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Abstract—Hybrid precoder and combiner designs are con-
ceived for decentralized parameter estimation in millimeter
wave (mmWave) multiple-input multiple-output (MIMO) wireless
sensor networks (WSNs). More explicitly, efficient pre- and post-
processing of the sensor observations and received signal are pro-
posed for the minimum mean square error (MMSE) estimation of
a parameter vector. The proposed techniques exploit the limited
scattering nature of the mmWave MIMO channel for formulating
the hybrid transceiver design framework as a multiple mea-
surement vectors (MMV)-based sparse signal recovery problem.
This is then solved using the iterative appealingly low-complexity
simultaneous orthogonal matching pursuit (SOMP). Tailor-made
designs are presented for WSNs operating under both total and
per-sensor power constraints, while considering ideal noiseless as
well as realistic noisy sensors. Furthermore, both the Bayesian
Cramer-Rao lower bound and the centralized MMSE bound are
derived for benchmarking the proposed decentralized estimation
schemes. Our simulation results demonstrate the efficiency of the
designs advocated and verify the analytical findings.

Index Terms—Hybrid transceiver design, mmWave MIMO,
wireless sensor networks, majorization theory, decentralized
parameter estimation

I. INTRODUCTION

Recent advances in massive Machine-Type Communication
(mMTC) and low cost of sensors have opened new opportuni-
ties for deploying large scale wireless sensor networks (WSNs)
[1]. This has ushered in a new era and paved the way for
compelling applications, such as the Internet of Things (IoT)
[2] [3]. This in turn enables various applications of substantial
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socio-economic value, such as health care [4], agriculture
[5], defence [6], smart cities [7], smart grids [8], vehicle-
to-everything (V2X) communication [9], among others. In
a typical WSN that performs decentralized estimation [10],
[11], [12] the constituent low-power sensors precode the
observations followed by transmission to a fusion center (FC)
over a coherent multiple access channel (MAC). The FC sub-
sequently processes the received data for generating reliable
estimates of the multiple parameters under consideration. In
contrast, centralized estimation refers to the scenario when all
the sensor measurements are available directly at the FC with-
out any distortion. Naturally, the estimation accuracy in WSNs
is generally degraded by both the measurement/observation
noise at the sensors, as well as by the fading nature of the
wireless channel and also by the ubiquitous thermal noise of
the communication circuitry at the FC. Therefore, conceiving
powerful precoder/combiner designs capable of exploiting the
multiplexing and diversity gains of the multiple-input multiple-
output (MIMO) WSN is of crucial importance for achieving
reliable estimates of the parameters. Unfortunately, the mas-
sive connectivity required by the large number of sensors in a
large-scale IoT deployment further exacerbates the spectrum
crunch in the over-crowded sub-6 GHz band. This motivates
leveraging the less congested, but higher path loss spectrum
beyond the current sub-6 GHz bands.

Millimeter wave (mmWave) wireless technology, which
exploits the abundant spectrum available in the mmWave band
(30-300 GHz), can help realize the dual goals of massive con-
nectivity and high data rates necessary to support WSNs [13],
[14], [15]. However, communication in the mmWave band
is challenging due to its high propagation losses and severe
signal blockage [16], [17]. In such a scenario, multiple antenna
technology can be leveraged to overcome these barriers, which
is especially convenient in mmWave frequency bands owing to
the short wavelength that supports the fabrication and integra-
tion of a very large number of antennas in compact devices.
However, it must be noted that the large number of antennas at
both ends necessitates a large number of radio-frequency (RF)
chains, since the conventional baseband transceiver architec-
ture requires an individual RF chain for each antenna. This
leads to unsustainably high power consumption, especially by
the analog-to-digital converters (ADCs) [18] that are required
to operate at high sampling rates due to the high bandwidth
of signals in the mmWave frequency bands. To overcome
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this problem, the hybrid RF-baseband transceiver architecture,
proposed in the pioneering contributions [19], [20] offers an
excellent solution for the practical realization of mmWave
MIMO systems. Hence, we focus our attention on designing
novel hybrid precoder/combiner designs for decentralized pa-
rameter vector estimation in mmWave MIMO WSNs. Next
we discuss other novel contributions on linear decentralized
estimation.

A. State-of-the-Art in Transceiver Designs for WSNs

The popular model of linear decentralized estimation has
been developed in the seminal works in [10], [11] and [21].
However, the signal processing techniques proposed therein
are unsuitable in mmWave MIMO-based WSNs, given the
specific nature of signal processing at mmWave frequencies.
Specifically, for mmWave MIMO systems, analog beamform-
ing [17] is a compellingly low-complexity, low-power tech-
nique. However, its impediment is that it does not readily
support multi-stream transmission, which is critical for the
simultaneous estimation of multiple parameters. As a remedy,
hybrid beamforming techniques have been proposed in [20],
which simultaneously support both spatial multiplexing and
transmission of multiple streams in mmWave MIMO systems.
The hybrid transceiver employed in such systems is comprised
of an RF precoder consisting of a digitally controlled network
of phase shifters and a baseband precoder relying on a digital
signal processor (DSP). Similarly, the hybrid combiner at the
receiver is comprised of an analog RF combiner in cascade
with a digital baseband combiner. For designing the hybrid
transceiver components, Ayach et al. [20] proposed an inter-
esting hybrid transmit precoder (TPC)/ receive combiner (RC)
design for mutual information maximization in a point-to-point
mmWave MIMO system. The conventional fully-digital opti-
mal precoder obtained therein is the right singular matrix of the
mmWave MIMO channel matrix. The authors then decompose
the fully-digital TPC into its RF and baseband components
using the low-complexity simultaneous orthogonal matching
pursuit (SOMP) algorithm incorporating the properties of the
mmWave channel model. However, in a coherent MAC-based
mmWave MIMO WSN, the design of the fully-digital TPC
is a non-trivial problem. Yu et al. [22] formulated the hybrid
precoder design paradigm as a matrix factorization problem,
and developed an alternating minimization (Altmin) algorithm
for solving it. The iterative algorithm presented therein has
a significantly higher complexity and does not exploit the
specific properties of the mmWave MIMO channel. Gong
et al. [23] proposed hybrid transceiver designs based on
majorization-minimization (MM) method. The other various
hybrid precoder and combiner designs for cellular mmWave
MIMO systems are described in works such as [24]–[28].
Furthermore, Wang et al. [29] addressed the security aspect
and designed a hybrid precoder for securing broadcast commu-
nications in mmWave IoT networks. Hybrid beamforming was
also considered by Chae et al. [30] for simultaneous wireless
information and power transfer (SWIPT) based IoT sensor
networks where the nodes were considered working only in
half-duplex mode. However, authors therein have not exploited

the properties of the mmWave MIMO channel and considered
a single antenna at the FC for scalar parameter estimation,
hence they were unable to glean any multiplexing gain for im-
proving the estimation accuracy. Zhao et al. [31] also proposed
a hybrid precoding scheme for SWIPT based IoT nodes in a
Rayleigh fading channel working in full-duplex mode. Lie et
al. [32] presented a hybrid TPC design based on the alternating
direction method of multipliers (ADMM) for the maximization
of mutual information in an orthogonal MAC. However, the
estimation accuracy in a WSN is best quantized in terms
of the mean square error (MSE) of parameter estimation,
which cannot be represented by a mutual information based
objective function. The authors of [33] presented a MMSE-
based transceiver optimization procedure for multi-user MIMO
systems, where the optimal TPCs are obtained by minimizing
the sum MSE subject to a constraint on the total power of all
the users. However, it must be noted that their scheme cannot
be used in WSNs since the system model of a MIMO WSN
is substantially different to that of a multi user MIMO cellular
system. In an uplink multi-user MIMO system, each user trans-
mits its data symbol to the base station, which is independent
of the data symbols of the other users. Therefore, the data
transmitted from the kth user suffers from interference arising
due to the other co-channel users. By contrast, in a WSN,
all the sensors simultaneously observe correlated versions of
the same parameter. Thus, the observation vectors transmitted
from the sensors are correlated and noisy versions of the
parameter have to be estimated. Moreover, it can be readily
inferred from [33] that in a multi-user MIMO system, the
TPCs

