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Here, we report a new pentafluoropropanamido rhodamine fluorescent probe (ACS-

HNE) that allows for the selective detection of neutrophil elastase (NE). ACS-HNE

displayed high sensitivity, with a low limit of detection (<5.3 nM), and excellent selectivity

toward elastase over other relevant biological analytes and enzymes. The comparatively

poor solubility and cell permeability of neat ACS-HNE was improved by creating an

ACS-HNE-albumin complex; this approach allowed for improvements in the in situ

visualization of elastase activity in RAW 264.7 cells relative to ACS-HNE alone. The

present study thus serves to demonstrate a simple universal strategy that may be used

to overcome cell impermeability and solubility limitations, and to prepare probes suitable

for the cellular imaging of enzymatic activity in vitro.

Keywords: elastase detection, BSA-based nanocarrier, nanocarrier-based enzyme detection, fluorescence

imaging, cell imaging

INTRODUCTION

Fluorescent probes have found widespread application in imaging biomarkers relevant to physio-
and pathological cellular pathways (Kobayashi et al., 2010; Chan et al., 2012; Wu et al., 2017;
Erbas-Cakmak et al., 2018; Sedgwick et al., 2018d). Within this paradigm, reaction-based systems
containing an integrated reactive motif offer specificity in probing biochemical processes with
concomitant utility as a diagnostic tool for medical applications (Caramello et al., 1993; Burgos-
Barragan et al., 2017; Xiao et al., 2018; Akashi et al., 2019). Common dye scaffolds are, however,
still limited and generally rely upon flat polyaromatic frameworks. Such systems are typically
restricted by their poor solubility and cell permeability. In an attempt to overcome these
limitations, supramolecular nanocarrier constructs have been devised in an effort to enhance
solubility, photophysical properties, and chemoselectivity (Dondon and Fery-Forgues, 2001;
Sheng et al., 2014; Chen and Liu, 2016; Fu et al., 2018; Yan et al., 2018; Gao et al., 2019;
Miranda-Apodaca et al., 2019).
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Continued advances in imaging methods coupled with
fluorescent probe technologies have made real-time monitoring
of enzymatic activity a viable tool for understanding fundamental
biological processes (Liu et al., 2018; Yang et al., 2019). Our
own efforts have focused on the development of fluorescent-
based probes for the detection of biologically relevant species
that are thought to be intimately involved in a number of
pathological processes, such as inflammation, neurodegenerative
diseases and cancer (Sedgwick et al., 2017, 2018a,b,c,d; Wu
et al., 2017, 2018; Odyniec et al., 2018; Gwynne et al., 2019).
In the context of these efforts, we turned our attention
toward the detection of the enzyme neutrophil elastase (NE).
NE is a serine protease primarily secreted by neutrophils
during an inflammatory response. NE possesses important
protective functions, which include the remodeling of the
extracellular matrix. It also acts as a host defense against
bacterial infections. NE is found in inflamed tissues and
wound exudate (Mitra et al., 2013). Elevated levels of NE
have been associated with a number of inflammatory-related
diseases, such as chronic obstructive pulmonary disease (COPD),
cystic fibrosis (CF), acute lung injury (ALI), and acute
respiratory distress syndrome (ARDS) (Belaaouaj et al., 1998;
Shapiro et al., 2003; Sly et al., 2009; Korkmaz et al., 2010).
In order to utilize NE as a potential therapeutic target
for disease treatments, new systems elucidating its function
in disease are essential (Henriksen and Sallenave, 2008;
Ho et al., 2014).

Current methods for determining NE activity utilize a
combination of indirect separation methods (i.e. HPLC or
LC–MS) and direct electrochemical, UV-Vis spectroscopic,
or fluorescence-based probes (Bieth et al., 1974; Wang
et al., 2008; González-Fernández et al., 2018). These latter
optical methods have proven useful for monitoring NE,
but remain cost prohibitive due to the use of peptide-
based substrates (Wang et al., 2008; Gehrig et al., 2012;
Kasperkiewicz et al., 2014; Schulz-Fincke et al., 2018). Yang
and co-workers recently reported a simple non-peptide-
based strategy for the selective detection of elastase (Sun
et al., 2013). Their coumarin-derived fluorescent probe was
functionalised with a reactive pentafluoropropionamide unit,
which served as a substrate for NE that, in turn, served
to unveil the activated fluorescent dye. Unfortunately,
the short excitation wavelength characteristic of many
coumarin-systems limited the utility of this system as tool

SCHEME 1 | Development of a rhodamine fluorescent probe for the detection of neutrophil elastase (NE).

for monitoring elastase activity, and apparently precluded
cellular imaging experiments.

