A posteriori error and uncertainty estimation in computational ship hydrodynamics
A posteriori error and uncertainty estimation in computational ship hydrodynamics
The increasing relevance of simulation-based design has created a need to accurately estimate and bind numerical errors. This is particularly relevant to full-scale computational ship hydrodynamics, where measurements are difficult and expensive, simultaneously requiring a high degree of predictive accuracy even in early design stages. However, the field of ship hydrodynamics has yet to fully exploit the enhanced capabilities and potential benefits numerical verification methods have to offer. The present study presents a detailed application of numerical verification procedures in CFD as applied to local parameters, such as free surface elevation and skin friction. This is done in order to pinpoint specific locations in the computational domain responsible for heightened levels of error and uncertainty. Relationships between different parameters are demonstrated and discussed based on a set of full-scale simulations of the KCS advancing through a canal using CFD.
Terziev, Momchil
938f71d0-02b5-414c-8c2d-9cca8cc87397
Tezdogan, Tahsin
7e7328e2-4185-4052-8e9a-53fd81c98909
Incecik, Atilla
25a12ee2-7ba6-47cf-af5d-a79de4c6a2c4
15 July 2020
Terziev, Momchil
938f71d0-02b5-414c-8c2d-9cca8cc87397
Tezdogan, Tahsin
7e7328e2-4185-4052-8e9a-53fd81c98909
Incecik, Atilla
25a12ee2-7ba6-47cf-af5d-a79de4c6a2c4
Terziev, Momchil, Tezdogan, Tahsin and Incecik, Atilla
(2020)
A posteriori error and uncertainty estimation in computational ship hydrodynamics.
Ocean Engineering, 208, [107434].
(doi:10.1016/j.oceaneng.2020.107434).
Abstract
The increasing relevance of simulation-based design has created a need to accurately estimate and bind numerical errors. This is particularly relevant to full-scale computational ship hydrodynamics, where measurements are difficult and expensive, simultaneously requiring a high degree of predictive accuracy even in early design stages. However, the field of ship hydrodynamics has yet to fully exploit the enhanced capabilities and potential benefits numerical verification methods have to offer. The present study presents a detailed application of numerical verification procedures in CFD as applied to local parameters, such as free surface elevation and skin friction. This is done in order to pinpoint specific locations in the computational domain responsible for heightened levels of error and uncertainty. Relationships between different parameters are demonstrated and discussed based on a set of full-scale simulations of the KCS advancing through a canal using CFD.
Text
A_posteriori_error_and_uncertainty_estimation_in_computational
- Accepted Manuscript
More information
Accepted/In Press date: 20 April 2020
e-pub ahead of print date: 11 May 2020
Published date: 15 July 2020
Identifiers
Local EPrints ID: 478681
URI: http://eprints.soton.ac.uk/id/eprint/478681
ISSN: 0029-8018
PURE UUID: 60c405b3-20c8-4373-b572-a53babad08c8
Catalogue record
Date deposited: 07 Jul 2023 16:32
Last modified: 17 Mar 2024 04:18
Export record
Altmetrics
Contributors
Author:
Momchil Terziev
Author:
Tahsin Tezdogan
Author:
Atilla Incecik
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics