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Abstract 

    Long-lived nuclear singlet order methods are here combined with diffusion tensor imaging 

with the purpose of characterizing the full diffusion tensor of molecules that freely diffuse in 

large pores of up to the millimeter. Such sizes are out-of-reach to conventional diffusion tensor 

imaging because of the limitations imposed by the relaxation decay constant of the longitudinal 

magnetization. A singlet-assisted diffusion tensor imaging methodology able to circumvent 

such limitations is discussed and the new possibilities it offers are demonstrated through 

simulation and experiments on plastic phantoms containing cylindrical channels of one-

millimeter diameter.   
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1. Introduction 

    Brownian diffusion is a kind of molecular translational motion in which molecules travel 

through space in a random way as dictated by intermolecular collisions, thermal energy and 

the structural boundaries of the space they travel within. Measurements of such motion can be 

used to deduce important information on the diffusing species itself as well as on its 

surroundings (1, 2). The most basic measurable to characterize such motion is certainly the 

molecular self-diffusion coefficient, a quantity that measures the extent of molecular 

translation through Brownian motion in an isotropic space. Molecular diffusion (from now on 

the prefix “self” is dropped but implied all the times we refer to diffusion in this paper), 

however, is not always isotropic as, for example, when the size and shape of a container 

imposes confinement on molecules that move within or when molecules retain some sort of 

positional order as in a liquid crystalline phase. To characterize those situations, two quantities, 

namely the structural length, 𝑙! , and the diffusion length, 𝑙" , are commonly introduced. 𝑙# 
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reports about the average dimension of the confinement, for example, the average diameter of 

spherical pores or the average length of channels in a structure, whereas  𝑙"  represents the 

average distance travelled by the molecules during the diffusion time Δ , also known as the root 

mean square displacement, 𝑙" = √2𝐷Δ, with D representing the diffusion coefficient. These 

quantities are of particular importance in the study of porous media, which are heterogeneous 

materials characterized by a matrix hosting a network of voids, called pores. The size and shape 

of such pores can indeed restrict molecular diffusion so that the diffusive motion itself becomes 

anisotropic, i.e. different when measured along different directions of space. In those systems 

(and many others), it is generally more correct to discuss diffusion in terms of a diffusion tensor 

and referring to the isotropic diffusion coefficient as the trace of the diffusion tensor. As 

discussed below, the diffusion tensor can also be diagonalised to reveal the principal directions 

of diffusion (the tensor eigenvectors) and the diffusion coefficients along those principal 

directions (the tensor eigenvalues). 

    Molecular diffusion can be encoded within nuclear magnetic resonance (NMR) experiments 

(1) and NMR measurements of diffusion have already been used to obtain a plethora of 

molecular and structural information on a variety of systems which spans all the way from 

material sciences (rocks, bones, etc) to medicine (blood cells, intercellular space, brain fibers) 

(3-10). In particular, and relevant to this paper, the full diffusion tensor can be measured using 

the magnetic resonance technique known as diffusion tensor imaging (DTI) (11). In DTI, the 

full diffusion tensor is reconstructed after measuring molecular diffusion along a minimum of 

six directions chosen so to evenly probe the space around the molecule (11-13). There are many 

spectacular applications of the DTI technique in the medical in-vivo field, the most striking one 

is perhaps brain tractography (12, 14, 15).  

    All magnetic resonance based diffusion methods (the most famous of which are based on 

the pulsed-gradient spin echo (PGSE) or pulsed-gradient stimulated spin echo (PGSTE)  pulse 

sequences) have a common approach: a pulsed magnetic field gradient (PFG) imposes a 

difference in the spins’ Larmor frequency along a given direction, thus marking molecular 

positions’ along that direction of space; successively, molecules (and the spins they carry) 

undergo Brownian motion for a given time interval, called the diffusion time; finally, a further 

PFG “reads out” the new molecular position revealing the extent of diffusive motion they 

undertook in a change of signal intensity. It is therefore evident that the positional information 

encoded by the first PFG must survive throughout the diffusion time to be decoded by the 

second PFG. Most typically, NMR-encoded information lives for a maximum time which is  



