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HOMOLOGICAL GROWTH OF ARTIN KERNELS IN

POSITIVE CHARACTERISTIC

SAM P. FISHER, SAM HUGHES, AND IAN J. LEARY

Abstract. We prove an analogue of the Lück Approximation Theorem
in positive characteristic for certain residually finite rationally soluble
(RFRS) groups including right-angled Artin groups and Bestvina–Brady
groups. Specifically, we prove that the mod p homology growth equals
the dimension of the group homology with coefficients in a certain uni-
versal division ring and this is independent of the choice of residual chain.
For general RFRS groups we obtain an inequality between the invari-
ants. We also consider a number of applications to fibring, amenable
category, and minimal volume entropy.

1. Introduction

A celebrated theorem of Lück relates the rational homology growth in
degree m through finite covers to the mth ℓ2-Betti number of a residually
finite group. More precisely:

Theorem 1.1 (Lück, [Lüc94]). Let G be a residually finite group of type
Fm+1 and let (Gn)n∈N be a residual chain of finite index normal subgroups.
Then

lim
n→∞

bm(Gn;Q)

[G : Gn]
= b(2)m (G),

where b
(2)
m (G) denotes the mth ℓ2-Betti number of G.

An immediate consequence of Lück’s approximation theorem is that the
left-hand limit always exists and is independent of the chosen residual chain.
We remind the reader that a residual chain is a sequence G = G0 ≥ G1 ≥
· · · ≥ Gn ≥ . . . such that each Gn is a finite index normal subgroup of G
and

⋂
n∈NGn = {1}. A related invariant is the mth Fp-homology gradient

for a finite field Fp. It is defined by

b(2)m (G, (Gn);Fp) := lim sup
n→∞

bm(Gn;Fp)

[G : Gn]
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2 HOMOLOGICAL GROWTH OF ARTIN KERNELS

for any G of type Fm+1 and residual chain (Gn)n∈N. We will recall the
definition of various finiteness properties in Section 5.

In [Lüc16, Conjecture 3.4] Lück conjectured that b
(2)
m (G;Fp) should equal

b
(2)
m (G) (and hence be independent of the residual chain). This was disproved
by Avramidi–Okun–Schreve [AOS21] (using a result of Davis–Leary [DL03])
where they showed that

b
(2)
3 (ARP2) = 0 but b

(2)
3 (ARP2 ;F2) = 1

independently of the choice of residual chain. Here, ARP2 is the right-angled
Artin group (RAAG) on (the 1-skeleton of) any flag triangulation of the real
projective plane.

For torsion-free groups satisfying the Atiyah conjecture, the ℓ2-Betti num-
bers may be computed via the dimensions of group homology with coeffi-
cients in a certain skew field DQG, known as the Linnell skew field of G.
In [JZ21], Jaikin-Zapirain introduces analogues of the Linnell skew field
with ground ring any skew field F, denoted DFG, and called the Hughes-
free division ring of FG. He proves that DFG exists and is unique up to
FG-isomorphism for large classes of groups, including residually finite ra-
tionally soluble (RFRS) groups (in particular compact special groups) and
conjectures they should exist for all locally indicable groups.

One may compute group homology with coefficients in DFG and take DFG-
dimensions to obtain DFG-Betti numbers, denoted bDFG

m (G). We emphasise
that when G is RFRS and F = Q, the Linnell skew field and the Hughes

free division ring coincide [JZ21, Appendix], and therefore that b
DQG
m (G) =

b
(2)
m (G). The DFG-Betti numbers share a number of properties with ℓ2-Betti
numbers (see for example [HK21, Theorem 3.9] and [Fis21, Lemmas 6.3 and
6.4]). In light of this we raise the following conjecture:

Conjecture A. Let F be a skew field. Let G be a torsion-free residually
finite group of type FPn+1(F) such that DFG exists. Let (Gi)i∈N be a residual
chain of finite index normal subgroups. Then,

b(2)m (G, (Gi);F) = bDFG
m (G)

for all m 6 n. In particular, the limit supremum in the definition of b
(2)
m is

a genuine limit and is independent of the choice of residual chain.

Our main result verifies this conjecture for various families of groups—
notably for RAAGs, which provided the counterexamples to Lück’s original
conjecture.

Theorem B. Let F be a skew field and G be a group commensurable with
any of

(1) a residually finite Artin group satisfying the K(π, 1) Conjecture, such
as a right-angled Artin group or RAAG.

(2) an Artin kernel, i.e. the kernel of a homomorphism from a RAAG
to Z (these include Bestvina–Brady groups);

(3) a graph product of amenable RFRS groups.
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If G is type FPn(F), then b
(2)
m (G, (Gn);F) = bDFG

m (G) for m 6 n. In particu-

lar, the limit supremum in the definition of b
(2)
m is a genuine limit indepen-

dent of the choice of residual chain (Gn)n∈N.

In the case when G is not torsion-free but contains a finite-index torsion-
free subgroup H, each of Betti number bi(G) for G appearing in the state-
ment is defined to be bi(H)/[G : H]. This extension to the definition

is clearly consistent for b
(2)
i (G;F) and is consistent for bDFG

i (G) because
of [Fis21, Lemma 6.3].

In each case we are able to compute bDFG
m (G) explicitly; in cases (1) and

(3) we find that it is equal to the F-homology gradient previously computed
in [AOS21] and [OS21]. In case (2) we compute both the DFG-Betti numbers
and the F-homology gradients and show they are equal. We highlight the
computation for (2), which we expect will be of independent interest. Note
that this generalises the computation of Davis and Okun for the ℓ2-Betti
numbers of Bestvina–Brady groups [DO12].

Theorem C. Let F be a skew field, let ϕ : AL → Z be an epimorphism and
let BBϕ

L denote kerϕ. If BBϕ
L is of type FPn(F) then

b
D

FBB
ϕ
L

m (BBϕ
L) = b(2)m (BBϕ

L;F) =
∑

v∈L(0)

|ϕ(v)| · b̃m−1(lk(v);F).

for all m 6 n.

One may extend Conjecture A to G-spaces with finite (n+1)-skeleton. In
this more general setting we are able to verify the conjecture for certain poly-
hedral product spaces (Theorem 3.15) and certain hyperplane arrangements
(Theorem 3.21). We remark that [LLS11] effectively proves the conjecture
for torsion-free amenable groups.

For groups where groups where DFG exists and is universal (see Sec-
tion 4 for a definition), we obtain that the agrarian Betti-numbers give a
lower bound for the homology gradients as an easy consequence of a result
of Jaikin-Zapirain [JZ21, Corollary 1.6]. Note that the following theorem
applies to all residually (amenable and locally indicable) groups by [JZ21,
Corollary 1.3], and in particular to RFRS groups.

Theorem D. Let F be a skew-field and let G be a residually finite group
of type FPn+1(F) such that DFG exists and is the universal division ring of
fractions of FG. Then

bDFG
m (G) 6 b(2)m (G, (Gi);F)

for all m 6 n, where (Gi)i∈N is any residual chain of finite-index subgroups
of G.

We also mention the work of Bergeron–Linnell–Lück–Sauer [BLLS14],
which we believe provides some more evidence for Conjecture A. Let Γ be the
fundamental group of a finite CW complex X with a homomorphism ϕ : Γ→
GLn(Zp). Let G be the closure of ϕ(Γ) and let Gi = ker(G→ GLn(Z/p

iZ)).
Recall that the Iwasawa algebra of G over Fp is FpJGK = lim

←−
Fp[G/Gi]. If G
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is torsion-free, then FpJGK has no zero divisors and is Ore with respect to

its nonzero elements. Letting Γ = Γ/ kerϕ, we have a ring homomorphism

FΓ→ FG→ FpJGK→ D,

where D is the Ore localisation of FpJGK. If M is an FpJGK-module and G
is torsion-free, then the dimension of M is

dimFpJGKM := dimD(D ⊗FpJGK M).

