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Abstract

Short-selling constraints are common in financial markets, while physical assets

such as housing often lack markets for short-selling altogether. As a result, investment

decisions are often restricted by such constraints. This paper studies asset prices in

behavioural heterogeneous-belief models with short-selling constraints. We provide

expressions for price and demands in a market with arbitrarily many belief types, plus

efficient solution algorithms, relevant for a wide range of models. Extensions include

conditional short-selling constraints, multiple asset markets, and a market maker. An

application studies how an alternative uptick rule, as in the United States, affects price

and wealth distribution in a market with many belief types in evolutionary competition.
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1 Introduction

The practice of short-selling is common in financial markets but is also widely regulated.

When investors go short, they borrow and immediately sell a financial asset before repur-

chasing and returning the asset to the lender, closing their position. Whereas a long position

can be thought of as a bet that asset prices will increase, short-selling allows investors to bet

on a fall in asset prices. It has been argued that such betting may increase volatility in finan-

cial markets. A common policy response among regulators has been to restrict short-selling;

for example, during the 2008-9 financial crisis many countries introduced short-selling bans

following sharp declines in asset prices. Similar short-selling bans were reinstated in some
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European economies during the 2011-12 sovereign debt crisis and the Covid-19 outbreak (see

Siciliano and Ventoruzzo, 2020). It is therefore important that researchers be able to solve

asset pricing models with short-selling constraints in an efficient manner.

In this paper, we show how to efficiently solve behavioural asset pricing models with

short-selling constraints and arbitrarily many heterogeneous beliefs.1 We are thinking here of

dynamic, discrete time heterogeneous-belief asset pricing models such as Brock and Hommes

(1998), LeBaron et al. (1999), and Westerhoff (2004); for instance, the population shares of

different types may be endogenously determined by an evolutionary competition mechanism.

For the case of such dynamic models, we derive expressions for the market-clearing price and

demands and show how these results can be used to construct computationally-efficient solu-

tion algorithms. Our algorithm enables researchers to incorporate short-selling constraints in

models with many agents or belief types – as in real-world asset markets – and is supported

by analytical results that do not appear to have been documented previously.

We provide results for a benchmark asset pricing model, as well as several other cases

studied in the literature: conditional short-selling constraints, the case of multiple asset mar-

kets with short-selling constraints; and the market-maker approach to price determination.

We also indicate how the benchmark results can be related to certain physical investment

assets, such as housing, or to models in which beliefs are determined by social networks.

Our analysis is built around a behavioural heterogeneous-beliefs asset pricing model. In

particular, we allow arbitrarily many different belief types whose population shares may

be exogenous or determined by an evolutionary competition mechanism as in the asset

pricing model of Brock and Hommes (1998). The Brock and Hommes (1998) model with

evolutionary competition has been studied in the many-types case by Brock et al. (2005) who

allow short-selling by investors, whereas we show how asset prices and demands depend on

belief dispersion when investors face short-selling constraints and provide computationally-

efficient solution algorithms that exploit the analytical results.

The difficulty in the many-types case results from the demand functions being piecewise-

linear, such that the market-clearing price depends on how many types are short-selling

constrained. For a market with a large number of investor types, it is computationally

intensive to solve for a price and demands. To overcome this problem, we exploit the fact

that types who are short-selling constrained in a given period must be more pessimistic than

those agents who were unconstrained, such that ranking types in terms of optimism is useful.

As a result, it becomes computationally feasible to simulate models with large numbers of

belief types over many periods while retaining solution accuracy.

We provide analytical and numerical examples, as well as a policy application that studies

an alternative uptick rule, as currently in place in the United States, in a model with a large

number of belief types whose population shares are determined by evolutionary competition.

The alternative uptick rule is a ‘circuit breaker’ that bans short-selling if prices fall 10% or

more in the previous trading period; surprisingly, there do not appear to be any previous

1Short-selling constraints appear to have first been studied, in a static model, by Miller (1977).
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assessments of this rule in the literature. The results indicate that an alternative uptick rule

may attenuate (or prevent) falls in price; however, we also find that such rules can hinder

price discovery, increase price volatility and lead to explosive price paths. In addition, we

find an alternative uptick rule can have substantive distributional (i.e. wealth) implications.

The closest papers in the literature are Anufriev and Tuinstra (2013) and Dercole and

Radi (2020). Anufriev and Tuinstra (2013) add trading costs for short-selling into a two-type

asset pricing model and find that this leads to additional (non-fundamental) steady states as

beliefs are updated more aggressively; in a similar vein, but with the addition of a leverage

constraint, see in’t Veld (2016). By comparison, Dercole and Radi (2020) study the original

‘uptick rule’ in the United States from 1938–2007, which banned shorting at lower prices, and

find that there is no clear-cut impact on price volatility. There is also a wider literature on

non-smooth asset pricing models (see e.g. Tramontana et al., 2010); short-selling constraints

can be thought of as a specific application that gives rise to such models.

The above papers all consider a small number of investor types and solve for prices

and demands in specific cases. The present paper contributes to the literature by solving for

price and demands when there are arbitrarily many belief types with general price predictors,

and by providing computationally-efficient algorithms. We make our results accessible by

considering a general form of beliefs and several cases studied in the literature, such as

conditional short-selling constraints, multiple risky assets, and the market-maker approach.

Our paper is part of a growing literature studying heterogeneous beliefs, asset prices and

the effectiveness of regulatory policies in financial markets (Westerhoff, 2016). In financial

market models it is known that differences in beliefs combined with short-selling constraints

can lead to price bubbles (see e.g. Scheinkman and Xiong, 2003), but such regulations could

also aid market stability as noted above. There has also been interest in the impact of short-

selling restrictions in markets for physical investment assets like housing which are subject

to boom and bust (see Shiller, 2015; Fabozzi et al., 2020). Our results are thus of potential

relevance for physical as well as financial assets, as we explain using housing as an example.

The paper proceeds as follows. Section 2 presents a baseline model for which analytical

results are presented in Section 3. Section 4 presents three extensions of the baseline model,

and Section 5 presents our policy application. Finally, Section 6 concludes.

2 Model

Consider a finite set of myopic, risk-averse investor types H = {h1, ..., hH}. At each date

t ∈ N+, each type h ∈ H chooses a portfolio of a risky asset zt,h and a riskless bond paying

r̃ > 0 to maximize a mean-variance utility function over future wealth with risk-aversion

parameter a > 0. The risky asset has current price pt, future price pt+1, and pays stochastic

dividends dt+1, which are exogenous. Investors form subjective expectations of the future

price and future dividends of the risky asset as described below. The underlying model

follows Brock and Hommes (1998), except the risky asset is in positive net supply Z > 0 and
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short-selling is ruled out by a short-selling constraint of the form zt,h ≥ 0 for all t and h.

2.1 Asset demand

We denote the subjective expectation of type h at date t by Ẽt,h[.], and the subjective

variance by V ãrt,h[.]. The optimal portfolio choice of type h solves the problem:2

max
zt,h

Ẽt,h[wt+1,h]−
a

2
V ãrt,h[wt+1,h] s.t. zt,h ≥ 0 (1)

where wt+1,h = (pt+1 + dt+1)zt,h + (1 + r̃)(wt,h − ptzt,h) is the future wealth, wt,h − ptzt,h is

holdings of the risk-free asset, and we assume V ãrt,h[wt+1,h] = σ2z2t,h, with σ2 > 0.

Given short-selling constraints, the demand of each investor type h ∈ H is:

zt,h =


Ẽt,h [pt+1] + Ẽt,h [dt+1]− (1 + r̃)pt

aσ2
if pt ≤

Ẽt,h [pt+1] + Ẽt,h [dt+1]

1 + r̃

0 if pt >
Ẽt,h [pt+1] + Ẽt,h [dt+1]

1 + r̃
.

(2)

If the price pt is small enough, then type h’s short-selling constraint is slack and their demand

for the risky asset decreases with the price; this is the standard demand function that arises

in Brock and Hommes (1998) where short-selling constraints are absent. However, if the price

is high enough to make the expected excess return of type h negative, then the short-selling

constraint will bind on type h and their position in the risky asset is zero.

Dividends follow an IID process dt = d + ϵt, where d > 0 and ϵt is a zero-mean shock

with constant variance. We assume all investor types know the dividend process, such that

Ẽt,h [dt+1] = d for all t and h; there is no loss of generality as our solution nests a generic

specification of Ẽt,h [dt+1] at no extra cost.3 Note from (2) that the short-selling constraint

is more likely to bind on type h the more pessimistic their price expectation Ẽt,h [pt+1].

2.2 Price beliefs

We consider generic price beliefs which are boundedly-rational and may depend linearly on

the current price pt; in particular, the current price may be a common ‘reference point’.

Assumption 1 All price beliefs are of the form:

Ẽt,h [pt+1] = cpt + f̃t,h (3)

where c ∈ [0, 1+ r̃) and f̃t,h ∈ R is a generic forecast that cannot depend on current price pt.

2We assume (as is standard) that these operators satisfy some basic properties of conditional expectation
operators, namely, Ẽt,h[yt] = yt and V ãrt,h[yt] = 0 for any variable yt that is determined at date t; Ẽt,h[xt+1+

yt+1] = Ẽt,h[xt+1] + Ẽt,h[yt+1] for any variables x and y; and V ãrt,h[xtyt+1] = x2
tV ãrt,h[yt+1].

3See the definition of ft,h in (4), which potentially allows Ẽt,h [dt+1] to vary across time and types.
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Assumption 1 allows a wide range of boundedly-rational beliefs. The coefficient c allows

linear dependence of price expectations on the current price; for example, investors may

extrapolate on top of the current price (Barberis et al., 2018) or use the current price as

a reference point (see LeBaron et al., 1999; Westerhoff, 2004). We assume c < 1 + r̃ to

ensure that individual demands are decreasing in the current price pt. Time-varying or

heterogeneous values of c are discussed as an extension in Section 3.2.