 3 

of the order of T1, the relaxation decay constant of longitudinal spin order. Therefore, T1 sets a 

limit to the diffusion timescale and, hence, to the diffusion space-scale. Important structural 

information remains hidden, or wrong conclusion can be drawn, if molecules are not allowed 

to properly explore the surrounding space. In DTI, for example, diffusion would still appear 

isotropic (the same diffusion coefficient in all directions) even when molecules diffuse in an 

highly anisotropic structure made by long and narrow channels, if T1 only allows molecules to 

move for an average distance which is smaller than the smallest spatial dimension of the space 

they are filling. With a typical T1 value of seconds and a diffusion coefficient of the order of 

10-9 m2 s-1, molecules usually travel an average of 10-200 μm during a conventional NMR 

diffusion experiment. Such distance sets the maximum dimension of the structures that can be 

accurately studied with conventional NMR diffusion techniques.  

    In systems of two coupled spin-1/2 nuclei, spin order can be prepared in the form of singlet 

order, which is a form of nuclear spin order that survives longer than T1, most typically by an 

order of magnitude or more (16). Molecules containing such spin system can therefore be used 

as probes of molecular diffusions in systems where motions happen on a long-timescale or over 

large distances. Indeed, singlet order has been already combined with NMR diffusion 

experiments to measure very slow-flow (17), to image diffusion over a macroscopic scale or 

to probe millimeter-sized confinements with q-space diffraction techniques (18), and to 

measure tortuosity in porous media (19). We group all these methods, where long-lived spin 

order is exploited in diffusion experiments, under the acronym SAD-NMR, which stands for 

singlet-assisted diffusion nuclear magnetic resonance. 

    In this paper, we discuss a further application of SAD-NMR aiming at extending the scope 

of conventional DTI techniques so to allow measurements of the diffusion tensor in porous 

structures containing millimeters-sized pores and channels.  

    With the intent to discuss the technique and assess its new limitations we present here 

experimental results obtained on 3D-printed model structures containing channels of 1 mm ID. 

 

2. Methodology 

2.1 Basics of DTI 

    In diffusion tensor imaging studies, molecular diffusion in anisotropic environments is 

described by a diffusion tensor, 𝑫, which is a rank-2 tensor of the form: 
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𝑫 = (
𝐷$$ 𝐷$% 𝐷$&
𝐷$% 𝐷%% 𝐷%&
𝐷$& 𝐷%& 𝐷&&

)										 (1) 

 
 

The diffusion tensor is symmetric (𝐷'( = 𝐷(' ) and therefore only contains six independent 

values, 𝐷$$ , 𝐷$% , 𝐷$& , 𝐷%% , 𝐷%& , 𝐷&& . These values can be measured, and the full tensor 

characterized, if molecular diffusion is measured along, at least, six independent directions in 

space.  

    The diffusion coefficients along any given direction, is routinely measured in NMR using 

one of the many pulse sequences developed over the years, the most basic of them being the 

pulsed-gradient spin echo cited above. Modifications of this experiment introduced in order to 

prolong the diffusion time (PGSTE), correct for eddy currents (PGSTEbp), and compensate 

for thermal convection (PGdSTE and PGdSTEbp) have been available for years and are largely 

used by the NMR community (1). The results obtained in this work, could be compared with 

those acquired using the PGSTEbp pulse sequence (see Figure 1a) that gives access to the 

longest diffusion time among all conventional (i.e., non-singlet-based) DTI techniques. As 

derived by Stejskal & Tanner (20), the PGSTE experiments produces an NMR signal whose  

intensity follows the equation: 

𝑆 = 𝑆)	𝑒
*+!,"!-!""./*

#
$0										  (2) 
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Figure 1. A sketch of a) the pulsed field gradient stimulated echo pulse sequence with bipolar gradients (PFG-STEbp); and b) 
the singlet-assisted diffusion pulse sequence with bipolar gradients and singlet order filter. 	𝑛! = 𝜋𝐽/(2𝛥𝜈) and 𝑛" = 𝑛!/2. 
𝜏# = 1/ .2/𝐽" + 𝛥𝜈"1. 𝛽$ indicates the magic angle and * indicates a composite 180° pulse built as 90x180y90x and with 
overall phase 𝜙 cycled within each echo train as	[𝑥, 𝑥, �̅�, �̅�, �̅�, 𝑥, 𝑥, �̅�, �̅�, �̅�, 𝑥, 𝑥, 𝑥, �̅�, �̅�, 𝑥].  