{
Tk

}K
k=1

corresponding to the K users are decoupled
in the sum-MSE expression. However, in the corresponding
sum-MSE expression of the MIMO WSN, the TPCs {Fk}Kk=1

corresponding to the K sensors are coupled, as will be seen in
Section III. This necessitates a completely different algorithm
for the design of the TPCs, which is described in our paper.
Authors in [34] have proposed ADMM-based iterative hybrid
transceiver designs in MIMO WSNs. However, the work
does not exploit the mmWave channel sparsity for hybrid
transceiver designs. Rajput et al. [35] have proposed hybrid
precoder designs for scalar parameter estimation in mmWave
MIMO WSNs. However, to the best of our knowledge, none of
the existing contributions have developed a hybrid transceiver
design taking into account the associated power constraints of
the parameter vector estimation problem of a mmWave hybrid
MIMO WSN, which is hence the objective of this treatise. The
contributions of this work are described in the next section.
Furthermore, the novel aspects of this paper are boldly and
explicitly contrasted to the existing literature in Table I.

B. Our Contributions

• Novel TPC/ RC designs are developed for decentralized
parameter vector estimation in mmWave MIMO WSNs.
Our hybrid analog-digital transceiver designs are first de-
signed for a scenario associated with noisy measurements
under a given total power budget. Subsequently, hybrid
TPCs are designed for a mmWave hybrid MIMO WSN
subject to individual power constraints at the constituent
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TABLE I: Boldly contrasting our new contributions against the state-of-the-art

Attribute [20], [21], [24], [25] [22] [28] [29], [30] [31] [33] [34] Proposed
mmWave MIMO WSN X X X X X
Decentralized Estimation X X X X X
Coherent MAC X X X X
Vector Parameter Estimation X X X
Hybrid Transceiver Design X X X X X X
Closed-form Solution X X X X X X
MSE-optimal X X X X
Total Power Budget X X X
Individual Sensor Power Constraints X X X X X

sensors, which are suitable for applications where each
sensor has a stringent power budget due to its limited
battery charge.

• Closed-form expressions are derived for the optimal fully-
digital TPCs using majorizaton theory. Subsequently, the
hybrid baseband and RF TPC components are designed
using SOMP.

• For parameter estimation at the FC, both a fully-digital
RC, and its baseband and RF components are derived by
minimizing the MSE using the classic linear minimum
mean square error (LMMSE) framework.

• Both, the Bayesian Cramer-Rao bound (BCRB) and the
centralized MMSE bound are derived for benchmarking
the MSE performance of parameter estimation in the
proposed designs relying on noiseless and noisy sensor
observations, respectively.

• Our simulation results confirm that the proposed schemes
perform close to the fully-digital designs having as many
RF chains as the number of antennas, and they approach
the centralized MMSE lower bound at high signal-to-
noise ratio (SNR), hence illustrating their efficiency.

C. Outline of the paper

The rest of the paper is outlined as follows. Section II
discusses the mmWave hybrid MIMO WSN system model
and the mmWave MIMO channel model of linear decentralized
parameter estimation. Section III presents MSE-optimal hybrid
TPC/ RC designs, initially under a total power budget and
individual sensor power constraints. Our simulation results
are discussed in Section V, and we conclude in Section VI.
For maintaining seamless flow, the proofs of the various
propositions are relegated to the Appendices.

Notation: Small and capital boldface letters z and Z have
been used to represent vectors and matrices, respectively. ()T ,
()H and ()† denote transpose, Hermitian transpose and pseudo-
inverse operations respectively; Furthermore, the (i, j)th ele-
ment of a matrix Z is denoted by Z(i, j); A block diagonal ma-
trix is denoted by blkdiag(Z1,Z2, . . . ,ZL) where the matrices
Z1, Z2 upto ZL are on its principal diagonal; Furthermore,
diag (Z) and λ (Z) denote the vector of diagonal elements and
vector of eigenvalues of a matrix Z respectively; λk (Z) and
σk (Z) represent the kth eigenvalue and kth singular value of
the matrix Z, respectively; The column-space and row-space
of matrix Z are denoted by C(Z) and R(Z), respectively;

The operator (z)
+ denotes max {z, 0}; CN (0, 1) denotes a

standard complex normal distributed random variable with
mean 0 and variance 1.

II. MMWAVE HYBRID MIMO WSN SYSTEM MODEL

This section describes the mmWave hybrid MIMO WSN
system model and the mmWave MIMO channel model of
linear decentralized estimation.

A. mmWave MIMO WSN Model

The mmWave WSN, as depicted in Fig. 1, consists of K
sensors each having NT antennas, and Ns

RF RF chains and a
FC equipped with NR antennas and NFC

RF RF chains, where
NFC

RF � NR and Ns
RF � NT . Each sensor simultaneously

senses the common parameter vector θ ∈ Cm×1, where θ ∼
CN (0,Rθ). The observations xk ∈ Cqk×1 at the kth sensor
can be modelled as

xk = Mkθ + nk. (1)

The quantity Mk ∈ Cqk×m denotes the measurement ma-
trix of the kth sensor, while qk represents the number of
measurements sensed by the kth sensor. Here nk ∈ Cqk×1
represents the circularly symmetric complex additive Gaussian
observation noise at the kth sensor with zero mean and
covariance matrix Rn,k ∈ Cqk×qk .

As per the hybrid TPC scheme, the observation vector is
precoded initially by the baseband TPC FBB,k ∈ CNs

RF×qk

followed with the RF TPC FRF,k ∈ CNT×Ns
RF of the kth

sensor. The RF TPC is realized exclusively using equal-
gain phase shifters, and performs analog processing in the
RF domain to achieve a beamforming gain. Therefore, the
magnitudes of the elements of RF TPC can be constrained as
|FRF,k(s, t)| = 1√

NT
. The mmWave MIMO channel between

the kth sensor and the FC is denoted by Gk ∈ CNR×NT .
Thus, the signal received by the FC can be expressed as

y =

K∑
k=1

GkFRF,kFBB,kxk + v

=

K∑
k=1

GkFRF,kFBB,kMkθ +

K∑
k=1

GkFRF,kFBB,knk + v

= GFMθ + GFn + v, (2)
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Fig. 1: Coherent MAC based mmWave MIMO WSN system model

where v ∈ CNR×1 is the FC noise, which is distributed as v ∼
CN (0,Rv), where Rv = σ2

vINR
. The stacked observation

matrix M ∈ Cq×m, and the concatenated channel matrix G ∈
CNR×KNT across the sensors, are defined as

