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Abstract. Sustainability is the ability to maintain and preserve natural and man-10

made systems for the benefit of current and future generations. The three pillars11

of sustainability are social, economic, and environmental. These pillars are interde-12

pendent and interconnected, meaning that progress in one area can have positive or13

negative impacts on the others. This calls for smart methods to balance such bene-14

fits and find solutions that are optimal with respect to all the three pillars of sustain-15

ability. By using AI methods, in particular, genetic algorithms for multiobjective16

optimisation, we can better understand and manage complex systems in order to17

achieve sustainability. In the context of sustainability-oriented ridesharing, genetic18

algorithms can be used to optimise route finding in order to lower the cost of trans-19

portation and reduce emissions. This work contributes to this domain by using AI,20

specifically genetic algorithms for multiobjective optimisation, to improve the effi-21

ciency and sustainability of transportation systems. By using this approach, we can22

make progress towards achieving the goals of the three pillars of sustainability.23

Keywords: Ridesharing, Multiobjective Algorithm, Mobility-on-demand, Sustain-24

able Transportation, Evolutionary Computation.25

1. Introduction26

Mobility-On-Demand (MOD) services traditionally aim to reduce the economic and en-27

vironmental cost of transportation [11,1]. Roughly speaking, MOD promises to utilise the28

mobility capacity in a more efficient way (leading to reductions in the collective and in-29

dividual economic costs), while also reducing emissions caused (e.g., by avoiding single-30

driver journeys). Therefore, MOD systems and methods to support their implementation31

directly contribute to Sustainable Development Goal (SDG) 11 and 13 on sustainable32

cities and communities and climate action, respectively. If MOD is widely adopted, cities33

will enjoy its environmental and economic benefits and take a step towards mitigating34

climate change. However, if such services merely focus on what is optimal from the ser-35

vice providers’ perspective and ignore users’ requirements, it will be difficult to encourage36

users to move towards this service and ignore the comfort of using personal vehicles. Such37

⋆ The initial idea behind this work is presented at ATT’22: Workshop Agents in Traffic and Transportation,
July 25, 2022, Vienna, Austria [15].
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a sustainability-oriented transition necessitates looking not only at operators’ (economic)1

criteria, but also evaluating how a particular routing choice may affect individuals, e.g.,2

via their total travel or waiting times. In this work, we argue that sustainable ridesharing3

needs to capture all the three pillars of economic, environmental, and social sustainabil-4

ity [19] and aim for routing solutions that are balanced with respect to all three aspects.5

The economic and environmental aspects call for minimising respective costs, both at a6

collective level, but also (to ensure fairness) for all the riders. Finally, the social aspect7

requires considering fairness in distributing tasks among drivers such that riders receive8

a balanced workload. Thus, addressing the routing problem in sustainable ridesharing re-9

quires a multiobjective approach that captures potential trade-offs among different aspects10

of sustainability for generating sustainable routing options.311

As discussed in related work, e.g., [21,1,25], the multidimensionality and complexity12

of the ridesharing routing problem, and, in our case, in view of the three pillars of sustain-13

ability, result in inapplicability of exact multiobjective optimisation techniques and justi-14

fies using genetic algorithms (GA). While [12] explored adopting reinforcement learning15

for multiobjective optimisation, this work considers GA to provide a diverse range of16

solutions (for a diverse set of users). Multiobjective GA allows capturing various objec-17

tives with fewer compromises regarding scalability [10]. In particular, we use a form of18

the Non-dominated Sorting Genetic Algorithm (NSGA) that is proven to be effective in19

various mobility settings [8].20

Against this background, for the first time in this work, we capture the social and21

environmental aspects of sustainable routing in ridesharing and use genetic algorithms22

for generating routing options that consider all three pillars of sustainability. This is the23

first approach that integrates these two pillars of sustainability into traditional models24

of (purely) economic sustainability and generates routing solutions under six sustainable25

ridesharing objectives: travelling time, waiting time, overall/excess distance, travel cost,26

total emission, and working time balance. The list of sustainable routing options can be27

used in a “user participation” phase (e.g., in ridesharing services), where riders can se-28

lect their desired route from a list of options. Using our approach, service providers can29

generate routing options that balance all the three pillars of economic, environmental,30

and social sustainability. In addition, they can provide routing options that reflect riders’31

preferences (e.g., by focusing on the environmental dimension). This is a step towards32

integrating equitability and user participation [2] into sustainable ridesharing practices.33

In the remaining sections of this paper, we present a detailed explanation of the pro-34

posed ridesharing algorithm in Section, following which, in Section 3, is a brief introduc-35

tion of the genetic algorithm (NAGA3) that we adopted; Section 4 explains the conducted36

experiments and illustrates the experiments results with respect to multiple aspects, and37

at the end, Section 5 concludes the contribution of this work.38

2. Sustainable Ridesharing39

The ridesharing routing problem is to allocate a given set of riders to vehicles with respect40

to different objectives. Each rider requires a ride from its starting point to its destination,41

3 In view of human-centred AI techniques and the need for developing trustworthy human-AI partner-
ships [20], we see sustainable ridesharing as an inherently sociotechnical problem and argue that its ac-
ceptance by society depends on the ability to capture all the three aspects of economic, environmental, and
social sustainability.
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along with a specified earliest departure time for taking a ride. Each vehicle can take a1

limited number of riders aboard at the same time, excluding the driver, which we refer to2

as its capacity. And the driving costs and capacity of a vehicle are associated with its type.3

