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Abstract: Integration of Uncrewed Aircraft into unsegregated airspace requires robust and objective
risk assessment in order to prevent exposure of existing airspace users to additional risk. A proba-
bilistic Mid-Air Collision risk model is developed based on surveillance traffic data for the intended
operational area. Simulated probable traffic scenarios are superimposed on a desired Uncrewed
Aircraft operation and then sampled using Monte Carlo methods. The results are used to estimate the
operation-specific collision probability with known uncertainty in the output. The methodology is
demonstrated for an example medical logistics operation in the United Kingdom, and a Target Level
of Safety is used as a benchmark to decide whether the operation should be permitted.
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1. Introduction

The integration of Uncrewed Aircraft Systems (UAS), colloquially referred to as
“drones”, into airspace poses a number of challenges. In most jurisdictions, the opera-
tion of UAS is still restricted to segregated airspace, where the UAS should be the only
aircraft operating within the defined volume of airspace. This approach, whilst almost
eliminating the Mid-Air Collision (MAC) risk, is a very inefficient use of airspace and is nei-
ther scalable nor sustainable for multiple UAS operations. The deployment of segregated
airspace in the United Kingdom (UK), taking the form of a Temporary Danger Area (TDA),
has drawn complaints from the General Aviation (GA) community, who are usually the
airspace users most affected as the segregated airspace is usually set up within uncontrolled
airspace [1]. This is where the majority of GA operations take place, and the introduction
of segregated airspace reduces the airspace available to GA and could contribute to higher
MAC risk between GA aircraft as a result. In part due to these circumstances, the integra-
tion of UAS into non-segregated airspace is a desirable future outcome that has received
considerable research interest.

In order to facilitate the integration of UAS, the risks posed to other airspace users
must be considered. This includes the risk of a MAC between a UAS and another crewed
aircraft. As GA aircraft operating within uncontrolled airspace are by definition not under
the control of Air Traffic Control (ATC), they often use the concept of See and Avoid to
tactically deconflict from other aircraft. This poses a problem when it comes to UAS, as they
can be considerably smaller than other crewed aircraft. This means that it is very difficult
and, at times, impossible to visually identify them with sufficient time to avoid them. This
work, therefore, addresses this case.

The goal of this methodology was to find the unmitigated Mid-Air Collision (uMAC)
probability. Concretely, this means that the methodology disregarded the contributions of
any tactical deconfliction means ranging from pilot intervention to technologies such as
TCAS to the reduction in MAC risk. This was done intentionally to provide a worst-case
but still realistic estimate of the uMAC upper bound value. The rationalisation was then
that any additional mitigation measures could only improve (reduce) this uMAC risk
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value. Additionally, this removed a large amount of complexity from the modelling and
simulation, allowing very fast run times for the simulations and the achievement of the
required large number of samples for the Monte Carlo methodology used.

The novel contribution of this work is the introduction of spatiotemporal, localised
altitude distributions allowing more realistically distributed background traffic. This
allows the application of the presented methodology both in the vicinity of aerodromes
and en route at specific times of the day. This forms part of an unmitigated mid-air
collision (uMAC) risk quantification methodology that is operation-centric and extensible,
employing Monte Carlo methods. Additionally, a provision is made to include non-
transponder-equipped traffic in the analysis. Whilst simulation approaches are commonly
discounted as requiring an infeasible number of simulations, we successfully demonstrate
the use of the approach in a reasonable computational time.

In Section 2, we present the methodology and demonstrate an application to a case
study in Southern England; in Section 3.5 the results of the case study are presented; in
Section 5, we discuss the results, their wider applicability and the strengths and weakness
of the methodology; finally, we draw conclusions in Section 5.