M =
[
MT

1 ,M
T
2 , · · · ,MT

K

]T
,G = [G1,G2, · · · ,GK ] ,

(3)

where
∑K
k=1 qk = q. The block-diagonal hybrid TPC F ∈

CKNT×q is given by

F = FRFFBB, (4)

where FRF ∈ CKNT×KNs
RF is the block-diagonal RF TPC and

FBB ∈ CKNs
RF×q is the block-diagonal baseband TPC, which

are defined as

FRF = blkdiag(FRF,1,FRF,2, · · · ,FRF,K), (5)
FBB = blkdiag(FBB,1,FBB,2, · · · ,FBB,K). (6)

Furthermore, the covariance matrix Rn ∈ Cq×q of the con-
catenated observation noise vector n = [nT1 ,n

T
2 , · · · ,nTK ]T ∈

Cq×1 is given by

Rn = blkdiag(Rn,1,Rn,2, · · · ,Rn,K). (7)

The parameter estimate θ̂ ∈ Cm×1 at the FC of the unknown
parameter θ is obtained using the hybrid RC denoted by W,
which can be decomposed as W = WRFWBB, where WRF ∈
CNR×NFC

RF is the RF RC and WBB ∈ CNFC
RF×m is the baseband

RC. The equivalent system model can be compactly written
as shown in (8). The covariance matrix E ∈ Cm×m of the
estimation error of parameter θ is defined as

E = E
{(
θ̂ − θ

)(
θ̂ − θ

)H}
, (9)

whereas the MSE at the FC is given by

MSE = Tr (E) . (10)

Furthermore, the total transmit power of all the sensors may
be formulated as

E
{
||Fx||22

}
= Tr

(
F
(
MMH + Rn

)
FH
)
. (11)

Cluster 2

Cluster 1

Sensor 1

Sensor 2

Fusion
 CenterNR

φ 1,1

ϕ 1
NT

φ 1,2

ϕ 2

Fig. 2: Spatial channel model for the mmWave MIMO
system

The relevant mmWave MIMO channel model is presented in
the next subsection.

B. mmWave MIMO Channel Model

The mmWave MIMO channel Gk between the FC and the
kth sensor is modelled using the spatial channel model of [36]
having L multipath components formulated as

Gk =

√
NRNT
L

L∑
n=1

αn,kaR(φn)a
H
T (ϕn,k), (12)

where the 3-tuple (αn,k, φn, ϕn,k) denotes the complex gain
αn,k, the angle of arrival (AoA) φn at the FC and angle of
departure (AoD) ϕn,k at the kth sensor associated with the
nth cluster. The spatial channel model of the mmWave MIMO
WSN is presented in Fig. 2. Upon considering uniform linear
arrays (ULAs) at the receiver and transmitters, the receive
array response vector aR(φn) ∈ CNR×1 and transmit array
response vectors aT (ϕn,k) ∈ CNT×1 are given by

aR(φn) =
1√
NR

[
1, e−jφ̃n , ..., e−j(NR−1)φ̃n

]T
, (13)
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aT (ϕn,k) =
1√
NT

[
1, e−jϕ̃n,k , ..., e−j(NT−1)ϕ̃n,k

]T
, (14)

where φ̃n = 2π
λ dRcos(φn) and ϕ̃n,k = 2π

λ dT cos(ϕn,k). The
quantities λ, dR and dT denote the carrier wavelength, and the
inter-antenna spacings at the FC and each sensor, respectively.
The mmWave MIMO channel Gk can now be expressed in
the compact form of:

Gk = ARDkA
H
T,k, (15)

where Dk =
√

NRNT

L diag(α1,k, α2,k, ..., αL,k) ∈ CL×L is
a diagonal matrix containing the path gains of the channel
on its principal diagonal. The quantities AT,k ∈ CNT×L,
AR ∈ CNR×L denote the transmit and receive array response
matrices, respectively, which are given by

AT,k = [aT (ϕ1,k),aT (ϕ2,k), ...,aT (ϕL,k)] , (16)
AR = [aR(φ1),aR(φ2), ...,aR(φL)] . (17)

The concatenated mmWave channel can now be represented
as

G = [G1,G2, · · · ,GK ]

= AR[D1A
H
T,1,D2A

H
T,2, · · · ,DKAH

T,K ]

= ARDÃH
T , (18)

where D = [D1,D2, · · · ,DK ] ∈ CL×KL and ÃH
T =

blkdiag
(
AH
T,1,A

H
T,2, · · · ,AH

T,K

)
∈ CKL×KNt .

The optimization problem of the TPC sensor matrices Fk =
FRF,kFBB,k ∀k can now be formulated by minimizing the
MSE under a given power constraint. The design procedures
of various scenarios are described next.

III. HYBRID MMSE PRECODER/COMBINER DESIGN

In this section, our hybrid TPC is designed for both total
power budget as well as per sensor power constraints and
hybrid RC design of the FC.

A. TPC design under total power budget

For the system having a total power budget across all the
sensors, the fully-digital LMMSE RC W ∈ CNR×m used for
estimating the underlying parameter θ subject to noisy sensor
observations is given by [37],

W =
(
E
{
yyH

})−1 E{yθH
}

=
(
GF

(
MMH + Rn

)
FHGH + σ2

vINR

)−1
GFM

= GF
((

MMH + Rn

)
FHGHGF + σ2

vIq
)−1

M, (19)

where the last step follows using the matrix identity
(I + UAV)

−1
U = U (I + AVU)

−1. The resultant er-
ror covariance matrix is shown in (20). Employing the

Woodbury matrix identity [38] for simplifying the term(
GFRnFHGH + σ2

vINR

)−1
and considering the noise co-

variance matrix Rn = σ2
nIq , the error covariance matrix can

be formulated as shown in (21). Our hybrid TPC design based
on MSE minimization can be formulated as

minimize
{FRF,k,FBB,k}Kk=1

Tr (E)

subject to Tr
(
FRFFBB

(
MMH + σ2

nIq
)
FBB

HFRF
H
)
≤ PT ,

|FRF,k(s, t)| =
1√
NT

, 1 ≤ k ≤ K,

where PT denotes the WSN’s total transmit power budget. The
aforementioned problem is non-convex and intractable owing
to the constant modulus constraint of the RF TPC FRF,k. To
circumvent this, we first design the optimal fully-digital hybrid
TPC given by F = FRFFBB. The resultant hybrid TPC is
then decomposed into its baseband and RF components. The
convex optimization problem of the fully-digital TPC F is thus
formulated as follows

minimize
F

Tr (E)

subject to Tr
(
F
(
MMH + σ2

nIl
)
FH
)
≤ PT .

(22)

The above matrix-based optimization problem in terms of
F can be converted to an equivalent scalar valued convex
optimization problem via majorization theory [39]. Since the
trace of the error covariance matrix E is a Schur-concave
function [40], the MSE cost function value achieves the lower
bound when diag

(
Ẽ
)

= λ
(
Ẽ
)

, and the optimal solution
is obtained when the matrix is diagonalized. Let the singular
value decomposition (SVD) of M be given by UMΣMVH

M .
Also, the eigenvalue decomposition (EVD) of M̃ = MHM
be denoted as V

M̃
Λ
M̃

VH
M̃

, where Λ
M̃
∈ Cm×m is given by

Λ
M̃

= diag
[
λ1(M̃), λ2(M̃), · · ·λm(M̃)

]
. Let the SVD of

the concatenated mmWave MIMO channel G ∈ CNR×KNT

be given as G = UgΣgV
H
g . Furthermore, the EVD of

GHG may be derived as G̃ = GHG = VgΛgV
H
g ,

where Λg ∈ CKNT×KNT is given by Λg = ΣH
g Σg =

diag
[
σ2
1 (G) , σ2

2 (G) , · · · , σ2
KNT

(G)
]
, with the first L non-

zero eigenvalues arranged in decreasing order and σl (G)
denotes the lth singular value. The above decompositions can
be substituted into the expression of the error covariance
matrix E in (21), which allows the final expression to be
simplified to the one shown in (23). From Appendix A,
in order to diagonalize (23), one can choose the following
structure