A solution to the ridesharing routing problem is an arrangement that sends vehicles to pick4

up riders at their starting point, and then drops them off at their destination. The objec-5

tives evaluate the efficiency of a solution. In the following, we present the mathematical6

notations used for modelling the ridesharing problem and developing our approach.7

2.1. Ride Requests8

In the ridesharing routing problem, all the riders post their ride requests at the beginning.9

Let R be the set of posted requests and r represent a single request. To locate riders, we10

adopt a graph structure to model the real-world map, i.e., a map graph is G = (N,E),11

where nodes in N represent the intersections on a real-world map and edges in E that12

link nodes together represent the roads between intersections. In general, to represent an13

intersection, a node is in the form of a tuple marking the latitude and longitude of the14

intersection. Thereby, let r(s, t, u) denote a rider’s request for a ride from node s to node15

t along with an earliest time for the rider to leave, u.16

2.2. Features of Vehicles17

To model the sustainability of the ridesharing routing problem from economic, environ-18

ment and social aspects, this work considers 3 features of a vehicle as well as its location.19

Let V be the set of available vehicles and v(s, t, p, e, c) denote a vehicle that starts work-20

ing at node s, returns to node t at the end of its service with a physical capacity of p,21

emission level of e and a travelling cost per kilometre, c, including the driver wage, ve-22

hicle maintenance and fuel costs. Regardless of the difference of vehicle brands, there23

is a positive correlation between c and p. Hence, we assume that c = α × p for a ve-24

hicle and α varies according to the type of vehicle. For a pessimistic estimation, we use25

α = 1 in our experiments. Besides, the emission level of a vehicle e is a vector, and the26

ith element in the vector, ei, denotes the emission rate of a vehicle when there are i riders27

aboard, since different numbers of riders aboard cause different emission rate. Specifi-28

cally, in this work, the emission of a vehicle generally includes greenhouse gas (GHG)29

and air pollution. With respect to the reports from the UK’s Department for Transport [16]30

and National Atmospheric Emission Inventory (NAEI) [23], and the EU standard vehicle31

emissions calculator, COPERT [9], the GHG and air pollution emission of a vehicle per32

kilometre are mainly related to the fuel and type of a vehicle, but the emission of GHG33

also depends on the number of passengers. Therefore, we model the emission level of a34

vehicle as a vector, where each element represents a emission rate associated with a num-35

ber of riders on board. Notice that we also assume that all vehicles will drive at the same36

speed to simplify the problem. The is because the experimental data used in this work are37

city driving records which is more believed to be limited by the traffic condition instead38

of the type of vehicles. This setting can be simply extended to simulate a dynamic speed39

by varying the speed in a range of minimum to maximum urban/legal speed.40

The features of a vehicle, such as capacity, emission level and travelling cost, depend41

on its type. We consider 3 types of general passenger vehicles according to the vehicle42
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Table 1: Estimated Features for Different Types of Vehicle
Vehicle Type Fuel Capacity Vector of Emission Level Cost

1 Mini Car Petrol 1 <1, 2× 0.9 > 1

2 Car Electric 3
<1/3.4, 2/3.4 × 90%,

3
3/3.4 ×90%2, 4/3.4×90%3 >

3 Medium Car Petrol 6 <1, 2× 90%, · · · , 7×90%7 > 10
4 Large Car Petrol 10 <1, 2× 90%, · · · , 11×90%10 > 10

categories specified on the UK Driving Licence Categories [22]: Small cars, medium-1

sized vehicles, large vehicles4. Table 1 lists their features. To simulate the emission level2

of different types of vehicles, we use the car type with a petrol engine and one passenger3

on board as the standard, and assume it emits 1 unit of greenhouse gas and air pollution4

per kilometre (e.g., 1 unit could be 100g of CO2) and costs 1 price unit per kilometer5

(e.g., $1). According to the Transport and Environment Statistics [16], “an average petrol6

car emits around 4 times more per passenger than the equivalent journey by coach, or 3.47

times more per passenger emitted by the average electric car”, and “maximising the num-8

ber of people per vehicle can reduce emissions per person”. Hence, we assume that the9

average emission per passenger reduces by 10% when the number of passengers aboard10

increases and the cost of vehicles are related with its capacity. The emission column in11

Table 1 lists the emission vector for each vehicle type where elements in the vector are12

emissions of a vehicle in the order of 0 passengers to its full capacity.13

Our focus in this work is to demonstrate the impact of emissions of vehicles, and we14

are aware of the existence of other types of vehicles, such as motorcycles, and different15

types of emission calculators [24]. The types of vehicles and the emission estimation16

considered in this work are standard types and presented for the purpose of showing the17

performance of the approach.18

2.3. Computational Complexity19

To understand the complexity of ridesharing problem, we can analyse the number of ar-
rangements and driving routes of all vehicles, First, the number of possible arrangements
is |V ||R| since individual riders have |V | options for their rides without considering fea-
sibility, i.e. constrains such as the capacities of vehicles and the relative order of starting
points and destinations to stop by. Regrading an arrangement, for each vehicle arranged to
offer rider to τ passengers, there are 2τ ! different driving routes to stop by all the starting
points and destinations of those riders. To simplify the calculation, assume the computa-
tional complexity of justifying whether a route is feasible and calculating objectives are
O(|V |). In addition, given multiple objectives, assume the best weights of multiple ob-
jectives for a ridesharing problem is preserved. Thereby, the computational complexity of
ridesharing problem to find an optimal arrangement regrading the objectives is