2. Related Works

Endoh [2] presented comprehensive analytical models for MAC rate from first princi-
ples based up on traffic density, aircraft speed, and dimensions. The model was stochastic
in nature and applicable to airspace with known individual (or averaged) parameters
for the input variables. Holt et al. [3] also related surveillance accuracy and separation
standards to MAC rate to allow for real-time collision hazard prediction. Knecht [4] ex-
amined the mathematical assumptions behind the “Big Sky Theory”; a concept that states
that a pair of stochastically flying aircraft are unlikely to collide due to the relative size of
three-dimensional free space compared to the size of the aircraft in question. The work
employed a Gas Law-based approach to initially model the theory that was then validated
by Monte Carlo simulations. The input parameters were the same as that for Endoh, namely
traffic density, speed, and size. The results suggested that physical collisions were relatively
rare; however, the infringement of formal separation standards was common. Patlovany [5]
used a Monte Carlo model to compare several different systems of rules for aircraft to
reduce the MAC rate themselves and, in addition, model the effects of compliance to the
given rules. The results suggested that the MAC risk is directly proportional to compliance
to the given rules. Additionally, the model was focused on an en route environment where
there were usually far fewer climbing or descending aircraft that could affect the MAC risk.
A similar analysis was performed by Sunil et al. [6] who examined the MAC rate of several
different airspace constructs in order to determine the optimal airspace design for reduced
MAC risk. They validated their model using fast-time simulations.

The preceding literature examined the MAC in idealised environments. Jardin [7] de-
veloped a binomial random variable model to predict conflict counts as a function of traffic
density. Real-world surveillance data was combined with simulation data to fit the model,
which was then tested in both a free route uncontrolled environment and a strategically de-
conflicted Air Traffic Management environment. In the free route environment, it was found
that the binomial random variable model was well suited to the modelling of conflict counts.
La Cour-Harbo and Schiøler [8] used real world data to estimate the probability of several
classes of GA aircraft being below a set altitude threshold and, therefore, at risk of MAC
with UAS in Denmark. They applied these fitted probability distributions of altitude to
a derived analytical model of MAC probability that was specific to GA aircraft and low
altitude environments, but was uniformly applied to a large area rather than specific to a
given location. McFadyen and Martin [9] also used a data-driven approach to find high
MAC risk areas from which UAS should be excluded, based upon a risk-opportunity metric
from their analysis. They used real traffic data for a low altitude area of Brisbane, Australia,
to demonstrate the methodology and its real-world application. The approach was spe-
cific to a given location and, similarly to la Cour-Harbo and Schiøler, was a probabilistic
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risk assessment methodology. In a further work, McFadyen [10] determined maximum
altitudes for UAS in the vicinity of a major aerodrome based upon a Target Level of Safety.
This work was most similar to Lee et al. [11], who analysed the MAC risk for a region
of interest located around Grand Forks, USA, by collating one year of traffic data and
replacing historic traffic positions with probability distributions to generate a “contin-
uous traffic model”. This enabled the integration of an intended path and associated
conflict volume across the continuous traffic model in order to determine the probability of
encountering traffic.

3. Methodology

A Monte Carlo method (MC) was used to sample positions of traffic within a specific
operational scenario. The process could be split into a number of steps that provide
insightful information in their own right, particularly as a result of the traffic data analysis.

The methodology aimed to characterise the position of traffic in the desired area of
operation probabilistically, then reconstruct a probable traffic scenario with the addition of
the UAS that we wished to introduce into the real environment, referred to as the ownship.
For each sample, the distance between each of the traffic entities and the ownship was
calculated along the ownship path and any conflicts were returned.

The method allows for the flexible inclusion or exclusion of any number of additional
factors that may affect the uMAC of the operation, therefore is extensible and accommodat-
ing of constraints or conditions that are specific to a given operation. The only theoretical
limitation is the ability to model this within the traffic scenario samples, although practical
consideration should also be made for the computational cost this could incur. This differs
from the “airspace-centric” approach by McFadyen and Martin [9]. The method presented
here can be considered an “operation-centric” approach to risk assessment.

The method consists of a number of steps: Operational Area definition, Traffic Surveil-
lance data collection/ingestion, traffic data analysis, MC sampling of traffic scenarios, and,
finally, analysis of MC outputs.