Only linear dependence on the current price pt is allowed, but the generic forecast f̃t,h
(which can differ across types and over time) permits a potentially non-linear response to past

prices (e.g. trend-following) as in Yang (2009). In addition, a wide range of idiosyncrasies

are allowed; for example, forecasts f̃t,h may contain type-specific ‘fixed effects’, be subject to

random disturbances, or be influenced by social networks as in Yang (2009) or Panchenko

et al. (2013). Assumption 1 in Brock and Hommes (1998) is nested when c = 0 and f̃t,h =

Et[p
∗
t+1] + gh(xt−1, ..., xt−Lh

), where gh : RLh → R is a function that can differ across types,

Lh is the lag of type h and xt = pt− p∗t is the price deviation from the fundamental price p∗t .

For convenience, let ft,h := f̃t,h + Ẽt,h [dt+1]− aσ2Z and r := r̃− c. Given IID dividends,

ft,h = f̃t,h + d− aσ2Z and the demands in (2) can be written as

zt,h =


ft,h − (1 + r)pt + aσ2Z

aσ2
if pt ≤

ft,h + aσ2Z

1 + r

0 if pt >
ft,h + aσ2Z

1 + r
.

(4)

Using the adjusted price forecast ft,h is convenient because it does not depend on the

current price pt and allows us to add the term aσ2Z in the numerator of the demand function

(see top line of (4)), which simplifies the algebra of the price solution; see Proposition 1.

Writing demands this way is also consistent with a ‘deviation from fundamentals’ represen-

tation; see Brock and Hommes (1998) and several other papers in the related literature.4

2.3 Population shares

Aggregate demand for the risky asset is
∑

h∈H nt,hzt,h, where nt,h is the population share of

type h at date t. We allow the population shares nt,h to be endogenous and time-varying,

but we rule out dependence on the contemporaneous price pt (see Assumption 2).

Assumption 2 We consider generic population shares nt,h that satisfy nt,h ∈ (0, 1) ∀t, h
and

∑
h∈H nt,h = 1. The shares may be exogenous or endogenously determined, but we rule

out dependence of nt,h on the current price pt (though not on lagged prices pt−1, pt−2 etc.).

Assumption 2 is quite general. For instance, population shares may be determined en-

dogenously through an evolutionary competition-type mechanism as in Brock and Hommes

4Given our assumptions, the fundamental price is p∗t = p := (d − aσ2Z)/r̃, so ft,h = f̃t,h + r̃p (see (4)).

Thus, ft,h− (1+r)pt = Êt,h [xt+1]− (1+r)xt, where r = r̃− c, xt := pt−p, and Êt,h [xt+1] := f̃t,h− (1− c)p.

Demands follow (4), with xt replacing pt and Êt,h [xt+1] replacing ft,h. For an applied example, see Sec. 5.
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(1997, 1998). Following Brock and Hommes (1997), a popular approach is a discrete choice

logistic model nt+1,h =
exp(βUt,h)∑

h∈H exp(βUt,h)
, where the intensity of choice β ≥ 0 determines how

fast agents switch to better-performing predictors. Various measures of fitness Ut,h are used

in the literature, including realized profits net of a predictor cost (Brock and Hommes, 1998)

and measures of forecast accuracy (e.g. Ap Gwilym, 2010), which may also be used to derive

a risk-adjusted measure of profits (De Grauwe and Grimaldi, 2006).

Fixed population shares nt,h = 1/H are relevant for agent-based or social network models

where types are individuals, whereas exogenous time-varying population shares, as in the

herding models of Kirman (1991, 1993), are also straightforward to implement.

3 Benchmark results

The asset market clears when
∑

h∈H nt,hzt,h = Z subject to (4) and Assumptions 1–2. Given

positive outside supply Z > 0, there exists a unique market-clearing price pt (see Anufriev

and Tuinstra, 2013, Proposition 2.1). We now characterize the price and demands.

Proposition 1 Let pt be the market-clearing price at date t ∈ N+ and let Bt ⊆ H (St :=

H \ Bt) be the set of unconstrained types (constrained types). Then the following holds:

(i) If
∑

h∈H nt,h(ft,h − minh∈H{ft,h}) ≤ aσ2Z, then no type is short-selling constrained

(B∗
t = H, S∗

t = ∅) and the market-clearing price is

pt =

∑
h∈H nt,hft,h

1 + r
:= p∗t (5)

with demands zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)pt) ≥ 0 ∀h ∈ H.

(ii) If
∑

h∈H nt,h(ft,h−minh∈H{ft,h}) > aσ2Z, at least one type is short-selling constrained

and ∃ unique non-empty sets B∗
t ⊂ H, S∗

t such that
∑

h∈B∗
t
nt,h(ft,h −minh∈B∗

t
{ft,h}) ≤

aσ2Z <
∑

h∈B∗
t
nt,h(ft,h −maxh∈S∗

t
{ft,h}), and the price and demands are given by

pt =

∑
h∈B∗

t
nt,hft,h − (1−

∑
h∈B∗

t
nt,h)aσ

2Z

(1 + r)
∑

h∈B∗
t
nt,h

> p∗t (6)

and zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)pt) ≥ 0 ∀h ∈ B∗
t , zt,h = 0 ∀h ∈ S∗

t .

Proof. See the Appendix.

Proposition 1 gives the market-clearing price and demands for an arbitrarily large set

of belief types; since the proposition applies at an arbitrary date t ∈ N+, it allows us to

find a solution for t = 1, 2, ..., starting from period 1. Note that the asset price depends on

all beliefs if no types are short-selling constrained (see (5)); however, only the beliefs of the

unconstrained (i.e. ‘buyers’) matter when short-selling constraints are binding (see (6)).
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Part (i) gives a simple condition that can be used to check, in a single computation,

whether short-selling constraints are slack for all types. If so, then the price is given by p∗t in

(5), which amounts to the usual expression in the heterogeneous-beliefs asset pricing model

in the absence of short-selling constraints (see e.g. Brock and Hommes, 1998).

Whether short-selling constraints bind depends on belief dispersion relative to the most

pessimistic type, i.e.
∑

h∈H nt,h(ft,h − minh∈H{ft,h}). If belief dispersion is small enough

relative to the (risk-adjusted) outside supply Z, then no types are short-selling constrained

at date t. Otherwise, we are in Part (ii) of Proposition 1, such that at least one type (and

at most H − 1 types) are short-selling constrained. In this case, the sets of unconstrained

and short-selling constrained types (B∗
t , S∗

t ) are determined by ‘cut-off’ conditions which

require that for unconstrained types h ∈ B∗
t , the average belief dispersion within the group is

sufficiently small relative to outside supply, whereas for the short-selling constrained types

h ∈ S∗
t this condition of sufficiently small belief dispersion is not met for any type in the set.

Finally, note that when one or more types are short-selling constrained, the market-

clearing price pt is higher than the (hypothetical) price p∗t if short-selling constraints were

absent – i.e. short-selling constraints raise the asset price, as argued by Miller (1977).

We now illustrate these results using a simple two-type example.

Example 1 Consider two types h1, h2 with population shares nt,h1 ∈ (0, 1), nt,h2 = 1− nt,h1

and generic beliefs ft,h1 , ft,h2 that satisfy Assumption 1 and have the form ft,h = f̃t,h+d−aσ2Z

for h = h1, h2; see (4) By Proposition 1, if
∑

h∈{h1,h2} nt,h(ft,h − min{ft,h1 , ft,h2}) ≤ aσ2Z

neither type is short-selling constrained, and pt =
∑

h∈{h1,h2} nt,hft,h/(1 + r) by (5). If the

above condition is not met, then either ft,h1 − ft,h2 > aσ2Z/nt,h1 (if h1 is more optimistic)

or ft,h2 − ft,h1 > aσ2Z/nt,h2 (if h2 is more optimistic). In the former case, B∗
t = {h1}, S∗

t =

{h2}, and by (6) the market-clearing price is pt = [(1+r)nt,h1 ]
−1(nt,h1ft,h1−(1−nt,h1)aσ

2Z),

with demands zt,h1 = Z/nt,h1, zt,h2 = 0. In the latter case, B∗
t = {h2}, S∗

t = {h1}, so

pt = [(1 + r)nt,h2 ]
−1(nt,h2ft,h2 − (1− nt,h2)aσ

2Z) and zt,h1 = 0, zt,h2 = Z/nt,h2.

Suppose that beliefs follow the two-type Brock and Hommes (1998) model, where c = 0

such that r = r̃. Type h1 is a fundamentalist with Ẽt,h1 [pt+1] = p, where p = (d−aσ2Z)/r is

the fundamental price, and h2 is a 1-lag chartist: Ẽt,h2 [pt+1] = p+ g(pt−1 − p), where g > 0.

Note that these beliefs imply that ft,h1 = (1 + r)p and ft,h2 = (1 + r)p+ g(pt−1 − p); see (4).

Assuming pt−1 > p, the chartist is more optimistic at date t, and hence by Proposition 1:

pt =


p+

nt,h2g(pt−1 − p)

1 + r
if g(pt−1 − p) ≤ aσ2Z/nt,h2

p+
nt,h2g(pt−1 − p)− (1− nt,h2)aσ

2Z

nt,h2(1 + r)
if g(pt−1 − p) > aσ2Z/nt,h2.

(7)

The above two-type example is especially simple: if belief dispersion is large enough that

some type is constrained, then ranking types by optimism immediately determines the sets

of unconstrained types (B∗
t ) and short-selling constrained types (S∗

t ). In a general setting
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with many types, however, there are many candidates for the sets B∗
t , S∗

t , and this number

increases exponentially as the number of types H is increased. In fact, including the case

where short-selling constraints are slack for all types, there are 2H − 1 different candidates

for B∗
t , S∗

t .
5 As a result, the task of finding the price is computationally intensive when there

are a large number of types H, as seems plausible in many real-world asset markets.

To overcome this problem, we now set out a version of Proposition 1 that reduces the

number of candidates that need to be checked and hence is useful for computational purposes.