If G is not torsion-free, then we can pass to a uniform finite-index subgroup
G0 6 G and then define dimFpJGKM = [G : G0]

−1 dimFpJGKM . There is

then a natural mod p analogue of ℓ2-Betti numbers given by

βk(X,Γ;Fp) = dimFpJGK Hk(FpJGK⊗FpΓ
C•(X;Fp))

whereX is the cover ofX corresponding to kerϕ. With this setup, Bergeron–
Linnell–Lück–Sauer prove the following mod-p Lück approximation style
theorem.

Theorem 1.2. With the notation above, let Γi = ϕ−1(Gi) and let Xi be the
corresponding cover of X. Then

bk(Xi;Fp) = [Γ : Γi] · βk(X,Γ;Fp) +O
(
[Γ : Γi]

1− 1
dimG

)

for all k.

1.1. Outline of the paper. In Section 2 we give the relevant background
on group rings and the computational tools we will need. In fact in many
computations we are able to work in the more general setting of agrarian
invariants as defined in [HK21] and so summarise the relevant theory. The
remaining three sections of the paper are described in the sequel.

1.1.1. Computations. In Section 3 we introduce the notion of a confident
complex ; roughly this is a CW complex admitting a finite cover by open
sets with amenable fundamental group such that the nerve of the cover has
good properties. We then compute the DFG-Betti numbers and Fp-homology
gradients of these complexes showing they are related to Fp-Betti numbers of
the nerve. The computation of the first invariant a uses a spectral sequence
collapsing result of Davis–Okun [DO12] building on work of Davis–Leary
[DL03]. The computation of the second invariant is similar in spirit to the
work of Avramidi–Okun–Schreve [AOS21] and Okun–Schreve [OS21] and
again relies on a spectral sequence argument.

The remainder of the section involves computations of the homological
invariants for various spaces and groups with the goal of showing they sat-
isfy Conjecture A. The computations are summarised as follows. In Theo-
rem 3.12 we show that Artin kernels of type FPn are fundamental groups
of confident spaces with an n-acyclic covering space, and use this to prove
Theorem C. In Theorem 3.15 we compute the invariants for graph products
of amenable RFRS groups (including RAAGs) and polyhedral products of
classifying spaces of amenable RFRS groups. In Theorem 3.19 we compute
the invariants for the Artin groups alluded to earlier. In fact the method
applies to RFRS groups admitting a strict fundamental domain with certain
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stabilisers (Remark 3.20). Finally, inspired by [DJL07], we compute the in-
variants for hyperplane arrangements whenever the invariants are defined
(Theorem 3.21).

1.1.2. A lower bound for homology gradients. In Section 4, we recall the
notion of a universal division ring of fractions and prove Theorem D as a
consequence of work of Jaikin-Zapirain in [JZ21].

1.1.3. Applications to fibring. In Theorem 5.1 we prove that if a RFRS group
of type FPn+1(F) is not virtually FPn(F)-fibred, then there is some m 6 n

such that b
(2)
m (G, (Gn);F) > 0 for every residual chain (Gn)n∈N.

In the remainder of Section 5 we apply the computations of the agrarian
invariants of RAAGs and Artin kernels to obtain some results about fibring
in RAAGs. In particular, we make progress towards the following question of
Matthew Zaremsky, communicated to us by Robert Kropholler: If a RAAG
virtually algebraically fibres with kernel of type Fn, then does it algebraically
fibre with kernel of type Fn? We are able to answer this question if one
replaces Fn with FPn(R), where R is either a skew field, Z, or Z/m for some
integer m > 1 (Theorem 5.2). Since finitely presented groups of type FPn

are of type Fn, this leaves F2 as the main case of interest in Zaremsky’s
question.

In [Fis21], the first author showed that if G is RFRS and ℓ2-acyclic in di-
mensions 6 n, then G virtually FPn(Q)-fibres, but left unanswered whether
ℓ2-Betti numbers control virtual FPn-fibring. We resolve that here by show-
ing that there are RAAGs that are ℓ2-acyclic but do not virtually FP2-fibre
(Proposition 5.5). Finally, we use the explicit computation of the agrar-
ian invariants of Artin kernels to show that if AL is a RAAG and F is a
skew field, then either all of the FPn(F)-fibres of AL are themselves virtually
FPn(F)-fibred or none of them are (Theorem 5.6, Corollary 5.8).

1.1.4. Applications to amenable category and minimal volume entropy. In
Section 6 we relate the Agrarian invariants to the amenable category of
[CLM22] and the minimal volume entropy of Gromov [Gro82]. The relevant
background is described in the section.

We show via an argument of Sauer [Sau16] that having a small amenable
category implies vanishing of DFG-Betti numbers for residually finite groups
(Proposition 6.1). We also show that for residually finite groups with uni-
formly uniform exponential growth admitting a finiteK(G, 1), having a non-
zero DFG-Betti number implies the minimal volume entropy of G is non-zero
(Corollary 6.2). The analogous results for Fp-homology gradients were es-
tablished by Sauer [Sau16] and Haulmark–Schreve [HS22] respectively. In
some sense this provides more evidence towards Conjecture A. Finally, we
give a condition for the minimal volume entropy of an Artin kernel admitting
a finite K(G, 1) to be non-zero (Corollary 6.3) and conjecture a converse.

Acknowledgements. The first author is supported by the National Sci-
ence and Engineering Research Council (NSERC) [ref. no. 567804-2022].
The second received funding from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation programme
(Grant agreement No. 850930). The authors would like to thank Ismael
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Morales for asking a question that led to Theorem 5.6, as well as Robert
Kropholler and Matt Zaremsky for communicating a question which inspired
Theorem 5.2. The authors would like to thank Dawid Kielak for helpful con-
versations.

2. Preliminaries

Throughout all rings are assumed to be associative and unital.

2.1. Finiteness properties. Let R be a ring and G be a group. Then G
is said to be of type FPn(R) if there is a projective resolution P• → R of the
trivial RG-module R such that Pi is finitely generated for all i 6 n. If G is
of type FPn(R) and S is an R-algebra, then G is of type FPn(S). Thus, if G
is of type FPn(Z), then G is of type FPn(R) for any ring R; because of this,
we write FPn to mean FPn(Z). Note that finite generation is equivalent to
FP1(R) for any ring R, though FP2 is in general a stronger condition than
FP2(R).

We also the mention the homotopical analogue of the FPn(R) condition:
a group G is of type Fn if G has a classifying space with finite n-skeleton.
Note that F1 is equivalent to FP1(R) for any ring R, but that Fn is in general
strictly stronger than FPn(R) for n > 2.

2.2. Agrarian invariants. Let G be a group and let F be a skew field.
The group ring FG is the set of formal sums

∑
g∈G λgg, where λg ∈ F is

zero for all but finitely many g ∈ G, equipped with the obvious addition
and multiplication operations. Let D be a skew field. Then an agrarian
embedding is a ring monomorphism α : FG →֒ D. Agrarian embeddings
were first studied by [Mal48, Neu49], who proved that group rings of bi-
orderable groups have agrarian embeddings. Note that the existence of an
agrarian embedding implies that G is torsion-free and that the Kaplansky
zero divisor and idempotent conjectures hold for FG. There is no known
example of a torsion-free group G and a skew field F such that FG does not
have an agrarian embedding.

Let X be a CW-complex with a cellular G action such that for every
g ∈ G and every open cell e of X, if g · e ∩ e 6= ∅ then g fixes e pointwise.
The cellular chain complex C•(X;F) is naturally an FG-module. In this
situation, X is called a G-CW complex. If α : FG→ D is an agrarian map,
then we can define the D-homology and D-Betti numbers of X by

HD
p (X) := Hp(D ⊗FG C•(X)) and bDp (X) = dimDH

D
p (X)

where dimD denotes the dimension as a D-module, which is well-defined
since D is a skew field. Taking X to be a classifying space of G, we obtain
the D-homology and D-Betti numbers of G.

The following theorem gives a central example of an agrarian embedding.