3.1. Surveillance Data Analysis

As the simulations are stochastic, there is little to be gained from modelling traffic
operating under the control of Air Traffic Control (ATC) within controlled airspace, that is
airspace where all traffic motion is dictated by ATC. The group that UAS pose the highest
MAC risk to is General Aviation (GA), who routinely operate in uncontrolled airspace and
are under no obligation to be in receipt of ATC services. We, therefore, emphasised the
inclusion of GA in the data.

3.1.1. Data Ingestion

Once the analysis area had been established, the ingestion of the traffic data could
begin. This was obtained from the OpenSky network [12], a research data repository
that collates (primarily) ADS-B returns that are collected by a global network of ADS-B
receivers that are run usually by volunteers or institutions. In this sense, it is very similar
to commercial products such as FlightRadar24, which also rely on individual receivers
donating their data to the network.

A year was chosen as the time horizon for the data as it was judged to be suitably long
to encompass trends and a full cycle of the seasons, and, therefore, the weather. This is
particularly important as the range of weather conditions that General Aviation can and
do fly in is much narrower than commercial aviation. Additionally, General Aviation is
not scheduled and has much lower commercial pressures, if any; therefore, if the weather
is unfavourable, any flying will usually be deferred or cancelled. There is also a time and
server loading cost to downloading large amounts of data, therefore only downloading as
much as is required makes the analysis process faster and the data provider hosting more
sustainable. As an example, for the year of 2019, the traffic data for the south of England,
widely considered very busy airspace, consisted of 110GiB uncompressed.
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The data are provided in the form of state vectors, S = (φ, λ, h, t). These are single
geographic positions specified by their latitude, φ, longitude, λ, and altitude above mean
sea level h and associated with a time, t. The state vectors can trivially be reassembled into
a trajectory of I points, T = {S0, . . . , Si, . . . , SI}. There are a considerable number of other
variables that are associated with each state vector, such as the ICAO transponder address,
the callsign, and the “squawk” code. These additional data were not useful for the analysis,
however; therefore, they were discarded in order to reduce the size and therefore reduce
the amount of data needing processing.

It must be recognised that there is a significant self-selection bias in the data. This is
inherent to the method used to collect the data as they depend on the carriage of a ADS-B
transponder onboard the aircraft. Transponders are a form of Electronic Conspicuity (EC)
that send additional information about the aircraft. This additional information includes
identification, speed, and altitude and can be received by other suitable receivers, which is
how the majority of ADS-B data are collected. This additional information can be crucial
in areas of complex airspace. Primary radar, whilst requiring no additional equipment
onboard the aircraft, can only calculate the slant range of the aircraft; this means that the
altitude of the aircraft is either impossible to determine or must rely upon multi-lateration,
where the time taken to receive a reflection from an irradiated target is accurately calculated
from multiple receivers with known locations to find the distance to each receiver.

Transponders can be expensive equipment and are, at time of writing, not manda-
tory in the UK. It is estimated by the UK General Aviation Alliance (GAA) that approxi-
mately 5000 out of 23,000 Sport and Recreation General Aviation aircraft are equipped with
transponders, which is equivalent to 21.7% equipage. These data that we have obtained
could therefore only capture approximately that percentage of the actual traffic in the
skies. With a lack of any additional spatial information, it was impossible to determine
how this equipage is distributed. It was conjectured that a higher proportion of aircraft
operating in the South of England and around more complex airspace would be equipped
with transponders, as there is greater incentive in terms of safety and airspace access com-
pared to rural areas with little to no controlled airspace and much lower traffic densities.
Additionally, we conjectured that fewer aircraft would be equipped with transponders at
lower heights, owing to the greater diversity of different aircraft types such as paragliders
and sailplanes. A discussion of how this was handled is included in the following section.