FUM = V1
gΣ, (24)

θ̂ = WH
BBWH

RF

(
K∑
k=1

GkFRF,kFBB,kMk

)
θ + WH

BBWH
RF

(
K∑
k=1

GkFRF,kFBB,knk

)
+ WH

BBWH
RFv

= WH
BBWH

RFGFMθ + WH
BBWH

RFGFn + WH
BBWH

RFv = WHGFMθ + WHGFn + WHv. (8)
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E =
(
Im + MHFHGH

(
GFRnFHGH + σ2

vINR

)−1
GFM

)−1
. (20)

E =

(
Im + MHR−1n M−MHR−1n

(
1

σ2
v

FHGHGF + R−1n

)−1
R−1n M

)−1

=

(
Im +

1

σ2
n

MHM− 1

σ2
n

MH

(
σ2
n

σ2
v

FHGHGF + Iq

)−1
M

)−1
. (21)

E =

(
VMVH

M +
1

σ2
n

VM

(
ΛM −ΣH

MUH
M

(
σ2
n

σ2
v

FHVgΛgV
H
g F + Iq

)−1
UMΣM

)
VH
M

)−1

=

(
Im +

1

σ2
n

(
ΛM −ΣH

MUH
M

(
σ2
n

σ2
v

FHVgΛgV
H
g F + Iq

)−1
UMΣM

))−1

=

(
Im +

1

σ2
n

ΣH
M

(
Iq −

(
σ2
n

σ2
v

UH
MFHVgΛgV

H
g FUM + UH

MUM

)−1)
ΣM

)−1
. (23)

MSE = Tr

(Im +
1

σ2
n

ΣH
M

(
Iq −

(
σ2
n

σ2
v

ΣHV1
g
H

VgΛgV
H
g V1

gΣ + Iq

)−1)
ΣM

)−1
= Tr

(Im +
1

σ2
n

ΣH
M

(
Iq −

(
σ2
n

σ2
v

ΣHΛ̃gΣ + Iq

)−1)
ΣM

)−1
= Tr

(Im +
1

σ2
n

Σ̃H
M

(
Im −

(
σ2
n

σ2
v

Σ̃HΛ̃gΣ̃ + Im

)−1)
Σ̃M

)−1 . (25)

where we have a diagonal matrix Σ ∈ Rm×m and V1
g is

comprised of the m dominant left singular vectors of Vg .
The error covariance matrix from (23) is now diagonalized
by substituting (24) into (23), and the MSE is given in (25),
where we have:

VH
g V1

g =

[
Im

0(KNT−m)×q

]
, Λ̃g = Λg (1 : m, 1 : m) .

The matrix Σ ∈ Rm×m is given as Σ = [diag (p)]
1
2
m×m

where p = [p1, p2, ..., pm]
T is the power allocation vector.

Thus, the MSE can now be written as

MSE =

m∑
l=1

σ2
v + σ2

nplσ
2
l (G̃)

σ2
v +

(
σ2
n + λl(M̃)

)
plσ2

l (G̃)
. (26)

Substituting the TPC matrix F and using EVD of M̃, the total
transmit power can be expressed as

Tr
(
F
(
MMH + σ2

nIq
)
FH
)

= Tr
(
V1
gΣ
(
ΛH
M̃

+ σ2
nIq

)
ΣH(V1

g)
H
)

=

m∑
l=1

pl

(
λl(M̃) + σ2

n

)
. (27)

Using (26) and (27), the optimization problem of minimizing
the MSE of the estimate of the parameter vector θ subject to
a power constraint can be equivalently formulated as

minimize
p

m∑
l=1

σ2
v + σ2

nplσ
2
l (G̃)

σ2
v +

(
σ2
n + λl(M̃)

)
plσ2

l (G̃)

subject to
m∑
l=1

pl

(
λl(M̃) + σ2

n

)
≤ PT ,

pl ≥ 0, 1 ≤ l ≤ m. (28)

The above problem is convex in terms of the power allocation
vector p. Employing the Karush-Kuhn-Tucker (KKT) condi-
tions [41], the optimal value of pl is obtained as

pl =

(
µ

√
σ2
vλl(M̃)σ2

l (G̃)

(σ2
n+λl(M̃))

− σ2
v

)+

(
σ2
n + λl(M̃)

)
σ2
l (G̃)

, (29)
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where the Lagrangian multiplier µ is given by

µ =
PT +

∑m
l=1

σ2
v

σ2
l (G̃)∑m

l=1

√
σ2
vλl(M̃)

(σ2
n+λl(M̃))σ2

l (G̃)

. (30)

The matrix FUM is obtained by substituting the optimal
values pl into the expression of Σ in (24). The individual
fully-digital TPCs Fk, 1 ≤ k ≤ K, can be determined as

Fk = V1
g,kΣ (UM,k)

†
, (31)

where V1
g,k denotes the sub-matrix of V1

g comprised of the
rows from (k − 1)NT + 1 to kNT , whereas UM,k is the
sub-matrix of UM comprising the rows from

∑k−1
j=1 qj + 1

to
∑k
j=1 qj .

The RF TPC FRF,k and baseband TPC FBB,k can now be
designed from the optimal fully-digital precoder Fk of the kth
sensor as follows

minimize
FRF,k,FBB,k

‖(Fk − FRF,kFBB,k)‖2F

subject to |FRF,k(s, t)| =
1√
NT

,
(32)

where ‖Z‖F denotes the Frobenius norm [20] of the matrix Z.
Due to the constant magnitude problem described earlier, the
problem is non-convex and intractable. However, we can now
implement the ensuing remarks which allows us to simplify
the hybrid TPC design. Please note that our system model
is different from that of cellular mmWave MIMO systems
that employ either point-to-point MIMO or multi-user MIMO
communication systems. In our work, we consider a coherent
MAC channel where the signals gleaned from the sensor nodes
are superimposed at the FC. Therefore, the detailed proofs
that demonstrate the fact that the fully-digital TPC lies in
the row space of the corresponding MIMO channel is also an
important novel contribution of this work. From (15), it can
be inferred that the row and column spaces of the mmWave
MIMO channel Gk between the kth sensor and FC constitute
a subset of the column spaces of the transmit and receive array
response matrices AT,k and AR, respectively, i.e.

R (Gk) ⊆ C (AT,k) and C (Gk) ⊆ C (AR) . (33)

Furthermore, interestingly, the relationship between the
column-space of the fully-digital TPC Fk at the kth sensor
and the column-space of the transmit array response matrix
AT,k is presented in the theorem below.

Theorem 1. The column-space of the optimal fully-digital
TPC Fk at the kth sensor lies in the column-space of the
transmit array response matrix C (AT,k), i.e.,

C (Fk) ⊆ C (AT,k) . (34)

Proof. The proof is given in Appendix B.