Theorem 2.1 (Linnell [Lin93]). If G is a torsion-free group satisfying the
strong Atiyah conjecture, then there is a skew field DQG, known as the
Linnell skew field of G, and an agrarian embedding QG →֒ DQG such that

b
(2)
p (G) = bDQG(G) .
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The strong Atiyah conjecture asserts that if X is a free G-CW complex
of finite type and G has finite subgroups of bounded order, then lcm(G) ·

b
(2)
p (X) ∈ Z for all p ∈ N, where lcm(G) is the least common multiple
of the orders of finite subgroups of G. The strong Atiyah conjecture is
known for many groups, in particular for residually (torsion-free solvable
groups) [Sch02], for cocompact special groups [Sch14], and for locally indi-
cable groups [JZLA20]. Importantly for us, the Atiyah conjecture holds for
all RFRS groups, and in particular all subgroups of RAAGs. The following
theorem of Jaikin-Zapirain provides many examples of agrarian embeddings
in positive characteristic.

Theorem 2.2 (Jaikin-Zapirain [JZ21, Theorem 1.1]). Let F be a skew field
and let G be either locally indicable amenable, residually (torsion-free nilpo-
tent), or free-by-cyclic. Then there exists a division ring DFG, known as the
Hughes-free division ring of FG, and an agrarian embedding FG →֒ DFG.

2.3. A Mayer–Vietoris type spectral sequence. The following con-
struction of a Mayer–Vietoris type spectral sequence is due to Davis and
Okun [DO12]. We will state the homological version of the spectral se-
quence with arbitrary coefficients. Let P be a poset. We define Flag(P) to
be the simplicial realisation of P, i.e. Flag(P) is the simplicial complex whose
simplices are the totally ordered, finite, nonempty subsets of P. Hence, every
simplex σ ∈ Flag(P) has a well-defined minimum vertex, denoted min(σ).

If Y is a CW complex, then a poset of spaces in Y over P is a cover
Y = {Ya}a∈P of Y with each Ya a subcomplex such that

(1) a < b implies Ya ⊆ Yb;
(2) Y is closed under finite, nonempty intersections.

Let R be a ring and let ModR denote the category R-modules. A poset
of coefficients for P is a contravariant functor A : P → ModR. The functor
A induces a system of coefficients on Flag(P) via σ 7→ Amin(σ), which gives
chain complex

Cj(Flag(P);A) :=
⊕

σ∈Flag(P)(j)

Amin(σ),

where Flag(P)(j) is the set of j-simplices in Flag(P).

Lemma 2.3 ([DO12, Lemmas 2.1 and 2.2]). Let M be an R-module and
suppose Y = {Ya}a∈P is a poset of spaces over P in a CW complex Y . There
is a Mayer–Vietoris type spectral sequence

E2
p,q = Hp(Flag(P);Hq(Y;M))→ Hp+q(Y ;M),

where H•(Y;M) is a system of coefficients given by

H•(Y;M)(σ) = H•(Ymin(σ);M).

Moreover, if the induced homomorphism H•(Ya;M) → H•(Yb;M) is zero
whenever a < b in P, then

E2
p,q =

⊕

a∈P

Hp(Flag(P>a),Flag(P>a);Hq(Ya;M)).
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3. Computations

3.1. Approximation for spaces with confident covers. Fix a skew field
F and let X be a compact CW complex with a finite poset of spaces X =
{Xα}α∈P over P. We call X confident if it satisfies the following conditions:
for each α ∈ P

(i) each Xα has finitely many components;

(ii) either Xα ⊆ X
(0) or each connected component of Xα is a classifying

space with torsion-free amenable fundamental group such that FG
has no zero-divisors;

(iii) if C ⊆ Xα is a component, then the inclusion C ⊆ X induces an
injection π1(C)→ π1(X);

(iv) if Xα is a collection of points, then α is minimal in P; equivalently,

Xα ∩Xβ = ∅ whenever Xα,Xβ ⊆ X
(0).

Remark 3.1. If G is a torsion-free elementary amenable group, then FG
has no zero-divisors.

We will show that spaces with confident covers satisfy Lück’s approxi-
mation theorem in arbitrary characteristic, following Avramidi, Okun, and
Schreve who prove the same result for the Salvetti complex of a RAAG. We
will then show that the result agrees with the agrarian Betti numbers of the
space.

Before beginning, we fix some notation. For the rest of the section, X
will be a compact CW complex with a confident cover X = {Xα}α∈P and
we assume that G := π1(X) is residually finite with residual chain (Gn)n∈N.
Let Xn be the covering space of X corresponding to Gn P G. Fix some
n ∈ N and let V = F[G/Gn]. Let K be the nerve of X and let Xσ = Xmin(σ)

for any simplex σ ∈ K. By an abuse of notation, we will use α to denote
both an element of P and the corresponding vertex of K.

Recall the Mayer–Vietoris type spectral sequence

E1
p,q = Cp(K;Hq(Xσ;V ))⇒ Hp+q(X;V ) ∼= Hp+q(Xn;F)

(see, e.g., [Bro94, VII.4]).

Lemma 3.2. We have that

lim
n→∞

dimFHq(Xσ ;V )

[G : Gn]
=

{
nσ if q = 0 and Xσ ⊆ X

(0),

0 otherwise.

Proof. The proof is similar to that of [AOS21, Lemma 8]. The claim is clear
when Xσ consists of 0-cells. In the other case, since the homology growth of
amenable groups satisfying (ii) is sublinear [LLS11, Theorem 0.2], the only
way dimFHq(Xσ;V ) can grow linearly is if the number of components of the
preimage of Xσ in Xn grows linearly with the index. But this does not occur
since the sequence Γn is residual and normal and the inclusions Xσ ⊆ X
induce π1-injections of infinite groups on each component of Xα. �

The spectral sequence is therefore concentrated on the E1
p,0 line, up to an

error sublinear in the index [G : Gn]. This implies that

(1) lim sup
n∈N

dimFE
2
p,0

[G : Gn]
= lim sup

n∈N

dimFHp(X;V )

[G : Gn]
.
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Define a poset of coefficients on the vertices of K by

Aα =

{
V nσ if Xσ ⊆ X

(0),

0 otherwise.

Let K(p) denote the set of p-simplices of K. There is a chain projection

E1
p,0 =

⊕

σ∈K(p)

V nσ → Cp(K;Aα) =
⊕

σ∈K(p):Xmin(σ)⊆X
(0)

V nσ .

By Lemma 3.2, the kernel of this projection has dimension sublinear in the
index [G : Gn] and therefore

(2) lim sup
n∈N

dimFE
2
p,0

[G : Gn]
= lim sup

n∈N

dimFHp(X;Aα)

[G : Gn]
.

The proof of the following proposition is similar to that of [AOS21, Lemma
9], except that in their case the nerve is contractible. Though K is not
necessarily contractible, it does decompose nicely into contractible pieces
centred at the vertices α ∈ K(0) such that Xα ⊆ X

(0).

Proposition 3.3. Let S = {α ∈ K(0) : Xα ⊆ X
(0)}. Then

dimFHp(K;Aσ) = [G : Gn] ·
∑

α∈S

nαb̃p−1(lk(α);F)

In particular, limn→∞
bp(Xn;F)
[G:Gn]

exists and is independent of the residual chain

(Gn).

Proof. By (iv), if α ∈ K(0) is a vertex such that Aα 6= 0, then every vertex

β ∈ K(0) adjacent to α has Aβ = 0. Therefore the chain complex C•(K;Aσ)
decomposes as a direct sum of chain complexes

⊕
α∈S C•(st(α);Aσ), where

the coefficient system Aσ is restricted to each st(α) ⊆ K.
For each α ∈ S, there is a short exact sequence of chain complexes

0→ C•(lk(α);F)⊗ V
nα → C•(st(α);F) ⊗ V

nα → C•(st(α);Aσ)→ 0.

Because st(α) is contractible, the middle term is acyclic and therefore

H•(st(α);Aσ) ∼= H•−1(lk(α);F) ⊗ V
nα .