O(R, V,Objectives) = O(|V |+ |V ||R| ×
∏

τ1,·,τ|V |

2τi!),

4 we exclude minibuses and buses [6]. Since they have stable routes and we do not consider asking riders to
change vehicles during their rider, they left no space for picking riders at their starting points.
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where
∑|V |

i=1 τi = |R|.1

It will be expensive to find one optimal arrangement, especially when no prior knowl-2

edge is given about the method to balance multiobjectives. In the following sections,3

we will explain our design to filter out infeasible arrangements and adopt an genetic al-4

gorithm to efficiently generate diverse arrangements without requiring prior knowledge5

about multiobjectives.6

2.4. Solution Design7

Our intelligent routing approach is based on genetic algorithms [17]. First, we model
an arrangement that a vehicle picks up and drops off a rider as a genetic chromosome:
(vehicle, weight of picking up priority, weight of dropping off priority), and a solution to
the ridesharing routing problem of arranging vehicles for m riders as:

r1 : (v1, w1[s], w1[t])
r2 : (v2, w2[s], w2[t])
· · · · · ·
rm : (vm, wm[s], wm[t])

 (1)

For rider ri, vi denotes the vehicle that serves ri a ride, wi[s] is a positive real number that8

represents the priority weight of picking up ri, and wi[t] is a real number that indicates9

the priority weight of ri to get off vi at its destination. A higher priority weight implies10

a greater sense of urgency to start or finish a ride. Thus, for a vehicle that offers a ride to11

multiple riders, it will stop at nodes to pick up and drop off the riders with respect to their12

priority weights. In reality, the priority weight can be the time of a ride request, arriving13

time or even promotion tips.14

2.5. Solution to Route15

To calculate the routes for vehicles there are two factors to satisfy: feasibility and unique-16

ness. Feasibility requires that when a vehicle follows a route to pick up and drop off17

riders, the number of riders at any given time must not exceed the capacity of the vehicle.18

Uniqueness requires that, given a solution, one should be able to derive one and only one19

way to route the vehicles from it. The uniqueness criterion is necessary because it is the20

solutions that the genetic algorithm evaluates and optimises while objectives in the eval-21

uation and optimisation are based on the routes for vehicles. Thus, to be able to evaluate22

a solution, we require a 1-1 correspondence with routes that the solution entails. We will23

explain our method to map a solution to a feasible and unique routing in the following,24

and introduce the objectives afterwards.25

First, to capture the meaning of the priority weights in a solution, we use the following26

two rules when comparing the priority weights of different riders:27

1. No consideration of dropping off priority for riders who are waiting for pick-up.28

2. For riders with equal priority weights, the rider with a lower index number is priori-29

tised, considering that the rider posted its ride request earlier.30
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Algorithm 1: Routing Algorithm:
Input: Solution, an array; V , vehicles; R, ride requests.
Output: Routes, an array

1 foreach v ∈ V do
2 Routes[v]← {v[s]} ;
3 Board← ∅;
4 load← Size(Board);
5 Hold← GetPassengers(v);
6 while Board ̸= ∅ & Hold ̸= ∅ do
7 rx, w rx← GetRiderWithGreatestPickupWeight(Hold);
8 ry, w ry← GetRiderWithGreatestDropoffWeight(Board);
9 if w rx < w ry then

10 Board.remove(ry);
11 load = load - 1;
12 Routes[v].add(ry[t]);
13 else
14 if load < v[p] then
15 Hold.remove(rx);
16 Board.add(rx);
17 load = load + 1;
18 Routes[v].add(rx[s]);
19 else
20 Board.remove(ry);
21 load = load - 1;
22 Routes[v].add(ry[t]);
23 end
24 end
25 end
26 Routes[v].add(v[t]) ;
27 end
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Regarding a solution, let Passenger(v) denote the set of riders to whom vehicle v1

offers a ride, and Passenger(v) = {ri|vi = v}. The route of v is a sequence of nodes,2

Path(v), that are either starting points or destinations of riders in Passenger(v), and3

the path that a vehicle travels from a node to another is the shortest path calculated by4

Dijkstra’s algorithm [7]. While a vehicle travels, let Board(v, n) denote the riders that5

are on the vehicle v when it visits node n, and Hold(v, n) be the riders that are still6

waiting for the vehicle for a pick-up.7

Fig. 1: Algorithm for Mapping Solution to Routes.

Figure 1 and Algorithm 1 illustrate the workflow and steps of our routing algorithm8

that maps a solution to the routes for a vehicle. 5 For each vehicle, the very first node in9

its route is its starting point (Line 1), and at that node, the boarding passengers is null10

(Lines3-4) and all the riders assigned to it are on hold (Line 5). Then, the next node in the11

5 For a complete implementation of our routing algorithm, please refer to https://github.com/
Miya-Liu/equitable-ridesharing.

https://github.com/Miya-Liu/equitable-ridesharing
https://github.com/Miya-Liu/equitable-ridesharing
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route of the vehicle depends on the priority weights of the aboard and waiting riders. First,1

we compare the waiting riders’ weights of picking up priority and get the top one waiting2

rider (Line 7), and then compare the aboard riders’ weights of dropping off priority and3

get the top one aboard rider (Line 8). If the aboard rider’s weight of dropping off priority4

is greater than the waiting rider’s weight of picking up priority (Line 9), the next node in5

the route of the vehicle is the destination of the aboard rider (Lines 10-12). Otherwise,6

we check whether picking up the waiting rider violates the vehicle’s capacity constraint7