Here we report a non-peptide rhodamine fluorescent probe
for the detection of elastase (ACS-HNE)—Scheme 1. This new
system is based on the use of a rhodamine-based fluorophore.
This was considered attractive from a design perspective
since this fluorophore core is readily subject to synthetic
modification. Moreover, rhodamine derivatives typically display
high fluorescent quantum yields and display photophysical
properties appropriate for in vitro study (Chan et al., 2012;
Bhuniya et al., 2014). However, as true for many near-planar
dye systems, probes based on rhodamine often suffer from
poor solubility or a tendency to aggregate in aqueous milieus.
In the present instance, we have built upon recent protein-
based nanocarrier strategies (Han et al., 2020), to create an
ACS-HNE/ Bovine Serum Albumin (BSA) hybrid that displays
enhanced solubility relative to ACS-HNE and which acts as
a fluorescent probe that allows for enzyme-based imaging
in RAW 264.7 cells. Despite the recent report of an NIR
probe for NE detection in vitro and in vivo (Liu et al.,
2019), we believe the rhodamine scaffold of ACS-HNE offers
an excellent platform for further derivatisation. In addition,
this BSA-nanocarrier system represents a global strategy for

FIGURE 1 | Fluorescence emission spectra of ACS-HNE (5µM) over time

(24 h) in buffered elastase enzyme (2µM) solution (in PBS buffer, pH = 7.40);

λex = 496 nm.

Frontiers in Chemistry | www.frontiersin.org 2 June 2020 | Volume 8 | Article 389

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Jia et al. Fluorescence Imaging of an Enzyme-Based Biomarker

researchers to overcome the solubility issues associated with
hydrophobic fluorescent imaging agents designed to detect
enzyme-based biomarkers.

RESULTS AND DISCUSSION

Chemistry
Briefly, ACS-HNE was synthesized in one step from
commercially available rhodamine 110 (RH110) by dissolving
in N,N-dimethylformamide, deprotonating with sodium
hydride at 0◦C, and acylating with pentafluoropropionic
anhydride. The product was isolated, after purification by
column chromatography, in 43% yield—Scheme S1.

Spectroscopic Studies of ACS-HNE
With ACS-HNE in hand, UV-Vis and fluorescence spectroscopic
experiments were carried out to evaluate whether this putative
probe could be used to monitor NE activity. As shown in
Figures S1, S2, the addition of elastase (2µM in PBS) led
to a large increase in UV-Vis absorption at ∼490 nm, as
would be expected for the enzyme-based release of rhodamine
110 in accord with Scheme 1. A strong increase in the
fluorescence intensity (IF) was also observed after the addition
of elastase (2µM in PBS)—Figure 1. Dose-response studies
involving fluorescence monitoring revealed a linear increase
in emission intensity with increasing enzyme concentration

(Figures S3, S4). Such behavior is fully consistent with the
expected Michaelis–Menten kinetics (Nelson and Cox, 2005).
Limit of detection (LoD) values for NE using ACS-HNE were
calculated using the assay developed by Schönherr and co-
workers (Sadat Ebrahimi et al., 2015).

The apparent pseudo-first order rate constant for the
reaction (Figure S4) and the LoD value for the detection of
RH110 (Figure S5) were determined to be 0.3 min−1µM−1

and 1.7 nM, respectively. At set times, ACS-HNE demonstrated
high sensitivity toward elastase. For instance, LoD values of
5.3 and 2.6 nM were calculated at 60 and 120min, respectively
(Figure S6). These low LoD values were comparable to
previously reported elastase detection systems (Sun et al.,
2013; Ebrahimi et al., 2015; Liu et al., 2019). The selectivity
of ACS-HNE was also tested by treating it with other
potentially competing enzymes and biologically relevant
analytes. As illustrated in Figure S7, ACS-HNE displayed
excellent selectivity for elastase over a number of potential
interferants, including trypsin, glutathione (GSH), and hydrogen
peroxide (H2O2).

