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ABSTRACT:
The Kirchhoff–Helmholtz representation of linear acoustics is generalized to thermoviscous fluids, by deriving

separate bounded-region equations for the acoustic, entropy, and vorticity modes in a uniform fluid at rest. For the

acoustic and entropy modes we introduce modal variables in terms of pressure and entropy perturbations, and

develop asymptotic approximations to the mode equations that are valid to specified orders in two thermoviscous

parameters. The introduction of spatial windowing for the mode variables leads to surface source and dipole distribu-

tions as a way of representing boundary conditions for each mode. For the acoustic mode the boundary source distri-

bution is expressible in terms of the fluid normal velocity, the normal heat flux, and the vector x� n̂, where x is the

vorticity on the boundary and n̂ is the unit normal; only the first of these is present in the usual lossless-fluid version

of the Kirchhoff–Helmholtz representation. Use of the generalized thermoviscous representation to project exterior

sound fields from surface data, where the data may contain contributions from all three linear modes, is shown to be

robust to cross-modal contamination. The asymptotic limitations of the thermoviscous modal equations are discussed

in an appendix. VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1121/10.0019801
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NOMENCLATURE

a Thermal expansion parameter a ¼ a=qcp

A, B Dimensionless thermodynamic properties

A ¼ aT and B ¼ ac2=cp

c, c0 Sound speed c ¼ ð@p=@qÞ1=2
s , unperturbed

value

cp, cv Constant-pressure and constant-volume

specific heats

f ðx; tÞ Indicator function, positive in V and nega-

tive in �V , with jrf j ¼ 1 on �S
g Fluctuating body force distribution per unit

mass

g1, gN Frequency-domain Green’s functions (free-

field, Neumann)

ga, gh Frequency-domain Green’s functions for

the acoustic and entropy modes

G Time-domain dimensionless heat-

conduction operator G ¼ tj@=@t ¼ ðv=
c2Þ@=@t

H ðf Þ Heaviside (unit step) function acting as a

spatial window

H ð1Þn ðnÞ Hankel function of the first kind

H ð1Þn ðnÞ ¼ JnðnÞ þ iYnðnÞ
i Imaginary unit

JnðnÞ Bessel function of the first kind of order n
k0 Lossless acoustic wavenumber x=c0

ka, kh, kw Characteristic wavenumbers for acoustic,

entropy and vorticity modes

Ka, Kh, Kw Propagation wavenumbers for acoustic,

entropy and vorticity modes; Ki

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
i � m2

p
for i ¼ a; h;w

La; Lh Time-domain operators describing propa-

gation of the acoustic and entropy modes in

the absence of volume sources

m Wavenumber in x direction (Sec. III G 2);

axial wavenumber in cylindrical

coordinates

n̂ Unit vector normal to surface �S , pointing

outward from excluded region �V
p, p0 Thermodynamic pressure and its pertur-

bation relative to the uniform reference

state p0 ¼ p� p0

P Non-dimensional pressure fluctuation

P ¼ p0=q0c2
0

Pa, Ph Acoustic-mode and entropy-mode compo-

nents of P in source-free regions

P̂a; P̂h Complex amplitudes of Pa and Ph in the

frequency domain

P
^

a Dimensionless acoustic-mode pressure

reconstructed from data on r¼ r0 (Sec.

VII C)

Pr Shear Prandtl number Pr ¼ �=v
q, qi Heat flux vector, cartesian components

(i¼ 1, 2, 3)a)Electronic mail: mcmw@isvr.soton.ac.uk
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qn Heat flux normal to boundary

r Radial coordinate in cylindrical coordinates

R Time-domain dimensionless viscous opera-

torR ¼ tL@=@t ¼ ðlL=qc2Þ@=@t
s, s0 Specific entropy and its perturbation relative

to the uniform reference state s0 ¼ s� s0

S Non-dimensional entropy perturbation

S ¼ s0=cp0

Sa, Sh Acoustic-mode and entropy-mode compo-

nents of S in source-free regions

Ŝa; Ŝh Complex amplitudes of Sa and Sh in the fre-

quency domain
�S Fixed surface separating excluded region �V

from region V, defined by f ðxÞ ¼ 0

t Time

tj, tL Thermal diffusion and longitudinal viscos-

ity time scales for fluid tj ¼ j=qcpc2

¼ v=c2 and tL ¼ lL=qc2

T, T0 Thermodynamic temperature and its pertur-

bation relative to the uniform reference

state T0 ¼ T � T0

u, ui Fluid velocity, cartesian components (i¼ 1,

2, 3)

ua; uh; uw Modal components of fluid velocity

(ua ¼ rua, uh ¼ ruh; uw ¼ curl wÞ
un Normal component of u at boundary

V Region of interest where the linearized

equations of fluid motion apply
�V Excluded region, adjacent to V
w Vector potential for the vorticity mode

x Axial coordinate in cylindrical coordinates

x, xi Position vector, cartesian components

(i¼ 1, 2, 3)

Xa, Xh Acoustic and entropy mode dimensionless

squared wavenumbers (inverse

eigenvalues)

Y Longitudinal Prandtl number Y ¼ cp0 lL=
j ¼ tL=tj ¼ eL=ej ¼ ~eL=~ej

a Thermal expansivity a ¼ qð@q�1=@TÞp
b Non-dimensional wavenumber b

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðm=k0Þ2

q
(Sec. III G 2)

c Ratio of specific heats c ¼ cp=cv

Ca, Ch Forcing terms to account for the presence

of volume sources

CW; CU Source distributions for the windowed

mode variables WH ; UH
dðf Þ Dirac delta function

D; Da, Dh Relative error in asymptotic modal approxi-

mations; acoustic and entropy mode values

of D
ej; eL Thermal-diffusion-scaled and longitudinal-vis-

cosity-scaled frequency parameters ej ¼ xtj
¼ xv=c2 and eL ¼ xtL ¼ xlL=qc2

e maxðej; eLÞ
~ej;~eL Thermal-diffusion-scaled and longitudinal-

viscosity-scaled time-domain parameters

~ej ¼ tj=~s ¼ v=c2~s and ~eL ¼ tL=~s
¼ lL=qc2~s

~e maxð~ej;~eLÞ
f Curl of vorticity f ¼ curl x

fn Normal component of f at a boundary

h Azimuthal coordinate in cylindrical

coordinates

i ¼ a; h;w Generic label for linear modes (acoustic,

entropy, vorticity)

j Thermal conductivity

ka, kh Polarization coefficients ka ¼ Ŝa=P̂a;
kh ¼ P̂h=Ŝh for e�ixt time dependence

~ka; ~kh Time-domain operators corresponding to ka

and kh in the frequency domain

Kaa, Kah, Kaw Coefficients that define the contribution of

each mode to the projected sound field, Eq.

(92)

l Shear viscosity

lB Bulk viscosity

lL Longitudinal viscosity lL ¼ lB þ 4
3
l

� Kinematic viscosity � ¼ l=q
n Source radius

q, q0 Density and its perturbation relative to the

uniform reference state q0 ¼ q� q0

r Time-varying rate of external heat input per

unit volume

~s Typical time scale of an unsteady flow

perturbation

ua; uh Velocity potential contributions due to

acoustic and entropy modes in source-free

regions

U Approximate mode variable for entropy

mode (dimensionless)

v Thermal diffusivity v ¼ j=qcp

wðx; tÞ An arbitrary continuous function

W Approximate mode variable for acoustic

mode (dimensionless)

x Angular frequency

x Vorticity x ¼ curl u

� Varies asymptotically as

’ Asymptotically equals

I. INTRODUCTION

Linear perturbations to the state of a stationary initially-

uniform compressible fluid possessing both viscosity and

heat conduction can travel in three distinct modes of motion:

the acoustic mode, which propagates by wave motion, and

the entropy and vorticity modes, which diffuse through heat

conduction and viscosity, respectively (Kov�asznay, 1953).

The propagation of these three modes in volume-source-free

regions away from boundaries is described in the textbook

by Pierce (1994). In the present article we present wave and

diffusion equations for these three modes, including the

effects of external volume sources. The external sources

considered are a distributed heating rate rðx; tÞ per unit vol-

ume as in Pierce (1985), and a distributed body force gðx; tÞ
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per unit mass. In general, each of these inputs generates a

response in the acoustic and entropy modes, while the

applied force distribution drives the vorticity mode as well.

The treatment here follows the early work by Pierce (1985)

on thermoacoustic sound generation by external sources and

extends it to bounded regions. For waves in isotropic heat-

conducting elastic solids a corresponding set of linear modes

exists, in which the diffusive vorticity mode is replaced by

elastic shear waves (Deresiewicz, 1957); all the results of

the present paper can be adapted to the solid case via a sim-

ple transformation, however, this is outside the scope of the

present article.

The equations are presented to various orders of accu-

racy appropriate to the time scale of the forcing, with the

form of the dependent variables for the acoustic and entropy

modes changing according to the order chosen. In the fre-

quency domain the relevant order parameters are ej ¼ xv=c2

and eL ¼ x½lB þ 4
3
l�=qc2, where v is the fluid thermal diffu-

sivity, l is the viscosity, and lB the bulk viscosity, while in

the time domain they are ~ej ¼ ~s�1v=c2 and ~eL ¼ ~s�1½lB

þ 4
3
l�=qc2, where ~s is a representative time scale of the

perturbations.

In the case of the acoustic mode the results allow the

extension of the Kirchhoff–Helmholtz representation, where

domain boundaries are represented by monopole and dipole

layers, to real fluids with viscosity and heat conduction.

This representation of the sound field, expressible either in

differential equation form (as here) or as a Green’s function

solution for the acoustic variable, is usually restricted to

ideal or lossless fluids (Bruneau, 2006; Morse and Ingård,

1968; Temkin, 1981). The textbook by Pierce (1994) pro-

vides a version [Eq. (10–6.7)], in integral form, in which

effects of viscosity are included as an asymptotic approxima-

tion. Following Pierce, we avoid restricting the fluid to a per-

fect gas; instead, for equilibrium thermodynamic states the

specific entropy can be any function sðq; eÞ of the fluid den-

sity and specific internal energy. The resulting expressions

are given in differential rather than integral form, to facilitate

their use with tailored Green’s functions if required.

The generalized linear-mode theory developed here

could be readily extended to describe nonlinear sound gen-

eration in thermoviscous media, as was first attempted for

an ideal gas by Chu and Kov�asznay (1958). In anticipation

of this the equations are given in the time domain, rather

than the frequency domain.

II. THEORETICAL BACKGROUND

There is extensive literature dealing with the fundamen-

tal acoustics of thermoviscous fluids, including liquids and

gases. By way of orientation, some of the key references are

reviewed below.

A. Boundary-driven linear sound fields

This category encompasses boundary-driven fields

where thermoviscous effects are important, propagation in

narrow ducts, and sound fields excited in small cavities;

external volume sources are generally absent in these situa-

tions. Close to solid boundaries, unsteady diffusion of vor-

ticity and entropy from the boundary generates unsteady

boundary layers that interact with the acoustic field. To

describe this situation, different formulations of the linear-

ized equations of motion for thermoviscous fluids have been

adopted by different authors according to the application

envisaged.

(1) Rayleigh (1894) (Sec. 348) derived a fourth-order differ-

ential equation describing single-frequency temperature

disturbances of small amplitude in an otherwise uniform

thermoviscous fluid, whose equilibrium pressure and

specific internal energy are functions pðq; TÞ; eðq; TÞ of

density and temperature. Rayleigh’s derivation extended

an earlier study by Kirchhoff (1868) in which the fluid

was assumed to be an ideal gas. Viscous stresses and

heat conduction were assumed to obey the Navier–

Stokes–Fourier equations in both studies, with bulk vis-

cosity included by Rayleigh (1894).

(2) Bruneau et al. (1989) derived a time-domain version of

Rayleigh’s T0 equation, similarly applicable to a general

fluid, as a preliminary to discussing its entropy and

acoustic mode solutions. For ideal-gas applications, the

corresponding version of Rayleigh’s single-frequency

equation was presented in the review paper by Beltman

(1999).

(3) It is not generally possible, in the time domain, to fac-

torize the T0 equation into separate differential equa-

tions of integer order, with one describing the acoustic

mode and the other the entropy mode [the time-domain

operator R in Eq. (10) of Bruneau et al. (1989) is not an

integer-order differential operator, since it involves a

square root]. The exception is the special case consid-

ered by Trilling (1955) in which the fluid’s thermal and

viscous timescales coincide. However, approximate

time-domain mode equations can be obtained when

ð~eL;~ejÞ are both small so that disturbance time scales

are long compare with the thermal and viscous time

scales (Pierce, 1994), and we shall pursue this approach

in Sec. III.