3.1.2. Data Aggregation

The flight trajectories, F = {T0, . . . , Tj, . . . , TJ}, were then filtered and cleaned of
spurious data points. This was done using a median filter across the positional variables,
φ, λ, h, within the state vector. This implicitly assumed that aircraft would follow a broadly
“smooth” trajectory, which is reasonable for the vast majority of aircraft. Every trajectory
was uniformly resampled to a frequency of 10 s, such that

∀T ∈ F : ∀S ∈ T : t(Si)− t(Si−1) = 10 (1)

where t(S) obtains the time of the state vector S. After filtering, the number of unique
trajectories considered in the dataset, J, was 44,222.

A traffic count map was generated with lateral cell resolutions of rxy = 500 m, such
that each cell C(x, y) had the number of unique intersecting trajectories. The map, CEC(x, y),
was obtained directly through aggregation of the data, which include only EC-equipped
flights. The estimation of non-EC-equipped (NEC) aircraft consisted of scaling to obtain
the total traffic count map, CEC,NEC(x, y):

CEC,NEC(x, y) =
1

0.217
CEC(x, y) (2)
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This was a reasonable assumption that generally constitutes the worst case for the traffic
density because, as previously discussed, most high traffic density regions are likely to
have a higher EC equipage. This resulted in a traffic count map such as that in Figure 1.

A standard geographic projection, P(φ, λ, h), was used to map geographic coordinates
to a local Cartesian coordinate system.

P : φ, λ, h→ x, y, h (3)

P−1 : x, y, h→ φ, λ, h (4)

Figure 1. Scaled annual traffic density in uncontrolled airspace in Southern England for the year 2019.

As the distributions were unknown and upon inspection did not conform to a standard
parameterised distribution, a non parametric characterisation had to be found. For this
same reason, it was not valid to approximate the characteristic traffic variables as a standard
distribution and proceed analytically. The lateral positional variables were modelled for
the entire operational area as Kernel Density Estimates:

f̂λ(x; w) =
1

Jw

J

∑
j=0

1
IT,j

IT,j

∑
i=0

K
( x− λ(Si(Tj))

h

)
(5)

f̂φ(x; w) =
1

Jw

J

∑
j=0

1
IT,j

IT,j

∑
i=0

K
( x− φ(Si(Tj))

h

)
(6)

The kernel function, K, used was the Epanechnikov kernel [13]:

K(x) =
3
4
(1− x2) (7)

for the support |x| ≤ 1. The bandwidth parameter w was found by minimising the Mean
Integrated Square Error (MISE) between the KDE and unknown density function. The
bandwidth is a smoothing parameter and its selection is of critical importance when using
a KDE.

The altitude distributions H(φ, λ) were specific to each cell midpoint location φ, λ and
were similarly fitted KDEs with Epanechnikov kernels.

f̂H(φ,λ)(x; w) =
1

Jw

J

∑
j=0

1
IT,j

IT,j

∑
i=0

K
( x− h(Sj(Ti))

h

)
(8)
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For locations with an insufficient number of samples, the immediate neighbour cells
were used instead to fit a KDE for that cell.

The temporal aspects of the problem are addressed next. The traffic density map,
D(x, y, t), was found by normalising to the volume of the cell and by 365 (days) as the
surveillance data used encompassed a year. The daily temporal distribution of the traffic
(such as that in Figure 2) was used to scale the mean daily traffic distribution, to a given
hour of the day, t ∈ [0, 23].

D(x, y, t) =
1

365t
1

r2
xyhmax

CEC,NEC(x, y) (9)

Figure 2. Frequency density and corresponding traffic densities by hour of day for operational area.

3.2. Simulation

Samples M = {M0, . . . , Mn, . . . , MN} were generated for the bounds of the desired
operational area. Each sample could be considered a semi-static Agent Based Simulation
(ABS). Within the ABS, there exist two types of agent: background traffic agents (referred to
as traffic or traffic agents) and the ownship agent. These are representative of aircraft in the
analysed traffic environment, and the ownship, whose introduction into the environment
we wished to analyse for uMAC risk, respectively. Therefore, the ownship(s) were repre-
sentative of the UAS(s) that we wished to introduce to the traffic environment. Within each
individual simulation environment, the traffic agents did not move and only the ownship(s)
were stepped forward through the simulation time.