 
The signal is a function of the direction (𝛼), total duration (𝛿)	and strength (𝑔1) of the gradient, 

the diffusion time (Δ) and the diffusion coefficient along that direction (𝐷1). 𝑆)	is the signal 

when 𝑔1 = 0. Most commonly, once a direction is chosen, the diffusion time is fixed and a 

series of experiments is performed by changing the gradient strength while keeping its duration 

fixed within the limit 𝛿 ≪ Δ (the condition under which Eq. 2 was derived). Alternatively, it 

is possible to fix the strength and vary the duration or fix both strength and duration and vary 

the diffusion time. In order to derive the diffusion coefficient along the 𝛼 − 𝑡ℎ direction, Eq. 2 

is fitted to the areas of the acquired NMR peaks.  

    To reconstruct the whole diffusion tensor, the PGSTEbp experiment (or any alternative) is 

run along (at least) 𝑛2 = 6  independent directions. To interpret the whole data set when 

multiple directions are chosen, the equation for the NMR signal is rewritten as: 

 

𝑆," = 𝑆)	𝑒
*+!-!,"!./*

#
$01

%𝑫1            (3) 
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where 𝛼 = {𝛼$ , 𝛼% , 𝛼&} now indicates a unit vector that specifies the direction of space along 

which the pulsed field gradient is applied, and the superscript T indicates its transpose.  

 Note that, the choice of the six directions along which diffusion is measured and the 

diffusion tensor is reconstructed from, is arbitrary so long as they are independent of each other. 

However, it is best if these directions are chosen so to sample the 3D space as uniformly as 

possible (21). The number of directions can also be increased to more than six but this improves 

accuracy at the expense of experimental time. If the gradient strength is incremented in 𝑛, 

steps per direction, a total number of 	𝑛2 ∗ 𝑛, experimental signal areas will be available. The 

linearized version of Eq. 3 results in a linear system of 𝑛2 ∗ 𝑛, equations that can be matched 

to the experimental signal areas and solved simultaneously to yield the six unknown 

components of the diffusion tensor. The diffusion tensor so reconstructed is expressed in the 

laboratory frame since the gradient pulses are applied along the laboratory frame directions.  

 The diffusion tensor is diagonalized to obtain its principal values (𝐷$$4 , 𝐷%%4 , 𝐷&&4 ) and 

principal axes (𝑋4, 𝑌4, 𝑍4) as the eigenvalues and eigenvectors of the tensor, respectively. The 

principal values represent the extent of diffusion along the principal directions. The orientation 

of the principal frame with respect to the laboratory frame (always expressible in terms of 3 

Euler angles) can give insight of the existence, orientation, and geometry of compartments 

where diffusion is facilitated in some directions rather than others. This is conveniently 

captured by drawing the ellipsoid that describe the principal diffusion tensor. Such ellipsoid 

has its three main axes pointing along the three principal directions (eigenvectors) whilst the 

elliptic radius along those principal directions is equal (or proportional) to the corresponding 

eigenvalue. The whole procedure is here summarized in Figure 2.   
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Figure 2. A flow diagram of the DTI procedure. The left column shows the logical flow of operations that start from the 

choice of the directions along which the diffusion is measured and lead to the processing of the results which is typically 
rendered in terms of a diffusion ellipsoid and its fractional anisotropy. The right column shows some details of the various 

steps. 

 

    If diffusion is identical in all directions of the space, the diagonal diffusion tensor has 3 

identical eigenvalues and its associated ellipsoid is, in fact, a sphere. If diffusion is equal in 

two directions and faster in the third one, the ellipsoid is prolate with its main axis pointing 

along the direction of faster diffusion. Similar reasoning can be used for other cases. A crucial 

point to take into consideration, is that the shape of the ellipsoid can be connected to the shape 

of the container inside which diffusion is happening (the pores or channels inside a porous 

medium, for example). However, for the confinement to become influential, and its structural 

features to be correctly reflected by the diffusion ellipsoid, molecules need to diffuse far 

enough to feel the restrictions of the container. Recalling the structural and diffusion length 

previously introduced, the diffusion ellipsoid would appear spherical whenever 𝑙" ≪ 𝑙!. Since 

for a given molecule diffusing in a structure both D and 𝑙! are fixed, the parameter which is 

required to be adjusted in order to correctly probe the structure is the diffusion time Δ. The 

longer the diffusion time, the bigger the characteristic structural lengths that can be probed with 