(4) The textbook by Morse and Ingård (1968, Sec. 6.4)

derives separate linearized equations for T0 and p0 in a

general thermoviscous fluid. Rather than seeking sepa-

rate equations for the acoustic and entropy modes, they

suggest solving the simultaneous ðT0; p0Þ equations

directly, alongside the vorticity mode equation. This

approach has been widely followed in the photoacous-

tics and thermoacoustics literature (Guiraud et al., 2019;

McDonald and Wetsel, 1978).

(5) The textbook by Pierce (1994) (Sec. 10–6) adopts the

weakly thermoviscous approximation mentioned in (3)

above in order to examine viscosity effects on sound

radiation. The present paper extends Pierce’s approach

to include fluid heat conduction, leading to a generaliza-

tion of the Kirchhoff–Helmholtz relation that applies to

thermoviscous fluids.
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B. Sound radiation from volume source distributions

Although some acoustics textbooks, such as Temkin

(1981) and Howe (1996), introduce external sources of heat

and momentum into the linearized equations of acoustics,

the resulting forced equations are normally restricted to

ideal fluids lacking viscosity or heat conduction. The only

two published discussions known to us that examine the

excitation of linear modes in thermoviscous fluids by exter-

nal volume sources, either in the form of an unsteady heat

input or an unsteady body force distribution, are Chu and

Kov�asznay (1958) and Pierce (1985). In both papers the

authors assume boundaries to be absent. The authors also

both introduce weakly thermoviscous approximations, but

in different ways: Chu and Kov�asznay assume that all three

modes share a single length scale ~l such that �0=~lc0 � 1,

where � ¼ l=q is the kinematic viscosity of the fluid,

reflecting their interest in hot-wire measurements of turbu-

lence in the presence of a mean flow. On the other hand,

Pierce assumes that all three modes share a single time scale

~s, with �0=~sc2
0 � 1. A secondary difference is that Chu and

Kov�asznay (1958) follow Trilling (1955) in assuming the

fluid to be an ideal gas with Pr ¼ 3=4 and lB ¼ 0, whereas

Pierce (1985) allows for a general fluid but with the extra

requirements lB=~sq0c2
0 � 1 and v0=~sc2

0 � 1.

In Sec. III of the present paper we follow Pierce (1985)

in assuming a common time scale, and extend his analysis

by (i) including boundaries and (ii) including body forces as

well as unsteady heating. We shall also consider the excita-

tion of all three linear modes, rather than the acoustic mode

alone.

III. ACOUSTIC AND ENTROPY MODES IN BOUNDED
FLUID REGIONS

A. Summary of basic equations

The equations of motion for a general fluid may be writ-

ten in the form

H ¼ �1

q
Dq
Dt

; (1)

Duj

Dt
¼ gj þ

1

q
@sij

@xi
� @p

@xj

� �
; (2)

qT
Ds

Dt
¼ r� @qi

@xi
þ sij

@uj

@xi
: (3)

Here, D=Dt denotes the material derivative, u is the fluid

velocity, and H ¼ div u is the dilatation rate. The thermody-

namic properties (T, p, s) are equilibrium values; thus, sym-

bol p denotes the thermodynamic pressure of the fluid

pðq; eÞ ¼ �ð@e=@q�1Þs. The actual instantaneous pressure,

pinst, defined as the average compressive stress in three

orthogonal directions, can differ from p as a result of non-

equilibrium effects. This difference is included as an

isotropic-stress term in the viscous stress sij; it is modelled

in Eq. (4) below by introducing a bulk viscosity. The

external-forcing variables ðr; gÞ are respectively the heat

input rate per unit volume, and the applied force per unit

mass of fluid.

For sufficiently small departures from local thermal

equilibrium, according to the Navier–Stokes–Fourier model,

the non-equilibrium stress components sij and the heat flux

qi in Eq. (3) are linearly related to the fluid deformation rate

and the temperature gradient, respectively, by

sij ¼ l
@ui

@xj
þ @uj

@xi
� 2

3
Hdij

� �
þ lBHdij (4)

and

qi ¼ �j
@T

@xi
; (5)

where j is the thermal conductivity. In Eq. (2) the viscous

force per unit volume is given by the divergence of sij. For

the special case of a fluid whose viscosity coefficients l, lB

are constant, Eq. (4) gives

div s ¼ �l curl x� lLr
1

q
Dq
Dt

� �
: (6)

Here x ¼ curl u is the vorticity, lL ¼ ½lB þ 4
3
l� is the longi-

tudinal viscosity, and the continuity Eq. (1) has been used to

substitute for H. A similar result can be derived for any fluid

whose viscous stress is described by Eq. (4), provided one

limits consideration to small perturbations about a uniform

state of rest (denoted by subscript 0); omitting second-order

terms then gives div s ’ �l0 curl x� ðlL0=q0Þrð@q0=@tÞ.
Applying the same small-amplitude restriction to Eqs.

(1)–(3) leads to the following set of linearized equations, in

which primes denote fluid-property perturbations; the kine-

matic variables u, H, x are all perturbations about zero,

since the undisturbed fluid is at rest, and are therefore left

unprimed,

H ’ � 1

q0

@q0

@t
; (7)

q0

@u

@t
’ q0g�rp0 � l0 curl x� lL0r

1

q0

@q0

@t

� �
; (8)

q0T0

@s0

@t
’ rþ j0r2T0: (9)

By combining the divergence of Eq. (8) with the time derivative

of Eq. (7), one can eliminate the kinematic variables ðu;H;xÞ
to concentrate on the acoustic and entropy modes; we will

return to the vorticity mode in Sec. V. Coupled equations for

the pressure and entropy perturbations can then be obtained by

substituting q0 in the resulting equation, and T0 in Eq. (9), in

terms of p0 and s0 by means of the linear approximations

1

q0

q0 ’ 1

qc2

� �
0

p0 � aT

cp

� �
0

s0 (10)

and
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1

T0

T0 ’ 1

cp

� �
0

s0 þ a
qcp

� �
0

p0; (11)

where a is the fluid’s thermal expansivity. The two equa-

tions obtained in this way are expressed below in terms of

the non-dimensional perturbation variables P ¼ p0=q0c2
0 and

S ¼ s0=cp0. Zero subscripts are henceforth dropped on the

understanding that linear approximations are being used

throughout, and we introduce non-dimensional coefficients

A ¼ aT and B ¼ ac2=cp; the product AB ¼ c� 1 [Pierce

(1994), Eqs. (1�9.9)], where c is the ratio of specific heats,

and for the special case of a dilute gas, A¼ 1 and B ¼ c� 1.

We thus write

@2P

@t2
� A

@2S

@t2
� c2r2 PþRðP� ASÞ½ � ¼ �div g; (12)

@S

@t
� vr2 BPþ Sð Þ ¼ r

qcpT
; (13)

where v ¼ j=qcp is the fluid’s thermal diffusivity, and the

dimensionless operator R is defined as tL@=@t, where

tL ¼ lL=qc2 is the characteristic viscous time scale for the

fluid. We also define its thermal-diffusion time scale

tj ¼ v=c2 (Pierce, 1994), and note that Bruneau et al. (1989)

and Bruneau (2006) instead use length scales given by

‘v ¼ ctL and ‘h ¼ ctj. The ratio of these two time scales

tL=tj is then the longitudinal Prandtl number Y ¼ cplL=j.

Our goal, in what follows, is to convert these coupled

equations in P and S into uncoupled equations in dependent

variables that correspond closely to pressure and specific

entropy fluctuations. The right-hand side of these equations

will include volume sources arising from the presence of g

and r on the right of Eqs. (12) and (13). We begin, follow-

ing Pierce (1994), by obtaining dispersion relations for

single-frequency propagation in free space and in the

absence of g and r input terms. We subsequently use these

relations to obtain time-domain equations that satisfy the

governing equations with volume sources present.

B. Single-frequency free travelling waves

In a region free of volume sources, Eqs. (12) and (13)

set the conditions under which freely propagating solutions

proportional to exp ½iðkðxÞ � x� xtÞ� can exist. To explore

these conditions, we write

X ¼ jkðxÞj
2

ðx=cÞ2
; (14)

and replace the operators ðr2; @=@t;RÞ with ð�x2X=c2;
�ix;�ieLÞ, respectively, where eL ¼ xtL ¼ xlL=qc2 is a

longitudinal-viscosity-scaled frequency parameter. We also

define a thermal-diffusion-scaled frequency parameter

ej ¼ xtj ¼ xv=c2. With ðr; gÞ ¼ 0, Eqs. (12) and (13) can

then be expressed in matrix form as

�Að1þ ieLXÞ 1� ð1� ieLÞX
1þ iejX iejBX

" #
P̂

Ŝ

 !
¼

0

0

 !
; (15)

where P̂ and Ŝ are the complex amplitudes of the propagat-

ing normalized pressure and entropy disturbances. Equation

(15) is equivalent to Eq. (10�3.5) of Pierce (1994).1 This

can be rewritten as a generalized eigenvalue problem

�iAeL ieL � 1

iej iBej

" #
P̂

Ŝ

 !
¼ X�1

A �1

�1 0

" #
P̂

Ŝ

 !
(16)

whose eigenvectors, denoted ðP̂a; ŜaÞT and ðP̂h; ŜhÞT , nor-

malized so that P̂ ¼ P̂a þ P̂h and Ŝ ¼ Ŝa þ Ŝh, are the

acoustic and entropy modes, respectively. These modes

propagate with frequency-dependent wavenumbers kaðxÞ
and khðxÞ, respectively, obtained from the eigenvalues

X�1
a;h ¼ �

1

2
1� ieL � icej½

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1� cieLÞiej þ ð1� ieL � ciejÞ2

q �
; (17)

where the plus sign corresponds to the acoustic mode and

the identity AB ¼ c� 1 has been used.

The modal dispersion relations obtained from Eq. (17)

imply the existence of Helmholtz operators Ha and Hh that

govern the propagation of time-harmonic disturbances in the

absence of volume sources; on physical grounds we expect

the effect of Ha to be dominated by wave motion and that of

Hh by diffusion. The Helmholtz operators can be defined by

writing Ha ¼ r2 þ k2
a and Hh ¼ r2 þ k2

h as in Pierce

(1994), where ka and kh are the characteristic wavenumbers

for the acoustic and entropy modes. We find, however, that writ-

ing Ha ¼ X�1
a r2 þ ðx=c0Þ2 and Hh ¼ X�1

h r2 þ ðx=c0Þ2
leads to more compact expressions in what follows.

The eigenvectors provide proportionality relations

between P̂ and Ŝ for each mode. For the acoustic mode the

ratio Ŝa=P̂a is OðeÞ, where e ¼ maxðej; eLÞ. It is given to

lowest order by

Ŝa

P̂a

¼ ka ’ �iejB: (18)

Likewise for the entropy mode, labelled with subscript h,

the ratio P̂h=Ŝh is given to lowest order by

P̂h

Ŝh

¼ kh ’ �iðeL � ejÞA; (19)

with P̂a þ P̂h ¼ P̂ and Ŝa þ Ŝh ¼ Ŝ. These relations can be

inverted to give

P̂a ¼
P̂ � khŜ

1� kakh
; Ŝh ¼

Ŝ � kaP̂

1� kakh
: (20)

Equations (18) and (19) are called polarization relations in

Pierce (1994); his terminology will be adopted in what fol-

lows with ka, kh referred to as polarization coefficients.

Higher-order approximations for ka, kh are presented in

Appendix A, together with the corresponding values of
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k2
a; k2

h as well as X�1
a ;X�1

h that determine the modal disper-

sion relations and hence the propagation operators.

Trilling (1955) and Chu and Kov�asznay (1958)

restricted their analyses to fluids with lB ¼ 0 and shear

Prandtl number cp0l=j ¼ 3=4. For such a fluid (or any other

fluid with longitudinal Prandtl number Y ¼ 1) the thermal

and viscous time scales coincide so that eL ¼ ej ¼ e. In this

special case the polarization coefficients reduce to ka

¼ Bie=½ðc� 1Þie� 1� and kh ¼ 0, meaning that P̂h ¼ 0 and

P̂ ¼ P̂a, so the entire pressure field can be obtained from the

acoustic mode. The eigenvalues become X�1
a ¼ 1� cie and

X�1
h ¼ �ie, making it possible to obtain exact time-domain

operators from Ha and Hh. In what follows we will instead

obtain approximate versions of these operators to any

required order of accuracy for unrestricted values of Y, by

truncating series expansions in ð�ieL;�ieLÞ of the disper-

sion relations (17) and the polarization coefficients.