The formula in the statement of the proposition follows, since V nα is a vector
space of dimension [G : Gn] · nα.

This formula together with (1) and (2) show that lim supn
bp(Xn;F)
[G:Gn]

is inde-

pendent of the residual chain (Gn). Moreover, this implies that the lim sup
is a genuine limit. �

Remark 3.4. In [AOS21], the computation of Proposition 3.3 is carried out
in the case that XL is the Salvetti complex of the RAAG determined by L.
If X is the cover of XL by standard tori, then there is a single vertex v in
the cover and the corresponding vertex α in the nerve has link isomorphic

to L. Thus, we recover the formula b
(2)
p (AL;F) = b̃p−1(L;F).

Remark 3.5. Condition (ii) can be weakened as follows: One only requires
that first, π1X is residually finite; and second, that each Xσ is (homotopy
equivalent to) a compact CW complex with vanishing F-ℓ2-Betti numbers
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independent of the chain, or is a 0-cell. In this case the conclusion of Propo-
sition 3.3 still holds.

Corollary 3.6. Let X be a confident CW complex with π1(X) residually

finite. If π : X̂ → X is a degree d cover, then b
(2)
p (H;F) = d · b

(2)
p (G;F).

Proof. Let {Xα} be a confident cover of X. Then {π−1(Xα)} is a confident

cover of X̂ and
∣∣π−1(Xα)

∣∣ = d · |Xα| whenever Xα ⊆ X
(0). �

3.2. Agrarian homology of spaces with confident covers. We con-
tinue with the same set-up as the previous subsection: X is a CW complex
with a confident cover X = {Xα}α∈P and let K be the covering. Notice that
K ∼= Flag(P). Additionally, we will assume that there exists a skew field D
and a fixed agrarian embedding FG→ D, where G = π1(X).

Proposition 3.7. Let S = {α ∈ K(0) : Xα ⊆ X
(0)}. Then

dimFH
D
p (X) =

∑

α∈S

nαb̃p−1(lk(α);F).

In particular, if π1(X) is residually finite then bDp (X) = b
(2)
p (X;F).

Proof. Suppose Xα does not consist of 0-cells. Then, each component of Xα

is a classifying space for an infinite amenable group and thereforeHD
p (Xα) =

0 by [HK21, Theorem 3.9(6)]. Since the elements α such that Xα ⊆ X(0)

are minimal in P, the spectral sequence of Lemma 2.3 collapses on the E2
p,0

line. By Lemma 2.3,

HD
p (X) =

⊕

α∈S

Hp(Flag(P>α),Flag(P>α);D
nα),

whence the stated formula follows. �

Corollary 3.8. If X is confident, G = π1(X) is residually finite, and G

has a Hughes-free division ring DFG, then b
DFH
p = b

(2)
p (X̂ ;F) for every finite

index subgroup H 6 G and corresponding finite covering space X̂ → X.

Proof. This follows from Corollary 3.6 and the fact that Hughes-free Betti
numbers scale when passing to a finite index subgroup [Fis21, Lemma 6.3].

�

Remark 3.9. Condition (ii) can be weakened as follows: One only requires
that first π1X admits an agrarian map π1X → D; and second that each Xσ

is (homotopy equivalent to) a compact CW complex with with vanishing
D-Betti numbers or is a 0-cell. In this case the conclusion of Proposition 3.7
still holds.

3.3. Artin kernels. An Artin kernel is simply the kernel of a non-zero
homomorphism ϕ : AL → Z, where L is a flag complex and AL is the RAAG
it determines. We now apply the results of the previous two subsections to
Artin kernels and obtain an explicit formula for their agrarian Betti numbers
in terms of L and ϕ.

We fix a skew field F, a flag complex L, and a surjective homomorphism
ϕ : AL → Z, where AL is the RAAG on L. Moreover, we fix a standard
generating set for AL, identified with the vertex set Vert(L). We denote the
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Artin kernel by BBϕ
L := kerϕ. If ϕ is the map sending each of the generators

to 1 ∈ Z, then BBϕ
L = BBL is the usual Bestvina–Brady group.

Let TL be the Salvetti complex on L and let XL be its universal cover.
There is an affine map TL → S1 inducing ϕ constructed as follows. For
each v ∈ Vert(L), let S1

v := R/Z be the corresponding circle in TL. Let
σ = {v1, . . . , vk} ∈ L be a simplex and let Tσ = S1

v1 × · · · × S1
vk

be the
associated subtorus of TL. There is a map

Tσ → S1 = R/Z, (x1, . . . , xk) 7−→ ϕ(v1)x1 + · · · + ϕ(vk)xk + Z.

The maps on each of the subtori extend to a well-defined map f : TL → S1

inducing ϕ on the level of fundamental groups. Moreover, f induces a cube-
wise affine AL-equivariant height function h : XL → R making the diagram

XL R

TL S1f

h

commute — here the vertical arrows are the universal covering maps.
We borrow the following definition and terminology from [BG99].

Definition 3.10. A vertex v of L is living [resp., dead ] if ϕ(v) 6= 0 [resp.,
ϕ(v) = 0]. Denote the full subcomplex of L spanned by the living [resp.,
dead] vertices by La [resp., Ld].

Let Z = h−1({p}) for some p /∈ Z. The level set Z has a natural CW
complex structure and BBϕ

L acts cocompactly on Z; we denote the quotient
Z/BBϕ

L by Y . For each n-simplex σ ∈ L, the subtorus Tσ ⊆ TL lifts to Xσ,
a collection of pairwise disjoint sheets in XL. Each sheet is an isometrically
embedded copy of (n+ 1)-dimensional Euclidean space.

Let P be the poset of simplices of L that contain at least one vertex in
La. Then Z is covered by the collection {Xσ ∩ Z}σ∈P. Writing Yσ for the
image of Xσ ∩Z in Y , we obtain a poset of spaces Y = {Yσ}σ∈P of Y where
each subcomplex Yσ is a disjoint union of tori or a set of vertices. Crucially,
Y is a confident cover.

Lemma 3.11. If σ = {v} ∈ La is a vertex, then Yσ is a collection of |ϕ(v)|
vertices.

Proof. We will show that there are exactly |ϕ(v)| orbits of lines in Xσ under
the BBϕ

L-action on XL. For each vertex v in La, evenly subdivide each

edge of Xv into |ϕ(v)| segments. Note that the restriction X
(1)
L → R of h is

cellular, where X
(1)
L is the subdivided 1-skeleton of XL and R is given the

cell structure with vertex set Z and edge set {[n, n+ 1] : n ∈ Z}.
Fix a vertex σ = {v} ∈ La and let Xσ be the subdivision of Xσ. Let e be

an edge of Xσ and let e′ be the unique edge of Xσ such that e ⊆ e′. We say
e is an edge of type i if it is the ith highest edge (under the height function
h) contained in e′; the integer i can take values in {0, . . . , |ϕ(v)| − 1}.

Because the action of BBϕ
L on XL is height preserving, it preserves the set

of type i edges. Since ϕ is surjective, gcd((ϕ(v))v∈L(0) ) = 1. Therefore, the
generic level set Z intersects edges of type i for every i ∈ {0, . . . , |ϕ(v)|−1}.
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Moreover, BBϕ
L acts transitively on the set of edges of type i of the same

height, which follows from the fact that BBϕ
L acts transitively on the set of

edges of Tσ of the same height. Thus, we conclude that there are exactly
|ϕ(v)| orbits of lines in Xσ under the BBϕ

L action. �

Theorem 3.12. Let ϕ : AL → Z be an epimorphism and let Y be a generic
level set of the induced height function. If FBBϕ

L → D is an agrarian em-
bedding, then

bDp (Y ) = b(2)p (Y ;F) =
∑

v∈L(0)

|ϕ(v)| · b̃p−1(lk(v);F).