We use the fact that types who are short-selling constrained in a given period t must be more

pessimistic than those who were unconstrained (see (4)), such that ranking types in terms of

optimism is useful. In fact, we have already seen the usefulness of ranking types by optimism

in Example 1: knowing that the chartist type was more optimistic allowed us to narrow down

to 2 cases for the price rather than 3 (= 22 − 1) if beliefs were left unordered. We now show

how this principle can be applied in a general setting with many types.

Consider the function h̃t : H → H̃t, where H̃t := {1, ..., H̃t} is an adjusted set of types

with the property that the most optimistic type(s) inH get label H̃t, the next most optimistic

type(s) gets label H̃t − 1, and so on, down to the least optimistic type(s) in H with label 1.

Types with equal optimism get the same label, so H̃t ≤ H, which implies that |H̃t| ≤ |H|.
In the case of ties, the period t population share of the ‘group’ is the sum of the population

shares of the individual types. We first present a corollary based on the adjusted set of types

H̃t, before presenting a computationally-efficient algorithm.

Corollary 1 Let H̃t = {1, ..., H̃t} be the set defined above, such that beliefs are ordered

as Ẽt,1[pt+1] < Ẽt,2[pt+1] < ... < Ẽt,H̃t
[pt+1], or equivalently ft,1 < ft,2 < ... < ft,H̃t

. Let

dispt,k :=
∑H̃t

h=k+1 nt,h(ft,h − ft,k), where k ∈ {1, ..., H̃t − 1}. Then we have the following:

pt =



∑H̃t

h=1 nt,hft,h
1 + r

:= p∗t if dispt,1 ≤ aσ2Z∑H̃t

h=2 nt,hft,h − nt,1aσ
2Z

(1− nt,1)(1 + r)
:= p

(1)
t if dispt,2 ≤ aσ2Z < dispt,1∑H̃t

h=3 nt,hft,h − (nt,1 + nt,2)aσ
2Z

(1− nt,1 − nt,2)(1 + r)
:= p

(2)
t if dispt,3 ≤ aσ2Z < dispt,2

...
...

nt,H̃t
ft,H̃t

− (
∑H̃t−1

h=1 nt,h)aσ
2Z

(1−
∑H̃t−1

h=1 nt,h)(1 + r)
:= p

(H̃t−1)
t if dispt,H̃t−1 > aσ2Z

(8)

where p
(k∗)
t is the price if types 1, ..., k∗ are short-selling constrained, p∗t is the corresponding

price if short-selling constraints were absent (which satisfies p∗t < p
(k)
t , ∀k ≤ k∗), and

p
(k−1)
t < p

(k)
t < p

(k∗)
t , for all k < k∗. (9)

5The number of candidate sets corresponds to the number of members of the power set of H minus 1.
Intuitively, the power set of H is the set of all subsets of H, including the empty set. The ‘minus 1’ correction
arises because the asset market cannot clear if B∗

t were an empty set (i.e. if no agent held the asset).
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Proof. See the Appendix.

Corollary 1 streamlines the task of finding the market-clearing price. In Proposition

1, where beliefs are unordered, there are 2H − 1 cases (regions) to check, as compared to

H̃t ≤ H when belief types are ordered as in Corollary 1. Clearly, this amounts to a substantial

reduction in computational burden in models with a large number of types H. For example,

with only 15 distinct beliefs (types) at date t, there are 215 − 1 = 32767 candidates for the

sets B∗
t ,S∗

t if types are not ordered by optimism. However, if we rank types from least to

most optimistic and construct the set H̃t = {1, , ..., 15}, then there are only 15 candidates

for the sets and the market-clearing price, corresponding to Corollary 1 when H̃t = 15.

The final part of Corollary 1 states, first, that the market price when one or more short-

selling constraints are binding is higher than the (hypothetical) price p∗t if short-selling con-

straint are absent; and, second, that p∗t < p
(1)
t and p

(1)
t < p

(2)
t < ... < p

(k∗−1)
t < p

(k∗)
t , i.e. the

price is smaller in value the fewer short-selling constraints are assumed to be binding. These

properties are useful because we can use the unconstrained solution p∗t to obtain a lower

bound k for the actual number of types k∗ who are short-selling constrained, by counting

the number of negative (unconstrained) demands at price p∗t . In a similar way, counting the

number of negative (unconstrained) demands at prices p
(k)
t , for k < k∗, will give an improved

estimate of k∗ when it lies above the lower bound k.

We now present a computational algorithm which efficiently finds the number of short-

selling constrained types k∗ and hence the market-clearing price and demands.

3.1 Computational algorithm

1. Construct the set H̃t by ordering beliefs as ft,1 < ft,2 < ... < ft,H̃t
and find the

associated population shares nt,h of types h = 1, ..., H̃t.

2. Compute dispt,1 =
∑H̃t

h=2 nt,h(ft,h − ft,1). If dispt,1 ≤ aσ2Z, accept pt = p∗t as the date

t price solution and move to period t+ 1. Otherwise, move to Step 3.

3. Set pguesst = p∗t and find the largest k such that zguesst,k =
ft,k+aσ2Z−(1+r)pguesst

aσ2 < 0, and

denote this value k. Starting from k = k, check if dispt,k+1 ≤ aσ2Z < dispt,k; if not,

try k = kprev + 1 until a k∗ is found such that dispt,k∗+1 ≤ aσ2Z < dispt,k∗ .

4. Accept k∗ as the number of short-selling constrained types, such that the price is

pt = p
(k∗)
t :=

∑H̃t
h=k∗+1

nt,hft,h−
[∑k∗

h=1 nt,h

]
aσ2Z∑H̃t

h=k∗+1
nt,h(1+r)

, and move to period t+ 1.

The above algorithm is efficient for two reasons. First, if the condition in Step 2 is met,

no computation time is wasted checking cases where short-selling constraints are binding.

Second, if that condition is not met, then using the unconstrained solution p∗t as a guess

gives a lower bound k on the number of short-selling constrained types k∗, and hence all
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cases k < k need not be checked. Note that k is a lower bound for k∗ since p
(k)
t > p∗t

for all k ≤ k∗ (see Corollary 1); that is, the presence of (binding) short-selling constraints

raises price relative to the counterfactual scenario where short-selling constraints are absent.

Therefore, if types 1, ..., k would like to short-sell at price p∗t , they must be short-selling

constrained at price p
(k∗)
t > p∗t also (see (4)), implying that that k∗ ≥ k.

In practice, we have found that the speed of the computational algorithm can be improved

using an iterative procedure. In particular, rather than increasing k in steps of 1 from the

initial value k as in Step 3 (whenever k is not a solution), the algorithm will ‘jump’ closer

to the true number of constrained types k∗ by repeatedly replacing pguesst with p
(k)
t (i.e.

price based on the current guess of k) in Step 3 and recomputing an updated value of k,

say k = k′, that equals the number of negative (unconstrained) demands at this price. In

other words, we exploit the property that p
(1)
t < ... < p

(k∗−1)
t < p

(k∗)
t to find k∗ faster. Our

simulations suggest that with a large number of types such as several thousand or more,

there is a considerable speed-up with 5-10 iterations of this procedure.6

Example 2 Suppose there are H = 3,000 belief types. We think of each type as an individual

with a fixed population share nt,h = 1/H for all h. There are three main groups of investors

consisting of 1,000 types each; in each group the same forecast method is used, but the exact

forecasts of investors (i.e. beliefs) differ. Trend-followers expect the future change in price

to be linked to past changes in price (up to two lags); contrarians believe the recent trend

in prices will be reversed; and arbitrageurs expect any deviation between the current price

and a perceived fundamental value to be eliminated next period. The first 1,000 types are

trend-followers, types 1,001–2,000 are contrarians, and types 2,001–3,000 are arbitrageurs.

We assume all types use the current price as a reference point (i.e. c = 1) and have

an idiosyncratic random component to beliefs ut,h. Beliefs of trend-followers have the form

Ẽt,h[pt+1] = pt+g1h∆pt−1+g2h∆pt−2+ut,h, where g1h, g
2
h > 0 and ∆pt = pt−pt−1. Contrarians

have beliefs Ẽt,h[pt+1] = pt + g3h∆pt−1 + g4h∆pt−2 + ut,h, where g3h, g
4
h < 0. For arbitrageurs,

Ẽt,h[pt+1] = pt − g5h(pt−1 − p) + ut,h, where g5h > 0 and p is the fundamental price. We

set dt = d = 1.1, Ẽt,h[dt+1] = d for all h, r̃ = 0.1, a = σ2 = 1 and Z = 0.1. The

fundamental price is therefore p = d−aσ2Z
r̃

= 10. Prior to period 1, the parameters g1h and

g2h are drawn from uniform distributions on (0,0.5) and (0,0.2), g3h, g
4
h are drawn from a

uniform distribution on (-0.1,0), and g5h is drawn from a uniform distribution on (0.2,0.8).

The idiosyncratic shocks ut,h are set at zero in periods 1–10 and are drawn from a normal

distribution N (0, 0.042) in all later periods. Finally, all initial prices are set at p+0.6 = 10.6.

Figure 1 shows the asset price and the number of short-selling constrained types in a

particular simulation of T = 500 periods, of which the first 20 periods are shown. The

inability to short-sell softens the initial drop in price in period 1 (see left panel), consistent

with Proposition 1. Price remains higher in several subsequent periods because many types are

6Note that this procedure will not overshoot k∗ because the guessed price will remain below the market-
clearing price. If k′ = kprev or if k∗ is reached, the iterations are terminated early using a ‘break’ command.
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Figure 1: Simulation plotted over the first 20 periods (H = 3, 000 types)

short-selling constrained until the price dynamics settle. Due to the idiosyncratic belief shocks

that ‘kick in’ after period 10, a small number of types are short-selling constrained in each

period even once the price has stabilized (see right panel). The results in Table 1 show that

the solution with short-selling constraints is computed quickly using our algorithm, with both

computation time and accuracy being comparable to the case where short-selling constraints

are absent (which is found without search using the known solution p∗t =
∑

h∈H nt,hft,h
1+r

).7 Note

that our measure of accuracy is based on the excess demand at the computed market-clearing

price in each period, i.e. Errort := |
∑

h∈H nt,hzt,h − Z| for t = 1, ..., T .