C. Time-domain modal equations with volume
sources: Asymptotic approximations for ~ej � 1
or ð~ej;~eLÞ � 1

The foregoing results allow one to construct approxi-

mate time-domain equations for acoustic and entropy mode

variables, denoted by Wðx; tÞ and Uðx; tÞ, respectively, that

are valid when ðr; gÞ 6¼ 0. The modal variables W and U are

linear combinations of P and S; by analogy with Eq. (20)

the acoustic mode variable W should ideally be based on

P� ~khS in order to cancel any entropy-mode contribution,

and likewise the entropy mode variable U should be based

on S� ~kaP. Here, ð~ka; ~khÞ are differential operators in time

t, corresponding to the frequency-domain coefficients

ðka; khÞ. Our approximate mode variables W and U are

formed by using approximate versions of these operators, as

explained below. Note that the product kakh in the denomi-

nators of Eq. (20) is order e2, so for time-domain applica-

tions in which an error of relative order ~e2 is acceptable the

denominator can be replaced by 1.

For this purpose the time-domain parameter ~ej ¼ tj=~s
is assumed to be much less than 1 where ~s is a typical time

scale of the unsteady flow perturbations, meaning that dis-

turbances take place over time scales that are long compared

to tj. The parameter ~eL ¼ tL=~s can be restricted or not,

depending on the level of accuracy required. We note that

~ej in the time domain corresponds to ej in the frequency

domain, and ~eL corresponds to eL.

The resulting modal equations will have the general

form

LaW ¼ Ca and LhU ¼ Ch; (21)

with the particular form depending on the order of accuracy

required, where La and Lh are time-domain propagation

operators corresponding to the frequency-domain operators

Ha and Hh introduced in Sec. III B above.

The forcing terms Ca and Ch necessary to satisfy the

governing equations with volume sources (to the required

accuracy) can be inferred from the following exact

expressions for the Laplacians of P and S, obtained from

Eqs. (12) and (13) with the aid of the thermodynamic rela-

tion AB ¼ c� 1,

ð1þ cRÞc2r2P ¼ @
2P

@t2
þ c2

v
AðR � GÞ @S

@t

þ div g� c2AR r
jT

; (22)

ð1þ cRÞc2r2S ¼ c2

v
1þRþ ðc� 1ÞG½ � @S

@t

� B
@2P

@t2
� Bdiv g� c2ð1þRÞ r

jT
:

(23)

The conversion of frequency-domain factors to time-domain

operators is achieved by reversing the replacements given

before Eq. (15). We make use of operators R ¼ tL@=@t and

G ¼ tj@=@t. For purposes of time-domain asymptotic scal-

ing, we note that R � ~eL and G � ~ej.

For monatomic gases the viscous and thermal length scales

are comparable and are related to the molecular mean free path;

likewise, the viscous and thermal time scales ðtL; tjÞ are compa-

rable and related to the mean time between molecular collisions.

For polyatomic gases including air on the other hand, vibra-

tional relaxation effects limit the Navier–Stokes bulk viscosity

model to frequencies well below the lowest relaxation fre-

quency; in this frequency range tL can be much greater than tj.

For moist air at standard atmospheric pressure, 20 �C, and 60%

relative humidity the relaxation frequencies of the vibrational

modes for oxygen and nitrogen molecules are frðO2Þ ¼ 44 kHz,

frðN2Þ ¼ 400 Hz (Bass et al., 1990). At 5 �C, and 10% relative

humidity these fall to frðO2Þ ¼ 800 Hz, frðN2Þ ¼ 32 Hz. For

frequencies f � frðN2Þ, vibrational relaxation effects may be

modelled by an effective bulk viscosity lB;eff 	 lB to which

nitrogen makes the major contribution (3 to 4 orders of magni-

tude greater than the lB due to rotational relaxation). At the

other extreme, for sufficiently high frequencies the vibrational

degrees of freedom are “frozen,” the bulk viscosity model

becomes valid again, and the attenuation of sound in air is domi-

nated by rotational relaxation plus viscosity and heat conduc-

tion: for example at 20 �C, 60% RH this occurs beyond about

125 kHz, and at 5 �C, 10% RH beyond about 15 kHz.

Equations for the acoustic and entropy modes in a relax-

ing gas can be developed in a similar manner to the

thermoviscous-fluid equations presented here, but lie outside

the scope of the present paper. Note that in order for contin-

uum theory to be valid for gases, we require ej ¼ xtj � 1

(Greenspan, 1950, 1956).

We illustrate the derivation of forced time-domain

modal equations by means of two examples before present-

ing the full results.

1. Example 1: Entropy mode equation with ð~eL;~ejÞ � 1
and relative error D5Oð~eÞ

This example describes the derivation of the forced

entropy-mode equation in row 4 of Table I below. Instead of
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defining the entropy mode variable as U ¼ S� ~kaP, we note

from Eq. (A4) that to the required order of accuracy ~ka can

be neglected, leaving the approximate entropy-mode vari-

able U ¼ S.

The dispersion relation for the entropy mode is given

by Eq. (A12); at the required order of accuracy, it reduces to

X�1
h ¼ �iej, meaning that the diffusion of an entropy distur-

bance would, in the absence of volume sources, be governed

by

LhS ¼ @

@t
� vr2

� �
S ’ 0: (24)

With volume sources present, substituting Eq. (23) in

Eq. (24) gives the exact relation

ð1þ cRÞLhS ¼ ðc� 1ÞðR � GÞ @S

@t
þ BG @P

@t

þ B
v
c2

div gþ ð1þRÞ r
qcpT

: (25)

In Eq. (25) the first two terms on the right represent the

Oð~ejÞ residual error that is introduced in the unforced equa-

tion by defining U ¼ S (rather than S� ~kaP), and by

approximating the Lh operator as in Eq. (24). Omission of

these terms is therefore justified in the context of the desired

D ¼ Oð~eÞ approximation. The last two terms represent exci-

tation of the entropy mode by volume sources ðr; gÞ; they

may be represented by D ¼ Oð~eÞ approximations, noting

that theR and G operators are both Oð~eÞ.
Hence the forced entropy-mode equation can be

approximated with relative error Oð~eÞ by

LhS ’ B
v
c2

div gþ r
qcpT

: (26)

2. Example 2: Acoustic mode equation with ~ej � 1
and relative error D5Oð~ejÞ

This example describes the derivation of the forced

acoustic-mode equation in row 1 of Table I. In this case ~eL

is unrestricted and the relative error is Oð~ejÞ. An approxi-

mate acoustic variable W can be found by truncating Eq.

(A3) at order iej, substituting R and G for �iej and �ieL to

give an approximate polarization operator ~kh, and defining

W as

W¼ ð1þRÞ2 ð1þRÞP�ARS½ �þ ð1þ cRÞAGS: (27)

Note that we have multiplied P in the first term by ð1þRÞ3
to avoid the presence of inverse time-domain operators. The

acoustic variable W contains contributions from S that must

be retained even though they are of relative order ej because

taking their Laplacian introduces a large factor 1=ej. It can

be verified by direct substitution that omitting these S terms

leads to an O(1) residual in LaW.

At the specified level of approximation Eq. (A6) gives

X�1
a ’ 1� ieL � ½ðc� 1Þ=ð1� ieLÞ�iej, from which theT
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corresponding time-domain propagation operator can be

found to be

LaW ¼
@2

@t2
� ð1þRÞ þ ðc� 1ÞG

1þR

� �
c2r2

� �
W: (28)

The G term provides long-range attenuation due to heat con-

duction, but it does not affect the local accuracy of the

acoustic mode equation as will be demonstrated below. We

shall therefore omit it to begin with, and use the linearized

fluid-motion equations to evaluate

L0aW ¼
@2

@t2
� ð1þRÞc2r2

� �
W: (29)

Equations (22) and (23) can be used to show that

c2r2 ð1þRÞP� ARS½ � ¼ div g� A
@2S

@t2
þ @

2P

@t2
: (30)

Combining Eq. (30) with Eq. (27) and then using Eq. (23)

gives

c2r2W ¼ ð1þRÞ2 div g� A
@2S

@t2
þ @

2P

@t2

� �
þ AGð1þ cRÞc2r2S

¼ ð1þRÞ2 � ðc� 1ÞG
h i

@2P

@t2
þ div g

� �

� ð1þRÞR � ðc� 1ÞG½ �A @
2S

@t2

� Að1þRÞG c2r
jT

: (31)

Substituting this result in Eq. (29) leads, after some cancel-

lation, to the exact relation

L0aW ¼ �ð1þRÞ
3
div gþ að1þRÞ2 @r

@t

þ ðc� 1ÞGð1þRÞ @2P

@t2
þ div g

� �

þ ð2� cþRÞAG @
2S

@t2
; (32)

where a ¼ a=qcp.

In Eq. (32) the terms in P and S represent the expected

Oð~ejÞ residual error introduced in the unforced equation by

defining W as in Eq. (27) and by approximating the La oper-

ator as in Eq. (29). Omission of these terms is therefore con-

sistent with the specified D ¼ Oð~ejÞ approximation.

Likewise the difference between LaW and L0aW, repre-

sented by the G term in Eq. (28), can be obtained from Eq.

(31) and consists of similar Oð~ejÞ terms in P and S that can

be neglected, together with Oð~ejÞ correction terms in g and

r. Thus, the forced acoustic mode equation for viscous flu-

ids finally becomes

LaW ’ �ð1þRÞ3div gþ ð1þRÞ2a
@r
@t

ð~ej � 1Þ (33)

with relative error D ¼ Oð~ejÞ. The forcing terms have been

approximated in Eq. (33) by omitting contributions of rela-

tive order ~ej, as in Eq. (26) previously.

3. Summary of time-domain equations for the
unbounded case

The time-domain acoustic and entropy mode equations

obtained in this way, approximated to different orders in

ð~ej;~eLÞ, are shown in Table I. The terms on the right of Eq.

(33) are the forcing terms shown in row 1 of Table I.

The unforced acoustic and entropy mode equations in

Table I can all be verified by direct substitution, if one uses

the relations above and sets ðr; gÞ ¼ 0; the residual error in

each case, expressed as a fraction D of either of the terms on

the left of the equation, is specified in the first column of the

table. The forcing terms in the right-hand column have been

obtained by evaluating the left-hand side directly, using the

linearized equations for ðr; gÞ 6¼ 0, and are subsequently

approximated to the same relative accuracy.

D. Bounded-region modal equations

Bounded-region formulations can be derived from the

corresponding equations in Table I, by introducing a spatial

window function H ðf Þ as a multiplying factor in the

wave variable and using the Laplacian identity r2ðH wÞ
¼ ðr2wÞHþ ðn̂�rwÞdðf Þ þ div ½wn̂dðf Þ�. Here, H ðf Þ is the

unit step function, whose derivative is the Dirac delta func-

tion dðf Þ. The indicator function f ðxÞ is chosen to be posi-

tive in the fluid region of interest V, and negative in the

complementary region �V ; thus H equals 1 in V and 0 in �V ,

with f¼ 0 on their common interface �S . By choosing

jrf j ¼ 1 on �S we get rH ¼ n̂dðf Þ, where n̂ is the unit vec-

tor normal to �S pointing into V. For this purpose, we note

that derivatives of the form ð@=@xiÞðwH Þ, where wðx; tÞ is

any continuous function defined for x 2 V, are given by

@

@xi
wðx; tÞH ðf Þ½ � ¼ @w

@xi
H ðf Þ þ wn̂idðf Þ; (34)

with w and @w=@xi on the right-hand side interpreted as their

values at f ¼ 0þ.

The results of this procedure are shown in Table II,

where the rows are numbered from zero so that cases occur-

ring in both Table I and Table II have the same row number.

As in Table I, the source terms in the right-hand column of

Table II are obtained by evaluating the left side of each

equation. The forcing terms in ðr; gÞ and the boundary terms

are both approximated to the stated accuracy in terms of

ð~eL;~ejÞ.
For the normal-gradient boundary terms that arise from

windowing, one can either leave these in terms of n̂�rP and

n̂�rS, or else substitute the normal gradients with the aid of

Eqs. (35) and (36) below. The second option has been fol-

lowed in deriving the boundary terms of Table II; its advan-

tage is that n̂ � rP and n̂ � rS are expressed in terms of

kinematic quantities plus the normal temperature gradient,
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which can be convenient for matching conditions at a solid

boundary. The gradient relations required are, from Eqs. (8),

(10), and (11),

ð1þ cRÞc2rP ¼ g� @u

@t
� l

q
curl xþ c2

T
ARrT0; (35)

ð1þ cRÞc2rS ¼ �B g� @u

@t
� l

q
curl x

� �

þ c2

T
ð1þRÞrT0: (36)

Note that of the two external inputs ðr; gÞ, only g appears

in the gradient relations above since they follow directly

from the momentum equation, without involving the

entropy equation. Equations (35) and (36), like Eqs. (22)

and (23) are exact consequences of the linearized equations

of fluid dynamics. Together with the appropriate small-~eL

and small-~ej approximations, they form the basis of Tables

I and II.

