4

{∫ ∞
0

dx

(
2x3 + 3x

)
exb − 1

+

[
d4

dη4
− 4

d3

dη3
+ 6

d2

dη2
− 3

d

dη

] [
π

2b
coth

(ηπ
b

)
− 1

2η

]}∣∣∣∣∣
η=2

=
8π4

15b4
+

2π2

b2
− 9

+

{
16π5

b5

[
3 coth2

(
2π

b

)
−2

]
coth

(
2π

b

)
+

16π4

b4

[
3 coth2

(
2π

b

)
−1

]
+

24π3

b3
coth

(
2π

b

)
+

6π2

b2

}
csch2

(
2π

b

)
.

(D5)
For b� 1, the leading term of I(b) is 8π4/15b4. In Appendix E, we will show both analytically and numerically that
FXZ behaves as 1/b4 in the small b limit, even for relativistic velocities. When I(b) is expanded for b � 1, on the
other hand, multiple cancellation occurs and the leading term of I(b) is found to be 1024π10/1485b10. This agrees
with the large b limit for arbitrary velocities already obtained in Eq. (3.9).

We have also found the other contributions to the PCQF all have a nonvanishing term linear in v. The procedure
outlined in this appendix works to extract the correct NR limits of these other contributions to PCQF as well.

Appendix E: SMALL AND LARGE b LIMITS OF PCQF

In this appendix, we show how to obtain the small and large b limits of PCQF for all v. We will, again, focus on
the XZ polarization contribution.

Rewriting Eq. (3.4d) as

FXZ(x, v, b) = −√π 2
3
2x−

3
2 J 5

2
(x)

∫ 1

−1

duu
√

1− u2 J1

(
x
√

1− u2
) 1

exγb(1+uv) − 1
(E1)

and explicitly expanding the thermal occupation factor as a Maclaurin series in the v variable, but retaining the
implicit dependence of γ on v,

1

exγb(1+uv) − 1
=

∞∑
n=0

vn

n!

[
∂n

∂vn
1

exγb(1+uv) − 1

]∣∣∣∣
v=0

=

∞∑
n=0

vnun

n!
(xγb)n

∂n

∂(xγb)n
1

exγb − 1
, (E2)

we obtain

FXZ(x, v, b) = −√π 2
3
2x−

3
2 J 5

2
(x)

∞∑
n=0

vn

n!

∫ 1

−1

duun+1
√

1− u2 J1

(
x
√

1− u2
)
bn

∂n

∂bn
1

exγb − 1

= −πJ 5
2
(x)

∞∑
m=0

v2m+1

m!
22−mx−(m+3)Jm+ 5

2
(x) b2m+1 ∂

2m+1

∂b2m+1

1

exγb − 1
,

(E3)

where we have noticed that the even n terms vanishes because of the symmetry of the integrand for the u integral.

It follows from Eq. (3.7) and Eq. (E3) that

fXZ(v, b) = −π
∞∑
m=0

v2m+1

m!
22−mb2m+1 ∂

2m+1

∂b2m+1

∫ ∞
0

dxx4−mJ 5
2
(x) Jm+ 5

2
(x)

1

exγb − 1
, (E4)

which may be cast in forms suitable for small or large b by employing representations of the integrand (other than
the thermal occupation factor) that are appropriate for large or small x, respectively.
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FIG. 6. At fixed velocity v = 0.5, the numerical results for fXZ (dots) and its small b approximation (dashed line) obtained in
Eq. (E7) are shown for b ∈ [0, 1].

Thus, the finite series representation

Jn+ 1
2
(x) =

√
2

πx

sin
(
x− π

2
n
) bn2 c∑
k=0

(−1)k(n+ 2k)!

(2k)!(n− 2k)!
(2x)−2k

+ cos
(
x− π

2
n
) bn−1

2 c∑
k=0

(−1)k(n+ 2k + 1)!

(2k + 1)!(n− 2k − 1)!
(2x)−(2k+1)

 ,
(E5)

appropriate for large x, may be used to generate an expansion for fXZ(v, b) that is suitable for small b. We will
be content to establish the leading-order term for small b, which derives from the leading-order term in the above
representation for large x:

Jn+ 1
2
(x) ∼

√
2

πx
sin
(
x− π

2
n
)
, x→∞. (E6)

Using Eq. (E6) in Eq. (E4) and keeping only the m = 0 term, corresponding to the leading x-power in the integrand,
we readily obtain

fXZ(v, b) ∼ −8v b
∂

∂b

∫ ∞
0

dxx3 sin2 x
1

exγb − 1
∼ −4v b

∂

∂b
Γ(4)ζ(4)(γb)−4 =

16π4v

15γ4b4
, b→ 0. (E7)

It is interesting to note the appearance of the Planck-Einstein transformed temperature, Tγ ≡ T
γ , in this (high-

temperature) limit. Note Eq. (E7) captures not only the correct b dependence but also the velocity dependence of
fXZ in the small b limit. The agreement of Eq. (E7) with the numerical data for v = 0.5 is illustrated in Fig. 6.

Likewise, the infinite series representation

Jµ(x)Jν(x) =

∞∑
n=0

(−1)n(µ+ ν + n+ 1)n
n!Γ(µ+ n+ 1)Γ(ν + n+ 1)

(x
2

)µ+ν+2n

, (E8)

appropriate for small x, may be used to generate an expansion for fXZ(v, b) that is suitable for large b. In this case,
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the leading x-power in the integrand in Eq. (E4) is independent of m, so all terms must be included, resulting in

fXZ(v, b) ∼ −π
∞∑
m=0

v2m+1

m!

2−(3+2m)

Γ
(

7
2

)
Γ
(
m+ 7

2

)b2m+1 ∂
2m+1

∂b2m+1

∫ ∞
0

dxx9 1

exγb − 1

= −π
∞∑
m=0

v2m+1

m!

2−(3+2m)

Γ
(

7
2

)
Γ
(
m+ 7

2

)b2m+1 ∂
2m+1

∂b2m+1
Γ(10)ζ(10)(γb)−10

= π

∞∑
m=0

v2m+1

m!

2−(3+2m) (2m+ 10)! ζ(10)

Γ
(

7
2

)
Γ
(
m+ 7

2

) 1

(γb)10

=
28ζ(10) v

15 γ10b10

∞∑
m=0

v2m(m+ 1)(m+ 2)(m+ 3)(m+ 4)(m+ 5)(2m+ 7)(2m+ 9)

=
2113 ζ(10)

b10
γ6v (21 + 30v2 + 5v4), b→∞, (E9)

where we have used the identity

γ2n =
1

(n− 1)!

dn−1

d(v2)n−1

1

1− v2
=

1

(n− 1)!

∞∑
m=0

v2m(m+ 1)(m+ 2) · · · (m+ n− 1). (E10)

The result obtained in Eq. (E9) is precisely that found in Eq. (3.9).
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