Table 1: Computation times and accuracy: T = 500 periods, H = 3, 000 types

Case Time (s) Bind freq. max(Errort)

W/out short-selling constraints 0.09 - 3.8e-16
With short-selling constraints 0.16 497/500 4.3e-14

Note: max(Errort) = max{Error1, , ..., ErrorT }, Errort := |
∑

h∈H nt,hzt,h − Z|.

3.2 Discussion

We have derived benchmark analytical results for the case of an arbitrarily large number of

belief types subject to unconditional short-selling constraints zt,h ≥ 0 for all t, h. In addition,

we showed that ordering belief types by optimism gives a computationally-efficient solution

algorithm. Before turning to extensions, we briefly discuss some cases which are nested by

the above results. Any formal results appear in the Supplementary Appendix.8

7The simulations were run in Matlab 2020a (Windows version) on a Viglen Genie desktop PC with
Intel(R) Core(TM) i5-4570 CPU 3.20GHz processor and 8GB of RAM.

8The Supplementary Appendix is available at: https://github.com/MCHatcher.
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3.2.1 Generalizations and nested cases

First, note the types h1, h2, ..., hH may be interpreted as individual investors with population

shares nt,h = 1/H in Proposition 1 and Corollary 1. This interpretation is relevant for asset

pricing models with many agents that differ in beliefs; for example, agent-based models

as in LeBaron et al. (1999) or the social network model in Hatcher and Hellmann (2022).

An alternative social network model is Panchenko et al. (2013), where updating follows the

Brock and Hommes (1998) model except that only the types (and performance) of investors

in an agent’s social network can be observed and adopted in type updating. This case is also

nested by the benchmark results; see Panchenko et al. (2013, Eq. 10) and Assumption 2. In

these cases, our results apply because the demand schedules in these papers have the same

functional form as in (2) and (4), and the beliefs Ẽt,h [pt+1] are nested by Assumption 1.

Second, there has been some interest in the inability to short housing as a possible

explanation for rising house prices and market volatility (Shiller, 2015; Fabozzi et al., 2020).

One simple approach to model housing as an investment asset is to replace the exogenous

expected dividends with exogenous imputed rents from housing (see Bolt et al., 2019). In

this case, the analytical results are essentially unchanged as we just require a re-labelling of

variables, as shown in Section 2.1 of the Supplementary Appendix.

Third, several other cases of interest are essentially nested by the benchmark model,

including heterogeneity in expected dividends Ẽt,h [dt+1], which are nested by defining the

forecast as ft,h := f̃t,h + Ẽt,h [dt+1]− aσ2Z; a time-varying response of beliefs to the current

price, such that c is replaced with some ct ∈ [0, 1 + r̃) (see (3)), which may be exogenous or

endogenous but cannot depend on the current price pt;
9 and short-selling constraints of the

form zt,h ≥ L, where L ≤ 0, such that negative positions are permitted up to some limit.

We show how the case zt,h ≥ L is nested in Section 2.2 of the Supplementary Appendix.

3.2.2 Additional heterogeneity

Assumption 1 allows a common response of beliefs to price via the term cpt in (3). Allowing

time-variation in c is straightforward (see above), but for the case of heterogeneity across

types some extra care is needed. In this case, price beliefs are

Ẽt,h [pt+1] = chpt + f̃t,h (10)

where ch ∈ [0, 1+ r̃) for all h. Defining ft,h := f̃t,h + d− aσ2Z and rh := r̃− ch, demands are

zt,h =


ft,h − (1 + rh)pt + aσ2Z

aσ2
if pt ≤

ft,h + aσ2Z

1 + rh

0 if pt >
ft,h + aσ2Z

1 + rh

(11)

where the only difference relative to (4) is that r is now type-specific.

9For example, if agents used adaptive learning, ct would be updated and r is replaced by rt = r̃ − ct.
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Equation (11) shows that optimism is no longer determined solely by ft,h; however, we

can distinguish least and most optimistic types by looking at the term
ft,h+aσ2Z

1+rh
, since a

given type h will short-sell only if this term is sufficiently small. As a result, we can give

an amended version of Proposition 1 in which the sets of unconstrained and short-selling

constrained types B∗
t ,S∗

t depend on minh∈B∗
t
{ft,h+aσ2Z

1+rh
} and maxh∈S∗

t
{ft,h+aσ2Z

1+rh
}, rather than

minh∈B∗
t
{ft,h} and maxh∈S∗

t
{ft,h} as in the benchmark case. In a similar way, we can give an

amended version of Corollary 1 for the case of heterogeneous ch and amend the computational

algorithm (Section 3.1) for this case. We provide analytical results, an updated algorithm

and a numerical example in Section 4.1 of the Supplementary Appendix.

A similar approach can be used when there is heterogeneity in subjective return variances ;

see (1). In this case, the terms aσ2 in the denominator of the demand function (2) become

type-specific, i.e. aσ2
h, and it is convenient to define ãh := (aσ2

h)
−1 and ft,h := f̃t,h+d−Z/ãh.

The demands of types h ∈ H can then be written as

zt,h =

ãh(ft,h + Z/ãh − (1 + r)pt) if pt ≤
ft,h + Z/ãh

1 + r

0 if pt >
ft,h + Z/ãh

1 + r

(12)

where r = r̃ − c as before.

In this case, optimism depends on ft,h + Z/ãh, i.e. types who short-sell must have lower

values of ft,h+Z/ãh than those who do not. As a result, it is easy to provide amended versions

of Proposition 1 and Corollary 1 and to adjust the computational algorithm. We include

these results, and a numerical example, in Section 4.2 of the Supplementary Appendix.

4 Extensions

We now present several extensions of the baseline model set out above, including conditional

short-selling constraints; the case of multiple risky assets; and the case where the price is

determined by a market-maker who adjusts price in response to excess demand.

4.1 Conditional short-selling constraints

Thus far we studied unconditional short-selling constraints: zt,h ≥ 0 for all t and h. Such

constraints are unconditional because they apply in all periods regardless of the evolution

of the price. However, in practice, many short-selling restrictions are conditional in the

sense that short-selling is banned at date t only if a certain price condition was met in the

recent past. For instance, the United States had an ‘uptick rule’ from 1938-2007, which

banned short-selling if price fell in the last trading interval; in 2010 this was replaced by an

alternative uptick rule which bans short-selling if the price falls 10% or more in a day.
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To model conditional short-selling constraints, let g(pt−1, ..., pt−K) be the ‘trigger’ for

the short-selling constraint, with K being the longest lag in the price that is considered. If

g(pt−1, ..., pt−K) ≤ 0 the short-selling constraint is present at date t; if g(pt−1, ..., pt−K) > 0,

the short-selling constraint is lifted. Sticking with our two examples, the uptick rule has

the form gUR(pt−1, pt−2) = pt−1 − pt−2, whereas the alternative uptick rule can be written as

gAUR(pt−1, pt−2) = pt−1 − pt−2 + κpt−2 = pt−1 − (1− κ)pt−2, where κ = 0.1 (i.e. 10%).

To nest generic rules, we introduce an indicator variable 1t := 1{g(pt−1,...,pt−K)≤0} which

is equal to 1 if the short-selling constraint is present at date t (i.e. if g(pt−1, ..., pt−K) ≤ 0),

and equal to 0 otherwise. The problem of type h ∈ H at date t is thus amended from (1) to

max
zt,h

Ẽt,h[wt+1,h]−
a

2
V ãrt,h[wt+1,h] s.t. 1tzt,h ≥ 0 (13)

where wt+1,h = (pt+1 + dt+1)zt,h + (1 + r̃)(wt,h − ptzt,h) as before.

With this formulation, investors may take negative positions in periods where the in-

dicator variable is zero (short-selling constraint absent) but are restricted to non-negative

positions in periods where the indicator variable is 1 (short-selling constraint present).10

The demand of type h ∈ H is thus given by

zt,h =


Ẽt,h [pt+1] + d− (1 + r̃)pt

aσ2
if pt ≤

Ẽt,h [pt+1] + d

1 + r̃
or 1t = 0

0 if pt >
Ẽt,h [pt+1] + d

1 + r̃
and 1t = 1.

(14)

Equivalently, with r := r̃ − c and ft,h defined as in (4),

zt,h =


ft,h − (1 + r)pt + aσ2Z

aσ2
if pt ≤

ft,h + aσ2Z

1 + r
or 1t = 0

0 if pt >
ft,h + aσ2Z

1 + r
and 1t = 1.

(15)

Note that the only difference in the demand schedules relative to (2) is compound ‘if-or’

and ‘if-and’ statements, whose second part depends on the value of the indicator variable. As

a result, it is straightforward to apply the same approach as in Proposition 1 and Corollary

1 to find the market-clearing price and demands, as explained in the following remark.

Remark 1 In the above model with a conditional short-selling constraint, the market-clearing

price and demands follow Proposition 1, except that in part (i) the ‘if...’ statement is re-

placed by ‘if...or 1t = 0’, and in part (ii) the ‘if...’ statement is replaced by ‘if...and 1t = 1’.

A proposition and proof are provided in Section 3.1 of the Supplementary Appendix.

10When 1t = 1, condition 1tzt,h ≥ 0 simplifies to zt,h ≥ 0 as in (1). However, when 1t = 0, then 1tzt,h ≥ 0
collapses to 0 ≥ 0 (which is always satisfied) and hence zt,h is not constrained in periods where 1t = 0. For
more details, see Section 1.2 of the Supplementary Appendix.
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4.2 Multiple asset markets

Suppose there are multiple risky assets M ≥ 2 in positive net supply. Let zmt,h be the date t

demand of type h for asset m ∈ {1, ...,M}. Following Westerhoff (2004), we assume type h’s

demand for asset m depends not only on the expected excess return on asset m, but also on

the attractiveness of that asset market relative to others. In particular, suppose a fraction

wm
t of each investor type participates in a given market m, with this fraction determined by

comparison with all other markets (see below). Differently from Westerhoff, we allow all M

asset markets to have unconditional short-selling constraints, such that zmt,h ≥ 0 for all m.