E. Approximation errors in Tables I and II

In order to describe the time-domain modal variables

ðW;UÞ we have used small-~ej or small-~e approximations,

which means that the unforced mode equations in Table I

fail to balance exactly. The residual error in each case can

be obtained from the linearized equations above by direct

substitution. The error magnitude D, relative to either term

in the wave operator, is indicated in the table as either Oð~en
jÞ

or Oð~enÞ.
The boundary source terms shown in Table II follow

directly from the corresponding x 2 V mode equation in

Table I when the mode variable is replaced with its spatially

windowed version. Because of the approximations noted

above, in some applications the response to a particular

boundary source term may be of higher order in ~e (or ~ej)

than the modal equation concerned is justified in retaining.

This will depend on individual circumstances; an example is

discussed in Sec. III F (see Table IV). To cover all possibili-

ties, a complete set of boundary terms is provided in Table

II, recognizing that in any individual case some of these

may not be relevant.

An underlying assumption of the asymptotic analysis

leading to all these results is that the dimensionless ampli-

tudes of the acoustic and entropy modes, defined as the max-

imum amplitudes of the modal variables W and U within the

fluid region of interest, are both of the same order with

respect to ~e. For further discussion on this point, see

Appendix B.

F. Entropy-mode and acoustic-mode source terms
compared

Two tables below compare the source terms from Table

II that drive the entropy mode with those responsible for

generating the acoustic mode. The level of asymptotic

approximation chosen is D ¼ Oð~eÞ. In order to emphasiseT
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the similarities, the source terms have been grouped into

“thermal” and “mechanical” categories, with the former

shown in Table III, and the latter in Table IV.

For purposes of Tables III and IV the mode variables

are defined as the windowed variables WH ðf Þ and UH ðf Þ,
with W ¼ P� AðR � GÞS and U ¼ S. Consistently with the

D ¼ Oð~eÞ local approximation, the corresponding source

distributions CW; CU are then defined by

@2

@t2
� c2r2

� �
ðWH Þ ¼ CW;

@

@t
� vr2

� �
ðUH Þ ¼ CU; (37)

as in rows 3 and 4 of Table II. Both tables show that the

forcing terms for the two modes are closely related; the ratio

of CU=v to CW=c2 is –B for “mechanical” excitation, while

for “thermal” excitation with time factor exp ð�ixtÞ it is

i=Aej. This close connection will allow us in Sec. III G to

compare acoustic-mode and entropy-mode responses to spe-

cific localized forcing models; the asymptotic validity of the

respective response estimates can then be tested against the

criteria developed in Appendix B.

As an example of boundary source terms becoming too

small to justify retention at the level of approximation adopted,

we note that the underlined entropy-mode terms in Table IV

describe the scattering of vorticity-mode perturbations incident

on a rigid boundary into entropy-mode perturbations. The

effect is very weak, however, with the scattered entropy field

being of relative order ~e1=2
l ~e1=2

j (where ~el ¼ l=qc2~s), for

which the D ¼ Oð~eÞ approximation is insufficient according to

the criteria in Appendix B. The underlined CU terms would

thus not be relevant in that application.

It is important to recall that beside the terms listed in

Tables III and IV above, each of the source distributions

ðCW;CUÞ also contains a normal-dipole boundary term as

shown in Table II. If required, one can eliminate the normal-

dipole contributions to W or U by using the appropriate

Neumann Green’s function, GN, that satisfies the zero

normal-gradient condition @GN=@n ¼ 0 on the boundary.

G. Relative responses of entropy and acoustic modes

In this section we compare the modal responses of an

unbounded thermoviscous fluid to various idealized single-

frequency sources. The discussion is based on the acoustic

mode equation in row 3 of Table I, and the entropy mode

equation in row 4. Two main conclusions can be drawn from

the results. First, the entropy and acoustic mode responses to

the same physical input can differ by an Oð~ejÞ factor in the

near field, thus locally invalidating the D ¼ Oð~eÞ approxima-

tion. Second, the response ratio depends strongly on geometry,

with point sources giving different results from plane source

layers.

1. Point-source free-field responses

Entropy-mode and acoustic-mode responses are com-

pared for two types of point source, first a single-frequency

point force, and then a single-frequency point heat input.

The free-field Green’s function for the 3D Helmholtz opera-

tor r2 þ k2
a;h is ð1=4prÞ exp ika;hr. Thus, in the near field

with jka;hjr � 1, the same Green’s function ð1=4prÞ and

Green’s function gradient apply to both the acoustic and

entropy modes.

It follows from Table IV that for a point force the

respective modal responses (Sh, Pa) in the near field are in

the ratio

Sh

Pa
’ U

W
¼ CU=v

CW=c2
¼ �B: (38)

The fact that the responses are the same order in e means

that the D ¼ OðeÞ approximation can legitimately be used,

according to the criteria derived in Appendix B.

On the other hand, for single-frequency point sources

of heat the corresponding ratio Sh=Pa is i=Aej based on

Table III. The near-field response (at radii less than the ther-

mal penetration depth, lh ¼
ffiffiffiffiffiffiffiffiffi
v=x

p
) is dominated in this

TABLE IV. Comparison of mechanical-type source terms appearing in the acoustic-mode and entropy-mode equations. In row 2, fn ¼ n̂ � curl x. Results

are based on the D ¼ Oð~eÞ approximation, corresponding to rows 3 and 4 of Table II.

Forcing mechanism CW (acoustic mode) CU (entropy mode)

1 Normal boundary velocity @

@t
½undðf Þ� � av

cp

@

@t
½undðf Þ�

2 Tangential boundary vorticity �fndðf Þ � av
cp
�fndðf Þ

3 Tangential boundary vorticity (alternative form) div ½�ðx� n̂dðf Þ� � av
cp

div ½�ðx� n̂dðf Þ�

4 Distributed body force �div ½gH ðf Þ� av
cp

div ½gH ðf Þ�

TABLE III. Comparison of thermal-type source terms appearing in the

acoustic-mode and entropy-mode equations. Results based on the D ¼ Oð~eÞ
approximation, corresponding to rows 3 and 4 of Table II.

Forcing mechanism CW (acoustic mode) CU (entropy mode)

1 Boundary heat flux
a
@

@t
½qndðf Þ�

1

qcpT
qndðf Þ

2 Distributed heat input
a
@

@t
½rH ðf Þ� 1

qcpT
rH ðf Þ
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case by the entropy mode, as one might expect. Although

the D ¼ OðeÞ acoustic-mode solution is still valid at suffi-

ciently large distances from the source (since the entropy

mode continues to decay exponentially outside the thermal

layer), it may not be used within that layer. The reason is

that the amplitude ratio Sh=Pa � Oðe�1
j Þ is too large, accord-

ing to Appendix B, to justify use of the D ¼ OðeÞ approxi-

mation. In order to describe the near acoustic field

accurately, one would need to proceed to D ¼ Oðe2Þ.

2. Plane source layer responses

A similar comparison is carried out next for three types of

plane source layer. The following are considered in turn, each

located in the plane y¼ 0: (i) a tangential force distribution in

the x direction, (ii) a normal force distribution, and (iii) a heat

input distribution. The input quantity in each case is assumed

proportional to eiðmx�xtÞ. The free-field Green’s function

giðyjy0Þ for either mode is the outgoing-wave solution of

@2

@y2
þ K2

i

 !
giðyjy0Þ ¼ �dðy� y0Þ ði ¼ a; hÞ; (39)

where K2
i ¼ k2

i � m2. Hence,

giðyjy0Þ ¼
i

2Ki
exp iKijy� y0j

and

@gi

@y0

ðyjy0Þ ¼
1

2
sgn ðy� y0Þ exp iKijy� y0j: (40)

In the limit jy� y0j ! 0, the following results are obtained

for the three cases defined above.

Case (i): This is a mechanical input, of monopole order

(no y derivatives). Using Table IV gives the response ratio

adjacent to the tangential-force layer as

Sh

Pa
’ U

W
¼ �B

gh

ga
¼ �B

Ka

Kh
: (41)

If m=k0 ¼ Oð1Þ, where k0 ¼ x=c0 is the lossless acoustic

wavenumber, then the ratio Ka=Kh ¼ OðejÞ. Equation (41)

then predicts that the near field is dominated by the acoustic

mode. The OðejÞ relative smallness of the entropy-mode

response means, according to Appendix B, that the D
¼ OðeÞ approximation is inadequate to this situation and if

one wished to describe the entropy mode accurately for case

(i), one would need to proceed to D ¼ Oðe2Þ.
Case (ii): This is also a mechanical input, but of dipole

order (single y derivative). Using Table IV gives the

response ratio adjacent to the layer as

Sh

Pa
’ U

W
¼ �B since

@gh=@y0

@ga=@y0

¼ 1: (42)

Equation (42) predicts that Sh=Pa ¼ Oð1Þ; thus, the acoustic

and entropy modes are excited with comparable amplitudes.

Case (iii): This is a thermal input, of monopole order

(no y derivatives). Using Table III gives the response ratio

adjacent to the heat-input layer as

Sh

Pa
’ U

W
¼ i

Aej

� �
gh

ga
¼ i

Aej

� �
Ka

Kh
: (43)

If m=k0 ¼ Oð1Þ, the ratio Ka=Kh ¼ Oðe1=2
j Þ. Equation (43)

then predicts that Sh=Pa ¼ Oðe�1=2
j Þ; the entropy mode is

excited much more strongly by a heat-input layer than the

acoustic mode. Unlike case (i), however, the disparity is not

so great as to invalidate the D ¼ Oð~eÞ approximation.

A detailed calculation provides the following solution

for the total field in the lowest-order approximation

[D ¼ Oð~eÞ], due to a normal-force input Fy per unit area and

a heat input rate Q per unit area both applied in the plane

y¼ 0,

Sðy ¼ 0þÞ ’ 1

2

i

ej

� �1=2 Q

qccpT
� 1

2
aFy; (44)

Pðy ¼ 0þÞ ’ 1

2

aQ

bc
þ Fy

qc2

� �
: (45)

Here, b ¼ ½1� ðm=k0Þ2�1=2
. Equations (44) and (45) give

ðS=PÞy¼0þ ¼ ði=ejÞ1=2b=A for Q forcing and ðS=PÞy¼0þ

¼ �B for Fy forcing, in agreement with the general conclu-

sions above.

Tables I and II comprise the main result of this work.

They generalize the Kirchhoff–Helmholtz representation, in

differential form, to real fluids. In the sections that follow

we examine the implications of these equations and explain

how they can be used in applications.

IV. EXAMPLE APPLICATION: SOUND RADIATION
FROM A PLANE BOUNDARY WITH UNSTEADY
HEATING

Consider an infinite plane boundary at x¼ 0 with the

halfspace x> 0 filled with a uniform fluid initially at rest.

The fluid is excited at the boundary by a spatially uniform

time-varying heat flux qn ¼ q̂ne�ixt, which drives both the

acoustic and entropy modes. The entropy mode response

consists of an unsteady thermal boundary layer, whose

thickness is of order lh ¼
ffiffiffiffiffiffiffiffiffi
v=x

p
; this is necessarily small

compared with the acoustic wavelength in view of our

assumption ej � 1. To estimate the acoustic response, we

use the acoustic mode equation in its single-frequency one-

dimensional form, based on the D ¼ Oð~eÞ time-domain ver-

sion in row 3 of Table II. The governing equation for the

acoustic mode variable, valid for all x, is

d2

dx2
þ k2

0

� �
ŴHð Þ ’ ix

a

c2
q̂ndðxÞ þ

d

dx
ŴdðxÞ
h i

¼D �N̂ðxÞ:

(46)

The acoustic-mode eigenvalue k2
a is here approximated by

k2
0 ¼ ðx=cÞ2 on the basis that thermoviscous attenuation of
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sound may be neglected. Equation (46) is to be solved sub-

ject to the outgoing-wave condition in x> 0, namely,

dðŴH Þ=dx ¼ ðd=dxÞŴðxÞ ¼ ik0Ŵ.

Any desired homogeneous boundary condition can be

applied in x< 0, since H ¼ 0 in this region. In order to elim-

inate the dipole term in Eq. (46) we use a Neumann Green’s

function gðx j nÞ whose value gþ in x > n represents outgo-

ing waves, and whose gradient @gþ=@n vanishes as n! 0.

The Green’s function that satisfies these conditions and the

equation

d2

dx2
þ k2

0

� �
gðx j nÞ ¼ �dðx� nÞ (47)

is

gþðx j nÞ ¼ i

k0

eik0x cos k0n: (48)

The solution of Eq. (46) in x> 0 follows as

ŴH ¼ ŴðxÞ ¼
ðx

�1
N̂ðnÞgþðx j nÞ dn (49)

¼ a

c
q̂neik0x: (50)

Our use of the Neumann Green’s function (48) means that

the dipole term d=dx½ŴdðxÞ� on the right of Eq. (46) does

not contribute to the solution.