The ownship followed a similarly defined trajectory O = {S0, . . . , Si, . . . , SI}. Whilst
each cell could be responsible for the probabilistic determination of containing traffic
agent(s), such as in [14], in the simulation approach taken here it may result in a large
range of total numbers of traffic agents, therefore this was determined centrally prior to
simulation sampling. The traffic density was found from the maximum intersecting traffic
density, Dmax,int.

Dmax,int = ∀(φ, λ, h, t) ∈ O : max(D(P(φ, λ, h), t)) (10)

Each sample had an associated random seed R = {R0, . . . , Rn, . . . , RN} that initialised
a dedicated pseudo-random number generator (RNG) that was used for the generation
of all random numbers for that sample. For each sample Mn, a set of random numbers
Gn = {G0, . . . , Gi,n, . . . , GDmax,int,n}, Gi,n ∈ [0, 1] was generated to sample each positional
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variable KDE, f̂φ, f̂λ and f̂H(φ,λ). The lateral position was sampled first, then the corre-
sponding altitude distribution was used to determine the vertical position. This created
the static traffic set for that sample, Wn = {S0, . . . , Si,n, . . . , SDmax,int}, which was probabilis-
tically representative of the real world traffic environment. Within the simulation world
space, pn(x, y, z) each background traffic aircraft was represented by the delta function.
The delta function represented the position of a single aircraft. Cumulatively, they repre-
sented all traffic within the simulation run. pn(x, y, z), therefore, provided a continuous
representation of the probability of traffic being located at the position x, y, z.

δSi,n(x, y, z) = δ(x− x(Si,n))δ(y− y(Si,n))δ(h− h(Si,n)) (11)

pn(x, y, z) =
Dmax,int

∑
i=0

δSi,n(x, y, z) (12)

In order to check for MACs in the environment, conflict distances sxy, sz were defined
laterally and vertically from the ownship, as seen in Figure 3. Within these distances in their
respective dimensions, a conflict was counted. This aimed to capture the physical collision
probability rather than an infringement of defined separation minima. The number of
MACs within each sample, Fn, was then found by the piecewise linear integration of the
simulation world space along the ownship trajectory. The piecewise linear integration
scheme was similar to that in [11], therefore details are omitted for brevity.

Fn =
∫

O

∫∫
sxy

∫
sz

pn(x, y, z) dx dy dz ds (13)

Figure 3. Conflict Volume Definition.

3.3. Monte Carlo Analysis

As a single sample is equivalent to a single execution of the operation in the real world,
it was not able to generate any useful statistical data about the uMAC probability. In order
to estimate the uMAC probability, we turned to Monte Carlo (MC) methods. The core issue
with the application of MC to the rare event simulation problem is the requirement for a
significant number of samples in order to draw useful statistical inferences. This means the
variance of the resulting output could feasibly be an order of magnitude or more than the
actual result if insufficient samples are made.

The variance in the estimate reduces with 1/N in the current configuration, commonly
referred to as crude Monte Carlo (CMC). The actual relative error value can be found from
Equation (15). There is substantial literature on variance reduction for MC methods that
can be applied in order to reduce the number of samples required to achieve the same
variance value. This will be considered in future work.
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The results of all the ABS runs were collected into a database that associated the
run ID, random seed used and the number of conflicts for each ABS. These data also
allowed for the replication and reproduction of the results, primarily for validation and
traceability. An unbiased estimator, p̂uMAC, for the true uMAC probability, p, was found
by Equation (14), where N is the number of MC samples (ABS runs) and Fn is the number
of unmitigated conflicts in the n-th sample. As the effects of tactical deconfliction systems
was not simulated, this is the unmitigated mid-air collision probability.

p̂uMAC =
1
N

N

∑
n=0

Fn (14)

Of critical importance is the estimation of error in the result. Two measures of error
could be utilised: the relative bias (RB) and relative error (RE). As the estimator in the
CMC method is unbiased, the RB is negligible for large N [15] and was not considered
here. The relative error is a measure of the dispersion of the estimator. This is given by
Equation (15) [15] and can also be used for estimation of the required MC samples for a
given estimated probability. Additionally, the convergence of the uMAC rate could be
plotted against the number of samples, such as in Figure 4. This provided a more empirical
validation of the convergence of the solution to cross check.