Moreover, if BBϕ
L is of type FPn(F) then

bDp (BB
ϕ
L) = b(2)p (BBϕ

L;F) =
∑

v∈L(0)

|ϕ(v)| · b̃p−1(lk(v);F).

for all p 6 n. We also have bDp (H) = b
(2)
p (H;F) whenever H is a finite index

subgroup of BBϕ
L and D is the Hughes-free division ring of FH.

Before beginning the proof, we remark that BBϕ
L is a RFRS group, being a

subgroup of a RAAG. Hence, by [JZ21, Corollary 1.3], DFBBϕ
L
exists. When

F = Q, the Hughes free division ring and the Linnell skew field coincide,
so in this case Theorem 3.12 computes the ℓ2-Betti numbers of BBϕ

L. This
generalises the computation of Davis and Okun in [DO12, Theorem 4.4]

Proof. The first statement is an immediate consequence of Propositions 3.3
and 3.7, Remark 3.9, Remark 3.5, Lemma 3.11, and the observation that
Y is a confident cover. The second follows from the fact that if BBϕ

L is of
type FPn(F) if and only if Z is n-acyclic with F coefficients [BG99] (Bux–
Gonzalez consider only the case F = Z, but their result remains true over
arbitrary coefficients). �

Remark 3.13. The condition that BBϕ
L is of type FPn(F) can be verified

directly in the flag complex L. Recall that a topological space is n-acyclic if
its reduced homology (with coefficients in F in our case) vanishes in degrees
6 n. Note that we use the convention that the reduced homology of the
empty set is F in dimension −1, so if X is n-acyclic for n > −1, then X is
nonempty.

Bux and Gonzalez show that BBϕ
L is of type FPn(F) if and only if La∩lk(σ)

is (n− dim(σ)− 1)-acyclic (with coefficients in F) for every simplex σ ∈ Ld,
including the empty simplex which has dimension −1 and link L [BG99,
Theorem 14]. Their result is stated in the case F = Z but remains true,
with the same proof, when stated over a general coefficient ring. We will
use this characterisation of the finiteness properties of BBϕ

L is Section 5.

It is known by work of Okun–Schreve [OS21] that for RAAGs the ho-

mology torsion growth t
(2)
p (AL) in degree p is equal to |Hp−1(L;Z)tors|. We

conjecture an analogous result for Artin kernels.

Conjecture 3.14. If BBϕ
L is of type FPn, then

t(2)p (BBϕ
L) = lim sup

n→∞

log |Hp(Gn;Z)tors|

[BBϕ
L : Gn]

=
∑

v∈L(0)

|ϕ(v)| · |Hp−1(lk(v);Z)tors|
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for p 6 n and any residual chain (Gn).

3.4. Graph products. Let K be a simplicial complex on the vertex set
[m] := {1, . . . ,m}. Let (X,A) = {(Xi, Ai) : i ∈ [m]} be a collection of
CW-pairs. The polyhedral product of (X,A) and K is the space

(X,A)K :=
⋃

σ∈K

m∏

i=1

Y σi where Y σ
i =

{
Xi if i ∈ σ,

Ai if i /∈ σ.

If Γ = {Γ1, . . . ,Γm} is a finite set of groups, then the graph product of
Γ and K, denoted ΓK , is the quotient of the free product ∗i∈[m]Γi by all
the relations [γi, γj ] = 1, where γi ∈ Γi, γj ∈ Γj and i and j are adjacent
vertices of K. Note that ΓK is the fundamental group of X = (BΓ, ∗)K ,
where BΓ = {BΓ1, . . . , BΓm} and ∗ is a set of one-point subcomplexes.
Note that by [Sta15, Theorem 1.1], if K is a flag complex and each Γi is a
discrete group, then (BΓ, ∗)K is a model for a K(ΓK , 1).

Theorem 3.15. Let F and D be skew fields and let K be a finite simplicial
flag complex. Let G = ΓK be a graph product of discrete groups such that
there is an agrarian map FG→ D. If H•(Γ;D) = 0 for each Γ ∈ Γ, then

HD
p (Γ)

∼= H̃p−1(K;D).

In particular, bp(G;D) = bp−1(K;F).

Proof. Let X = (BΓ, ∗)K and let P be the poset whose elements are (possi-
bly empty) simplices of K. Note that P defines a poset of spaces {Xσ}σ∈P,
where X∅ is a single vertex. For each ∅ 6= σ ∈ P, the group ΓJ is a direct
product of groups with vanishing D-homology, and therefore Hn(ΓJ ;D) =
Hn(XJ ;D) = 0 by the Künneth formula. Take the spectral sequence of
Lemma 2.3 with the coefficient system σ 7→ Hq(Xmin(σ);D). All of these
coefficient system cohomology groups vanish except when σ = ∅ and q = 0
and therefore

Hp(X;D) = Hp(Flag(P),Flag(P > ∅);D) ∼= H̃p−1(K;D).

by Lemma 2.3. The last isomorphism follows from the fact that P is isomor-
phic to the cone on the barycentric subdicision of K, where the cone point
corresponds to the empty simplex ∅. �

Remark 3.16. There are certain situations in which one can easily deduce
the fact that a graph product has an agrarian embedding. For example, if
each group Γ ∈ ΓK is ordered, then so is ΓK by a result of Chiswell [Chi12].
Thus, FΓK embeds into its Mal’cev–Neumann completion [Mal48, Neu49].

Similarly, if each Γ ∈ ΓK is RFRS, then it is possible to show that ΓK is
also RFRS and therefore has a Hughes-free division ring DFΓK . We provide
a sketch of an argument here, which proceeds by induction on the number
of vertices in K. If K has one vertex, then the claim is trivial. Suppose now
that K has more than one vertex. If the 1-skeleton of K is a complete graph,
then the claim is again trivial since ΓK is a direct product of RFRS groups
and therefore RFRS. If K is not a complete graph, then there is some vertex
v ∈ K such that st(v) 6= K and we obtain a splitting ΓK ∼= Γst(v)∗

Γlk(v)ΓKrv.

By induction, both Γst(v) and ΓKrv are RFRS and by a result of Koberda
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and Suciu, the amalgam is also RFRS [KS20, Theorem 1.3]. Note that the
Koberda–Suciu result is a combination theorem for a related class of groups
called RFRp groups, but their proof is easily adapted to the RFRS case; we
refer the interested reader to their paper for more details.

Thanks to the work of Okun and Schreve [OS21], we have the following
corollary which holds, in particular, for RAAGs.

Corollary 3.17. Let F and D be skew fields and let K be a finite simplicial
flag complex. Let G = ΓK be a graph product with an agrarian map FG→ D.
If each Γ ∈ Γ is residually finite, D-acyclic, and F-ℓ2-acyclic, then

bDn (G) = lim
i→∞

bn(Gi;Fp)

[G : Gi]

for any residual chain Γ = Γ0 Q G1 Q G2 Q · · · of finite index normal
subgroups.

Proof. Okun and Schreve [OS21, Theorem 5.1] showed that the right-hand
side of the above equation is independent of the choice of residual chain and

equal to b̃p−1(K;F), which equals the left-hand side by Theorem 3.15. �

Remark 3.18. Let K be a simplicial complex, X = (BΓ, ∗)K , and let X̃
denote the universal cover. The above arguments apply equally well for

computing bDp (X̃) and b
(2)
p (X;F). In both cases they are equal to b̃p−1(K;F)

whenever they are defined. In the case when K is not a flag complex, X is
not aspherical.

3.5. Artin groups. Let A be a residually finite Artin group and suppose
the K(A, 1) conjecture holds for A. Then there is a contractible complex
DA — the Deligne complex of A — with stabilisers the maximal parabolic
subgroups of A admitting a strict fundamental domain QA. In [OS21, Sec-

tion 4 and Theorem 5.2] the authors compute b
(2)
p (A;F) = b̃p−1(∂QA;F)

independently of a choice of residual chain. Here ∂Q is the subcomplex of
Q with non-trivial stabilisers.