(Line 14). If not, the vehicle will travel to the starting point of the waiting rider and pick8

it up (Lines 15-18). If yes, the vehicle still needs to drop off the aboard rider first (Line9

20-22). Until there is no rider aboard or waiting (Line 6-25), the vehicle will travel to its10

destination (Line 26) and terminates its route.11

This routing algorithm guarantees the feasibility of the travel paths of vehicles gen-12

erated from a solution and the uniqueness of the generation dynamically. Note that, re-13

gardless of the uniqueness, it is still possible that different solutions generate the same14

routes for one or even more vehicles. This is because the different weights of either pick-15

ing up priority or dropping off priority can result in the same ranking of the riders in16

the algorithm. Note that the potential redundancies are left to be resolved in the genetic17

algorithm.18

2.6. Objectives19

Regarding the travel paths of vehicles and their loaded riders, we introduce and minimise20

6 objectives from 3 aspects of sustainability: economic, environmental and social. The21

economic aspect evaluates the efficiency of the routes generated from a solution with22

respect to travelling time, waiting time, travel cost and excess distance. Then, the envi-23

ronmental aspect of sustainability considers the impact of vehicles’ emission and tries to24

minimise the total emission of rides. Finally, the social aspect concerns the working time25

of drivers and aims at reducing the differences among the working time of all drivers.26

Economic - Travelling Time (ET): This objective measures the total travelling time of27

individual riders. The measurement of the travelling time for one rider is the time that it28

takes from the moment the rider gets on a vehicle until the vehicle drops off the rider at29

her destination. This includes the time that the vehicle travels and waits to pick up and30

drop off other riders while the rider is on board. The waiting time of a vehicle includes31

time periods when the vehicle stops at a starting point of a rider to pick her up. Such a32

waiting takes place when a vehicle arrive (too) early, i.e., when the arriving time of the33

vehicle is earlier than the earliest leaving time of the rider. Less travelling time means that34

the riders entails a more efficient trip.35

Let wait(v, n) denote the time that a vehicle v waits for picking riders up at node
n along its route. Let d(ni, nj) be the shortest distance between node ni and nj , and
arrive(v, n) represent the time that the vehicle arrives at node n along its route. Hence,
wait(v, n0) = 0, arrive(v, n0) = 0, and

arrive(v, ni) = arrive(v, ni−1) + wait(v, ni−1) +
d(ni−1, ni)

speed
,

where ni = Path(v)[i], and speed is a given average speed. Assume that v will pick up
k riders at ni, thus, wait(v, ni) = max{0, rx(u) − arrive(v, ni)}, where rx(u) is the
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greatest earliest leaving time among the k riders. Therefore,

ET =
∑
r

(
arrive(vr, r(t))− arrive(vr, r(s)). (2)

Economic - Waiting Time (EW): This objective is to evaluate the waiting time for all
riders before vehicles pick them up with respect to their earliest leaving time.

EW =
∑
r

max{0, arrive(vr, r(s))− r(u)} (3)

Economic - Excess Distance (ED): This objective measures the extra distance that a
vehicle travels when it needs to pick up and drop off riders compared to the distance of
directly driving from its starting point to the destination. Let ni be the ith node in a route,

ED =
∑
v

( |Path(v)|−1∑
i=0

d(ni, ni+1) − d(v(s), v(t))
)

(4)

Economic - Travel Cost (EC): This objective measures the cost of all rides in total.

EC =
∑
v

(
v(c)×

|Path(v)|−1∑
i=0

d(ni, ni+1)
)

(5)

Environmental - Emission (SE): This objective is designed to measure the emission of
all the vehicles. By minimising this objective, sharing a ride can reduce pollution. Recall
that the emission rate of a vehicle is related to the number of passengers on the vehicle.
Therefore, the emission of all the vehicles regarding one solution is

SE =
∑
v

|Path(v)|−1∑
i=0

v(e)[l(v, ni)]× d(ni, nj). (6)

where l(v, n) = |Board(v, n)|.1

Social - Working Time (SW): The working time is calculated from the moment a ve-
hicle leaves its starting point until it arrives at its destination, which is arrive(v, v(t)).
This objective demonstrates the workload of a vehicle. Regarding the social sustainabil-
ity, this work tries to balance the workload among all drivers and ensure a sustainable
ridesharing service that is fairness-aware. Hence, this objective is defined as the Gini co-
efficient [5] of all vehicles’ working time, W = {arrive(v1, v1(t)), arrive(v2, v2(t)),
· · · , arrive(vm, vm(t))} as follow.

SW = Gini(W ). (7)

With the above-defined multiobjectives, we will later explain our algorithm that gen-2

erates multiple routing options that balance the six objectives of all three pillars of sus-3

tainability.4
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Fig. 2: Modified NSGA3 for Sustainable Ridesharing.