Since there are only Ns
RF RF chains, the RF TPC FRF,k of

size NT×Ns
RF corresponding to the kth sensor can be obtained

by choosing Ns
RF columns of the transmit array response

matrix AT,k ∈ CNT×L, since the elements of AT,k satisfy

the constant magnitude constraint. The pertinent optimization
problem in (32) can thus be reformulated as

minimize
F̃BB,k

∥∥∥(Fk −AT,kF̃BB,k

)∥∥∥2
F

subject to
∥∥∥diag(F̃BB,kF̃

H
BB,k)

∥∥∥
0
= Ns

RF,

(35)

where F̃BB,k ∈ CL×qk is the intermediate baseband TPC
corresponding to AT,k and ‖Z‖0 denotes the l0 norm [20]
of the matrix Z. Accordingly, F̃BB,k is block sparse in na-
ture where Ns

RF out of L rows are non-zero. The baseband
TPC FBB,k corresponds to the Ns

RF non-zero rows of F̃BB,k.
Therefore, the resultant MMV-based sparse signal recovery
problem for our TPC design can then be solved using the
SOMP technique described in Algorithm 1, where the matrices
AT,k and F̃BB,k act as auxiliary variables for the design of the
RF and BB TPCs FRF,k and FBB,k, respectively. For the kth

Algorithm 1 Simultaneous orthogonal matching pursuit
(SOMP) algorithm for the transceiver design

Require: {Fk} ∀k and Ns
RF

1: for 1 ≤ k ≤ K do
2: F̂RF,k = [ ]
3: Fres = Fk
4: for c ≤ Ns

RF do
5: Ψ = AH

T,kFres

6: l = arg maxn=1,...,L(ΨΨH)n,n

7: F̂RF,k = [F̂RF,k | A(l)
T,k]

8: F̂BB,k = (F̂HRF,kF̂RF,k)
−1F̂HRF,kFk

9: Fres =
Fk−F̂RF,kF̂BB,k

‖Fk−F̂RF,kF̂BB,k‖F
10: end for
11: FRF,k = F̂RF,k

12: FBB,k = F̂BB,k
13: FRF = blkdiag (FRF,FRF,k)

14: F̂BB = blkdiag
(
F̂BB,FBB,k

)
15: end for
16: FBB =

√
PT

F̂BB

||FRFF̂BB(MMH+σ2
nIq)

1
2 ||F

sensor, the algorithm requires as inputs the fully-digital TPC
Fk determined in (64) and the number of RF chains Ns

RF.
Algorithm 1 starts with Step (5) by evaluating the projection
of each column of AT,k on every column of the residual
matrix Fres. In Step (6), one chooses the column of AT,k

that has the maximum l2 norm of the projections on the
columns of Fres. In Step (7), the chosen column is appended
to the RF TPC matrix F̂RF,k. The baseband TPC F̂BB,k is then
computed using the least squares solution in Step (8) that best
approximates the ideal fully-digital TPC Fk. Step (9) evaluates
the residual matrix Fres by subtracting the current estimate of
the hybrid TPC F̂RF,kF̂BB,k from the ideal TPC Fk, followed
by normalization. After Ns

RF iterations, one obtains the final
baseband and RF TPC FBB,k,FRF,k at the kth sensor. Step (13)
and (14) then return the block diagonal baseband TPC F̂BB and
RF TPC FRF. FBB is obtained in Step (16) after ensuring that
the total transmit power constraint in (22) is satisfied. This
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completes the hybrid TPC design procedure for the mmWave
MIMO WSN. The following subsection describes hybrid TPC
design incorporating individual sensor power constraints.

B. TPC design subject to individual sensor power constraints

The transmit power constraint at every sensor k is given by
(11) as

Tr
(
Fk
(
MkM

H
k + σ2

nIqk
)
FHk
)
≤ Pk, (36)

where Fk is the fully-digital TPC. Similar to the TPC design
problem formulated in (22) in the previous subsection for
a total power budget, the corresponding problem for this
scenario associated with each sensor constrained by Pk can
be developed as

minimize
F

Tr (E)

subject to Tr
(
Fk
(
MkM

H
k + σ2

nIqk
)
FHk
)
≤ Pk, ∀k.

(37)
As shown in Appendix A, since the trace of the error covari-
ance matrix E is a Schur-concave function, the MSE achieves
the lower bound when the matrix E is diagonalized. Thus, the
fully-digital TPC structure follows the structure of (24), which
can be subsequently written as

FUM = V1
gΣ

⇒


F1 0 · · · 0
0 F2 · · · 0
...

. . .
...

0 0 FK




UM,1

UM,2

...
UM,K

 =


V1
g,1

V1
g,2
...

V1
g,K

Σ (38)

⇒ FkUM,k = V1
g,kΣ ∀k.

From the SVD of M, the measurement matrix Mk of the kth
sensor can be expressed as

Mk = UM,kΣMVH
M . (39)

Considering the fact that UM,kU
H
M,k = Iqk , the per sensor

transmit power in Eq. (36) can be written in the scalar form
of:

Tr
(
Fk

(
UM,kΣMVH

MVMΣH
MUH

M,k + σ2
nIqk

)
FHk

)
= Tr

(
FkUM,k

(
ΣMΣH

M + σ2
nIq

)
UH
M,kF

H
k

)
a
= Tr

(V1
g,k)

HV1
g,k︸ ︷︷ ︸

Φk

Σ
(
ΣMΣH

M + σ2
nIq

)
ΣH


=

m∑
l=1

pl

(
λl(M̃) + σ2

n

)
[Φk]ll , (40)

where (a) follows from (38). Hence, the scalar-valued opti-
mization problem of minimizing the MSE of the estimate of
the parameter vector θ can be equivalently formulated using
the objective in (26) and constraint in as,

minimize
p

m∑
l=1

1

σ2
n + λl(M̃)

× (41)

σ2
n +

σ2
vλl(M̃)

σ2
v +

(
σ2
n + λl(M̃)

)
plσ2

l (G̃)


subject to

m∑
l=1

pl

(
λl(M̃) + σ2

n

)
[Φk]ll ≤ Pk, ∀k,

pl ≥ 0, 1 ≤ l ≤ m. (42)

The optimal p can be readily determined using a convex
solver. Finally, the fully-digital optimal TPC at the kth sensor
is formulated in (31). From Theorem 1 and Appendix B, one
observes that C (Fk) ⊆ C (AT,k). Thus, the RF TPC FRF,k at
the kth sensor can be designed by choosing the columns of
the transmit array response matrix AT,k. The corresponding
baseband and RF components from the fully-digital hybrid
TPC are determined by again solving the problem in (35).
Finally, Algorithm 1 can once again be employed for the
design of the RF and baseband TPCs FRF,k and FBB,k re-
spectively, wherein step (16) is omitted and the computation
FBB,k =

√
Pk

F̂BB,k

||FRF,kF̂BB,k(MkMH
k +σ2

nIqk)
1
2 ||F

is performed at

step (12) to meet the individual power constraints at the
sensors. The TPC design of the scenario associated with high-
SNR sensor observations, i.e. SNRn � 1, is presented in
Appendix C. The algorithm of our hybrid RC design at the
FC is presented next.