The pressure radiated outside the thermal boundary

layer is given by Eq. (50) as

p̂ðxÞ ’ qc2Ŵ ’ qcaq̂neik0x; (51)

the relative error in this approximation is D ¼ OðeÞ. The

simple relation above connects the radiated sound with the

boundary heat flux, for any thermoviscous fluid.

The spherical-wave counterpart of Eq. (51) can be

obtained similarly. In this case a uniform heat flux q̂ne�ixt is

applied over the surface of a rigid sphere of radius r0. The

corresponding Neumann Green’s function is

gþðr j nÞ ¼ 1

n
r0

r

� �
eik0ðr�r0Þ

1� ik0r0

� cos k0ðn� r0Þ þ
1

k0r0

sin k0ðn� r0Þ
� �

ðr > n 
 r0Þ; (52)

whose gradient @gþ=@n vanishes as n! r0. The radiated

pressure follows as

p̂ðrÞ ’ qc2Ŵ; ŴðrÞ ¼ r0

r

� �
aq̂n

c

eik0ðr�r0Þ

1þ i=k0r0

: (53)

If, however, the fluid is excited by a specified boundary

temperature fluctuation T0 ¼ ĥe�ixt at x¼ 0, rather than a

specified heat flux, then a relation between ĥ and q̂n is needed

in order to apply Eq. (51). This can be supplied by solving the

entropy mode equation from row 4 of Table II, whose fre-

quency domain version for the plane-boundary problem is

d2

dx2
þ k2

h

� �
ðÛH Þ ’ � 1

jT
q̂ndðxÞ þ

d

dx
ÛdðxÞ
	 


¼D �!ðxÞ:

(54)

The only change required to the Green’s function is to replace

k0 in Eq. (48) by kh. Once Ŵ and Û are known the temperature

follows from T0=T0 ¼ BPþ S, with P ’ W and S ’ U.

Alternatively, the desired relation can be found using the

matching procedure outlined in Sec. VI, where the plane wave

solution for a prescribed temperature is obtained in Sec. VI C.

V. VORTICITY MODE IN BOUNDED FLUIDS

Taking the curl of the linearized momentum Eq. (8) and

introducing the kinematic viscosity � ¼ l=q leads to a line-

arized vorticity equation valid in region V (f> 0),

@x

@t
¼ curl g� � curl f ðf ¼ curl xÞ: (55)

Equation (55) is the forced vorticity-mode equation that

describes the excitation and diffusion of vorticity perturba-

tions in a uniform viscous fluid at rest. A windowed version

of this equation, with xH ðf Þ in place of x, can be obtained

by multiplying Eq. (55) by H ðf Þ and rearranging. With the

aid of various vector calculus relations one obtains the

bounded-region vorticity equation

@

@t
� �r2

� �
ðxH Þ ¼ curl gHþ ðg� �fÞ

� n̂dðf Þ � �rðxndðf ÞÞ
� � curl ðx� n̂dðf ÞÞ; (56)

where xn ¼ x � n̂ is the vorticity component normal to the

boundary �S of the excluded region.

The first, third and fourth source terms on the right of

Eq. (56) involve spatial derivatives of generalized functions.

It is convenient for solution purposes to transfer these deriv-

atives to the vorticity-mode Green’s function Gwðx; tjy; sÞ.
The solution for xðx; tÞ in region V then takes the form

x ¼
ð

ds
ð
V

1

�
ðg�ryGwÞ d3y

�

þ
ð

�S

1

�
ðg� n̂ÞGw dSðyÞ þ A

�
: (57)

where the contribution due to boundary vorticity is given by

A ¼
ð

�S
xnryGw � ðx� n̂Þ � ryGw � ðf� n̂ÞGw

	 

dSðyÞ:

(58)

Here, Gwðx; tjy; sÞ is a solution of the inhomogeneous diffu-

sion equation ð��1@=@t�r2
xÞGw ¼ dðx� yÞdðt� sÞ. If the
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boundary is a solid wall, substituting the value of f� n̂ at

the wall from Eq. (8) shows how vorticity generation at a

no-slip boundary is related to the tangential pressure gradi-

ent [Lighthill (1978), p. 131], thus providing a coupling

mechanism between the vorticity and acoustic modes. Note

that Gw is not uniquely defined; it may be taken as any

causal solution valid in Vþ � V. An analogous integral for-

mula for electromagnetic fields is given by Jones (1986).

This formal solution of the linearized vorticity equation

shows how the unsteady vorticity in a given domain V can

be related entirely to the vorticity on the domain boundary

and to the body force field g in V, with no input from the

other quantities ðr; un; qnÞ that drive the acoustic and

entropy modes. An analogous conclusion applies to shear

waves in a uniform elastic solid, as discussed in Achenbach

(1975).

VI. MODAL FIELDS IN TERMS OF POTENTIALS

A. Fundamental relations for thermoviscous fluids

Instead of using W; U and the vorticity x as modal vari-

ables as done previously, one can describe the three linear

perturbation modes in a source-free fluid region in terms of

a triple decomposition of the velocity field using two scalar

potentials and a vector potential, ðua;uh;wÞ. The modal

velocity perturbations then follow as

ua ¼ rua; uh ¼ ruh; uw ¼ curl w; (59)

with ua þ uh þ uw ¼ u. Our aim in what follows is to relate

the modal components of ðp0; s0; T0Þ, represented below in

dimensionless form as P ¼ p0=qc2; S ¼ s0=cp and T0=T, to

the potentials ua and uh, and also in reverse to express ua

and uh in terms of Pa and Sh. It will be assumed that no vol-

ume sources are present. Then away from boundaries the

three modes propagate independently with no first-order

coupling, and the linearized continuity equation can be split

into separate acoustic and entropy mode components to give

r2ui ¼ �
@Pi

@t
þ A

@Si

@t
ði ¼ a; hÞ: (60)

It is convenient to assume all quantities are proportional to

e�ixt. Since there are no external sources, ua and uh obey

the homogeneous equations

r2ui ¼ �k2
i ui ði ¼ a; hÞ: (61)

with k2
a and k2

h given by the dispersion relations in Appendix

A. Also, Pi and Si for each mode are connected by the

frequency-domain polarization relations

Sa ¼ kaPa; Ph ¼ khSh; (62)

where the coefficients ka, kh are given in Appendix A as

series expansions in ð�ieL;�ieLÞ. It follows from Eqs.

(60)–(62) that

�ixPa ¼
k2

aua

1� Aka
and � ixSh ¼

k2
huh

kh � A
: (63)

Equations (63) relate Pa and Sh to the scalar potentials ua

and uh in a source-free region. Corresponding relations for

Ph and Sa can then be obtained from Eq. (62). The tempera-

ture perturbation in either mode follows from the linearized

thermodynamic relations

T0a
T
¼ BPa þ Sa;

T0h
T
¼ BPh þ Sh: (64)

B. Explicit results for P, S, and T 0=T

Equations (60)–(64) are all exact consequences of the

linearized equations of fluid motion in a source-free region.

Substituting asymptotic expressions for k2
a; k2

h, ka, and kh

from Appendix A gives, for thermoviscous fluids,

Pa

ua

¼ ix
c2

1þ ieL � e2
L � ðc� 1ÞeLej þ Oðe3Þ

	 

; (65)

Sa

ua

¼ x
c2

Bej 1þ 2ieL þ ðc� 2Þiej þ Oðe2Þ
	 


; (66)

Ph

uh

¼ �i

v
ðeL � ejÞ 1þ ðc� 1ÞieL þ Oðe2Þ

	 

; (67)

Sh

uh

¼ 1

vA
1þ ðc� 2ÞiðeL � ejÞ � ðc� 1Þ
�

� ðc� 1Þe2
L � ðcþ 1ÞeLej þ e2

j

	 

þ Oðe3Þ

�
:

(68)

The temperature perturbation then follows from Eq. (64),

T0a=T0

ua

¼ ix
c2

B 1þ iðeL � ejÞ � e2
L � ðcþ 1ÞeLej

	
þðc� 2Þe2

j þ Oðe3Þ


; (69)

T0h=T0

uh

¼ 1

vA
1� iðeL � ejÞ þ ðc� 1Þejð2eL � ejÞ þ Oðe3Þ
	 


:

(70)

In Eqs. (65)–(70), each modal component of P, S, and T0=T
has been expanded up to Oðe2Þ. In order to obtain time-

domain versions one would substitute the time-domain oper-

ators R and G for �ieL;�iej respectively, and replace �ix
with @=@t.

Various alternative relations, similar to Eqs. (65)–(70),

can be found that connect pairs of the acoustic-mode varia-

bles ðua;Pa; Sa; T
0
aÞ in a source-free region; the same applies

to the entropy-mode variables ðuh;Ph; Sh; T
0
hÞ. Although we

have chosen to present our results as series expansions in

ð�ieL;�ieLÞ, exact versions of all such relations are avail-

able in terms of the appropriate inverse eigenvalue (Xa or

Xh) (see Appendix C). However, the danger in using these is

that if the squared wavenumbers are approximated to a
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given order in ðeL; ejÞ, the resulting relations are not guaran-

teed to be accurate to the same order.

C. Example: Relation between temperature and heat
flux at a plane boundary

As an illustration of the use of potentials, we continue

the half-space problem introduced in Sec. IV by solving for

the sound field radiated by a prescribed temperature fluctua-

tion T0 ¼ ĥe�ixt on the boundary. The acoustic and entropy

modal potentials for single-frequency excitation are intro-

duced as

ua ¼ ûae�ixt; uh ¼ ûhe�ixt: (71)

Equations (69) and (70) of Sec. VI give the corresponding

temperature perturbations as

T̂ a

T0

¼ ix
c2

Bua 1þOðeÞ½ �; T̂ h

T0

¼ 1

vA
uh 1þOðeÞ½ �: (72)

The boundary conditions to be applied at x¼ 0 are

kaûa þ khûh ¼ 0; T̂ a þ T̂ h ¼ ĥ; (73)

the first condition ensures that the fluid velocity is zero on

the boundary. Combining Eqs. (72) and (73) allows one to

solve for ðT̂ a; T̂ hÞ in terms of the boundary temperature ĥ,

and hence to find the modal components ðq̂a; q̂hÞ of the

boundary heat flux q̂n:

q̂a ’ e1=2
j ðc� 1Þ jx

c
ĥeip=4; q̂h ’ e�1=2

j
jx
c

ĥe�ip=4: (74)

In each case the relative error is D ¼ Oðe1=2
j Þ þ OðeLÞ.

Equation (74) shows that jq̂a=q̂hj ¼ OðejÞ, so the heat flux

due to the acoustic mode may be neglected without loss of

accuracy.

The radiated pressure field then follows from Eq. (51)

as

p̂ðxÞ ’ e�1=2
j

axj
cp

ĥeiðk0x�p=4Þ ¼ e1=2
j qc2aĥeiðk0x�p=4Þ (75)

with the same relative error as in Eq. (74). In order to allow

for thermoviscous attenuation, k0 may be replaced by

ka ’ k0½1þ 1
2

ieL þ 1
2

iðc� 1Þej� in the exponent of Eq. (75).

Equation (75) applies to any thermoviscous fluid, so repre-

sents a generalization of the initial analysis of this problem

due to Trilling (1955), where the fluid was assumed to be an

ideal gas with zero bulk viscosity and shear Prandtl number

�=v ¼ 3
4
.

Comparison of Eq. (75) with the corresponding result

Eq. (24) in Trilling (1955), noting that for an ideal gas a
¼ 1=T and cp ¼ qc2, shows perfect agreement within the

present small-e approximation.

These results were validated by comparing the pre-

dicted pressure at the wall with simulations made using

COMSOL MULTIPHYSICS version 6.1 to solve a set of equations

equivalent to Eqs. (7)–(9), but with temperature replacing

entropy as a dependent variable.

Although the preliminary analysis in Trilling (1955) is

exact, his Eq. (24), which corresponds to our Eq. (75), is in

fact a low-frequency approximation. The exact dimension-

less wall pressure can be found from the exact eigenvalue

X�1
a ¼ ð1� ciejÞ for the Y¼ 1 case to be

P̂ð0Þ ¼ P̂að0Þ ¼ ae1=2
j ĥ

1þ iejXa

ðiXaÞ1=2 þ ðc� 1Þe1=2
j

: (76)

The modulus of this expression, normalized by ae1=2
j ĥ, is com-

pared with numerical predictions in Fig. 1(a) as a function of

ej. The fluid properties used in the numerical simulation were

those of air at room temperature but with lB ¼ 0 Pa s and j
chosen to give Y¼ 1 as assumed by Trilling (1955). The corre-

sponding frequency range runs from about 1 kHz to 1 GHz

although, as noted above, as ej approaches unity continuum

theory will break down for gases.