Theorem 3.19. Let F be a field. Let A be a residually finite Artin group.
Suppose the K(A, 1) conjecture holds for A. If FA→ D is an agrarian map,
then

b(2)p (A;F) = bDp (A;F) = b̃p−1(∂QA;F).

Proof. In the action of A on DA, the non-trivial stabilisers have a central Z
subgroup and so they are D-acyclic and have vanishing F-homology growth.
We take a poset of spaces X over the (barycentric subdivision of the) strict
fundamental domain Q of A, where we assign a classifying space BAσ to
each σ ∈ Q. Now, we apply Remark 3.9 and Remark 3.5. �

Remark 3.20. The above argument applies to residually finite groups G
acting on a contractible complex with strict fundamental domain and D-
acyclic stabilisers—whenever G admits an agrarian embedding FG→ D.
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3.6. Complements of hyperplane arrangements. Let A be a collection
of affine hyperplanes in Ck and let Σ(A) denote their union. Let M(A) :=
Ck r Σ(A). The rank of M(A) is the maximum codimension n of any
nonempty intersection of hyperplanes in A. By [DJL07, Proposition 2.1]

the ordinary Betti numbers satisfy b̃p(M(A);F) = 0 except possibly when
p = n.

Theorem 3.21. Let F be a skew field, A be an affine hyperplane arrange-
ment in Ck of rank n, and let Γ := π1M(A).

(1) If Γ is residually finite, then b
(2)
p (M(A);F) = b̃p(M(A);F) which

equals zero except possibly when p = n.

(2) If α : FΓ → D is an agrarian map, then bDp (M(A)) = b̃p(M(A);F)
which equals zero except possibly when p = n.

We will need a lemma.

Lemma 3.22. Let F be a skew field, A be a non-empty central affine hy-
perplane arrangement in Ck of rank n, and let Γ := π1M(A).

(1) If Γ is residually finite, then b
(2)
p (M(A);F) = 0 for all n indepen-

dently of a choice of residual chain.
(2) If α : FΓ→ D is an agrarian map, then bDp (M(A)) = 0 for all n.

Proof. In this case we have M(A) = S1 × B where B = M(A)/S1 by
[DJL07, Proof of Lemma 5.2]. Both results are easy applications of the
Künneth formula and vanishing of the relevant invariant for Z = π1S

1. We
spell out the details in the first case to highlight the independence of the
residual chain.

Observe that every finite cover Mi of M(A) can be written as Bi × S
1

such that S1 has m one cells. We have the index of the cover |M : Mi| =
m|B : Bi|. Now, we compute via the Künneth formula that

b(2)p (M, (Mi);F) = lim
i→∞

bp(Mi) + bp−1(Mi)

|M :Mi|

= lim
i,m→∞

bp(Mi) + bp−1(Mi)

m|B : Bi|

= 0. �

Proof of Theorem 3.21. By [DJL07, Section 3] there is a cover U ofM(A) by
central subarrangements Uσ such that π1Uσ → Γ is injective and the nerve
N(U) is contractible. There is also a cover of a deleted neighbourhood of
Σ(A), denoted Using, such that Hp(N(U), N(Using)) is concentrated in degree
n. It follows from Lemma 3.22 that either the homology gradients or the
D-Betti numbers vanish. In particular, by Remarks 3.5 and 3.9 the cover U
is confident and the results follow. �

4. A lower bound for homology gradients

Let R be a ring, let D be a skew-field, and let ϕ : R → D be a ring
homomorphism. There is a rank function rkD,ϕ : Mat(R) → R>0 defined
by rkD,ϕA = rkϕ∗A, where ϕ∗A is the matrix obtained by applying the
homomorphism ϕ to every entry of A and rkϕ∗A is the rank of ϕ∗A as a
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matrix over D. If ϕ : R →֒ D is an epic embedding (i.e. ϕ(R) generates
D as a skew-field) and rkD,ϕ > rkE,ψ for every skew-field E and every ring
homomorphism ψ : R→ E , then D is said to be a universal division ring of
fractions for R. If D is a universal division ring of fractions for R, it is then
unique up to R-isomorphism [Coh95, Theorem 4.4.1].

Theorem 4.1 (Jaikin-Zapirain [JZ21, Corollary 1.3]). Let G be a residually
(locally indicable and amenable) group and let F be a skew-field. Then the
Hughes-free division ring DFG exists and is the universal division ring of
fractions of FG.

We note that Theorem 4.1 holds for RFRS groups, since they are residu-
ally poly-Z (see, e.g., [JZ21, Proposition 4.4]). The main theorem of this sec-
tion will follow quickly from the observation that DFG-Betti numbers scale
under taking finite index subgroups and another result of Jaikin-Zapirain
([JZ21, Corollary 1.6]), which he states for ℓ2-Betti numbers of CW com-
plexes but also holds for agrarian homology. For the convenience of the
reader, we reproduce a proof in the agrarian setting here.

Theorem 4.2 (Jaikin-Zapirain). Let F be a skew-field and suppose that G
is a group of type FPn+1(F) for some n ∈ N such that DFG exists and is the
universal division ring of fractions of FG. Then bDFG

m (G) 6 bm(G;F) for all
m 6 n.

Proof. The embedding ι : FG →֒ DFG and the augmentation map α : FG→
F induce rank functions on Mat(FG) which we denote by rkG and rkF,
respectively. By universality, rkG > rkF.

Let C• → F be a free-resolution of the trivial FG-module F such that Cm
is finitely generated for all m 6 n+1. For all m 6 n+1, let dm be an integer
such that Cm ∼= FGdm and view the boundary maps ∂m : Cm → Cm−1 as
matrices over FG. The homologies we are interested in are Hm(DFG⊗FGC•)
and Hm(k ⊗FG C•) and note that the differentials DFG ⊗ ∂m and k ⊗ ∂m
correspond to the matrices ι∗∂m and α∗∂m under the identifications DFG⊗FG

Cm ∼= D
dm
FG and F⊗FG Cm ∼= Fdm. Therefore

bDFG
m (G) = dm − rkG ∂m − rkG ∂m+1

6 dm − rkF ∂m − rkF ∂m+1

= bm(G;F) �

As a consequence, we obtain that agrarian Betti numbers bound homology
gradients from below.

Theorem 4.3. Let F be a skew-field and let G be a group of type FPn+1(F)
such that DFG exists and is the universal division ring of fractions of FG.
If H 6 G is any subgroup of finite index, then

bDFG
m (G) 6

bm(H;F)

[G : H]

for all m 6 n. In particular, if G is residually finite and (Gi)i∈N is a

residual chain of finite-index subgroups, then bDFG
m (G) 6 b

(2)
m (G, (Gi);F) for

all m 6 n.
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Proof. By [Fis21, Lemma 6.3], [G : H] · bDFG
m (G) = bDFH

m (H), and by Theo-
rem 4.2. The second claim is an immediate consequence of the first. �

5. Applications to fibring

A groupG is algebraically fibred (or, simply, fibred) if it admits a nontrivial
homomorphism G → Z with finitely generated kernel. More generally, if
P is a finiteness property (e.g. type Fn or FPn(R) for some ring R, see
Section 2.1 for definitions), we say that G is P-fibred if there is a nontrivial
homomorphism G→ Z with kernel of type P.

Theorem 5.1. Let F be a skew-field and let G be a RFRS group of type
FPn+1(F). If G is not virtually FPn(F)-fibred, then for every residual chain

of finite-index subgroups (Gi)i∈N, we have b
(2)
m (G, (Gi);F) > 0 for some m 6

n.

Proof. By [Fis21] a RFRS group G is virtually FPn(F)-fibred if and only if

bDFG

i (G) = 0 for every i 6 n. Since G is not virtually FPn(F)-fibred, we have

bDFG
m (G) > 0 for some m 6 n. The result now follows from Theorem 4.3. �

The authors thank Robert Kropholler for communicating to us the follow-
ing question due to Matthew Zaremsky: If a RAAG AL is virtually Fn-fibred,
is it Fn-fibred? We are able to answer the analogous homological question
over skew fields, Z, and Z/m for m ∈ N>1.