C. Hybrid RC design

After designing the hybrid TPCs {FRF,k,FBB,k}Kk=1, one
can design hybrid MMSE RCs for the FC using the optimiza-
tion problem formulated below. Note that the combiner design
is common for both per-sensor and total power constraint
problems:

minimize
WRF,WBB

E
{∥∥θ −WH

BBWH
RFy
∥∥2
2

}
subject to |WRF(s, t)| =

1√
NR

.
(43)

Note that, the solution of the unconstrained version of (43) is
the LMMSE combiner as given in (19). Furthermore, using
the mathematical manipulations detailed in Appendix D, the
problem (43) is seen to be equivalent to

minimize
WRF,WBB

E
{∥∥∥R 1

2
yy (W −WRFWBB)

∥∥∥2
F

}
subject to |WRF(s, t)| =

1√
NR

,

(44)

where Ryy = E
{
yyH

}
∈ CNR×NR is the covariance matrix

of the signal y received by the FC. The hybrid RC comprised
of the RF and baseband RCs WRF and WBB, respectively,
can once again be designed from the ideal LMMSE RC W in
(19) as the solution to the optimization problem in (44). The
pertinent covariance matrix Ryy ∈ CNR×NR of the received
signal y for this scenario is given by

Ryy = GF
(
MMH + Rn

)
FHGH + σ2

vINR
. (45)

Interestingly, one can observe from (19) and (18) that the
column-space of the LMMSE combiner W is a subspace
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TABLE II: Comparison of computational complexity of our proposed work with [11], [21], [28], [34]

Algorithm Hybrid TPCs
(
{FRF,k,FBB,k}Kk=1

)
Hybrid RC (WRF,WBB)

Proposed work O
(
N2
RNTK

)
O
(
K2NRm

2 +
(
NFC

RF

)3
NR

)
BCD algorithm [11] O

(
NIN

2
TK

2m+NINRNTKm+NIN
3
TK

)
O
(
(NFC

RF )
3NR +NINRKm+NIN

3
R

)
BLUE [21] O

(
NI
(
NRK +K3

))
O
(
NI
(
N3
R + (NFC

RF )
3NR

))
PDD [28] O

(
N2

I (Ns
RF)

2
N2
TK +NIN

3
TK

)
O
((

NFC
RF

)3
NRN

2
I

)
ADMM [34] O

(
NI(N

s
RF)

3N3
TK

)
O
(
KNRNTm+NI

(
NFC

RF

)3
N3
R

)

of the column-space of the concatenated mmWave MIMO
channel G, which in turn lies in the column-space of the
receive array response matrix AR, i.e. C (W) ⊆ C (G) ⊆
C (AR). Therefore, the columns of WRF can be chosen from
the columns of the receive array response matrix AR. The
pertinent optimization problem may then be recast as

minimize
W̃BB

∥∥∥R 1
2
yy

(
W −ARW̃BB

)∥∥∥2
F

subject to
∥∥∥diag(W̃BBW̃H

BB)
∥∥∥
0
= NFC

RF ,

(46)

where W̃BB ∈ CL×m is a block sparse matrix that has NFC
RF

non-zero rows. The resultant sparse signal recovery problem
can once again be solved by using the SOMP procedure of
Algorithm 1 upon replacing Fk, Ns

RF, AT,k by R
1
2
yyD, NFC

RF ,
R

1
2
yyAR, respectively.

D. Computational Complexity and Communication Overhead

The computational complexity for calculating the hybrid
TPCs FRF,k,FBB,k corresponding to kth sensor is of the
order of O

(
KNTN

2
R

)
. As it can be observed, the com-

plexity becomes prohibitively high as the number of sensors
in the WSN increases. The computational complexity for
obtaining the hybrid RCs WRF,WBB is of the order of
O
(
K2NRm

2 +
(
NFC

RF

)3
NR

)
. Thus, it becomes significantly

high as the number of sensors K and receive antennas NR
increase in the network. Detailed step by-step analysis of the
computational complexity is given in our technical report [42].
The comparison of computational complexity of our proposed
work with [11], [21], [28], [34] is presented in Table II.

It is to be noted here that the sensors are tiny battery-
operated devices and have a limited battery life, and thus
possess low computational capability. By contrast, the fusion
center (FC) does not have such a constraint on the power,
and in general will have sufficient computational and com-
munication resources. Therefore, in our proposed scheme, the
FC estimates the channels {Gk}Kk=1 using the pilot signals
transmitted by the each sensor k in the mmWave WSN.
Subsequently, the FC designs the hybrid TPC matrices for
each sensor and feeds back to each sensor its hybrid TPC.
Furthermore, the FC is assumed to possess only statistical

channel state information (CSI), such as the vector parameter
covariance matrix Rθ, and observation noise covariance matrix
Rn, which can be acquired via averaging over a suitably long
duration of time. Furthermore, since a quasi-static mmWave
MIMO channel is considered in this work, the CSI acquired at
the FC is constant over several time instants. Hence the hybrid
TPCs FBB,k, FRF,k does not have to be computed and fed-back
very frequently. In order to further reduce the overhead, the
hybrid TPC matrices FBB,k and FRF,k corresponding to the
k sensor can be communicated by the FC using one of the
limited feedback schemes discussed in [43], [44].

IV. BCRB AND CENTRALIZED MMSE BOUND

To benchmark the MSE performance in Section III and
IV, the BCRB and centralized MMSE bounds are determined
below for the noiseless and noisy sensor observation scenarios,
respectively. For the noiseless scenario, the BCRB [45] for the
parameter θ is obtained as

MSEBCRB ≥ Tr

((
Im +

1

σ2
v

FHBBFHRFG
HGFRFFBB

)−1)
.

(47)
By contrast, for the case of noisy sensor observations, the
centralized MMSE benchmark represents the best achievable
performance where all the sensor observations are directly
available at the FC. It may be formulated as [37]

MSEcent = Tr
((

Im + MHR−1n M
)−1)

. (48)

The next section presents our simulation results for character-
izing the MSE performance of the proposed hybrid TPC/RC
designs conceived for mmWave MIMO WSNs.

V. SIMULATION RESULTS

Let us consider a mmWave MIMO WSN system comprised
of K = 20 sensors and an FC. Each sensor employs NT = 10
transmit antennas and Ns

RF = 3 RF chains. The FC has
NR = 16 receive antennas and NFC

RF = 6 RF chains. The
number of multipath components is set as L = 6. The
path-gains of the mmWave MIMO channel are generated as
CN (0, 1) random variables. The AoA/AoDs are chosen ran-
domly from the angular range [0, π]. The number of elements
in the parameter vector is set to m = 3, while the number
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Fig. 3: (a) MSE versus SNRFC plot for noiseless sensor observations, (b) MSE versus SNRFC plot for noisy sensor
observations
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Fig. 4: (a) MSE versus SNRFC plot for scalar parameter estimation, (b) MSE versus SNRFC plot for vector parameter
estimation

of measurements is set to qk = 3 for each of the sensors.
The matrices Rv and Rn are considered to obey σ2

vINR
and

σ2
nIq , respectively. The observation and FC SNRs are defined

as SNRn = 1
σ2
n

, SNRFC = 1
σ2
v

, respectively. The SNRn is set to
10 dB. The power budget of our WSN is set to PT = 0 dBW,
while the maximum transmit power of the sensors is set
to Pk = −13 dBW. The MSE is plotted via Monte-Carlo
simulation by averaging over 5000 random realizations of the
mmWave MIMO channel.