Choose unit vectors
 (αx,αy,αz) for each of the nd 

directions (6 minimum) 

Run singlet-assisted DTI with 
fixed Δ, δ and incrementing g 
in ng steps for each direction 

Solve the nd*ng system of
equations to obtain D in 
the lab frame (X, Y, Z)

Diagonalise D to obtain
principal values (Dx, Dy, Dz) 

and directions (X', Y', Z')

Build diffusion ellipsoid,
calculate FA and Euler 
angles between frames 
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meaningful results. In this paper, we propose an alternative to the PGSTEbp experiment to get 

access to much longer diffusion times. 

    Finally, information about the shape of the diffusion tensor is often conveyed in a single 

index known as fractional anisotropy (FA) and calculated as (22):  

 

FA = C1 −
"&&' "((' 5"&&' "))' 5"((' "))'

6"&&' 7!56"((' 7!56"))' 7
!            (4) 

 
The fractional anisotropy ranges from 0 to 1 with zero obtained in the case of isotropic diffusion 

and 1 in a fully anisotropic structure such as a thin and long channel. 

 

2.2 Singlet-Assisted DTI  

    As briefly introduced above, long-lived spin order can give access to very long diffusion 

times. This form of order has already been exploited in this respect to measure small diffusion 

coefficients (23, 24) or slow flow (25). Here, we aim to combine the latest methodologies for 

the manipulation of this form of spin order with the more conventional DTI technique discussed 

above. Our proposed methodology is based on the pulse sequence reported in Figure 1b (pulse 

sequence code - Bruker Topspin language – is available upon request) and has been labelled as 

SAD-TI (singlet assisted diffusion tensor imaging).  In our approach, as in PGSE and PGSTE, 

the well-studied (26) singlet preparation (M2S) and reading (S2M) pulse sequence blocks have 

been sensitized to molecular diffusion with the introduction of a bipolar pulsed field gradient. 

Namely, two opposite-in-sign field gradients are placed before and after the 180 degrees 

radiofrequency pulse within the first echo train of the M2S block. From that time point 

onwards, molecular position is encoded until a second identical bipolar gradient is applied after 

the diffusion time Δ  as shown in Figure 1b. At the end of the M2S block, the diffusion 

sensitized magnetization has been converted into diffusion sensitized long-lived order which 

gives access to much longer diffusion times than those available with the spin-echo or 

stimulated-echo experiments where the diffusion encoding is done on transverse and 

longitudinal order, respectively. This is because the decay time constant of singlet order, TS, is 

often more than an order of magnitude longer than the decay time constant of transverse order 

(T2, exploited in PGSE) and longitudinal order (T1, exploited in PGSTE). The values of 𝑛8, 𝑛9 

and 𝜏: occurring in the M2S/S2M blocks are indicated in the caption of Figure 1. It is worth 

nothing that the minimum Δ accessible with this method is limited by the cumulative duration 

of the part of the M2S after the bipolar gradient, the duration of the singlet filter, and the initial 



 9 

duration of the S2M until the gradient. This minimum time is of the order of some hundreds of 

milliseconds. Moreover, the maximum amount of initial polarization that is detectable after the 

sequence M2S-filter-S2M is theoretically limited to 2/3 (26) (and most practically found to be 

~1/2 because of pulse imperfections and T2-driven losses during the echo trains) and this signal 

loss must be weighed against the benefits of accessing a much longer timescale. in order to 

obtain the six independent components of the diffusion tensor in the laboratory frame within 

the SAD-TI experiment, Eq. (3) is fitted to the signal areas recorded in a series of experiments 

run at different values of the gradient strength, one set of gradient strengths for each of the 

(minimum) six directions, as detailed above. 