When Y 6¼ 1 both the acoustic and entropy modes will

contribute to the pressure field. Their pressure components

can be found by matching boundary conditions using

potentials and using the relations given in Appendix C and

Table VI, with the exact eigenvalues given in Eq. (17). The

acoustic-mode wall pressure is

P̂að0Þ ¼
aĥ
Za
ð1þ ieLXaÞ ’ i�1=2e1=2

j aĥ 1þ Oðe1=2
j Þ

h i
; (77)

where

Za ¼ c 1� ðXa=XhÞ1=2
h i
� ð1� cieLÞXa 1� ðXh=XaÞ1=2

h i
� e�1=2

j : (78)

The entropy-mode contribution is given by interchanging

the a and h subscripts throughout.

Figure 1(b) shows these expressions, and their Oðe1
jÞ

asymptotes, normalized as before by ae1=2ĥ, and compares

the total pressure amplitude with numerical simulations.

The same fluid properties were used except that l was cho-

sen to give a shear Prandtl number of 1 and lB was set equal

to l, giving Y¼ 7/3. Although unrealistic for air this allows

the contribution of the entropy-mode pressure at high fre-

quencies to be clearly seen.

D. Advantages and limitations of the potential
representation

The relations given in Secs. VI B, VI C demonstrate that

any of the scalar variables ðua; p
0
a; s
0
a; T

0
aÞ can in principle be

used to characterize the acoustic mode in a source-free

region; the velocity potential ua is one option, but for exam-

ple Cutanda-Henr�ıquez and Juhl (2013) use p0a, while

Bruneau et al. (1989) and Beltman (1999) use T0a. Likewise,

in the absence of sources the entropy mode can be repre-

sented by any one of ðuh; p
0
h; s
0
h; T

0
hÞ; the choice is not con-

strained by what is used for the acoustic mode, although the
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authors cited above use p0h and T0h, respectively. The choice

of p0h as entropy mode variable is not recommended because,

as Appendix C explains, the entropy mode component of p0

vanishes when Y¼ 1. For air at 20 �C the value of Y would

be 0.96 if the bulk viscosity were zero. However, according

to Greenspan (1959) lB=l ¼ 0:6 due to rotational relaxa-

tion, giving Y¼ 1.39.

The distinctive feature of W and U as mode variables

is that when external volume sources ðr; gÞ are present,

ðW;UÞ obey the inhomogeneous mode equations shown

in Tables I and II. The existence in a heat-conducting

fluid of two scalar modes, both of which are excited by

the same source distributions ðr; div gÞ, means that one

cannot formulate separate inhomogeneous equations for

the modal velocity potentials associated with the acous-

tic and entropy modes. On the other hand, once a solu-

tion for the scalar variables ðP; SÞ has been found using

W and U, the results given above allow one to estimate

the potentials ua and uh outside the source region, and

the corresponding modal velocities ðua; uhÞ follow by

taking their gradients. The rotational velocity field can

also be found outside the region where curl g 6¼ 0, by

using

uw ¼ k�2
w curl x ðk2

w ¼ ix=�Þ; (79)

once the inhomogeneous vorticity mode equation in Sec. V

has been solved for x.

FIG. 1. Comparison of numerical and

theoretical predictions of pressure-

fluctuation amplitude at a wall whose

temperature varies harmonically with

time. The fluid simulated is air at 1 bar

and 20 �C with c ¼ 343 ms�1; � ¼ 1:6
�10�5 m2 s�1; cp ¼ 1005:7 J kg K�1

and c ¼ 1:4. In (a) j is chosen to make

the shear Prandtl number Pr ¼ 3=4 and

lB ¼ 0 Pa s, so that the longitudinal

Prandtl number Y¼ 1. In (b) Pr ¼ 1

and lB ¼ l so that the longitudinal

Prandtl number Y¼ 7/3.
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VII. APPLICATION: ACOUSTIC MODE
EXTRAPOLATION FROM MULTIMODE BOUNDARY
DATA

In this section we consider the excitation of modal fields

at boundaries, and assume volume forcing terms are absent.

We address the question of whether, in the presence of non-

radiating entropy and vorticity fluctuations, data on the fluid

normal velocity, normal heat flux, and tangential vorticity at

a boundary can provide robust estimates of the radiated

acoustic field, in a manner analogous to the ideal-fluid

Kirchhoff–Helmholtz formulation based on un and p0 data.

A. Extrapolation of the acoustic mode from surface
data

In thermoviscous fluids, linear extrapolation of the

acoustic mode from surface data is complicated by the pos-

sible presence of entropy and vorticity modes. Of the three

fluid-dynamic quantities un, qn, and ðx� n̂Þ whose values

on the boundary surface determine the acoustic field in the

generalized Kirchhoff–Helmholtz representation of Sec. III,

ðx� n̂Þ is driven by the vorticity mode, qn will generally

contain an entropy mode component as well as an acoustic

mode, and un may contain contributions from all three. The

presence of these modes, for example at a vibrating solid

boundary or a boundary with unsteady heating, invalidates

the use of the lossless Kirchhoff–Helmholtz integral repre-

sentation based on un and p0 at that surface to predict the

radiated sound—as has previously been recognized in the

textbook by Pierce (1994). The question we wish to address

is: How sensitive is the extrapolated field to cross-modal

contamination from other modes present in the data, when

one uses the generalized theory of Sec. III to predict the

sound radiation?

B. Cylindrical-geometry test cases based on
analytical modal solutions

As a test of how sensitive the extrapolated sound field is

to cross-modal contamination, we consider two cases where

all three modes are present on a cylindrical surface r¼ r0.

The first case (a) is an exterior problem: boundary condi-

tions at r¼ r0 are assumed to drive outgoing waves in all

three modes in the region r > r0. In case (b) boundary con-

ditions at r¼ r0 drive standing waves in the interior space

r < r0. The theory of Sec. III is combined with data on un,

qn, and ðx� n̂Þ at r ¼ r0 to project the acoustic-mode com-

ponent into the exterior and interior spaces respectively. The

results reveal what contribution the separate modal compo-

nents of un, qn, and ðx� n̂Þ as boundary conditions would

each make to the projected sound field. Although the net

contribution of either the vorticity or the entropy mode com-

ponents is zero, the failure of individual terms to cancel if

the surface data are inaccurate represents a potential source

of error.

The separable property of the Helmholtz equation in

ðx; r; hÞ cylindrical coordinates means that in the frequency

domain one can construct axisymmetric solutions of the

modal equations (i.e., with uh ¼ 0 and @w=@h ¼ 0, where w
is any scalar property) in the form

Pa ¼ CaRaðrÞeiðmx�xtÞ; Sh ¼ ChRhðrÞeiðmx�xtÞ;

ikw

c

� �
wh ¼ CwRwðrÞeiðmx�xtÞ: (80)

Here, m is real, and RiðrÞ are the radial functions for each

mode (i ¼ a; h;w), normalized to 1 at r¼ r0. The radial

functions for outgoing waves [case (a)] are

RaðrÞ ¼
H
ð1Þ
0 ðKarÞ

H
ð1Þ
0 ðKar0Þ

; RhðrÞ ¼
H
ð1Þ
0 ðKhrÞ

H
ð1Þ
0 ðKhr0Þ

;

RwðrÞ ¼
H
ð1Þ
1 ðKwrÞ

H
ð1Þ
1 ðKwr0Þ

; (81)

with radial wavenumbers for each mode (i ¼ a; h;w) given

by Ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
i � m2

p
; while for case (b), ðH ð1Þ0 ;H

ð1Þ
1 Þ are

replaced by ðJ0; J1Þ. The vorticity mode ði ¼ wÞ in Eqs. (80)

and (81) is characterized by a solenoidal vector potential

w ¼ ð0; 0;whÞ that obeys ðr2 þ k2
wÞw ¼ 0; the vorticity

vector then follows from x ¼ �r2w ¼ k2
ww. The reason

that H
ð1Þ
1 appears in Eq. (81) for RwðrÞ is that

½r2w�h 6¼ r2wh; ½r2w�h contains an extra term �wh=r2,

which changes the Bessel equation from order 0 (the value

for an axisymmetric scalar variable) to order 1.

To relate un, qn, and ðx� n̂Þ on r¼ r0 to the modal

coefficients Ci, we note that for the vorticity mode, ðx� n̂Þ
and the normal velocity uwn on r¼ r0 can be expressed in

terms of wh by using

ðx� n̂Þ ¼ ðxh; 0; 0Þ; xh ¼ k2
wwh;

and

uw ¼
1

r

@

@r
ðrwhÞ;�

@wh

@x
; 0

� �
: (82)

For the acoustic and entropy modes, the normal velocities

uan, uhn follow from the respective scalar potentials. The lat-

ter can be related to Pa, Sh with relative error D ¼ OðeÞ by

inverting Eqs. (65) and (68) to give

ua ’
c2

ix
ð1� ieLÞPa;

uh ’ vaT 1� ð2� cÞiðej � eLÞ½ �Sh; (83)

taking the radial derivative yields the normal velocities uan,

uhn on the cylindrical surface. For case (a), Eq. (81) gives

the required radial-function derivatives at r¼ r0 as

R0iðr0Þ ¼ Ki=E0ðziÞ;

E0ðziÞ ¼ H
ð1Þ
0 ðziÞ=H

ð1Þ0
0 ðziÞ ði ¼ a; hÞ; (84)

where zi ¼ Kir0 is the dimensionless radial wavenumber for

each mode. A similar result applies to case (b) with E0ðziÞ
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replaced by F0ðziÞ ¼ J0ðziÞ=J00ðziÞ. The functions

E0ðzaÞ; F0ðzaÞ are closely related to the Neumann acoustic

Green’s functions for the exterior and interior regions.

Finally, the normal heat flux for each mode is given to

the same accuracy by substituting the relations

T0a
T0

’ Bð1� iejÞPa;

T0h
T0

’ 1� iðc� 1ÞðeL � ejÞ½ �Sh ðB ¼ ac2=cpÞ (85)

in q ¼ �jrT, and using Eq. (84) above to obtain the radial

derivatives. Equation (85) is based on the linearized thermo-

dynamic relation (64) together with the polarization rela-

tions (A4) and (A5).

The non-dimensional modal variables (Pa, Sh) used to

characterize the acoustic and entropy modes in Eq. (80) are

those used in Sec. III B. One can interpret the acoustic mode

amplitude jCaj either as the amplitude of p0a=qc2 at r¼ r0, or

alternatively (provided jKajr0 	 1) as the amplitude of

juaj=c.2 For the vorticity mode, the choice of ðikw=cÞwh as

variable means that jCwj ’ juwj=c in both cases (a) and (b),

provided the cylinder radius is much larger than the

vorticity-mode length scale lw ¼
ffiffiffiffiffiffiffiffiffi
�=x

p
, so that jkwjr0 	 1,

and m=k0 ¼ Oð1Þ. Our initial assumption will be that all

three modes are present at r¼ r0 with similar amplitudes

jCij.

C. Acoustic-mode source terms on r 5 r0

The governing inhomogeneous equation for boundary-

driven axisymmetric acoustic waves in either the exterior

region r > r0 or the interior region r < r0 has the general

form

1

r

@

@r
r
@

@r

� �
þ K2

a

� �
ðPaH Þ

¼ �Qadðr � r0Þ6
@

@r
Padðr � r0Þ½ � ðr0r0Þ; (86)

where the unit step function H ¼ H ðr � r0Þ for case (a),

r > r0, and H ¼ H ðr0 � rÞ for case (b), r < r0. For purposes

of the present D ¼ OðeÞ analysis the dimensionless acoustic-

mode pressure Pa is approximated by the frequency-domain

version of W in row 3 of Table II, namely, Pþ iðeL � ejÞAS.

The surface monopole distribution Qa for radiation into the

exterior space then follows from row 3 of Table II, which

when combined with Eq. (82) gives

Qa ¼ �
ix
c2
ður þ aqrÞ þ

xm

c2
wh: (87)

For radiation into the interior region r < r0, the direction of

n̂ is reversed and Qa is the negative of the expression in Eq.

(87). Then, if gðr j nÞ is a Green’s function for the operator

in Eq. (86), defined for either case (a) with ðr; nÞ 
 r0 or

case (b) with ðr; nÞ � r0 by

1

r

@

@r
r
@

@r

� �
þ K2

a

� �
gðr j nÞ ¼ � 1

r
dðr � nÞ; (88)

the acoustic field P
^

a reconstructed from data on r¼ r0 is

P
^

aðrÞ ¼ Qaðr0Þr0gðr j r0Þ6 Paðr0Þr0

@gðr j nÞ
@n


n¼r0

: (89)

The þ sign in Eq. (89) applies to case (a), and the � sign to

case (b).