Fig. 3(a) shows the MSE performance of the hybrid MIMO
WSN system both under total power and individual sen-
sor power constraints for the noiseless sensor observations
considered in Section III versus the SNRFC at the FC for

various values of the number of sensors K ∈ {5, 20}. The
MSE performance of the fully-digital design is also plotted
to compare the efficacy of proposed hybrid transceiver design
to that of the unconstrained digital design. Observe that the
MSE of the proposed designs monotonically decreases upon
increasing SNRFC under the total power as well as individual
power constraints. They are also seen to coincide with the
BCRB derived in (47). The additional flexibility provided by
the total power constraint in terms of the power allocation to
each sensor results in superior performance in comparison to
individual sensor power constraints. However, the gap in the
MSE performance under both the scenarios is insignificant
in the case of noiseless sensor observations for the proposed
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designs. This demonstrates the efficacy of the proposed design
subject to individual sensor constraints, because for a given
power threshold at each sensor, the MSE performance is
similar to that under a total power budget for the hybrid MIMO
WSN. Furthermore, the proposed designs are compared to the
dominant directional TPC and RC [20], where the parameter
vector observed is steered along the dominant multipath com-
ponent of the mmWave MIMO channel to yield a beamforming
gain. The MSE performance of the proposed hybrid design
is superior to the dominant directional precoding/combining
since the proposed SOMP based design achieved the minimum
MSE whereas the latter has not. Additionally, our proposed
design does not require knowledge of the path gains, which
is necessary for designing the dominant directional hybrid
precoder/combiner. It can be observed that as the number of
sensors increases, the MSE decreases. This is owing to the
fact that the number of measurements

∑K
k=1 qk = q used for

the estimation of the parameter θ increases upon increasing
the number of sensors, leading to improved estimation.

Fig. 3(b) shows the MSE performance of our hybrid
precoder/combiner proposed in Section IV for noisy sensor
observations, versus the SNRFC. Since the fully digital design
refers to an ideal scenario, where the number of RF chains
is equal to that of the antennas, it serves as a benchmark for
the MSE of the hybrid transceiver design. To demonstrate the
efficacy of the proposed designs, the MSE performance of the
fully-digital design is plotted for both the total and individual
sensor power constraints, together with the centralized MMSE
benchmark. Observe that the proposed hybrid design has a
performance close to that of the fully-digital design in both
the scenarios, i.e., under total and individual sensor power
constraints. Moreover, with the increase of SNRFC, the MSE
is seen to decrease, approaching the centralized benchmark
at high SNRFC. The proposed designs are also compared to
the dominant directional precoder/combiner under both the
scenarios. Observe that the proposed SOMP based transceiver
design outperforms the design based on dominant AoA/AoD
selection.

Fig 4(a) compares the MSE performance of our hybrid
TPC/ RC design of Section III with that of the SOMP-based
hybrid design for the best linear unbiased estimator (BLUE)
for scalar parameter estimation, i.e., m = 1, conceived in
[21], which designs the fully digital TPCs and the RC in an
iterative fashion. The BLUE estimator is observed to result in a
higher MSE in comparison to the LMMSE estimator proposed
in our work because the latter scheme also incorporates the
prior information of the parameter to be estimated, i.e., the
covariance matrix Rθ. Observe from Table II, that the existing
RC design of [21] is also seen to be computationally more
complex than the proposed design.

Fig 4(b) compares the MSE performance of our hybrid
TPC/ RC design of Section III-B to the hybrid TPC/ RC
design in [28], [34] and to the SOMP-based hybrid design
of the fully-digital TPCs/ RC matrices of [11] for noisy
sensor observations to that of the per sensor power constraints.
The figure clearly demonstrates that the MSE performance
of the PDD algorithm in [28] is poor compared to that
of the proposed design. The authors of [34] have proposed

an ADMM-based iterative algorithm to design the hybrid
TPCs/ RC. Their iterative design is observed to have a poor
performance in comparison to the proposed hybrid TPC/ RC
designs for a lower number of iterations and close to that of
our design near NI = 15 iterations. Moreover, the proposed
design has a lower computational complexity in comparison
to [28], [34] as seen from Table II. This demonstrates the
efficacy of the proposed hybrid designs for mmWave MIMO
WSNs wherein having a lower computational overhead at
the FC is critical. Furthermore, the authors of [11] proposed
an iterative algorithm for TPC/ RC designs in MIMO WSN
systems. The SOMP algorithm therein is implemented to
design the respective hybrid TPCs/ RC from the fully-digital
TPCs/ RC matrices in [11] for mmWave MIMO WSNs. It
can be observed that the SOMP based hybrid design also
performs poorer than our proposed design for Ns

RF = 3 RF
chains. Moreover, the computational complexity for [11], as
observed in Table II, is higher due to the iterative nature of
the algorithm.

Fig. 5(a) depicts the MSE performance of different designs
presented in Section III for noiseless sensor observations
against the number of sensors K in the hybrid MIMO WSN for
various values of SNRFC ∈ {0, 5} dB. The BCRB and MSE of
the fully-digital TPC designs for both the scenarios have also
been shown to benchmark the performance of the proposed
designs. Upon increasing the number of sensors K, the MSE
performance is seen to improve even at a constant total power
budget of the system. This is because as the number of sensors
increases, it leads to the availability of more measurements of
the parameter θ, thereby increasing the estimation accuracy.
The MSE performance saturates at a higher number of sensors
because for a fixed total power budget of the hybrid MIMO
WSN, having more measurements will no longer lead to a
remarkable performance improvement.

Fig. 5(b) shows the MSE performance of the different
designs presented in Section IV for noisy sensor observations
against the number of sensors K in the hybrid MIMO WSN
for different values of SNRn ∈ {0, 5} dB at each noisy sensor
at SNRFC = 20 dB. The MSE performance improves upon
increasing the number of sensors K, even at a constant power
budget of the system, which follows a trend similar to the
previous scenario subject to noiseless sensor observations. It
is to be noted that due to the observation noise at each sensor,
the gap between the centralized benchmark and the fully-
digital design becomes higher compared to the scenario having
noiseless sensor observations. Upon reducing the observation
noise power σ2

n, the MSE performance improves, consequently
reducing the gap with respect to the centralized benchmark.

Fig. 6 portrays the MSE performance of the different
designs derived in Section IV against the number of RF chains
Ns

RF at each sensor in the hybrid MIMO WSN for different
numbers of sensors K. The MSE is seen to decrease upon
increasing the number of RF chains Ns

RF at each sensor. How-
ever, the improvement in MSE performance tends to become
insignificant at high Ns

RF. This allows the sensors to have
fewer RF chains, thereby reducing the power consumption and
improving the battery life. This observation is applicable for
both the total and individual sensor power constraints.
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Fig. 5: (a) MSE versus the number of sensors K for noiseless sensor observations, (b) MSE versus the number of sensors K
for noisy sensor observations
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Fig. 6: MSE versus RF chains Ns
RF at each sensor for
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VI. CONCLUSIONS

Hybrid transceiver designs have been developed for linear
decentralized vector parameter estimation in mmWave MIMO
WSNs for 5G-IoT applications. Optimal MSE transceivers
were developed under both total as well as individual sensor
power constraints. The centralized MMSE bound and BCRB
were also determined for benchmarking the performance of
the proposed hybrid transceiver designs. Simulation results
demonstrated that the MSE performance of the proposed
designs is close to that of the unconstrained fully-digital
designs. Moreover, the proposed hybrid designs are also seen
to perform better than the conventional beam-training schemes
such as dominant directional precoding/combining. Future
works can consider wireless powered sensor networks in IoT
that can improve the battery lifetime of the sensor nodes.

APPENDIX A
OPTIMALITY OF FULLY-DIGITAL PRECODER DESIGN

A real-valued function f defined on a set A ⊆ Rn is
said to be Schur-concave on A if x � y ⇒ f (x) ≥ f (y).
From majorization theory [46], a Schur-concave function f
is lower bounded as f [diag (E)] ≥ f [λ (E)] , with the lower
bound achieved, when the matrix E is diagonal. Given that
the trace of the error covariance matrix E is a Schur-concave
function, the MSE reaches its lower bound, when the matrix
E is diagonalized. Therefore, the fully-digital TPC designs in
Section III-A and Section III-B are optimal since the resultant
error covariance matrix which corresponds to the observation
and FC noises, is diagonal.