RE( p̂) =
1√
N

√
p̂− p̂2

p̂
(15)

Figure 4. Convergence of uMAC metrics across MC samples.

The confidence interval in the result could be found using the Central Limit Theorem
using a common method:(

p̂uMAC ∓ cα,n

√
p̂uMAC(1− p̂uMAC)

N − 1

)
(16)

cα,n = Φ−1(1 + α

2
)

(17)
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where α is the confidence level and Φ−1 is the Standard Normal inverse CDF. As the
confidence interval is symmetric around the estimator value, the uMAC probability is not
sensitive to the confidence level in this case.

The output could be expressed either as a uMAC probability per operation (as in
Equation (14)) or uMAC rate per flight hour, given in Equation (18), where Tn,max is the
total number of timesteps simulated for the n-th ABS run.

R̂uMAC =
∑N

n=0 Fn

∑N
n=0 tnTn,max

(18)

By tracking the ownship position when a conflict occurs, the probability of uMAC
could be determined spatially along the ownship trajectory, p̂uMAC(x, y, z)∀x, y, z ∈ O.

3.4. Implementation

The implementation is divided into data analysis and simulation orchestration. The
former was performed in Python using the Traffic library [16], the ADS-B surveillance
data were obtained from OpenSky [12], and additional sailplane data were obtained and
integrated to partially account for Non-EC-equipped traffic. The latter was a custom
implementation written in GoLang. The integration in Equation (13), was performed
numerically by stepping along the ownship trajectory O, such that no “stepping over” of
potential conflicts occurs. The step distance was empirically set to sxy/5. This made the
implementation function as a semi-static Agent Based Simulation (ABS), where only the
ownship agent(s) were moved with every timestep.

From a computational perspective, the problem of running many samples was trivially
parallel, and, therefore, easily accommodated on modern computers and easily scaled to
“cloud” remote computing services. There was no requirement to synchronise or transfer
any information between samples during their execution. The fast execution was, of
course, predicated on the complexity of the operation being simulated and was particularly
sensitive to the number of traffic agents (therefore the traffic density and size of the analysis
volume) and the length of the ownship path.

3.5. Simulation Validation

The traffic simulation environment was validated by correlation of the outputs with
the original input distributions for each cell. The positions of all generated traffic agents
from 108 samples was used to fit a KDE for the altitude of each cell of an arbitrary oper-
ational area. The lateral position KDEs were similarly fitted from the same data. A two-
sample Kolmogorov–Smirnov test [17] was performed on all corresponding distributions
between the surveillance data derived reference distribution and simulation environment
collected distributions. The test statistic Da,b was calculated between the empirical distri-
bution functions F1,a(x) and F2,b(x) for the reference and simulation distributions of sizes
a, b, respectively.

Da,b = sup
x
|F1,a(x)− F2,b(x)| (19)

They were tested to be identical distributions to 95% confidence (α = 0.05)

Da,b > cα,ks

√
a + b

ab
(20)

cα,ks =

√
−1

2
ln
(

α

2

)
(21)

All corresponding distributions were tested to this level, thus validating the
simulation implementation.
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4. Results

The methodology was applied to the air risk assessment of a case study operation
between Portsmouth, UK to Newport, UK. This case study was based upon a potential
future medical logistics operation that has only been operated in segregated airspace at
time of writing. The analysed trajectory was fixed in altitude at 1000 ft above ground level
(AGL), although the flexibility of the method allows these to be varied. This altitude was
selected for demonstration, as previously conjectured lower altitudes were likely to have
greater proportion of aircraft that are not featured in the data. The lateral trajectory can be
seen overlaid on the local daily traffic density in Figure 5. In the vicinity of the operational
area there are three busy GA airfields. Additionally, there is good ADS-B receiver coverage
reported by the surveillance data provider used. A lateral and vertical conflict distance
of sxy = 15 m and sz = 6 m, respectively, were selected. The analytical derivation of
the separation distances was considered out of scope for this work, as the model allows
this to be set parametrically; we refer the reader to past works that have considered this
further [18,19].