 

 2.3 Errors on diffusion tensors and related quantities  

   In order to estimate the errors on principal values and direction of the diffusion tensor as well 

as on fractional anisotropy and all other quantities, we have used a Monte Carlo approach 

implemented in a custom-made Mathematica notebook. Note that an analytic approach is also 

available (27), here not used because unfamiliar to us. The procedure runs as follows: 

1. The standard deviation on each of the six independent diffusion coefficients is extracted 

from the fitting routine (we use NonlinearModelFit routine in Mathematica); 

2. A new diffusion tensor is built by randomly choosing a value for each of its six 

components using a normal distribution centered at the parameter’s best-fit value and 

whose standard deviation is derived in step 1 

3. The new diffusion tensor is diagonalised and eigenvalues and eigenvectors are stored 

in separate arrays 

4. The fractional anisotropy and the angle between the eigenvector corresponding to the 

larger eigenvalue and the z-laboratory axis is calculated and stored in separate arrays 

(any other quantity of interest can be derived in the same way) 

5. Steps 1-4 are repeated N times (50,000 in this paper) 

6. The average and the standard deviation of the arrays derived through steps 3-5 

(containing N sets of eigenvalues, eigenvectors, fractional anisotropies and Euler 

angles) are computed and reported.  

 

3. Materials and Methods 

3.1 The molecular probe  

    The SAD-TI method requires a molecular probe that supports long-lived spin states so that 

it can travel long and far within the large channels and pores of the structure to probe its 
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anisotropy. In our laboratory we have custom designed a variety of probes that suites this 

purpose and for the current investigations we have used the molecule of 1-(ethyl-d5),4-(propyl-

d7)(Z)-but-2-enedioate (dubbed EPM) sketched in Figure 3. 

 

 

The two protons on the double bond constitutes the singlet-pair whereas all the other protons 

have been substituted by deuterons to minimize out-of-pair dipolar relaxation contributions and 

prolong the singlet lifetime. The difference in chemical shift frequency between the two 

protons is 3.1 ppb (0.93 Hz in our 7.04 T magnet) and their mutual scalar coupling constant is 

11.9 Hz. These values qualify the magnetic properties of the molecular probe as a nearly-

equivalent spin system. In such systems, singlet order is a good eigenvalue of the high-field 

spin Hamiltonian and remains long-lived without the need for singlet locking irradiation which 

would not be compatible in diffusion experiments because can generate heat and related 

convective flow. The isotropic diffusion coefficient for this molecule, measured in a isotropic 

liquid sample prepared as a 0.25 M solution of EPM in Acetone-d6 in a 10 mm OD NMR tube, 

is 𝐷) = 1.6	 × 10*;  m2 s-1 (obtained using a standard convection compensated PGdSTEbp 

pulse sequence). 

 

3.1 Structures under investigation 

    To demonstrate the potential of the SAD-TI methodology we aimed to measure the diffusion 

tensor of our probe molecule dissolved in a low-viscosity liquid and contained into the long 

and narrow cylindrical channels cut into the plastic structures shown in Figure 4. Both 

structures were machined in-house from a rod of polyoxymethylene (POM, chosen because it 

has good resistance to many common organic solvents and is easy to machine). The outer 

diameter of each structure was 7.65 mm and their length was 20 mm. Structure 00D (Figure 

4a) has 13 cylindrical channels of 1 mm diameter. The total volume of the 13 channels is 204 

mm3. The channels have their long axis oriented along the long axis of the rod, a fact that we 

R1 = CD2
R2 = 

CD3
CD2CD3CD2

H

O O

H

OR 2R  1O

Figure 3: Molecular scheme of  1-(ethyl-d5) 4-(propyl-d7)(Z)-but-2-enedioate used in this paper as a singlet-bearing 
molecular probe for singlet-assisted DTI experiments 
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indicate as 𝜃 = 0˚. The angle 𝜃 is intended as the angle between the channels’ long axis and the 

rod long axis. However, the manufactured structures are aligned with their long axis parallel to 

the direction of the static magnetic field. Hence, 𝜃 is also the angle between the channels’ long 

axis and the static magnetic field. Structure 30D (Figure 4b) has 15 cylindrical channels of 1 

mm diameter oriented such that their long axis makes an angle 𝜃 = 30˚ with respect to the rod’s 

long axis. The total volume of the empty channels in structure 30D is 127 mm3. Both plastic 

structures are hold within a 10 mm OD (7.8 mm ID) medium-wall LPV NMR tube. The volume 

of the annular cylinder arising between the tube ID and the plastic OD is 36 mm3, molecules 

trapped in this region of space experience a different constriction than the molecules trapped 

in the cylindrical channels.  