APPENDIX B
PROOF OF THEOREM 1

The optimal fully-digital TPC designed in Section-III A
under a total power budget was formulated in (31) as

Fk = V1
g,kΣ (UM,k)

†
.

From above, one can infer that the linear combination of the
columns of V1

g,k forms the columns of Fk, which is expressed
as

C(Fk) ⊆ C(V1
g,k). (49)

Furthermore, since V1
g,k is comprised of the m left-most

columns of Vg,k, this implies

C(V1
g,k) ⊆ C(Vg,k). (50)

The eigenvalue decomposition of GHG can be written as

[G1,G2, · · · ,GK ]HG = [VT
g,1,V

T
g,2, · · · ,VT

g,K ]TΛgV
H
g .
(51)

Multiplying both sides by the unitary matrix Vg one obtains,

GHGVg = VgΛg ⇒ Vg = GHGVgΛ
†
g. (52)
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From the structure of (51), one can infer that

Vg,k = GH
k GVgΛ

†
g. (53)

From the previous argument, one can say that the column-
space of Vg,k lies in the row-space of the mmWave MIMO
channel matrix Gk for the kth sensor, i.e., we have

C(Vg,k) ⊆ C(GH
k ) = R(Gk). (54)

From (49), (50), (54) and (33), it follows that C(Fk) ⊆
C(V1

g,k) ⊆ C(Vg,k) ⊆ R(Gk) ⊆ C(AT,k), which proves
the desired result.

APPENDIX C
HYBRID TPC DESIGN FOR HIGH-SNR/ NOISELESS

SENSOR OBSERVATIONS

In the high-SNR scenario [21], [47], where the observation
noise vector obeys n = 0, the received signal of (2) is given
by

y = GFMθ + v. (55)

formulated as, The MSE in the parameter estimation can be
expressed as

MSE = Tr

((
Im +

1

σ2
v

MHFHGHGFM

)−1)
. (56)

A. Hybrid TPC design under total power budget
The optimization problem of the fully-digital TPC F is

formulated as follows

minimize
F

Tr

((
Im +

1

σ2
v

MHFHGHGFM

)−1)
subject to Tr

(
FMMHFH

)
≤ PT .

(57)

Denoting C , FM ∈ CKNT×m, the fully-digital TPC
structure can be subsequently written as [39]

FM = V1
gΣ. (58)

The MSE expression from (56) can thus be rewritten as,

MSE = Tr
(

Im +
1

σ2
v

ΣHΛgΣ

)−1
=

m∑
l=1

σ2
v

σ2
v + plσ2

l (G)
. (59)

The total transmit power at high SNR is given by

Tr
(
FMMHFH

)
= Tr

(
V1
gΣΣH(V1

g)
H
)
=

m∑
l=1

pl. (60)

Thus, the pertinent optimization problem can be reformulated
using the objective in (59) and the constraint in (60) as

minimize
p

m∑
l=1

σ2
v

σ2
v + plσ2

l (G)

subject to
m∑
l=1

pl ≤ PT ,

pl ≥ 0, 1 ≤ l ≤ m. (61)

Upon using the KKT conditions, the optimal value of pl is
obtained as

pl =

(
γ

√
σ2
v

σ2
l (G)

− σ2
v

σ2
l (G)

)+

, (62)

where the Lagrangian multiplier γ is given by:

γ =

PT +
m∑
l=1

σ2
v

σ2
l (G)

m∑
l=1

√
σ2
v

σ2
l (G)

. (63)

The optimal values pl, 1 ≤ l ≤ m, upon substitution into (58)
yield the matrix FM. The individual fully-digital TPCs Fk,
1 ≤ k ≤ K, can be expressed as

Fk = V1
g,kΣ (Mk)

†
, (64)

where V1
g,k denotes the sub-matrix of V1

g comprised of the
rows (k−1)NT+1 to kNT and all the columns. Now, given the
optimal fully-digital TPC Fk of the kth sensor, its components
FRF,k and FBB,k can be designed by exploiting the SOMP
algorithm.

B. Hybrid TPC design under individual sensor power con-
straints

Using majorization theory, the hybrid TPC structure in (58)
is valid also for this system, which can be subsequently written
as

FM = V1
gΣ

⇒


F1 0 · · · 0
0 F2 · · · 0
...

. . .
...

0 0 · · · FK




M1

M2

...
MK

 =


V1
g,1

V1
g,2
...

V1
g,K

Σ

⇒ FkMk = V1
g,kΣ, ∀k. (65)

Substituting the above equation into the individual sensor
power constraint, one obtains

Tr
(
FkMkM

H
k FHk

)
= Tr

(
V1
g,kΣΣH

(
V1
g,k

)H)
= Tr

(V1
g,k)

HV1
g,k︸ ︷︷ ︸

Φk

ΣΣH

 =

m∑
l=1

pl [Φk]ll . (66)

Hence, the scalar-valued optimization problem of minimizing
the MSE of the estimate of the parameter vector θ can be
equivalently formulated as

minimize
p

m∑
l=1

σ2
v

σ2
v + plσ2

l (G)

subject to
m∑
l=1

pl [Φk]ll ≤ Pk ∀k,

pl ≥ 0, 1 ≤ l ≤ m. (67)

Subsequently, the optimal p can be found using suitable con-
vex solvers. The fully-digital optimal TPC Fk at kth sensor is
obtained from (64) as Fk = V1

g,kΣ (Mk)
†. The corresponding
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baseband and RF components of the fully-digital hybrid TPC
are then designed using Algorithm 1.

APPENDIX D
EQUIVALENCE OF (43) AND (44)

The cost function in (43) may be rewritten as

E
{∥∥θ −WH

BBWH
RFy
∥∥2
2

}
= E

{
Tr
(
(θ −WH

BBWH
RFy)(θ −WH

BBWH
RFy)

H
)}

= Tr
(
E
{
θθH

})
− 2<

{
Tr
(
E
{
θyH

}
WRFWBB

)}
+Tr

(
WH

BBWH
RFE

{
yyH

}
WRFWBB

)
, (68)

where <(.) denotes the real part of the complex value. Note
that the optimization variables are WRF and WBB. Therefore,
the constant terms Tr

(
WHE

{
yyH

}
W
)
− Tr

(
E
{
θθH

})
are added to the cost function in (68), where W is the digital
LMMSE combiner. The subsequent steps are as follows

E
{∥∥θ −WH

BBWH
RFy
∥∥2
2

}
= Tr

(
WHE

{
yyH

}
W
)
− 2<

{
Tr
(
E
{
θyH

}
WRFWBB

)}
+ Tr

(
WH

BBWH
RFE

{
yyH

}
WRFWBB

)
a
= Tr

(
WHRyyW

)
− 2<

{
Tr
(
WHRyyWRFWBB

)}
+ Tr

(
WH

BBWH
RFRyyWRFWBB

)
= Tr

((
WH −WH

BBWH
RF

)
Ryy

(
WH −WH

BBWH
RF

)H)
=
∥∥∥R 1

2
yy (W −WBBWRF)

∥∥∥2
F
, (69)

where (a) follows by modifying the second term as

Tr
(
E
{
θyH

}
WRFWBB

)
= Tr

(
E
{
θyH

}
R−1yy RyyWRFWBB

)
= Tr

(
WHRyyWRFWBB

)
.

The last step in the above expression is obtained from (19) by
substituting E

{
θyH

}
R−1yy with WH .
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