Each asset market m is assumed to have IID dividends dmt = d
m
+ϵmt , so Ẽt,h[d

m
t+1] = d

m
> 0.

Analogous to (2), the demand of type h ∈ H in market m ∈ {1, ...,M} is

zmt,h =

wm
t

(
Ẽt,h[pmt+1]+d

m−(1+r̃)pmt
aσ2

m

)
if pmt ≤ Ẽt,h[pmt+1]+d

m

1+r̃

0 if pmt >
Ẽt,h[pmt+1]+d

m

1+r̃

(16)

where pmt is price in market m and σ2
m is the conditional return variance (assumed constant).

The demand function (16) has the same form as in the benchmark case (see (2)), except

for the scaling by the share wm
t that participates in the market. As in Westerhoff (2004), we

assume the participation shares wm
t depend on relative attractiveness of each market Am

t :

wm
t+1 =

exp(βAm
t )∑M

m=1 exp(βA
m
t )

, Am
t = f([pmt − pm]) (17)

where f : R → R is a function with f(0) = 0 and β ≥ 0 is the intensity of choice.

Equation (17) states that the participation shares wm
t are determined by evolutionary

competition, with the fitness of a market Am
t depending on the deviation of the market price

from the fundamental price pm.11 The fundamental price in market m is the price that would

clear the market if all types h ∈ H had common rational expectations Et[.]. Given equations

(16)–(17), the fundamental price in market m ∈ {1, ...,M} is:12

pm =
d
m − aσ2

mMZm

r̃
(18)

where Zm > 0 is the fixed supply of asset m per investor.

Belief types in each market m follow a market-specific version of (3):

Ẽt,h

[
pmt+1

]
= cmpmt + f̃m

t,h (19)

11Westerhoff (2004) sets f([pmt − pm]) = ln
[
(1 + c[pmt − pm]2)−1

]
, where c > 0, such that attractiveness

declines with distance from the fundamental price due to the risk of being caught in a bubble that collapses.
12If all investors are fundamentalists, then Am

t = f(0) = 0 ∀m, such that wm
t = 1/M for all m. Using

this result in conjunction with the demands (16), common expectations Et[p
m
t+1] and market-clearing leads

to the equation pmt = (1 + r̃)−1[Et[p
m
t+1] + d

m − aσ2
mMZm], which can be solved forwards to give (18).
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where cm ∈ [0, 1+ r̃) and f̃m
t,h is a generic price forecast of type h in market m that does not

depend on the current price pmt .

Let fm
t,h := f̃m

t,h + d
m − aσ2

mZm/w
m
t and rm := r̃ − cm (see (3)–(4)). Then the demand of

type h in market m can be written as

zmt,h =

wm
t

(
fm
t,h+aσ2

mZm/wm
t −(1+rm)pmt

aσ2
m

)
if pmt ≤ fm

t,h+aσ2
mZm/wm

t

1+rm

0 if pmt >
fm
t,h+aσ2

mZm/wm
t

1+rm
.

(20)

We assume the population shares in each market m are determined by Assumption 2.

Market-clearing in each market is given by∑
h∈H

nm
t,hz̃

m
t,h = Zm/w

m
t , where z̃mt,h := zmt,h/w

m
t . (21)

With the change in variables in (21), the market-clearing condition has the same form as in

the benchmark model (except a scaling of supply by 1/wm
t ). Hence, we have the following.

Remark 2 In the above model with M risky assets subject to short-selling constraints, the

expressions for the market-clearing prices pmt and the demands zmt,h ∀h ∈ H in each market

m ∈ {1, ...,M} are given by Proposition 1, except that pt, ft,h, r, Z must be replaced by pmt ,

fm
t,h, r

m, Zm/w
m
t , and the demands zt,h are replaced by market-specific demands zmt,h in (20).

A proposition is provided in Section 3.2 of the Supplementary Appendix.

4.3 Market-maker approach

We now return to the case of one risky asset and let price be determined by a market-maker

rather than market-clearing; see e.g. Beja and Goldman (1980), Chiarella (1992), Farmer

and Joshi (2002) and Westerhoff (2003). As is standard in the literature, we consider price

impact functions which are linear in excess demand. We allow the price to potentially depend

on both current and past excess demand as follows:13

pt = pt−1 + µ[λ(Zt − Z) + (1− λ)(Zt−1 − Z)] (22)

where µ > 0, λ ∈ (0, 1] and Zt :=
∑

h∈H nt,hzt,h is aggregate demand per investor at date t,

such that Zt − Z can be interpreted as (average) excess demand per investor.

When λ ∈ (0, 1), past demand matters for the current price, whereas if λ = 1 only

current demand Zt =
∑

h∈B∗
t
nt,hzt,h matters. We stick with the beliefs Ẽt,h [pt+1] = cpt+ f̃t,h

in Assumption 1 and consider two specifications of asset demands. In the first case we work

with the demands considered thus far; see (2) and (4). In the second case we allow a different

demand specification as in some models that use the market-maker approach.

13Allowing price to be a nonlinear function of past excess demand Zt−1−Z does not pose any difficulty as
this variable is predetermined at date t; however, we use linearity in current excess demand to solve for pt.
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4.3.1 Benchmark demand specification

We first consider demands as in (4), with ft,h = f̃t,h+d−aσ2Z and r = r̃− c. We can easily

solve for the price and demands in this case as shown in Proposition 2.

Proposition 2 Let pt be the price given by (22) at t ∈ N+ and let Bt ⊆ H (St := H \ Bt)

be the set of unconstrained (short-selling constrained) types. Then the following holds:

1. If pt−1− 1
1+r

min
h∈H

{ft,h}+ µλ
aσ2

∑
h∈H

nt,h(ft,h−min
h∈H

{ft,h})+µ(1−λ)Zt−1 ≤ (µ+ (1 + r)−1aσ2)Z,

then no type is short-selling constrained (B∗
t = H, S∗

t = ∅, zt,h ≥ 0 ∀h) and price is given by

pt =
pt−1 +

µλ
aσ2

∑
h∈H nt,hft,h + µ(1− λ)(Zt−1 − Z)

1 + µλ(1 + r)(aσ2)−1
.

2. If pt−1− 1
1+r

min
h∈H

{ft,h}+ µλ
aσ2

∑
h∈H

nt,h(ft,h−min
h∈H

{ft,h})+µ(1−λ)Zt−1 > (µ+ (1 + r)−1aσ2)Z,

then one or more types are short-selling constrained with zt,h = 0 and we have the following:

(i) If ∃ B∗
t ,S∗

t ⊂ H such that µλ
aσ2

∑
h∈B∗

t

nt,h(ft,h − min
h∈B∗

t

{ft,h})− 1
1+r min

h∈B∗
t

{ft,h} ≤
(
µ+ aσ2

1+r

)
Z −

pt−1 − µ(1− λ)Zt−1 <
µλ
aσ2

∑
h∈S∗

t

nt,h(ft,h −max
h∈S∗

t

{ft,h})− 1
1+r max

h∈S∗
t

{ft,h}, price is

pt =
pt−1 +

µλ
aσ2

∑
h∈B∗

t
nt,hft,h + µ[(1− λ)Zt−1 − (1− λ

∑
h∈B∗

t
nt,h)Z]

1 + µλ(1 + r)(aσ2)−1
∑

h∈B∗
t
nt,h

with demands zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)pt) ≥ 0 ∀h ∈ B∗
t , zt,h = 0 ∀h ∈ S∗

t .

(ii) Else, ∃B∗
t = ∅,S∗

t = H such that pt−1+µ(1−λ)Zt−1− 1
1+r

maxh∈S∗
t
{ft,h} >

(
µ+ aσ2

1+r

)
Z,

all types are constrained (zt,h = 0 ∀h), and price is pt = pt−1 + µ[(1− λ)Zt−1 − Z].

Proof. See the Appendix.

There are three distinct cases in Proposition 2, since it is possible that all types will be

short-selling constrained at the price set by the market maker. By contrast, with market-

clearing at least one type must buy the risky asset (see Proposition 1).

Analogous to the results in Proposition 1, cases 2(i) and 2(ii) in Proposition 2 imply a

higher price than when short-selling constraints are absent (in which case price is given by the

expression in Part 1 of Proposition 2). The intuition for this result is simple: looking at (22)

we see that, given predetermined past excess demand Zt−1 − Z and price pt−1, the current

price increases with current excess demand, Zt − Z. Since excess demand is unambiguously

smaller if short-selling is permitted, the current price is also smaller.

The benchmark computational algorithm can easily be amended to fit the market-maker

approach. In particular, to check for short-sellers in period t, we obtain the set H̃t and then

Step 2 of the algorithm is amended to dispt,1 ≤ (µ+ (1 + r)−1aσ2)Z − pt−1 − µ(1− λ)Zt−1,
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where dispt,1 := µλ
aσ2

∑
h∈H̃t

nt,h(ft,h − ft,1) − 1
1+r

ft,1 (see Proposition 2, Part 1). If this

condition is satisfied, then the price follows Proposition 2 Part 1.

If the above condition is not satisfied, then further steps are needed. Following Proposi-

tion 2 Part 2(i), we search for a k∗ ∈ {1, ..., H̃t−1} such that dispt,k∗+1 ≤ (µ+ (1 + r)−1aσ2)Z−
pt−1 − µ(1− λ)Zt−1 < dispt,k∗ , where dispt,k :=

µλ
aσ2

∑
h>k nt,h(ft,h − ft,k)− 1

1+r
ft,k. If such a

k∗ exists, the price pt is given by the expression in Proposition 2 Part 2(i) .

Finally, if there is no k∗ that satisfies the above condition, then all types are short-

selling constrained in period t. By Proposition 2, Part 2(ii), this is the case if dispt,H̃t
>

(µ+ (1 + r)−1aσ2)Z − pt−1 − µ(1− λ)Zt−1 and the price is pt = pt−1 + µ[(1− λ)Zt−1 − Z].

4.3.2 Alternative demand specification

We now consider an alternative demand specification, as used in several papers in the market-

maker literature; this section describes the solution for the price and demands in this case.