 
Figure 4: Geometry and dimensions of a) 00D and b) 30D channel structures used for the experiments in this paper. The MRI 
images below were done with a multi slice multi echo (MSME) sequence (FOV 2 x 2 cm2, 128 x 128 matrix, slice thickness 1 

cm, TE = 5.08 ms). Sagittal slices (not shown) were taken to confirm that all channels were fully filled with the EPM solution. 

 

    Structure 00D and 30D were imbibed with 350 μl of a 0.25 M solution of EPM in Acetone-

d6. The NMR tubes were then degassed through 10 cycles of freeze-pump-thaw to minimize 

the O2 content and hence prolong relaxation times. MRI images of the tubes were taken to 

check all channels were properly filled up with the EPM solution (see Figure 4).  

 

3.3 Instrumentation 

    All experiments were run on an Oxford Inst. 7.04 T Magnet coupled to an Avance III Bruker 

NMR console. The instrument is equipped with a Bruker MIC5 microimaging probe carrying 

a 10 mm 1H/13C resonator and a 3-axes gradient system able to deliver pulsed field gradients 

of up to 1.5 T m-1. The samples were sitting at room temperature (21ºC) and the probe’s 

temperature controller was turned off in order to achieve a more uniform sample temperature 

20
 m

m

7.65 mm

1 mm

20
 m

m

7.65 mm

1 mm
a b00D 30D
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and minimize convection flow, although thermal convection is already negligible given the 

relatively small diameter of the channels.  

 

3.4 Numerical Simulations 

    This paper uses numerical simulations in comparison to experimental data. The routines 

developed to calculate the diffusion tensor in the structures discussed in Sec. 3.1 have been 

written in Mathematica (simulation code available upon request). Simulations are based on a 

simple random-walk approach that takes the following steps (for each structure and each value 

of the diffusion time): 

1. The actual sample shape and geometry is reconstructed using the concept of Region in 

Mathematica 

2. The experimentally measured isotropic diffusion coefficient D0 and the diffusion time 

Δ used in the experiment are entered 

3. The total number of molecules is set to NM  = 10,000  

4. The total number of random steps is set to NJ  = 10,000. This represents the number of 

steps that each molecule does during the diffusion time Δ, hence the time step (how 

long a step lasts for) is derives as ts = Δ/NJ 

5. An array of NM initial molecular position ri = (xi, yi, zi) is randomly generated such that 

all molecules lie within the voids of the structure (i.e., within the channels and the 

annular cylinder forming between the tube inner wall and the plastic rod outer one) 

6. Starting from ri, the molecular position of each of the NM molecules is propagated for 

the NJ steps, each step taking a length ls = (6 D0 ts)1/2. At each step, the new molecular 

positions are checked to verify they fall within the voids of the structure and, if not, a 

new random step is taken. This process results in an array containing all final positions 

rf = (xf, yf, zf) for each of the NM molecules 

7. The 𝛼𝛽 component of the diffusion tensor (𝐷1<) is derived as:  

𝐷1< =
1

2	Δ	𝑁=
JK𝛼>,@ − 𝛼',@LK𝛽>,@ − 𝛽',@L
A*

@B8

 

with 𝛼, 𝛽	 ∈ [𝑥, 𝑦, 𝑧], k being an index that runs on the number of molecules, and the 

subscripts i and f indicating the initial and final position, respectively.  