Figure 5. Analysed flight trajectory with local traffic density overlaid. The trajectory is fixed at
1000 ft AGL.

The UK Civil Aviation Authority (CAA) defines Flight Restriction Zones (FRZs) around
airfields and critical infrastructure. There are FRZs around two of the three aforementioned
airfields, as shown in Figure 6.

Surveillance traffic data were obtained for the entirety of 2019 for a region up to 5000 ft.
The year of 2019 was chosen as to exclude any effects on the data due to COVID-19. It
was important that sufficient data samples were captured to draw representative and valid
distributions from. The data were processed as detailed in Section 2 to yield probability
distributions in the traffic characteristic variables, shown in Figures 2 and 5. It is important
to reiterate that the traffic density values were multiplied by 1

0.217 in order to estimate
non-ADS-B-equipped traffic.

The operation was selected to take place at 1400 h. This is the busiest time of day
in the operational area, shown by Figure 2, accounting for a relative frequency of 0.1218.
The traffic density for the operational area is shown in Table 1. The values represent
the traffic densities for a mean day across the time horizon of the data, in this case one
year, within the entire operational area and for only the cells that the trajectory intersects.
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Figure 2 also shows the maximum traffic density of all intersecting cells by hour of day on
the right vertical axis. This results in a max traffic density of 2.8192× 10−10 aircraft/m3

corresponding to the operation time of 1400. The minimum and mean values for the
intersecting traffic densities are 8.0533× 10−12 aircraft/m3 and 8.6413× 10−11 aircraft/m3,
respectively. However, the realistic worst case was desired; therefore, the maximum
intersecting traffic density was used.

Figure 6. Locations of FRZs in the operational area.

Table 1. Traffic Density statistics for an averaged day in the case study operational areas.

Traffic Density [Aircraft/m3]
Operational Area Intersecting

Mean 7.0629× 10−10 7.0938× 10−10

Min 3.3055× 10−11 6.6111× 10−11

Max 7.8011× 10−9 2.3143× 10−9

We made an a priori estimate of the uMAC probability at 1× 10−5 with a desired max-
imum relative error of 10%. These values were used to estimate the number of MC samples
required, as per Equation (15). The estimated MC samples required was found to be a
minimum of 107. The simulations were set up and queued for batch execution on a machine
with a 12-core Intel 12700K processor and 16GiB RAM. The total execution time took approx-
imately 3 h. The uMAC probability converged to 7.6716× 10−4 ± 5.4267× 10−6 (α = 0.95)
and the convergence to this value could be verified by plotting the uMAC probability
against the number of samples, shown in Figure 4. Likewise the uMAC rate converged to
3.8041× 10−3 ± 1.2066× 10−5(α = 0.95). More samples than initially required were made
in order to verify the convergence of the value.

The localised conflict probability is shown in Figure 7. As expected, this is seen to
correlate with the traffic density map in Figure 5. This allows for further refinement of the
path to avoid identified high uMAC risk regions of the originally intended flightpath.
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Figure 7. p̂uMAC(x, y, z) values along the ownship trajectory.

5. Discussion

The results presented demonstrate the combination of a CMC method with ABS to
estimate the uMAC probability of a specific operation. The ABS traffic environment is set
up to probabilistically replicate the real world operational environment, both spatially and
temporally. Additional UAS(s) can then be introduced to assess the probability of them
colliding with the existing traffic agents in this environment.