3. NSGA3 for Sustainable Ridesharing1

This work adopts an existing genetic algorithm called Non-dominated Sorting Genetic2

Algorithm 3 (NSGA3) [13] for dynamic routing in the sustainable ridesharing problem.3

Figure 2 shows the workflow of the NSGA3 with modifications for the ridesharing setting.4

NSGA3 requires no configurations of the importance or weights of multiple objectives5

in the optimisation, but balance them automatically. The optimisation procedure includes:6

1. Sampling: Given the number of riders, vehicles and sample size, it generates an initial7

sample population. In this step, for each solution in the population, we randomly assign8

vehicles to serve riders, and assign random values as the weights of the picking up and9

dropping off priority of riders.10

2. Elimination: It deletes duplicate solutions in population. And if the size of the current11

population after elimination is smaller than the initial population, the following intro-12

duced crossover process is repeated until the desired number of offspring is fulfilled.13

3. Evaluation: For individual solution, it calls the routing algorithm first for a feasible14

ridesharing arrangement of the solution and evaluates the solutions according to the15

predefined objectives or any other customised metrics or constraints.16

4. Selection: It selects some solutions as parents for generating offspring in next genera-17

tion. NSGA3 uses a reference points [4] based selection operator. As we applying this18

genetic algorithm for multiobjective optimisation, this selection is ideal as it is guided19

by specifying a set of well-maintain diversity in the population regarding different20

objectives.21
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5. Crossover: It combines the selected parent solutions to generate offspring solutions.1

We define the crossover as two parent solutions generating one offspring. The pattern2

to generate an offspring for each pair of parents is to use the first half chromosomes3

from a parent and the second half chromosomes from the other parent to generate an4

offspring solution. Note that our implementation supports splitting both parents into5

any number of slices and then selecting the same number of slices to generate an6

offspring.7

6. Mutation: It mutates offspring to increase the diversity of the current population. The8

modified mutation is: for each offspring, we select half riders and change the value9

of its corresponding chromosomes by (1) changing the vehicle assigned to a rider; (2)10

increasing its weight of picking up priority by a positive number; (3) increasing its11

weight of dropping off priority by a random positive number.12

Generally speaking, the parameters, including the size of population, number of parents,13

crossover method, mutation method, number of generations and termination threshold,14

would affects the performance of the genetic algorithm. After observing the impact of15

those parameters on small test data, we choose the above-mentioned parameters in our16

algorithm settings, and the threshold of the number of generations as the condition to17

terminate the optimisation while attempted to vary the threshold in a wide range to reduce18

the impact of other static parameters.19

This approach will automatically generate multiple routing solutions when we set the20

size of population greater than 1. In addition, the routing solutions are feasible and balance21

the economic, environmental and social sustainability, while the algorithm optimise the22

six objectives. Note that we did not consider the objectives when calculating the shortest23

path among all nodes of a map graph. This is because the objectives are defined and24

calculated based on the paths of all the vehicles that they will drive, pick up, and drop25

off riders. For instance, we cannot get the override distance just for the edge between two26

nodes.27

4. Experimental Evaluation28

The main goal of this work is to demonstrate the impact of sustainable objectives in29

ridesharing routing and the efficiency of our GA-based routing approach. We present30

5 groups of experiments with various numbers of riders, vehicles, objectives and genera-31

tions to illustrate the effectiveness of our approach. This section evaluates the performance32

with respect to the standard metrics in the field of vehicle routing [14,3] and includes so-33

cial and environmental metrics such as the waiting time of a rider to start a ride.34

4.1. Data Sources35

We use the Cargo benchmark dataset [18], which takes data from the ridesharing company36

Didi. The instances have maximum 65,500 riders and 50,000 vehicles over a long time37

horizon and a scale of 876km2 area. Since we focus on one-shot routing, we take slices38

from the dataset for our evaluation. Note that in practice, new routes can be calculated as39

more requests come in.40

– Road Map: We use the road map of Manhattan from Cargo [18]. It has 12,320 nodes,41

15,722 edges in an area of 59km2.42



12 Mengya Liu et al.

Table 2: Information about Group Instances.
Parameters Variation in Instances
# Riders [53, 48, 24, 16, 16]

Riders’ Location
[Original, Noise in s,
Noise in t, Noise in Journey]

# Vehicles [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Vehicle Type [1, 3, 6, 10]

Table 3: Algorithm Parameter Settings
Parameters Value/Range
Population 10

Offset 5
Generation [100, 200, 300, ..., 1000]
Objectives [EW, ET, ED, EC, SE, SW]

– Instances: We design 5 groups of riders, and experiments with instances as detailed1

in Table 2. The variation column shows the range of parameters that we vary in the2

experiments.3

• Riders: For each group, there is a fixed number of riders. To discovery the possibil-4

ity of riders to share a vehicle, we first construct a graph using the starting points5

and destination of original 5,033 riders as nodes and their journeys as edges, and6

then select a set of nodes whose clustering coefficient is not zero. With the selected7

node set, we extract riders whose starting points or destination fall into the set.8

Last, we put those riders into 5 clusters by K-means clustering method, which are9

the original riders in each group of experiments. In addition, we generate another 310

variations of the original riders by adding noises to either the riders’ starting points,11

or destination, or both of them. The noise is added by randomly change the target12

nodes to one of its neighbors on the road map.13

• Vehicles: For each group, the number of vehicles range from 1 to 10 by 1 and14

location of vehicles are randomly picked from Cargo. At each fixed number of15

vehicles, we allow all vehicles to be either one type of vehicles from Table 1.16

With above constructed instances, we can examine the impact of number and location of17

riders, and number and type of vehicles on the performance of ridesharing routing, by18

varying the above parameters in the experiments.19

4.2. Benchmark - Greedy Routing20

An greedy-based routing algorithm is designed and implemented as the baseline for rideshar-21

ing performance evaluation. For a group of riders, the greedy routing algorithm first sorts22

all ride requests by their posting time. Then, for each ride request in the rank, it searches23

over all the vehicles to find one that is closet to the starting point of the request at its24

early leaving time. The selection is based on the distance from the current location of a25

vehicle, to its travelling destination if it has passenger on board and to the starting point of26

the request. After that, the selected vehicle will travel to the starting point of the request27

and directly drive the rider to its destination. Note that the algorithm will not change the28

arrangement made before receiving the request of new riders. At the end, we have the29

routes of all vehicles and evaluate the routes with respect to the same objectives used in30

our algorithm.31

In the following discussion, all the displayed results regarding the six objectives is the32

relative reduction in comparison with the ones of greedy routing algorithm.33
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4.3. Experiment Setting1