A common specification for demand is ãh(Ẽt,h [pt+1]−pt), where ãh > 0; see, for example,

Westerhoff (2004). With a short-selling constraint zt,h ≥ 0, the demands are adjusted to:

zt,h =

{
ãh(Ẽt,h [pt+1]− pt) if pt ≤ Ẽt,h [pt+1]

0 if pt > Ẽt,h [pt+1].
(23)

The key difference relative to (2) is that demand is scaled by the type-specific coefficient ãh.

Note that more pessimistic types – i.e. those with lower expectations Ẽt,h [pt+1] – are more

likely to be short-selling constrained at a given price pt set by the market-maker.

We let ft,h := f̃t,h = Ẽt,h [pt+1]− cpt (see (3)) and write the demands in (23) as:

zt,h =

ãh(ft,h − (1 + r)pt) if pt ≤
ft,h
1 + r

0 if pt >
ft,h
1 + r

(24)

where r := −c and we assume c ∈ [0, 1) to ensure demands are decreasing in the price.

The demands in (24) match (4), except the ‘intercept’ aσ2Z is absent, the expected

dividend d is absent, and the scaling ãh is type-specific. As a result, the price solution and

demands are similar to Proposition 2, as summarized in the following remark.

Remark 3 When demands are given by (24) and a market-maker sets price following (22),

the price solution and demands follow Proposition 2, except nt,h is replaced by ñt,h := nt,hãh
(for all h), terms in aσ2 are set at 1, and the coefficient µ is multiplied by Z in all expressions.

A proposition and proof are given in Section 3.3 of the Supplementary Appendix, along with

an amended version of Corollary 1 and the computational algorithm.
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5 Application: Alternative uptick rule

We now consider an application based on an alternative uptick rule, as currently in place

in the United States. Under the rule, short-selling is banned following price falls of 10% or

more. This contrasts with the original uptick rule in place from 1938 to 2007, which banned

short-selling of shares after any fall in prices (regardless of the magnitude). We work with

a version of the Brock and Hommes (1998) model with a large number of types and an

alternative uptick rule; this case does not seem to have been studied previously.14

Since the alternative uptick rule bans short-selling following price falls of 10% or more

(but not otherwise) it is a conditional short-selling constraint; see Section 4.1. Accordingly,

the indicator variable has the form 1t = 1{pt−1−(1−κ)pt−2≤0} for κ = 0.1, such that the short-

selling constraint is present only if the price fell 10% or more in the previous period, and the

solution is described by Remark 1. Demands of types h ∈ H are given by (14):

zt,h =


Ẽt,h [pt+1] + d− (1 + r̃)pt

aσ2
if pt ≤

Ẽt,h [pt+1] + d

1 + r̃
or 1{pt−1−(1−κ)pt−2≤0} = 0

0 if pt >
Ẽt,h [pt+1] + d

1 + r̃
and 1{pt−1−(1−κ)pt−2≤0} = 1.

(25)

where we have assumed IID dividends dt = d+ ϵt with Ẽt,h[dt+1] = d ∀t, h.
Equation (25) shows that short-selling is banned in period t only if pt−1 ≤ (1 − κ)pt−2.

Following Brock and Hommes (1998), we consider linear predictors of the form:

Ẽt,h [pt+1] = p+ bh + gh(pt−1 − p) (26)

where bh ∈ R and gh ≥ 0.

Equation (27) is a standard specification in the literature. The intercept term consists

of the (expected) fundamental price p plus ‘bias’ bh in the price forecast of type h (relative

to the fundamental benchmark), whereas the gh parameter represents the degree of trend-

following of type h. Type h is a pure fundamentalist investor if bh = gh = 0, while larger

values of gh or |bh| imply, respectively, stronger trend-following and forecast bias.

The fundamental price p is the unique fundamental solution under common rational

expectations; see Brock and Hommes (1998). Given that the risky asset is in positive net

supply Z > 0, the fundamental price is p = (d − aσ2Z)/r, where r = r̃ is the interest rate

on the riskless asset.15 Writing the predictor in (26) in price deviations xt := pt − p gives:

Êt,h [xt+1] = bh + ghxt−1 (27)

where Êt,h [xt+1] := Ẽt,h [pt+1]− p.

In a similar vein, the indicator variable can be written in terms of price deviations as

14The original uptick rule has been studied for a small number of types (see Dercole and Radi, 2020).
15Recall that r := r̃− c; see (4). For the predictors in (26), r = r̃ as there is no response to pt (i.e. c = 0).
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1t = 1{xt−1+κp≤(1−κ)xt−2}. Therefore, demands can be written as:16

zt,h =


Êt,h [xt+1]− (1 + r)xt + aσ2Z

aσ2
if xt ≤

Êt,h [xt+1] + aσ2Z

1 + r
∨ 1{xt−1+κp≤(1−κ)xt−2} = 0

0 if xt >
Êt,h [xt+1] + aσ2Z

1 + r
∧ 1{xt−1+κp≤(1−κ)xt−2} = 1.

(28)

We consider a standard specification for fitness Ut,h whereby performance is a linear function

of past profits net of predictor costs Ch ≥ 0. Profits are given by scaling the realized excess

return Rt := pt + dt − (1 + r)pt−1 = xt + aσ2Z − (1 + r)xt−1 + ϵt by demand zt−1,h, where ϵt
is the IID dividend shock, and we abstract from memory of past performance. For all t ≥ 1

fitness and population shares are given by

Ut,h = Rtzt−1,h − Ch, nt+1,h =
exp(βUt,h)∑
h∈H exp(βUt,h)

, (29)

where β ≥ 0 and nt,h ∈ (0, 1) is given by a logistic updating equation.

Note that the fitness levels Ut,h determine the population shares nt+1,h of each type

according to the discrete-choice logistic model with intensity of choice β. The intensity of

choice determines how fast agents switch toward the better-performing predictors, i.e. those

with higher past profit net of predictor costs. In the special case β = 0 no switching occurs;

increasing β implies more switching to profitable predictors. Following Brock and Hommes

(1997, 1998), this evolutionary competition mechanism has been widely used.

We give the model the same parameters as in Section 3.1 of Anufriev and Tuinstra (2013):

Z = 0.1, aσ2 = 1, r = 0.1, and we set d = 0.6, giving a fundamental price p = d−aσ2Z
r

= 5.

In their model there are two types: a fundamentalist type with Êt,f [xt+1] = 0 and cost

parameter C = 1, and a chartist type with Êt,c [xt+1] = gxt−1, where g = 1.2, and cost 0.

We consider a large number of investor types H = 1, 000, with predictors described by (27)

and predictor costs depending on the ‘closeness’ of beliefs to a pure fundamentalist.

5.1 Benchmark exercise

We first perform a sanity check by giving 500 types the same (pure) fundamental predictor

(at cost C = 1) and the remaining 500 types the same chartist predictor g = 1.2 at no cost.

In this case there are two ‘groups’ in the population whose (aggregate) population shares are

endogenously determined based on fitness. As a result, we should replicate the numerical

bifurcation results in Anufriev and Tuinstra (2013) for the case of a two-type model in which

the price deviation xt is studied as intensity of choice parameter β is increased. Following

16Since c = 0, ft,h = Ẽt,h [pt+1] + d − aσ2Z = Ẽt,h [pt+1] + rp, where p = (d − aσ2Z)/r is used. Since

d−rp = aσ2Z, substituting Ẽt,h [pt+1] = ft,h−rp in (25) gives (aσ2)−1(ft,h− (1+r)pt+aσ2Z). Adding and

subtracting (1+r)p gives (aσ2)−1(Êt,h [xt+1]−(1+r)xt+aσ2Z) as in (28), where Êt,h [xt+1] := Ẽt,h [pt+1]−p

and xt = pt − p. This expression is in the form of (4) except pt, ft,h are replaced by xt, Êt,h [xt+1].
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Anufriev and Tuinstra (2013, Fig. 5), we study the deterministic skeleton with dt = d and the

case of no short-selling constraint (we do not present a separate diagram for an alternative

uptick rule as we found no substantive difference in the attractors).

Figure 2: Bifurcation diagram in the absence of short-selling constraints. For each β, we
plot 300 points following a transitory of 3,000 periods from given initial values x0 ∈ (−4, 0).

Figure 2 shows that for sufficiently low values of the intensity of choice, the fundamental

steady state x = 0 is the unique price attractor. Intuitively, this is because we are in the case

(1 + r) < g < 2(1 + r) and positive outside supply, for which Anufriev and Tuinstra (2013,

Proposition 3.1) show that the fundamental steady state is globally stable for sufficiently

small values of the intensity of choice, β. Once a critical value of β is exceeded, there initially

exist two non-fundamental steady states in addition to the fundamental steady state, which

is locally stable. As β is increased further, however, the fundamental steady state becomes

unstable, while the non-fundamental steady states are locally stable if β is not too large.

Given negative initial price, only the non-fundamental steady state with x < 0 is an

attractor for the price dynamics at intermediate values of β; this amounts to the lower

‘fork’ seen for β between (approx.) 2.4 and 3.8 in Figure 2. Increasing β further causes the

non-fundamental steady states to lose their stability through a Neimark-Sacker bifurcation,

leading to an invariant closed curve and (quasi-)periodic dynamics. The results in Figure 2

(top panel) are consistent with those in Anufriev and Tuinstra (2013) for the same parameter

values. Note that while we obtained the above diagram using H = 1, 000 types rather than

two, we effectively have a two-type model as groups are homogeneous.

5.2 Simulated time series: four scenarios

We now introduce heterogeneity proper by having many different types and present some

simulated time series generated by the model. We consider four different scenarios where the

21

Electronic copy available at: https://ssrn.com/abstract=4163831



initial price x0 is held fixed and only the intensity of choice β or the degree of heterogeneity

(in gh, bh and Ch) are changed.17 We first present simulated price series (without noise) in

four scenarios, and we then report some results on computation speed and accuracy when

stochastic dividend shocks are present. Finally, we consider some distributional implications

of an alternative uptick rule by simulating the wealth distribution across types.