8. Once the six independent 𝐷1<′s are calculated, the full diffusion tensor is constructed, 

diagonalised and parameters such as the apparent isotropic diffusion coefficient and the 

fractional anisotropy are calculated. 
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4. Results and Discussion 

    Before proceeding with the measurement of the diffusion tensor, we measured the decay 

constant of longitudinal and singlet order, T1 and TS respectively, for the two structures here 

investigated. T1 was measured with a standard saturation recovery technique and TS was 

measured with the M2S/S2M pulse sequence(28, 29). Results are summarized in Table 1. The 

small differences in these parameters across the two structures are within errors are most likely 

due to differences in the quality of the degassing procedure. 
Table 1: Longitudinal and singlet order decay constants measured in the sample investigated in this paper 

Sample T1 (s) TS (s) 

EPM in Acetone-d6 in 00D 22 ± 1 230 ± 10  

EPM in Acetone-d6 in 30D 23 ± 1 260 ± 30 

 

The lifetime of singlet order is therefore about 13 times longer than the one of longitudinal 

order, in this particular case. Lifetime enhancement factors of up to 140-fold have been 

observed (30).  

    To demonstrate the advantages of the SAD-TI procedure and define its limits we have run 

the pulse sequence in Figure 1b on both 00D and 30D structures. For each structure, 

experiments have been repeated at 4 different values of the diffusion time Δ, namely 1.5 s, 30 

s, 120 s and 240 s, with the purpose of highlighting the limits of conventional DTI against the 

benefits of SAD-TI. For each value of Δ, the gradient strength 𝑔 was incremented in 8 steps, 

linearly spaced within the limits indicated in Table 2. The duration of the diffusion sensitizing 

gradients was kept fixed at 𝛿 = 320 𝜇s. The strengths and durations of the gradients in the T00 

filter were 𝑔C = −𝑔D = −𝑔E = 45 mT m-1 (3% of maximum), 𝛿C = 1.0 ms, 𝛿D = 1.2 ms and 

𝛿E = 2.2 ms. 

 
Table 2. The minimum and maximum values of the gradient strength for the pulse sequence in Figure 1b expressed as a 
percent of the maximum gradient strength available 1.5 T m-1. The last column contains the number of transients acquired 
and summed upon acquisition. 

𝚫 (s) 𝒈𝒎𝒊𝒏 (% of max) 𝒈𝒎𝒂𝒙 (% of max) Transients 

1.5 1 60 2 

30 1 14 4 

120 1 6.5 8 

240 1 4.7 16 
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The unit vectors for the six directions were chosen from those suggested by Jones et al. (21) 

and are summarized in Table 3. 
Table 3. Unit vectors for each of the six directions used in all experiments. 

 d1 d2 d3 d4 d5 d6 

𝜶𝒙 1 0.447  0.447 0.447 0.447 -0.447 

𝜶𝒚 0 0.895  0.277 -0.724 -0.724 -0.277 

𝜶𝒛 0 0 0.850  -0.525 0.525 0.850 

 

The values of the parameters in the M2S/S2M blocks in the pulse sequence were 

experimentally optimized around the theoretical values and found to be: 𝑛8 = 20, 𝑛9 = 10 and 

𝜏: = 41.8 ms.  

The results of the SAD-TI procedure are reported in Table 4. Instrumental differences 

of the gradient performances along different directions have been corrected by independently 

calibrating the gradients along each direction such that the SAD-TI experiment with Δ = 1.5 s 

results in an exactly spherical (i.e. isotropic) tensor. This is effectively done by multiplying 

each of the unit vectors in Table 3 by a correction factor calculated as: 

 

𝑐' =
"+

∑ "+
,-
+./

          (5) 

 

where 𝑐' is the correction factor for the ith-direction, 𝐷' is the diffusion coefficient measured 

along the ith-direction in our SAD-TI experiment with Δ = 1.5  s and the term at the 

denominator is effectively the average diffusion coefficient along the 𝑛2 directions (6 in our 

case). The success of this calibration procedure results in a perfectly null FA value for the Δ =

1.5 s case.  

   
Table 4. Experimental and simulated results of the SAD-TI procedure on 00D and 30D at different values of the diffusion 
time. The diffusion length  𝑙𝐷 is calculated using the measured isotropic diffusion coefficient and the actual value of Δ. 

Differences are calculated as experimental minus simulated divided by experimental values.  