Cellular Imaging of ACS-HNE and
ACS-HNE/BSA
In light of the excellent selectivity for NE displayed by ACS-

HNE, we turned our attention toward evaluating it as a potential

FIGURE 2 | Widefield fluorescence micrographs of RAW 264.7 cells incubated with ACS-HNE (20µM) before (–) or after (+) addition of human NE (HNE, 4 ng µL−1,

100 µL); Excitation and emission wavelengths for ACS-HNE are 460–490 nm and 500–550 nm, respectively. The insert shows magnified sections of the

corresponding fluorescence micrograph.

FIGURE 3 | Widefield fluorescence micrographs of RAW 264.7 cells incubated with ACS-HNE/BSA (20/100µM) before (–) or after (+) addition of human NE (HNE, 4

ng µL−1, 100 µL); Excitation and emission wavelengths for ACS-HNE are 460–490 nm and 500–550 nm, respectively. The inset shows magnified sections of the

corresponding fluorescence micrograph.
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probe for cellular imaging. Predicative cytotoxicity experiments
involving ACS-HNE revealed minimal cytotoxicity, which we
took as a favorable augury for cellular imaging experiments
(Figure S8). As shown in Figure 2, no initial fluorescence
emission was observed in RAW 264.7 cells when incubated with
ACS-HNE (20µM). Upon exposure to exogenous elastase (4 ng
µL−1, 100µL), a substantial increase in the fluorescence intensity
was observed. Not surprisingly, due to the high lipophilicity of
the dye scaffold, ACS-HNE displayed poor cell permeability with
resultant precipitation, as seen by the fluorescent “spots” around
each cell.

To overcome the issues of poor cell permeability and
solubility, we applied a protein nanocarrier encapsulation
strategy that involved treatment with the natural transport
protein BSA. Previous studies have demonstrated BSA as an
attractive candidate for the targeted intracellular delivery of
therapeutics (Karami et al., 2020). Therefore, we rationalized
that the use of BSA would overcome these current limitations
by facilitating the effective cellular uptake of ACS-HNE. In
accordance with the previously reported protocol, ACS-HNE

was mixed with BSA at a molar ratio of 1:5 (ACS-HNE/BSA

= 20 µM/100µM) prior to carrying out cellular imaging. The
resulting ACS-HNE/BSA hybrid was subsequently added to the
cells. As can be seen in Figure 3 and Figure S9, a low background
fluorescence intensity was observed. The subsequent addition
of exogenous elastase (154.4 nM, 100 µL) resulted in a 2.5-
fold increase in the fluorescence intensity with little evidence
of precipitation. This increase in fluorescence was attributed
to the cellular uptake of exogenous elastase (Houghton et al.,
2010) and reaction with ACS-HNE. This level of enhancement
demonstrates the effective enzyme-based imaging of probe-
albumin complexes and highlights the utility of this method as a
means to increase solubility and cellular uptake for probes whose
utility might otherwise be limited.

CONCLUSIONS

In summary, we have developed a novel rhodamine-based
fluorescent probe (ACS-HNE) prepared using a straightforward
one-step reaction procedure. Synthetic attachment of the
pendant pentafluoropropionamide functionality to a rhodamine
core endows ACS-HNE with high sensitivity and selectivity
toward elastase. This, in turn, permitted quantification with a low
limit of detection (5.3 nM at an observation time of 60min). The
comparatively low cell permeability and poor solubility of native
ACS-HNE was enhanced using a protein nanocarrier-based
strategy involving formation an ACS-HNE/BSA hybrid prior to
cell imaging. The combination of fluorescent probe development
and nanocarrier solubilization has facilitated the development of
new class of non-peptide-based fluorescent probes suitable for
monitoring elastase activity in vitro (Bhuniya et al., 2014). We are
currently extending the reaction-based fluorescence modulation
and nanoparticle solubilisation approach to create new in vitro
enzyme-specific sensor systems.
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