The implementation of the GA algorithm in the Python programming language (using py-2

moo6) allows configuring the population size, number of generations, the offspring rate,3

and muting/enabling different objectives. Table 3 displays the settings of algorithm pa-4

rameters. To evaluate our approach, we set the population size and offspring size to 105

and 5, respectively. In the experiments, the generation varies from 100 to 100 by 100 to6

briefly demonstrate the effects of large generations. Additionally, to evaluate the effec-7

tiveness of our approach with respect to the 6 different objectives from 3 aspects, we set8

up experiments with either one objective or the other left 5 objectives to compare the op-9

timised routes with those after optimising the all 6 objectives. 7 Therefore, in the rest of10

this section, we will illustrate our experiment results and answer the questions: How the11

generation affects the performance, how the number of vehicles affects the performance12

and how the setting of objectives affects the performance and the sharing rate of each13

vehicle.14

4.4. Experiment Results15

This section examines and illustrates our experiment results regrading the sharing rate,16

optimisation and balance of objectives and diversity among the generated ridesharing17

routes. The sharing rate measures the efficiency of the ridesharing routing algorithm in18

promoting multiple riders in one vehicles during their trips. With respect to the 6 different19

objectives, we will compare the efficiency of the ridesharing routing algorithm in opti-20

mising each individual objectives against the all objectives and their balance, in order to21

have a further view of the relationship among the 6 different objectives. At the end, we22

evaluate the diversity of the generated solutions by the GA-based ridesharing routing al-23

gorithms which can be an ideal voting pool for what we call participatory route selection24

(see Section 5).25

Sharing Rate To measure the efficiency of our routing algorithm in promoting ride shar-
ing, we define a sharing rate metric, Sharing Rate Over Time (SROT), as follow:

SROT =

|Path(v)|∑
i=0

|Board(v, Path(v)[i])| ∗ d(Path(v)[i], Path(v)[i+ 1])/speed.

For one vehicle, this metric calculates the average number of riders who share the vehicle26

along its complete travelling path.27

Figure 3 uses boxplot to illustrate the sharing rate of the generated routes for 53 riders,28

5 vehicles with varied capacities while setting up the 6 objectives and 1000 generations.29

The 4 subplots correspond to the 4 variations of riders’ location. Comparing to the results30

of vehicles with a capacity of 1, the sharing rate of greater capacities is higher. In total, the31

capacity of 3, 6, 10 increase the sharing rate by 61.63%, 96.35% and 110.19% on average,32

6 https://pymoo.org/
7 To comply with the anonymity requirements of the track, we excluded the link to the repository in this ver-

sion. The instance and algorithm implementation files will be provided in the next version. For the complete
experiment results please refer to the support material.

https://pymoo.org/
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Fig. 3: Sharing Rate of Arranged Routes for Riders in Group 1 with 5 Vehicles after
Optimising 1000 Generations for 6 Objectives

respectively. In addition, comparing the mean sharing rate of 4 different vehicle capacities1

when the riders’ locations vary, the vehicles with capacity of 6 outperform the others in2

Figure 3(a) and (c), while capacities of 3 and 10 have greatest mean sharing rate in Figure3

3(b) and (d), respectively. The standard deviation of the 4 different capacities when the4

locations of riders vary, can represent the impact of riders’ locations on the ridesharing5

efficiency of our routing algorithm, which are 0.0096, 0.0493, 0.1255 and 0.1928. This6

infers that when the capacity of vehicles increases, their sharing rates are more likely to7

be affected by the locations of riders.8

Furthermore, Figure 4 shows the average sharing rate of vehicles when the number9

of riders and vehicles changes. The darker area in the bottom right corner of Figure 410

marks the sharing rate lower than 0.5. In these area, capacities of all available vehicles11

are greater than the number of riders, which indicates there is not enough riders to share12
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Fig. 4: Average Sharing Rate of Vehicles with Capacity of 3

vehicles. Considering the optimising objectives, SW and EW, which aim to balance the1

working hour of all vehicles and reduce the waiting time of riders, the sharing rate of2

vehicles will reduce when the number of riders decrease to be smaller than the overall3

capacities of vehicles. The brighter cells in Figure 4 are in the top and left corner when4

there are more riders for the algorithm to arrange ridesharing routes for vehicles.5

To summarise, when the capacity of vehicles increases, the sharing rate will increase6

on average. However, it does not imply higher capacity will always result in greater shar-7

ing rate. First, sharing rate is related to the location of riders. When riders are randomly8

located at their starting point but are travelling to the same direction, vehicles with a ca-9

pacity of 3 would gain better sharing rate. When riders start their journeys from close10

location but travel to different destinations, the vehicles with a capacity of 6 performs11

better. In addition, the number of riders and vehicles have impact on the sharing rate of12

vehicles. When the number of riders is far greater than the capacities of all vehicles, the13

sharing rate of vehicles is more likely to be higher. And knowing the number of riders is14

small, sending out less vehicles with smaller capacity can help increase their sharing rate.15