To solve Eq. (86) for the acoustic field in the exterior

region r > r0 using data for Qa alone, we require the

Neumann Green’s function gNðr j nÞ whose normal gradient

@gN=@n vanishes just inside the cylindrical surface at

n ¼ r0 � �, in the limit �! 0; thus

gNðr j r0Þ ¼ �
1

Kar0

H
ð1Þ
0 ðKarÞ

H
ð1Þ0
0 ðKar0Þ

; (90)

and for the interior region r < r0, the corresponding Green’s

function whose normal gradient vanishes just outside the

cylindrical surface at n ¼ r0 þ � is

gNðr j r0Þ ¼
1

Kar0

J0ðKarÞ
J00ðKar0Þ

: (91)

The acoustic field projected from data on r¼ r0 follows

from Eq. (89) as P
^

aðrÞ ¼ Qaðr0Þr0 gNðr j r0Þ.
For extrapolation into the interior space r < r0, a disad-

vantage is the occurrence of resonances, whose effect is to

amplify cross-modal contamination associated with errors in

the surface data; the effect is quantified in Sec. VII D. Thus

in Eq. (91) J00ðKar0Þ becomes small and P
^

aðrÞ=Qaðr0Þ
becomes large, when k2

0 � m2 ¼ ðj00q=r0Þ2 where j00q are the

stationary values of the J0 Bessel function. The amplitude at

resonance is limited only by fluid–acoustic damping in the

interior space.

D. Modal contributions to P
^

a

Table V shows a breakdown of the modal contributions

to the reconstructed exterior field P
^

aðr > r0Þ, based on the

Neumann Green’s function and with the contribution of

each monopole source term in Qa split into modal

components.

Thus

P
^

aðr > r0Þ ¼ C
^

aeiðmx�xtÞRaðrÞ;

C
^

a ¼ KaaCa þ KahCh þ KawCw: (92)

The modal coefficients Kai that determine the contribution

made by each of the three modes (i ¼ a; h;w) to the pro-

jected sound field are given by adding the separate source-

term contributions associated with ur, qr, and wh, as listed in

the column for each coefficient. The Kah and Kaw columns,

with za ¼ Kar0 and zh ¼ Khr0 as dimensionless parameters,

contain terms that in theory should cancel, leaving no net
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contribution from either of the non-acoustic modes to the

projected sound field.

Corresponding coefficients for the interior region r < r0

are given by replacing E0ðnÞ in Eq. (84) with

F0ðnÞ ¼ J0ðnÞ=J00ðnÞ. As mentioned above, acoustic reso-

nances in the interior space cause F0ðzaÞ to become large at

certain frequencies. Asymptotic analysis yields the

ðKah;KawÞ coefficients for k2
0 � m2 ¼ ðj00q=r0Þ2 as follows.

At the first acoustic resonance (k0 ¼ m),

ðjKahj; jKawjÞ ’
4

mr0

Ae1=2
j ; e1=2

l

� �
e�2

a ; (93)

and at the subsequent transverse-mode resonances

ðjKahj; jKawjÞ ’
2

k0r0

Ae1=2
j ;

m

k0

e1=2
l

� �
e�1

a ; (94)

where el ¼ xl=qc2 and ea ¼ eL þ ðc� 1Þej is the parame-

ter that governs thermoviscous attenuation of the acoustic

mode. Such large resonant values invalidate the use of the

D ¼ OðeÞ approximation for projecting the acoustic mode

into the interior domain at frequencies close to resonance.

E. Cross-modal contamination as a source of error

Although in theory neither the entropy mode nor the

vorticity mode can contribute to the projected acoustic field,

Table V shows that this depends on the cancellation of

potentially large terms. Thus, the ur and qr contributions

from the entropy mode should cancel3; but any errors in the

surface data will lead to errors in the Kah terms in rows 1

and 2, potentially destroying their cancellation and causing

contamination of the acoustic field. Likewise, the ur and wh

contributions from the vorticity mode should cancel in the-

ory, but contamination will occur if the ur and wh data con-

tains errors.

In the parameter space of ðk0r0; jmj=k0Þ there appear to

be no regions where large cancelling terms arise in Kah or

Kaw for the exterior radiation problem; the relevant entries

in Table V are all Oðe1=2Þ. For interior radiation, the issue of

resonances has already been mentioned. The only other

problem for interior radiation occurs with the entropy mode

terms when r0 is much less than the thermal penetration

depth lh, so that jzhj � 1. In this (perhaps unlikely) case, the

individual Kah terms are O(1) and thus are comparable with

the sum of the Kaa terms that represent the acoustic field.

We conclude that when all three modes are present at

r¼ r0 with similar amplitudes jCij, the generalized

Kirchhoff–Helmholtz representation of Sec. III can safely

be used for the exterior free-field radiation problem where

acoustic waves are extrapolated into r > r0. However, sig-

nificant problems can arise for acoustic wave projection

into interior spaces at frequencies close to acoustic

resonance.

VIII. CONCLUSIONS

(1) The linearly excited sound field in an initially quiescent

source-free region V filled with viscous heat-conducting

fluid is determined by the values of u � n̂; q � n̂, and x

�n̂ on the region’s boundary, together with the fluid

properties ðq; c; cp; aÞ and the transport properties

ðj; l; lLÞ, provided V contains no volume sources.

(2) The presence in V of an applied body force gðx; tÞ per

unit mass of fluid causes local linear excitation of both

the acoustic and entropy modes provided div g 6¼ 0. If

curl g 6¼ 0, the vorticity mode is also excited.

(3) The presence in V of a heat input rðx; tÞ per unit volume

causes local linear excitation of both the acoustic and

entropy modes, but not the vorticity mode.

(4) Explicit time-domain equations for the generalized

acoustic variable Wðx; tÞ and the entropy-mode variable

Uðx; tÞ in an unbounded region, driven by the volume

sources ðr; gÞ, are summarized in Table I. We present

asymptotic approximations accurate to different orders,

based on the order parameters v=~sc2 � 1 and (option-

ally) lL=~sqc2 � 1

(5) Explicit time-domain equations for Wðx; tÞ and Uðx; tÞ,
in a bounded region V driven by volume sources ðr; gÞ
and by the boundary data specified in 1. above, are sum-

marized in Table II. As in Table I, different levels of

asymptotic approximation are shown.

TABLE V. Coefficients Kai in Eq. (92) that determine the outgoing-wave acoustic field in the exterior region r > r0, when ur, qr, and wh (or xh ¼ k2
wwh) on

the cylindrical surface r¼ r0 are used as data. In the Kah column, the correction factors Ru, Rq are Ru ¼ ½1þ ð2� cÞiðeL � ejÞ�;
Rq ¼ ½1þ ðc� 1ÞiðeL � ejÞ�. In both the Kaa and Kah columns, each entry is given to OðeÞ relative accuracy. All variables (ur, qr, and wh) are assumed pro-

portional to eiðmx�xtÞ with m real.

Input variable Kaa Kah Kaw

1 ur 1� ieL
AiejRu

Kh

Ka

E0ðzaÞ
E0ðzhÞ

�ixm

ckw

1

Ka
E0ðzaÞ

2 qr �ðc� 1Þiejð1� iejÞ �AiejRq
Kh

Ka

E0ðzaÞ
E0ðzhÞ

—

3 wh — — ixm

ckw

1

Ka
E0ðzaÞ

4 Total 1� ieL � ðc� 1Þiej
Aejðej � eLÞ

Kh

Ka

E0ðzaÞ
E0ðzhÞ

0
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(6) The equations in Table II, combined with an appropriate

Green’s function, yield solutions for the sound field that

generalize the ideal-fluid Kirchhoff–Helmholtz integral

to viscous fluids with heat conduction.

(7) The viscous-dipole boundary-source term in the acoustic

mode equation of row 3 is exactly equivalent to the cor-

responding term in the free-field solution Eq. (10�6.7)

of Pierce (1994), as follows from the scalar triple prod-

uct rule.

(8) For free-field acoustic radiation problems, whose boundary

@V consists of the surface at infinity plus an active bound-

ary �S , the sound field in V can be determined in principle

from a knowledge of u � n̂, q � n̂, and x� n̂ on �S by

using an acoustic Green’s function whose normal deriva-

tive vanishes on �S . This procedure is shown in Sec. VII to

be robust, even when all three modes are present on �S and

have comparable dimensionless amplitudes.

The theory presented here can be extended to cover

either relaxing gases or elastic solids, although these exten-

sions have not been included for reasons of space.
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APPENDIX A: POLARIZATION/DISPERSION
RELATIONS AT HIGHER ORDER

The frequency-domain polarization coefficients ðka; khÞ
that allow one to describe the acoustic and entropy modes in

terms of P and S are summarized here for thermoviscous flu-

ids, together with the corresponding dispersion relations for

each mode.

1. Higher-order polarization relations
for thermoviscous fluids

The frequency-domain polarization coefficients ðka; khÞ
are defined by

Sa ¼ kaPa; Ph ¼ khSh: (A1)

Values of ðka; khÞ for general thermoviscous fluids are listed

below as series expansions in ð�ieL;�ieLÞ. Two types of

expansion are given: (i) for ej � 1 with eL unrestricted and

(ii) for e ¼ maxðej; eLÞ � 1. In case (i), terms up to Oðe2
jÞ

are included and in case (ii), terms up to Oðe2Þ.

Case (i): arbitrary eL; ej � 1,

ka ¼ B
�iej

1� ieL
� e2

j
ð2� c� ieLÞ
ð1� ieLÞ3

( )
þ Oðe3

jÞ; (A2)

kh¼A
�iej

1� ieL
�ð1�cieLÞ
ð1� ieLÞ3

iejþe2
j
ð2�c� ieLÞ
ð1� ieLÞ2

" #( )
þOðe3

jÞ:

(A3)

Case (ii): e ¼ maxðej; eLÞ � 1,

ka ¼ �iejBJ þ Oðe3Þ; kh ¼ �iðeL � ejÞAJ þ Oðe3Þ;
(A4)

Jðej; eLÞ ¼ 1þ ieL � ð2� cÞiej: (A5)

2. Dispersion relations for thermoviscous fluids

A similar expansion of the dispersion relations for each

mode, keeping the same relative accuracy as above, yields

Case (i): arbitrary eL; ej � 1,

X�1
a ¼ 1� ieL �

ðc� 1Þ
1� ieL

iej þ
ðc� 1Þð1� cieLÞ
ð1� ieLÞ3

e2
j þ Oðe3

jÞ;

(A6)

k2
a ¼

x2

c2

1

1� ieL
þ ðc� 1Þ
ð1� ieLÞ3

iej þ
ðc� 1Þ
ð1� ieLÞ5

(

� 2� cð1þ ieLÞ½ �e2
j þ Oðe3

jÞ
)
; (A7)

X�1
h ¼

cieL�1

1� ieL
iej�

ðc�1Þð1þ cieLÞ
ð1� ieLÞ3

e2
jþOðe3

jÞ; (A8)

k2
h ¼

ix
v

1� ieL

1� cieL
� ðc� 1Þ
ð1� ieLÞð1� cieLÞ

iej

�

� ðc� 1Þ
ð1� ieLÞ3

e2
j þ Oðe3

jÞ
#
: (A9)

Case (ii): e ¼ maxðej; eLÞ � 1,

X�1
a ¼ 1� ieL�ðc�1Þiejþðc�1ÞeLej�ðc�1Þe2

jþOðe3Þ;
(A10)

k2
a ¼

x2

c2
1þ ieLþ ðc� 1Þiej
�

� e2
Lþ ðc� 1Þðc� 2Þe2

jþ 3ðc� 1ÞeLej

	 

þOðe3Þ

�
;

(A11)

X�1
h ¼ �iej � ðc� 1ÞeLej þ ðc� 1Þe2

j þOðe3Þ; (A12)

k2
h ¼

ix
v

1þðc� 1ÞiðeL� ejÞ 1þ iðceL� ejÞ½ �þOðe3Þ
� �

:

(A13)

Relations similar to Eqs. (A11) and (A13) have been given

by Cutanda-Henr�ıquez and Juhl (2013); their Eqs. (A1) and

(A2) in our notation are

k2
a’

x2

c2
1� ieL�ðc�1Þiej�ðc�1Þðe2

j�eLejÞ
� ��1

; (A14)

k2
h ¼

ix
v

1� ðc� 1ÞiðeL � ejÞ
� ��1

: (A15)
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Series expansion of Eqs. (A14) and (A15) allows compari-

son with Eqs. (A11) and (A13) and shows the eigenvalues

agreeing up to and including Oðe2Þ terms for the acoustic

mode. However, agreement extends only to OðeÞ for the

entropy mode, meaning the relative error in kh is Oðe2Þ if

one uses Eq. (A15).