5.2.1 Four price simulations

The simulated price series in the four scenarios (S1–S4) are presented in Figure 3. All four

time series are started from the same initial price x0 = 3 and we assume deterministic

dividends dt = d = 0.6 for all t in order to focus on the underlying dynamics. The four

scenarios correspond to: heterogeneity among the 500 fundamental types with gh = 0 due to

bias bh which is linearly-spaced on the interval [−0.2, 0.2] and predictor costs Ch = 1− |bh|
for such types (S1); the same setting as S1 except that heterogeneity is increased such that

bh ∈ [−0.4, 0.4] (S2); the same setting as S1 except that the intensity of choice is increased

from β = 3 to β = 4.5 (S3); and the same setting as S3 except that chartists are also

heterogeneous with gh drawn from a uniform distribution on the interval (1, 1.4).

We see that the price paths in these cases are quite different even though the additional

heterogeneities are fairly small. In Scenario 1 (Figure 3, top left), we see that if short-

selling constraints are absent, then the price quickly falls towards its fundamental value and

then slowly converges on a non-fundamental steady state x < 0 (black line). Under an

alternative uptick rule, by comparison, the initial drop in price is halted because the short-

selling constraint binds; the price then oscillates around this higher value before converging

on a non-fundamental steady state with x > 0. Thus, the alternative uptick rule leads to a

different long run outcome and convergence to quite a different steady state – in this case

one where the asset is somewhat overvalued. In Scenario 2, only the degree of bias among

fundamentalists is increased, but this is enough to ensure that price converges on the same

non-fundamental steady state in both cases (top right). Thus, long run price implications of

the alternative uptick rule are absent in this case, though in the short run the drop in price

is less severe and price stays higher under the alternative uptick rule (dashed line).

In Scenario 3 (bottom left), the intensity of choice β is set at 4.5 rather than at 3, and this

is the only difference relative to Scenario 1. In this case the dynamics settle on permanent

price oscillations. However, the short run price dynamics under an alternative uptick rule are

quite different, with an initial price spike after the short-selling constraint first binds, which

arises because the short-selling constraint binds on many types simultaneously. Lastly, in

Scenario 4, heterogeneity in chartists is added on top of Scenario 3. In this case the reversal

in price under an alternative uptick rule is reinforced by trend-following into a permanent

price ‘bubble’ where the asset price diverges to +∞. By comparison, price converges on a

non-fundamental steady state x < 0 when short-selling constraints are absent, and hence

the explosive price dynamics can be attributed to the short-selling regulation.

17All other parameters are the same as in the previous section, so aσ2 = 1, d = 0.6, r = 0.1 and Z = 0.1.
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Figure 3: Simulated price series in four scenarios from an initial value x0 = 3.

Computation speed and accuracy. To give an idea of computation speed and accuracy,

Table 2 reports simulation times for Scenario 3 when the simulation length is 500 periods

and the number of types increased from H = 1, 000 to H = 10, 000 and then to H = 50, 000.

We simulate with stochastic dividend shocks dt = d + ϵt and allow the coefficient κ to also

take on the value of κ = 0 (original uptick rule), so that short-selling constraints bind more

frequently.18 We also include a measure of accuracy based on the absolute difference between

demand and supply at the computed price, i.e. Errort := |
∑

h∈H nt,hzt,h − Z|.
The results show that the solution algorithm is fast and accurate. The final column

confirms that excess demand is essentially zero in all simulations, and the accuracy here is

similar to when short-selling constraints are absent (top rows), in which case the standard

analytical solution xt = (1 + r)−1
∑

h∈H nt,hÊt,h [xt+1] is used to compute the price and the

simulation error. Simulation times are below one second in all cases, increase with the

number of types H, and are higher under the original uptick rule (where κ = 0), since this

18Dividend shocks ϵt are drawn from a truncated-normal distribution with mean zero, standard deviation
σd = 0.01 and support [−d, d]. We use the same draws of shocks in each simulation in Table 2. Simulations
were run in Matlab 2020a (Windows version) on a Viglen Genie desktop PC with Intel(R) Core(TM) i5-4570
CPU 3.20GHz processor and 8GB of RAM.
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Table 2: Computation times and accuracy in Scenario 3

No. of types Regime Time (s) Bind freq. max(Errort)

No short-sell constraints 0.02 - 2.4e-14
H = 1, 000 Alt. uptick rule: κ = 0.1 0.03 1/500 3.2e-14

Orig. uptick rule: κ = 0 0.05 34/500 4.8e-14

No short-sell constraints 0.17 - 2.3e-13
H = 10, 000 Alt. uptick: κ = 0.1 0.18 1/500 6.3e-13

Orig. uptick: κ = 0 0.25 43/500 3.0e-13

No short-sell constraints 0.82 - 1.2e-12
H = 50, 000 Alt. uptick: κ = 0.1 0.84 1/500 2.3e-12

Orig. uptick: κ = 0 0.94 36/500 1.8e-12

Notes: Simulation length T = 500 periods. max(Errort) = max{Error1, ..., ErrorT }, where we
define the date t simulation error as Errort = |

∑
h∈H nt,hzt,h − Z|.

causes the short-selling constraint to bind in a much larger number of periods, as shown in

the fourth column.19 Even when the short-selling constraint binds much more frequently,

computation times do not increase much and accuracy of the solution is preserved.

5.2.2 Distributional implications

We now consider some distributional effects of an alternative uptick rule. Recall that the

evolution of wealth of type h is wt+1,h = (pt+1 + dt+1)zt,h + (1 + r)(wt,h − ptzt,h), such that

an alternative uptick rule will affect wealth distribution though its impact on price and

demands zt,h. Further, note that if the short-selling constraint binds on type h at date t,

then zt,h = 0 and hence their wealth evolves as wt+1,h = (1 + r)wt,h. By being out of the

market in period t, type h foregoes potential returns but also avoids the possibility of losses;

hence the overall implications for their wealth will depend on whether they would have on

average made returns or losses in the absence of an alternative uptick rule.

We stick with the same four scenarios as in Figure 3 but we focus on a measure of wealth

inequality across different types.20 In particular, we plot the Gini coefficient of the wealth

distribution across investor types at each date t. We assume all investor types have equal

initial wealth, which we set equal to 50. The results are shown in Figure 4.

An alternative uptick rule has mixed effects on wealth inequality across types. In Scenario

1 (Figure 4, top left), the Gini coefficient initially increases and then settles, but there is a

smaller increase in inequality if the alternative uptick rule is present because price does not

19Recall that κ = 0.1 implies that the short-selling constraint is not present in period t unless the price
fell by 10% or more in the previous period. For κ = 0, the short-selling constraint will be present following
any previous fall in price (regardless of the magnitude), and short-selling is permitted only on an uptick.

20That is, we do not describe the wealth distribution of the population, but rather differentials in wealth
due to differences in performance of different forecasting strategies.
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Figure 4: Simulated Gini coefficient of wealth in Scenarios 1 to 4.

fall sharply for several periods (see Figure 3, top left), which benefits fundamental types at

the expense of chartist types. Such redistribution is smaller and more gradual under the

alternative uptick rule because the fall in asset prices is smaller and, since price stabilizes,

inequality remains lower in the long run. The dynamics are similar in Scenario 2 (top right)

because the price paths are quite similar to those in Scenario 1.

In Scenario 3, wealth inequality is initially muted under an alternative uptick rule because

price rises rather than falls (Figure 3, bottom left). However, this initial period is followed by

a severe drop in price, such that more fundamental types outperform more chartist types, and

wealth inequality increases before stabilizing (see Figure 4, bottom left). As a result, wealth

inequality across types is initially lower under an alternative uptick rule but ends up higher

in the long run. Finally, in Scenario 4 (Figure 4, bottom right), wealth inequality across

types is initially lower under an alternative uptick rule since the initial period of falling prices

is ended as in Scenario 1 (Figure 3, bottom right). However, because price then explodes,

chartist types earn profits and fundamental types make losses, such that wealth inequality

across types increases dramatically and the Gini coefficient is around 0.8 by period 30.21

21The ‘kink’ in period 26 arises because we assume that types that hit negative wealth (in this case more
fundamental types) have it reset to zero, and period 26 is the first period in which this rule is triggered.
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To better understand the wealth dynamics in Scenario 4, Figure 5 plots the wealth distri-

bution across types in periods t = 3, t = 6 and t = 24 under both unrestricted short-selling

(top panel) and an alternative uptick rule (bottom panel). We see that wealth inequalities

appear rather quickly under unrestricted short-selling, but not under an alternative uptick

rule where the initial fall in price is halted. However, as time increases, the price bubble

under the alternative uptick rule soon leads to much greater inequality than if short-selling

constraints are absent, and by period 24 an extremely large number of types have wealth

levels that are a small fraction of the highest wealth type. These results are consistent with

the rapid and sustained increase in the Gini coefficient that is observed in Figure 4.

Figure 5: Simulated wealth distribution across types in Scenario 4

6 Conclusion

This paper has studied asset pricing in dynamic, behavioural heterogeneous-belief models

with short-selling constraints and many belief types. Our results provide analytical expres-

sions for asset prices along with conditions on beliefs such that short-selling constraints

bind on different types, allowing us to construct computationally-efficient solution algo-

rithms. The analysis is built around a version of the Brock and Hommes (1998) model with

short-selling constraints and admits a wide range of beliefs; we also presented extensions for

conditional short-selling constraints, multiple risky assets, and pricing by a market-maker.

The utility of these results was illustrated using examples and a numerical application
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that studied an alternative uptick rule, as currently in place in the United States, in a market

with a large number of belief types in evolutionary competition. The results highlight a com-

plicated relationship between the design of short-selling regulations and their implications

for asset price stabilization, as judged by mispricing relative to fundamentals. We also saw

that belief heterogeneity can affect the impact of short-selling constraints on price stability,

and that such regulations can have non-trivial distributional (wealth) implications.