The methodology presented is designed to assess the unmitigated MAC probability.
As such, it is assumed that any further mitigations improve this base uMAC probability
value and make it less likely that a MAC will occur. These mitigations can take the form of
Detect and Avoid (DAA) technologies, such as EC measures, or on-board realtime sensors,
such as radars or electro-optical (EO) systems. This approach is in line with the SORA [20]

In a safety assessment and operation approval context, this allows objective quantifi-
cation of the air risk posed by the UAS and the monitoring of compliance to a target level
of safety (TLoS). The value of the TLoS is of debate, with previous work using the TLoS of
10−6 fatalities per flight hour [21]. Previous data from the FAA suggest 4× 10−7 fatalities
per flight hour for all aircraft movements for the period 2007–2011. Ultimately, the respon-
sibility falls to the regulator to set the TLoS. For a proposed operation, an agreed TLoS can
be specified in the Operational Safety Case (OSC) and the proposed flightpath(s) can be
verified using the presented methodology.

This approach is complementary to the quantification of ground risk posed by UAS [22]
and the use of both methods enables a holistic, objective, and quantified assessment of
the risks posed by UAS operations. It is suggested that both the air and ground risk
components be normalised to estimate the number of fatalities per single sortie of an
operation and combined to a single value representing the probability of a fatality occurring.
This should then be the figure of merit compared to the TLoS to establish whether an
operation is permitted.

The CMC approach is not particularly computationally efficient; however, it is rela-
tively straightforward to validate and is tenable for the speed of the current implementation.
This could form the basis for validation of more advanced methods.

It is assumed a MAC would result in at least a single fatality; therefore, we used the
uMAC rate as the fatality rate. In the presented case, the operation should not be allowed
to operate at the given time of day on the basis of a TLoS of 10−6 fatalities per flight hour.
The air risk could be mitigated by selecting a different time of day or routing.

To demonstrate this, the method was repeated for a different time of day. A time
of 0700 was selected for the same operation, corresponding to a traffic density of
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2.7187× 10−12 aircraft/m3. After 108 samples, the uMAC rate converged to
7.9801 × 10−6 ± 5.5368 × 10−7 (α = 0.95) per operation flight hour. This is still above
the prescribed TLoS; therefore, a change in routing is required.

6. Conclusions

In this work, we have demonstrated the use of a crude Monte Carlo method sampling
Agent-Based Simulations of a realistic traffic environment to determine an estimate of
unmitigated mid-air collision probability. The environment traffic motion is based upon
the analysis of surveillance traffic for the intended operational area. The operation-centric
methodology presented here forms an alternative to airspace-centric approaches with
the former allowing for higher flexibility and consideration of special conditions and
constraints that may be imposed on a specific operation.

A case study of a specific operation in the South of the UK has been presented and
the air risk determined based upon an assumed time of day for the operation. The results
suggest that the case study operation does not reach an assumed Target Level of Safety
desired and therefore should not be allowed to proceed for the given time of day.

Future Work

There are numerous avenues for future work that could stem from this study. A key
path is that of variance reduction of the MC method. This could result in a much faster
analysis time due to the requirement for fewer samples. This would allow for feasible
analysis of more complex operations, particularly those including multiple UAS (ownship
agents) and the introduction of specific scenarios that are not necessarily characterised
in the surveillance traffic data but are of particular importance, such as the transit of
emergency medical helicopter flights in the vicinity of the operation. Techniques from
the field of Rare Event Simulation are highly applicable in this case and methods such as
importance sampling and simulation splitting show great promise for the improvement of
this methodology. This would allow a sensitivity analysis of the presented methodology, as
this is currently computationally intractable.

The spatial partitioning of the methodology may also be desirable, especially for
particularly long range operations, this would allow the method to be more scalable and
the modelling of different variations of sections of the UAS trajectory.

The inclusion of other UAS, either as part of the traffic or as an ownship, is also techni-
cally feasible and can cover the case of multiple UAS operating in the same environment.
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