Objectives To evaluate the performance of our routing algorithm with respect to individ-16

ual objectives, we use the greedy routing algorithm as the baseline. Figure 5 shows the17

percentage reduction of the generated solutions to arrange routes for 53 riders, 3 vehicles18

with capacity of 3. Each sub figure displays the percentage reduction of individual objec-19

tives when optimising all objectives (All-On), one objective (EW/ET/EC/ED/SE/SG On)20

and the other objectives (EW/ET/EC/ED/SE/SG Off). Throughout all charts in Figure 5,21

we can find that all objectives are not independent. For instance, as Figure 5e shows, when22

only minimising emission, the routing solution turns out to have the better performance23

regrading the objective EW and ET. In addition, the switch optimisation results of ET and24

SW affect each other the most, as Figure 5b and 5f showed, i.e. when social inequality25

improves most the travelling time increases most and vice versa.26

Moreover, the percentage reductions at objective ED and EC are always at the same27

pace over the six group of comparison. And our ridesharing algorithm outperforms greedy28

routing in optimising ED and EC by 8.9% while optimising all objectives, 16.9% if only29
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(a) EW (b) ET

(c) EC (d) ED

(e) SE (f) SW

Fig. 5: Percentage Reduction in Comparison of Optimising One Objective, the Other Ob-
jectives and All Objectives with 53 Riders, 3 Vehicles with Capacity of 3.
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Fig. 6: Evolution of GA Solutions.

optimising those two, and at lest 5.2% in other cases. The ridesharing routes generated1

by our algorithm constantly require higher results in EW and ET, because greedy routing2

always try to let each rider get on a vehicle as quick as possible and directly drive indi-3

vidual riders from their starting points to destinations, which results in minimum ET and4

the better performance of reducing EW. As to SW, the ridesharing routes contribute to5

unbalanced working hours among vehicles excepting when only optimising SW and im-6

proved it by 65.7%. Hence, the ridesharing algorithm is capable to optimising individual7

objectives as well as dependent multiple objectives.8

Notably, the improved percentage over greedy regarding the 6 objectives falls in varied9

scales, especially over -100% of EW in 5a and 16.9% of ED in 5d. The reason is that the10

primer task of ridesharing to fulfil is to drive all riders from their distinct starting points to11

their destinations, leaving limited space for improvements of ED, EC and SE. The public12

transportation, such as underground, that has numeric capacity and riders get on and off it13

at stable stops, are believed to be more economic and environment friendly. In our future14

work, public transportation will be considered in ridesharing, and our approach will try15

to deliver suggested routes involve public transportation with an estimated reduction of16

economic cost and emission.17

To further understand the balancedness of ridesharing routing solutions with respect to18

the economic, environmental and social aspects of sustainability, we plot the results for 5319

riders and 10 vehicles with capacities of 3 in Figure 7. In general, as the optimisation pro-20

ceeds, the environmental and economic sustainability improves while the social inequality21

fluctuates between -1.5 and -2.5. In addition, we plotted the routing results in 4 sampling22

generations for 150 riders and 100 vehicles with capacity of 1 aiming at optimising 6 ob-23

jectives. Figure 6 presents the evolution of the populations at generations 0, 10, 40 and 80.24

The solutions in each population have diverse effectiveness against the three aspects of25

sustainability. Basically, as the optimisation proceeds, the social inequality decreases. The26

initial generation (in blue) has greater social inequality than other generations while the27

80th generation has the lowest inequality. However, from the perspective of economics28

and environment, the costs and emissions do not improve for all solutions. Although, the29



18 Mengya Liu et al.

Fig. 7: Performance on Optimising Objectives over Generations

ridesharing routing algorithm can balance and improve the overall objectives, but opti-1

mising SW separately would result in lower social inequality.2

Furthermore, it is observable that we have a more diverse set of solutions. For in-3

stance, solution A (in the 80th generation) has a low economic cost and social inequality4

which compensates for its high environmental emission level. The other notable solution5

is labelled with a boxed B which performs well against all the three dimensions. We will6

further discussion the solution diversity in the following section.7

Solution Diversity To understand and illustrate the diversity of populations, we plot8

the 10 solutions to routing 16 riders and 10 vehicles with capacity of 3 in Figure 8. It9

presents the radar plot of effectiveness of each solution with respect to the 6 objectives,10

after normalising the results by the mean value of 10 solutions. The smaller number of11

an objective implies a better performance of a solution on that objective. Among these 1012

solutions, the effectiveness regarding social sustainability and riders’ waiting time vary13

greater than the others. This is because the changes in allocating riders from a vehicle to14

another directly affects the working time of the vehicles and their waiting time. The popu-15

lation offers diverse solutions that improve social inequality between 0.13 to 0.52 whereas16

riders’ waiting time between 2768 to 254. We expect to take advantage of populations’17

diversity in the next phase of our work on sustainable mobility and allow riders to vote on18

routes with respect to their concerns, such as economic costs, environment emissions, or19

social inequality.20
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Fig. 8: Diversity of 10 Solutions w.r.t. Each Objective
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5. Conclusions1

In this work, we presented a multiobjective evolutionary approach based on GA algorithm2

for generating routing options in sustainable ridesharing. Although there are well-studied3

multiobjective optimisation methods [12], a GA algorithm generates a diverse set of so-4

lutions naturally for the ridesharing problem. Our method is not only sustainability-aware5

but also establishes a foundation for explainable, participatory, and dynamic ridesharing6

services.7

Explainability for Riders, Drivers, and Operators: In comparison to data-driven tech-8

niques with black-box optimisation components, in our approach, stakeholders can be9

provided with visualisations to see how different objectives (e.g., minimising emissions)10

affect routing solutions. For instance, they can be presented using graphs as in Figure 511

and with explanations on how waiting a bit more (in comparison to using private rides)12

can benefit the environment or the fairness of the service for drivers.13

Promoted sustainability: With the awareness of sustainability, our approach provides a14

feasible solution to promote ridesharing with respect to varied type of vehicles, and high-15

lights the factors associated with the sharing rate when promoting ridesharing is possible.16