Theorem 5.2. Let L be a finite flag complex and R be either a skew field
F, Z, or Z/m for some m ∈ N>1. Then the RAAG AL is virtually FPn(R)-
fibred if and only if it is FPn(R)-fibred.

Proof. We begin with the case R = F. Let AL be virtually FPn(F)-fibred. By

[Fis21], a RFRS group G is virtually FPn(F)-fibred if and only if bDFG

i (G) =
0 for every i 6 n. In particular this applies in the case G = AL. By

Theorem 3.15, b
DFAL

i (AL) = 0 for every i 6 n implies that b̃i(L;F) = 0 for
every i 6 n− 1. By [BB97, Main Theorem], the Bestvina–Brady group is of
type FPn(F) and therefore AL is FPn(F)-fibred.

Now suppose R = Z/m for some m ∈ N>1 and suppose that AL is vir-
tually FPn(Z/m)-fibred. If p is a prime factor of m, then there is a ring
homomorphism Z/m→ Z/p = Fp and therefore Fp is a Z/m-algebra. Thus,

AL is virtually FPn(Fp)-fibred. Therefore b
DFpAL

i (AL) = 0 for all i 6 n and

thus b̃i(L;Fp) = 0 for all i 6 n− 1 for all i 6 n− 1 by Theorem 3.15. Then

b̃i(L;Z/m) = 0 for all i 6 n− 1, so BBL is of type FPn(Z/m).
Finally, suppose AL is virtually FPn-fibred. In particular, AL is virtually

FPn(F)-fibred for every skew field F, which implies that L is (n− 1)-acyclic
over every field by Theorem 3.15. Therefore L is (n − 1)-acyclic over Z,
which implies that BBL is of type FPn. �

Remark 5.3. In the case F = Q, Theorem 5.2 could have been deduced
from previous work since the ℓ2-Betti numbers of RAAGs were computed by
Davis and Leary in [DL03] and it is well known that a virtual FPn(Q)-fibring
implies the vanishing of ℓ2-Betti numbers in dimensions 6 n.
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Since a finitely presented group of type FPn is of type Fn we can reduce
Zaremsky’s question to one remaining case.

Question 5.4 (Zaremsky). Let L be a finite flag complex. If AL is virtually
F2-fibred, then is it F2-fibred?

We can also give examples of RAAGs that show that [Fis21, Theorem A]
does not hold when Q is replaced by Z. In other words, the vanishing of
ℓ2-Betti numbers of RFRS groups does not detect virtual FPn-fibrations.

Proposition 5.5. Let p be a prime. There are RAAGs that are ℓ2-acyclic
but that do not virtually FP2(Fp)-fibre. In particular, these RAAGs do not
virtually FP2-fibre.

Proof. Let L be a Q-acyclic flag complex that has non-trivial Fp-homology
in dimension 1, e.g. we may take L to be a flag triangulation of M(1, p) the

Moore space with homology H̃n(M(1, p);Z) = 0 unless n = 1, in which case
it is isomorphic to Z/p. Then AL is ℓ2-acyclic by [DL03] (or Theorem 3.15)
but it is not DFpAL

-acyclic by Theorem 3.15. By [Fis21, Theorem 6.6], AL
does not virtually FP2(Fp)-fibre and in particular does not virtually FPn-
fibre. �

In contrast to this result, Kielak showed that if G is RFRS, of cohomo-
logical dimension at most 2, and ℓ2-acyclic, then G is virtually FP2-fibred
[Kie20, Theorem 5.4].

The next application has to do with the following general question: If G
fibres in two different ways, so that G ∼= K1 ⋊Z ∼= K2 ⋊Z with K1 and K2

finitely generated, then what properties do K1 and K2 share? For example
if G is a free-by-cyclic (resp. surface-by-cyclic) group and G ∼= K ⋊ Z, then
K is necessarily a free (resp. surface) group. We thank Ismael Morales for
bringing the following question to our attention: ifG ∼= K1⋊Z ∼= K2⋊Z with

K1 andK2 finitely generated, then is b
(2)
1 (K1) = 0 if and only if b

(2)
1 (K2) = 0?

We prove this is the case for RAAGs, and obtain a similar result for higher
ℓ2-Betti numbers and other agrarian invariants.

Theorem 5.6. Let ϕ0, ϕ1 : AL → Z be epimorphisms such that BBϕ0

L and
BBϕ1

L are of type FPn(F). If FBBϕi

L →֒ Di is an agrarian embedding for
i = 0, 1, then BBϕ0

L is D0-acyclic in dimensions 6 n if and only if BBϕ1

L is
D1-acyclic in dimensions 6 n.

Before proving Theorem 5.6, we need a technical lemma. First we fix
some notation. If σ1 = [e1, . . . , em] and σ2 = [f1, . . . , fm] are ordered sim-
plices in a simplicial complex L such that σ1 ∪ σ2 is a simplex (equiva-
lently, if σ1 ∈ lk(σ2)), then σ1 ∪ σ2 always denotes the ordered simplex
[e1, . . . , em, f1, . . . , fn]. Moreover, if τ = α1σ1+ · · ·+αnσn is a formal linear
combination of simplices σi (with coefficients αi in some fixed skew field)
such that σ ∪ σi ∈ L for every i, then σ ∪ τ denotes the formal linear com-
bination

α1σ ∪ σ1 + · · ·+ αnσ ∪ σn.

If ϕ : AL → Z is a homomorphism, recall that La is the subcomplex of L
spanned by the vertices v ∈ L such that ϕ(v) 6= 0. We will write lkL(σ)
(resp. lkLa(σ)) for the link of a simplex σ in L (resp. La).
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Lemma 5.7. Let BBϕ
L be of type FPn(F) and let v be a dead vertex of L.

Then every simplicial (n − 1)-cycle of lkL(v) is homologous to a cycle in
lkLa(v).

Proof. Let σ = α1σ1+· · ·+αkσk be a simplicial (n−1)-cycle in lkL(v), where
each σi is an ordered (n − 1)-simplex of lkL(v) and αi ∈ F for each i. By
induction on m ≥ 0, we will show that the simplices σi can be replaced with
(n − 1)-simplices having at least m living vertices such that the resulting
chain is a cycle homologous to σ. The lemma follows from the m = n case.

For the base case, suppose that σi is a simplex with no living vertices.
Then {v} ∪ σi is a dead n-simplex and therefore lkLa({v} ∪ σi) is (−1)-
connected (see Remark 3.13), i.e. it is nonempty. Thus, there is a living
vertex u such that {u} ∪ σi ⊆ lkL(v). Since

∂({u} ∪ σi) = σi − {u} ∪ ∂σi,

where {u} ∪ ∂σi is a linear combination of (n− 1)-simplices with one living
vertex, we can replace σi with {u} ∪ ∂σi in σ. Hence, we assume that the
linear combination α1σ1 + · · · + αkσk only involves simplices with at least
one living vertex.

Assume that α1σ1+ · · ·+αkσk only involves simplices with at least m > 1
living vertices for some m < n and let σi be a simplex with exactly m
living vertices. Let λ ⊆ σi be the dead (n − m − 1)-face of σi and let
σi = σi1 , . . . , σil be the simplices among {σ1, . . . , σk} containing λ as a face.
For each j ∈ {1, . . . , l}, write σij = εjλ ∪ τj, where τj is a living (m − 1)-
simplex of lkL(v) and εj ∈ {±1}. Then

∂




l∑

j=1

αijσij


 =

l∑

j=1

αijεj(∂λ ∪ τj + (−1)n−mλ ∪ ∂τj)

=




l∑

j=1

αijεj∂λ ∪ τj


+ (−1)n−mλ ∪ ∂




l∑

j=1

αijεjτj




= 0,

since ∂σ = 0 and the simplices σij are the only simplices among {σ1, . . . , σk}
containing λ as a face. Thus,

λ ∪ ∂




l∑

j=1

αijεjτj


 = 0,

whence we conclude that
∑l

j=1 αijεjτj is an (m − 1)-cycle in lkLa({v} ∪

λ). But {v} ∪ λ is a dead (n − m)-simplex and therefore lkLa({v} ∪ λ) is

(m− 1)-connected. Hence,
∑l

j=1 αijεjτj = ∂ψ for some living m-chain ψ in
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lkLa({v} ∪ λ). Then

∂(λ ∪ ψ) = ∂λ ∪ ψ + (−1)n−mλ ∪




l∑

j=1

αijεjτj




= ∂λ ∪ ψ + (−1)n−m
l∑

j=1

αijσij .