There are several promising avenues for future research. First, it would be of interest

to investigate whether adding short-selling restrictions in models with many belief types

improves the ability of models to reproduce empirical stylized facts, especially during times

of market turmoil, when such constraints are more likely to be active. In a similar vein, it may

be feasible to estimate such models in order to evaluate the relative empirical contribution of

adding short-selling restrictions. Second, from a policy perspective, there has been interest

in whether short-selling restrictions lead to mispricing and might cause or exacerbate price

bubbles, both in the context of financial markets and other important asset classes such

as housing (Shiller, 2015; Fabozzi et al., 2020). The main focus has been price volatility,

but it would also be of interest to investigate the distributional implications of short-selling

restrictions for income and wealth inequality in models with many agents.

Finally, from a technical perspective, there are some modelling specifications of interest

which are not covered by the results presented in this paper. For instance, one could confront

a large number of investor types with additional restrictions such as a leverage constraint

(see in’t Veld, 2016), the elimination of investors who hit low or negative wealth, or margin

calls that prevent a short position being maintained in future periods. These approaches

might have important implications not just for the price effects of short-selling restrictions,

but also their distributional implications that have received little attention so far.
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Appendix

Proof of Proposition 1

A unique market-clearing price exists by Proposition 2.1 in Anufriev and Tuinstra (2013).

Case 1: Short-selling constraint is slack for all h ∈ H

Let us guess that zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)pt) ≥ 0 ∀h ∈ H, which implies

by the market-clearing condition
∑

h∈H nt,hzt,h = Z that pt = p∗t :=
∑

h∈H nt,hft,h
1+r

. The

guess is verified if and only if ft,h + aσ2Z − (1 + r)p∗t ≥ 0 ∀h ∈ H, which amounts to∑
h∈H nt,hft,h ≤ min

h∈H
{ft,h} + aσ2Z. Given

∑
h∈H nt,h = 1, the above inequality simplifies to∑

h∈H nt,h(ft,h −min
h∈H

{ft,h}) ≤ aσ2Z, as stated in Proposition 1.

Case 2: Short-selling constraint slack for all h ∈ B∗
t and binds for all h ∈ H \ B∗

t

Let us guess that zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)pt) ≥ 0 ∀h ∈ B∗
t and zt,h = 0

∀h ∈ H \ B∗
t := S∗

t , where B∗
t ⊂ H is the set of investor types for which the short-

selling constraint is slack, and S∗
t is the set of all other types. Clearly, the above condi-

tions imply that minh∈B∗
t
{ft,h} > maxh∈S∗

t
{ft,h}. Under the above guess,

∑
h∈H nt,hzt,h =∑

h∈B∗
t
nt,hzt,h and hence the market-clearing condition is

∑
h∈B∗

t
nt,hzt,h = Z, which gives

pt =
∑

h∈B∗
t
nt,hft,h−(1−

∑
h∈B∗

t
nt,h)aσ

2Z

(1+r)
∑

h∈B∗
t
nt,h

:= p
B∗
t

t . The guess is verified if and only if ft,h + aσ2Z −

(1 + r)p
B∗
t

t ≥ 0 ∀h ∈ B∗
t and ft,h + aσ2Z − (1 + r)p

B∗
t

t < 0 ∀h ∈ S∗
t , i.e. iff (ft,h +

aσ2Z)
∑

h∈B∗
t
nt,h ≥ (<)

∑
h∈B∗

t
nt,hft,h − (1 −

∑
h∈B∗

t
nt,h)aσ

2Z ∀h ∈ B∗
t (∀h ∈ S∗

t ), which

simplify to
∑

h∈B∗
t
nt,h(ft,h −minh∈B∗

t
{ft,h}) ≤ aσ2Z <

∑
h∈B∗

t
nt,h(ft,h −maxh∈S∗

t
{ft,h}).

It remains to show p
B∗
t

t > p∗t =
∑

h∈H nt,hft,h
1+r

, where p∗t is the price if short-selling constraints

are absent. Note (1 + r)(p
B∗
t

t − p∗t ) = (1 − 1∑
h∈B∗

t
nt,h

)aσ2Z +

∑
h∈B∗

t
nt,hft,h∑

h∈B∗
t
nt,h

−
∑

h∈H nt,hft,h and∑
h∈B∗

t
nt,h = 1−

∑
h∈S∗

t
nt,h. Since

∑
h∈H nt,hft,h =

∑
h∈B∗

t
nt,hft,h+

∑
h∈S∗

t
nt,hft,h, we obtain:

(1 + r)(p
B∗
t

t − p∗t ) = (
∑
h∈S∗

t

nt,h)

[∑
h∈B∗

t
nt,hft,h − aσ2Z∑
h∈B∗

t
nt,h

−
∑

h∈S∗
t
nt,hft,h∑

h∈S∗
t
nt,h

]
> 0

where
∑
h∈S∗

t

nt,h∑
h∈S∗

t
nt,h

ft,h ≤ max
h∈S∗

t

{ft,h} and

∑
h∈B∗

t

nt,hft,h−aσ2Z∑
h∈B∗

t

nt,h
> max

h∈S∗
t

{ft,h} is implied by the

condition
∑

h∈B∗
t
nt,h(ft,h −maxh∈S∗

t
{ft,h}) > aσ2Z above. ■
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Proof of Corollary 1

The first ‘if’ statement follows from Proposition 1 as
∑H̃t

h=2 nt,h(ft,h − ft,1) ≤ aσ2Z is equiv-

alent to
∑

h∈H nt,h(ft,h −minh∈H{ft,h}) ≤ aσ2Z. The other cases follow as there are H̃t − 1

candidates for B∗
t ,S∗

t , i.e. St = {1},Bt = {2, .., H̃t−1}; St = {1, 2},Bt = {3, .., H̃t−1};...St =

{1, ..., H̃t − 1},Bt = {H̃t}. For arbitrary non-empty sets St = {1, ..., k}, Bt = {k+1, ..., H̃t},
where k ∈ {1, .., H̃t − 1}, by market-clearing pt =

∑
h>k nt,hft,h−[

∑k
h=1 nt,h]aσ2Z

(1−
∑k

h=1 nt,h)(1+r)
:= p

(k)
t and by

Proposition 1 the guess is verified iff dispt,k+1 ≤ aσ2Z < dispt,k. Note that p
(k∗)
t > p∗t =∑H̃t

h=1 nt,hft,h
1+r

for any k∗ ∈ {1, ..., H̃t − 1} and B∗
t ,S∗

t is shown in the Proposition 1 proof.

It remains to show p∗t < p
(k−1)
t < p

(k)
t < p

(k∗)
t ∀k < k∗. If k∗ = 1 there is nothing to show,

and k∗ = 2 is nested for k∗ > 2, so let k∗ ≥ 3. Note p
(1)
t solves

∑
h>1 nt,h(ft,h + aσ2z − (1 +

r)p
(1)
t ) = aσ2Z and p∗t solves aσ2Z =

∑
h>1 nt,h(ft,h + aσ2z − (1 + r)p∗t ) + nt,1(ft,1 + aσ2z −

(1 + r)p∗t ), where the last term is < 0 since p∗t is not verified. So p
(1)
t > p∗t . Note p

(2)
t solves∑

h>2 nt,h(ft,h + aσ2z − (1 + r)p
(2)
t ) = aσ2Z and p

(1)
t solves aσ2Z =

∑
h>2 nt,h(ft,h + aσ2z −

(1+r)p
(1)
t )+nt,2(ft,2+aσ2z− (1+r)p

(1)
t ), where the last term is < 0 since p

(1)
t is not verified.

So p
(2)
t > p

(1)
t . Inductive arguments give p

(k−1)
t < p

(k)
t < p

(k∗)
t ∀k < k∗. ■

Proof of Proposition 2

Case 1: Short-selling constraint is slack for all h ∈ H

Let us guess that zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)pt) ≥ 0 ∀h ∈ H, which implies by the

price equation that pt =
pt−1+

µλ

aσ2

∑
h∈H nt,hft,h+µ(1−λ)(Zt−1−Z)

1+µλ(1+r)(aσ2)−1 := p∗t . The guess is verified if and

only if ft,h+aσ2Z−(1+r)p∗t ≥ 0 ∀h ∈ H, which requires
(

1
1+r

+ µλ
aσ2

)
(aσ2Z+minh∈H{ft,h}) ≥

pt−1 +
µλ
aσ2

∑
h∈H nt,hft,h + µ(1− λ)(Zt−1 −Z), giving the inequality in Proposition 2 Part 1.

Case 2(i): Short-selling constraint slack for all h ∈ B∗
t and binds for all h ∈ H \B∗

t

Let us guess zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)pt) ≥ 0 ∀h ∈ B∗
t and zt,h = 0 ∀h ∈ S∗

t =

H \ B∗
t , so pt =

pt−1+
µλ

aσ2

∑
h∈B∗

t
nt,hft,h+µ[(1−λ)Zt−1−(1−λ

∑
h∈B∗

t
nt,h)Z]

1+µλ(1+r)(aσ2)−1
∑

h∈B∗
t
nt,h

. The guess is verified iff

ft,h + aσ2Z − (1 + r)pt ≥ 0 ∀h ∈ B∗
t and ft,h + aσ2Z − (1 + r)pt < 0 ∀h ∈ S∗

t , which requires

( 1
1+r

+ µλ(aσ2)−1
∑

h∈B∗
t
nt,h)(aσ

2Z + ft,h) ≥ pt−1 +
µλ
aσ2

∑
h∈H nt,hft,h + µ[(1− λ)Zt−1 − (1−

λ
∑

h∈B∗
t
nt,h)Z] ≥ 0 (< 0) ∀h ∈ B∗

t (∀h ∈ S∗
t ), giving the inequality in Proposition 2(i).

Case 2(ii): Short-selling constraint binds for all h ∈ H

Let us guess zt,h = 0 ∀h ∈ H, which implies that pt = pt−1 + µ[(1− λ)Zt−1 − Z]. The guess

is verified if and only if ft,h + aσ2Z − (1 + r)pt < 0 ∀h ∈ H, i.e. iff maxh∈H{ft,h}+ aσ2Z <

(1 + r)(pt−1 + µ[(1− λ)Zt−1 − Z]), which is the inequality in Proposition 2 Part 2(ii). ■
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