APPENDIX B: RESTRICTIONS ON THE VALIDITY
OF APPROXIMATE MODE EQUATIONS

In deriving the equations for the acoustic and entropy

modes presented in Table I, it was assumed that both modes

were excited with comparable amplitudes, so that W � U
and thus, in regions with no volume sources, Pa � Sh. In

what follows we relax that assumption and instead consider

two possible alternative scenarios, to see how far the asymp-

totic thermoviscous-fluid equations remain valid. In both

cases we assume Y ¼ Oð1Þ, where Y ¼ ~eL=~ej is the longitu-

dinal Prandtl number,

að Þ Pa � ~en
jSh

ðn > 0; the entropy mode dominates locallyÞ;
(B1)

bð Þ Sh � ~eq
jPa

ðq > 0; the acoustic mode dominates locallyÞ:
(B2)

For thermal excitation uniformly applied over a plane rigid

boundary, with either a prescribed unsteady temperature or

an unsteady heat flux, case (a) applies with n¼ 1/2; for

details see Eq. (75) and Eqs. (44), (45), respectively. If the

boundary is adiabatic and either the tangential or normal

velocity is prescribed, case (b) applies with q ¼ 1=2.

1. Case (a)

The polarization relation Ph ’ AðR � GÞSh means that

Ph � A~eSh. Combining this with Eq. (B1) leads to

P ¼ Pa þ Ph ¼ Sh Oð~en
jÞ þ AOð~eÞ

	 

; (B3)

whereas combining the polarization relation Sa ’ BGPa

� B~ejPa with Eq. (B1) gives

S ¼ Sa þ Sh ¼ Sh 1þ BOð~enþ1
j Þ

	 

: (B4)

The D ¼ Oð~eÞ version of the acoustic mode equation based

on the lossless wave operator, as in row 3 of Table II, has a

residual error given by

Da ¼ Rþ ðc� 1ÞG þ Oð~e2Þ
	 
 @2P

@t2

þ AðY � 1Þ R þ ðc� 2ÞG þ Oð~e2Þ
	 
 @2S

@t2
(B5)

�~ejmax ðYþc�1Þ@
2P

@t2
;AðY�1ÞðYþc�2Þ@

2S

@t2

� �
: (B6)

Substituting Eqs. (B3) and (B4) in Eq. (B6) shows that for

case (a) the residual error is controlled by the entropy mode

component of the @2S=@t2 term in Eq. (B6), leading to

Da � AðY � 1ÞðY þ c� 2Þð@2Sh=@t2Þ~ej. Dividing by

@2Pa=@t2 � ~en
j@

2Sh=@t2 then gives the relative error of the

acoustic mode equation as

Da � ðY � 1ÞðY þ c� 2ÞA~e1�n
j : (B7)

Equation (B7) shows that in case (a) the asymptotic accu-

racy of the acoustic mode equation in row 3 of Table II is

reduced from its nominal value of D ¼ Oð~eÞ, which was

based on the restrictive assumption that Pa � Sh. However,

the approximate equation remains viable as long as n< 1.

Using the dissipative wave operator shown in row 3 of

Table I leads to a similar conclusion. The residual error becomes

D0a ¼ ðY � 1Þ �ðc� 1ÞG R þ ðc� 1ÞG þ Oð~e2Þ
	 
 @2P

@t2

�

þA Rþ ðc� 2ÞG þ Oð~e2Þ
	 
 @2S

@t2

�
(B8)

�AðY � 1ÞðY þ c� 2Þ @
2Sh

@t2
~ej: (B9)

This is the same leading term as found previously, so Eq. (B7)

remains unaltered. Note that the acoustic mode residuals

ðDa;D
0
aÞ discussed above, based on the D ¼ Oð~eÞ equations in

rows 3 of Tables II and I, respectively, differ from those previ-

ously found in Sec. III C for the D ¼ Oð~ejÞ arbitrary-~eL equa-

tions in rows 1 of each table, even in the limit eL � 1. This

difference is due to the slightly different operators La and acous-

tic variables W required by the two levels of approximation.

Finally, far from any scattering boundaries or localized

source inputs the entropy mode may be neglected entirely

because of its exponential decay. The magnitude of the

residual term relative to either term on the left of the acous-

tic mode equation then follows as

Da � ðYþ c� 1Þ~ej or D0a � ðc� 1ÞðY� 1ÞðYþ c� 1Þ~e2
j;

(B10)

depending on which of the alternative D ¼ Oð~eÞ equations

(Table II or Table I) is adopted.

2. Case (b)

Combining Eq. (B2) with the polarization relation

Sa ’ BGPa � B~ejPa from Eqs. (A1) and (A4) gives

S ¼ Sa þ Sh ¼ Pa B~ej þ Oð~eq
jÞ

	 

; (B11)

whereas combining Ph � A~eSh with Eq. (B2) gives

P ¼ Pa þ Ph ¼ Pa 1þ A~eOð~eq
jÞ

	 

: (B12)

The entropy mode diffusion equation in row 4 of Table I,

labelled D ¼ Oð~eÞ, has a residual error whose asymptotic

form is shown in Sec. III [Eq. (25)] to be

3466 J. Acoust. Soc. Am. 153 (6), June 2023 C. L. Morfey and M. C. M. Wright

https://doi.org/10.1121/10.0019801

 06 July 2023 14:28:43

https://doi.org/10.1121/10.0019801


Dh ¼ ðc� 1Þ R � G þ Oð~e2Þ
	 
 @S

@t
þ B G þ Oð~e2Þ

	 
 @P

@t
(B13)

�max ðc� 1ÞðY � 1Þ @S

@t
~ej;B

@P

@t
~ej

� �
: (B14)

Substituting Eqs. (B11) and (B12) in Eq. (B14) shows that

for case (b) the residual error is controlled by the acoustic

mode component of the @P=@t term in Eq. (B14), leading to

Dh � Bð@Pa=@tÞ~ej. Dividing by @Sh=@t � ~eq
j@Pa=@t then

gives the relative error of the entropy mode equation as

Dh � B~e1�q
j : (B15)

Equation (B15) shows that in case (b), the asymptotic accu-

racy of the entropy mode equations in row 4 of Tables I and

II is reduced from the nominal value of D ¼ Oð~eÞ, but the

approximation remains viable provided q< 1.

APPENDIX C: EXACT RELATIONS BETWEEN MODAL
POTENTIALS AND FLUID PROPERTY
PERTURBATIONS WITH ðr; gÞ50

1. Modal pressure and entropy coefficients

Applying the linearized continuity and momentum

equations to the acoustic and entropy modes separately

gives, for single-frequency disturbances,

k2
i ui ¼ �ixðPi � ASiÞ; i ¼ ða; hÞ; (C1)

ix
c2

ui ¼ ð1� ieLÞPi þ AieLSi: (C2)

We define non-dimensional coefficients for pressure (fa, fh),

entropy (ga, gh) and temperature (ha, hh) by writing

Pi ¼ fi
ix
c2

ui; Si ¼ gi
ix
c2

ui;
T0i
T0

¼ hi
ix
c2

ui; (C3)

where hi ¼ ðBfi þ giÞ. It follows from Eqs. (C1) and (C2)

that

fi ¼ ð1þ ieLXiÞ; gi ¼ ð1=AÞ 1� ð1� ieLÞXi½ �: (C4)

The pressure coefficient fi above is consistent with Eqs.

(A6) and (A7) of Cutanda-Henr�ıquez and Juhl (2013); their

coefficients ð/a;/hÞ are related to (fa, fh) by

/i ¼ ðixfiÞ�1; (C5)

using our notation with e�ixt time dependence. Note that the

ðfi; giÞ expressions in Eq. (C4) also give the modal polariza-

tion coefficients in terms of the Xi, since Pi=Si ¼ fi=gi.

2. Alternative form of ðfi;gi;hiÞ coefficients

Alternatively one can combine Eq. (C1) with the

entropy equation, which in the absence of heat sources is

ðqTcpÞ0
@S

@t
¼ jr2T; i:e:; T0i=T0 ¼ �ðiejÞ�1

X�1
i Si

(C6)

for e�ixt time dependence. This leads to versions of the pres-

sure and entropy coefficients ðfi; giÞ that are equivalent to

Eq. (C4), but involve ej instead of eL. The results are

fi ¼ Xi
1þ iejXi

1þ iejcXi
; gi ¼

�iejBX2
i

1þ iejcXi
: (C7)

As a check we can use Eq. (C7) to obtain a relation between

T0i=T0 and Pi that is equivalent to Eqs. (A4) and (A5) of

Cutanda-Henr�ıquez and Juhl (2013), i.e.,

T0i=T0 ¼
BPi

1þ iejXi
: (C8)

3. Summary of results

The modal coefficients ðfi; gi; hiÞ derived above relate

the dimensionless fluid-property perturbations ðPi; Si;
T0i=T0Þ to ui. They are given in Table IV, together with the

polarization coefficients they imply. There are two equiva-

lent versions of each coefficient, one involving ej and the

other involving eL; both versions are exact.

Although in principle one can use any of ðPi; Si; T
0
i=T0Þ

as primary variables rather than the potentials ui, the first

option can lead to problems as Y ¼ eL=ej ! 1. In that limit-

ing case the entropy-mode pressure coefficient fh is zero and

Eq. (C8) breaks down, because Ph vanishes.

1Note that Pierce (1994) uses s0 ¼ cpS and ða=qÞp0 ¼ ac2P ¼ cpBP as vari-

ables, rather than S and P.
2The juaj=c interpretation breaks down for case (b) at certain frequencies

above cutoff (k0 > jmj), on account of resonances in the interior space.
3The D ¼ OðeÞ asymptotic approximation produces an OðeÞ relative error

in the coefficient Kah (as might be expected), leading to an Oðe3=2Þ rela-

tive error in C
^

a for external radiation (under the assumption that all three

modes are equally excited).
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TABLE VI. Exact pressure, entropy, and temperature coefficients as

defined in Eq. (C3) for the acoustic and entropy modes in a thermoviscous

fluid, together with the associated polarization coefficients. Results are

expressed in terms of either ðej;XiÞ or ðeL;XiÞ, where Xi are the dimension-

less squared wavenumbers for the mode.

Coefficient ej version eL version

fi Xi
1þ iejXi

1þ iejcXi

ð1þ ieLXiÞ

gi �iejBX2
i

1þ iejcXi

ð1=AÞ½1� ð1� ieLÞXi�

hi BXi

1þ iejcXi

ð1=AÞ½c� ð1� cieLÞXi�

Pi=Si �ð1þ iejXiÞ
iejBXi

A
1þ ieLXi

1� ð1� ieLÞXi
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Morse, P. M., and Ingård, K. U. (1968). Theoretical Acoustics (McGraw-

Hill, New York).

Pierce, A. D. (1985). “The inhomogeneous wave equation of

thermoacoustics,” in Flow of Real Fluids (Springer Verlag, Berlin), pp.

92–100.

Pierce, A. D. (1994). Acoustics: An Introduction to Its Physical Principles
and Applications, 3rd ed., reissued 2019 (Acoustical Society of America,

Melville, NY).

Rayleigh, L. (1894). Theory of Sound Vol. II, 2nd ed. (Macmillan, London).

Temkin, S. (1981). Elements of Acoustics (John Wiley, New York).

Trilling, L. (1955). “On thermally induced sound fields,” J. Acoust. Soc.

Am 27(3), 425–431.

3468 J. Acoust. Soc. Am. 153 (6), June 2023 C. L. Morfey and M. C. M. Wright

https://doi.org/10.1121/10.0019801

 06 July 2023 14:28:43

https://doi.org/10.1121/1.400176
https://doi.org/10.1006/jsvi.1999.2355
https://doi.org/10.1016/0165-2125(89)90018-8
https://doi.org/10.1017/S0022112058000148
https://doi.org/10.1121/1.4823840
https://doi.org/10.1121/1.1908832
https://doi.org/10.1121/1.1908832
https://doi.org/10.1121/1.1906652
https://doi.org/10.1121/1.1908432
https://doi.org/10.1121/1.1907686
https://doi.org/10.1016/j.jsv.2019.05.001
https://doi.org/10.1002/andp.18682100602
https://doi.org/10.2514/8.2793
https://doi.org/10.2514/8.2793
https://doi.org/10.1063/1.325116
https://doi.org/10.1017/jfm.2011.449
https://doi.org/10.1121/1.1907920
https://doi.org/10.1121/1.1907920
https://doi.org/10.1121/10.0019801