The chain ∂λ ∪ ψ is a linear combination of simplices with m + 1 living

vertices. We can therefore replace
∑l

j=1 αijσij with ±∂λ ∪ ψ and assume
that σ is a linear combination of simplices each with at least m + 1 living
vertices. �

Proof (of Theorem 5.6). Suppose that bD0
p (BBϕ0

L ) > 0 for some p 6 n. By
Theorem 3.12, there is a vertex v of L such that ϕ0(v) 6= 0 and

b̃p−1(lk(v);F) > 0.

Hence, there is a simplicial (p−1)-cycle σ in lk(v) that is not a boundary. If
ϕ1(v) = 0, then, by Lemma 5.7, σ is homologous to a cycle in lkLa(v) where

La denotes the living link with respect to ϕ1. Thus H̃p−1(lkLa(v);F) 6= 0.
But lkLa(v) is (n − 1)-connected over F, so we must have ϕ1(v) 6= 0, and
therefore bD1

p (BBϕ1

L ) > 0 by Theorem 3.12. �

We highlight the following immediate corollary.

Corollary 5.8. Either all the FPn(F)-fibres of AL are virtually FPn(F)-
fibred or none of them are. In particular, either all of AL’s fibres virtually
fibre or none of them do.

Proof. This follows from Theorem 5.6 and the fact that being DFBBϕ
L
-acyclic

in dimensions 6 n is equivalent to virtually fibring with kernel of type
FPn(F) [Fis21, Theorem 6.6]. �

6. Amenable category and minimal volume entropy

In this section we will relate DFG-Betti numbers with amenable category
and minimal volume entropy.

Let X be a path-connected space with fundamental group G. A (not nec-
essarily path-connected) subset U ofX is an amenable subspace if π1(U, x)→
π(X,x) has amenable image for all x ∈ U . The amenable category, denoted
catAMNX, is the minimal n ∈ N for which there exists an open cover of X
by n+1 amenable subspaces. If no such cover exists we set catAMNX =∞.
The definition of amenable category has been extracted from [CLM22] and
[Li22]. Note that we normalise the invariant as in the second paper. Also
note that often in the literature the multiplicity of the cover is considered
instead, however, the two definitions turn out to be equivalent for CW com-
plexes [CLM22, Remark 3.13]

Proposition 6.1. Let F be a skew field. Let G be residually finite of
type F, and suppose DFG exists. If catAMNG = k. Then, bDFG

p (G) =

b
(2)
p (G, (Gn);F) = 0 for p ≥ k − 1 and every residual chain (Gn).
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Proof. Let X be a finite model for a K(G, 1). As explained in [HS22, The-
orem 3.2] we may adapt the proof of [Sau16, Theorem 1.6] to apply to
k-dimensional aspherical simplicial complexes. In particular, for a resid-
ual chain (Gn)n∈N we obtain a sequence of covers Xn → X, such that the
number of p-cells in Xn grows sublinearly in [G : Gn]. Since

bDFG
p (Xn) = [G : Gn] · b

DFG
p (G) 6 |In(Xk)|

where Ip(Xk) is the set of p-cells of Xn. But now, as k tends to infinity,
the left hand side of the equation grows linearly, and the right hand side of
the equation grows sublinearly. This is only possible if bDFG

n (G) = 0. The

statement concerning b
(2)
p (G, (Gn);F) is analogous. �

Let X be a finite CW complex with a piecewise Riemannian metric g. Fix

a basepoint x0 in the universal cover X̃ and let g̃ be the pull-back metric.
The volume entropy of (X, g) is

ent(X, g) := lim
t→∞

1

t
Vol(Bx0(t), g̃).

The minimal volume entropy of X is

ω(X) := inf
g
ent(X, g)Vol(X, g)1/ dimX

where g varies over all piecewise Riemannian metrics. The invariant was
originally defined for Riemannian manifolds in [Gro82].

Suppose G is a group admitting a finite K(G, 1). The minimal volume
entropy of G is

ω(G) := inf(ω(X))

where X ranges over all finite models of a K(G, 1) such that dimX = gd(G).
There are few calculations of minimal volume entropy of groups which

are not fundamental groups of aspherical manifolds in literature. To date
there is the work of Babenko–Sabourau [BS21] on which computations for
free-by-cyclic groups [BC21] and RAAGs [HS22, Li22] have been completed.

We say G has uniformly uniform exponential growth if each subgroup
either has uniform exponential growth bounded below by some constant
ω0 > 1 or is virtually abelian. Note that this property is sometimes called
uniform uniform exponential growth or locally uniform exponential growth.

Corollary 6.2. Let F be a skew field. Let G be a residually finite group
of type F, and suppose DFG exists. If G has uniformly uniform exponential
growth and is not DFG-acyclic, then ω(G) > 0.

Proof. This follows from [HS22, Paragraph after Theorem 3.3] swapping out
their use of [HS22, Theorem 3.3] for our Proposition 6.1. �

Corollary 6.3. Let F be a skew field and let ϕ : AL → Z be an epimorphism.

Suppose BBϕ
L is of type F. If

⊕
v∈La H̃p−1(lk(v);Z) 6= 0, then ω(BBLϕL) > 0.

Proof. This follows from Corollary 6.2 and the fact that a right-angled Artin
group has strongly uniform exponential growth by [Bau81]. �

We conjecture that the converse of the last corollary holds.
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Conjecture 6.4. Let F be a skew field and let ϕ : AL → Z be an epi-

morphism. Suppose BBϕ
L is of type F. If

⊕
v∈La H̃p−1(lk(v);Z) = 0, then

ω(BBLϕL) = 0.
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[Lüc16] Wolfgang Lück. Approximating L2-invariants by their classical counterparts.
EMS Surv. Math. Sci., 3(2):269–344, 2016.

[Mal48] Anatolĭı Ivanovich Mal’cev. On the embedding of group algebras in division
algebras. Doklady Akad. Nauk SSSR (N.S.), 60:1499–1501, 1948.

[Neu49] B. H. Neumann. On ordered division rings. Trans. Amer. Math. Soc., 66:202–
252, 1949.

[OS21] Boris Okun and Kevin Schreve. Torsion invariants of complexes of groups, 2021.
arXiv:2108.08892 [math.GR].

[Sau16] Roman Sauer. Volume and homology growth of aspherical manifolds. Geom.
Topol., 20(2):1035–1059, 2016.

[Sch02] Thomas Schick. Erratum: “Integrality of L2-Betti numbers”. Math. Ann.,
322(2):421–422, 2002.

[Sch14] Kevin Schreve. The strong Atiyah conjecture for virtually cocompact special
groups. Math. Ann., 359(3-4):629–636, 2014.

[Sta15] Mentor Stafa. On the fundamental group of certain polyhedral products. J.
Pure Appl. Algebra, 219(6):2279–2299, 2015.


	1. Introduction
	1.1. Outline of the paper
	Acknowledgements

	2. Preliminaries
	2.1. Finiteness properties
	2.2. Agrarian invariants
	2.3. A Mayer–Vietoris type spectral sequence

	3. Computations
	3.1. Approximation for spaces with confident covers
	3.2. Agrarian homology of spaces with confident covers
	3.3. Artin kernels
	3.4. Graph products
	3.5. Artin groups
	3.6. Complements of hyperplane arrangements

	4. A lower bound for homology gradients
	5. Applications to fibring
	6. Amenable category and minimal volume entropy
	References