We demonstrate that the average sharing rate among riders can be improved when the17

capacity of vehicles increases, although higher capacity can not always result in greater18

sharing rate. In addition, the locations and numbers of riders also affect the sharing rate the19

number of riders and vehicles have impact on the sharing rate of vehicles. For numerous20

riders starting from close locations, vehicles with a greater capacity would contribute to a21

higher sharing rate, where riders from random locations but heading to close destinations22

can share vehicles with a lower capacity for a higher sharing rate.23

Participatory Route Selection: Building on this approach, ridesharing operators can24

present routing options to riders (or autonomous agents that represent riders) and allow25

voting among them. This way, users can directly participate in the route selection process26

and opt for the most collectively equitable route. Our diverse set of GA solutions are not27

ranked. Thus, a set of riders may prefer one over another and to allow that, we aim to28

extend our work by adding a preference/vote-based route ranking module in the future.29

Dynamic Fine-Tuning: Our approach allows dynamic fine-tuning over time. Users and30

service operators can inspect routing solutions, evaluate if they are realistic and feasible,31

and participate in fine-tuning the route generation algorithm and the objective weights to32

set trade-offs. One can use focus groups for such a tuning over time—e.g., as a city and33

its citizens change—to enable dynamic fine-tuning of sustainable ridesharing services.34

We aim to extend our work by integrating a participatory route selection process and35

allowing users to vote over a diverse set of routing solutions with all the objectives and36

then also muting one or two objectives to provide solutions that match diversity in users’37

preferences. With a better understanding of users’ preferences, we aim to explore other38

methods for multiobjective optimisation in the context of ridesharing service. For exam-39

ple, we can define the assignment of a rider to a vehicle as a move and evaluate the move40

with respect to the multiple objectives, and then adopt reinforcement learning for this41

problem. Moreover, we plan to test the efficacy of our approach in larger datasets and42

investigate simulation-based methods to analyse how different map structure and spatio-43

temporal properties of requests affect the optimality and equitability of solutions.44

Data access statement. This study was a reanalysis of data that are publicly available45
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A. NSGA3 Implementation28

A.1. Sampling29

Algorithm 2: Sampling(n riders, n vehicles, n samples)

1 Population← ∅ ;
2 for 1 ≤ s ≤ n samples do
3 solution← ∅;
4 for 1 ≤ i ≤ n riders do
5 chore[’vehicle’]← random(n vehicles);
6 chore[’pickup weight’]← random(100 ∗ n riders);
7 chore[’dropoff weight’]← random(100 ∗ n riders);
8 solution.append(chore);
9 end

10 Population.append(solution);
11 end
12 return Population;

30
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A.2. Elimination1

Algorithm 3: Elimination(Population, n samples)

1 foreach s ∈ Population do
2 foreach s’ ∈ Population - {s } do
3 if s equals to s’ then
4 Population← Population - {s’ };
5 end
6 end
7 end
8 if Population.size < n samples then
9 Population← Crossover();

10 end
11 return Population;

2

A.3. Evaluation3

Algorithm 4: Evaluation(V , solution, obj list)

1 basic objs← [EW,ET,EC,ED,SE,SW];
2 Routes← Routing(solution) ;
3 res←;
4 foreach obj ∈ basic objs do
5 if obj ∈ obj list then
6 res.append(Cal(obj, Routes))
7 end
8 end
9 return res;

4

A.4. Selection5

Algorithm 5: Selection(Population, n selection, n parents)

1 count← n selection× n parents;

2 multi← ⌈ count

Population.size
⌉ ;

3 selection← pymoo.util.misc.random permuations(multi,
Population.size)[0: count] ;

4 return selection;

6
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A.5. Crossover1

Algorithm 6: Crossover(Parents, n offspring, n slices)

1 parent A← Parents[1];
2 parent B← Parents[2];
3 offsprings← ∅ ;
4 for 1 ≤ o ≤ n offspring do
5 one offspring← ∅ ;
6 num← parent A[o].size÷n slices + 1;
7 for 1 ≤ j ≤ num do
8 from slice← num ×j;
9 to slice = num ×j + num ;

10 if to slice > parent A[o].size then
11 to slice← parent A[o].size;
12 end
13 if j mod 2 = 0 then
14 one offspring.concat(parent A[o][from p:to p]) ;
15 else
16 one offspring.concat(parent B[o][from p:to p]) ;
17 end
18 end
19 offsprings.append(one offspring);
20 end
21 return offsprings;

2

A.6. Mutation3

Algorithm 7: Mutation(One Offspring)

1 mutation items← [1 to One Offspring.size/2];
2 mutated offpsring← ∅ ;
3 foreach i ∈ mutation items do
4 item← One Offspring[i];
5 item[i][’vehicle’]← random(n vehicles);
6 item[i][’pickup weight’]← random(10 ∗ n riders);
7 item[i][’dropoff weight’]← random(10 ∗ n riders) + 1;
8 mutated offpsring.append(item);
9 end

10 return mutated offpsring;

4
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