    00D Experiments Simulations Difference 

 
Δ (s) 𝑙& 

(μm) 
𝐷'((10-9 m s-2) FA θ (º) 𝐷'((10-9 m s-2) FA θ (º) 𝐷'( FA θ 
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 1.5 70 1.66±0.04 0✶ 65±28 1.45 0.08    2.5 13% - - 

 30 310 1.25±0.05 0.27±0.04 0.9±3 1.17 0.27 0.8 6% 0% 11% 

 120 620 0.92±0.02 0.59±0.01 0.3±0.1 0.88 0.59 0.3 4 % 0% 0% 

 240 875 0.83±0.02 0.86±0.02 1±0.1 0.72 0.74 0.5 13% 14% 50% 

30D   

 1.5 70 1.65±0.03 0✶ 64±26 1.45 0.07 13.4 12% - - 

 30 310 1.27±0.03 0.27±0.02 29.3±2 1.17 0.27 24.7 8% 0% 16% 

 120 620 0.87±0.06 0.62±0.02 29.3±1 0.85 0.57 27.1 2% 8% 8% 

 240 875 0.72±0.02 0.84±0.02 32.0±0.4 0.72 0.69 27.0 0% 18% 16% 

  

As expected, at very short diffusion times (of the order of a few seconds) it is not possible to 

catch neither the correct fractional anisotropy nor the channels’ orientation with respect to the 

magnetic field. At modestly long diffusion times (of the order of ~3T1) the channel orientation 

is correctly obtained although the measured fractional anisotropy is quite far from the expected 

value of ~0.95 for a cylinder of 1 mm radius and 20 mm length. Our numerical simulations of 

the diffusion tensor in the actual geometries are in quite good agreement with the experimental 

values despite the low level of sophistication of the model used to simulate the random walks 

and the relatively low number of random steps and molecules chosen. To get a correct value 

for the FA, a diffusion time of several minutes is required. This can be explained as follows: 

in order to track the channel orientation, it is just enough to find the direction associated with 

the largest eigenvalue of the diffusion tensor, no matter the exact value of the diffusion 

coefficients along each principal direction. For this reason, the channel orientation is correctly 

measured even at relatively short diffusion times (note that this still requires diffusion times of 

tens of seconds). To properly characterise the FA, the limiting value of the diffusion coefficient 

along each principal direction must be correctly measured and, for this to happen, one needs to 

use a diffusion time that allows a diffusion length of the order of the characteristic length of 

the structure. To further highlight the importance of the technique, we plotted the diffusion 

constant measured on structure 00D along each principal direction at different values of the 

diffusion time, normalised to the isotropic diffusion constant (Figure 5). The plot shows that 

the diffusion is basically free along the z-direction (coinciding with the channels’ long axis) 

and restricted, to an equivalent extent, along the two perpendicular directions. In a structure 



 16 

with connected pores, the value of 𝐷1<(Δ)/𝐷) tends to 1/𝛼 for sufficiently long diffusion time 

Δ, with 𝛼 being the tortuosity (31), i.e. the ratio of the effective path length to the shortest path 

length in a porous medium. Tortuosity is therefore an indicator of pore connectivity and, as 

such, a fundamental quantity in understanding fluid transport through the material, for 

example. 

 

 
Figure 5. The diffusion constant measured, on structure 00D, along the three principal directions normalized to the isotropic 
diffusion constant and plotted versus the diffusion time ∆. The rapid drop observed in x and y principal directions reflects 
restricted motions in that plane. No restriction is observed in the z-principal direction since it coincides with the channel’s 
long axis.  

 

Although tortuosity is not explicitly addressed in this paper, Figure 5 demonstrates how the 

singlet-assisted DTI technique presented here can give easy access to the value of tortuosity 

along the 3 principal directions of a porous medium with large pores. 

 In fair comparison with other technique, this same information can be accessed through 

conventional DTI (PGSTE based) if a molecule with very long T1 or larger diffusion constant 

is available. Assuming relaxation is dominated by dipole-dipole interaction, as often the case 

for small molecules in non-viscous liquids, minutes-long T1 are rare and usually linked to nuclei 

with low gyromagnetic ratio whose NMR sensitivity is often the limiting factor in diffusion 

studies within porous media. The use of gases whose self-diffusion coefficient is 4-5 order of 

magnitude bigger than liquids is a good alternative since the molecules can move much further 

even within a short diffusion time. The use of hyperpolarised-Xe was indeed proposed for 

diffusion studies of similar nature (32) but again the low sensitivity requires hyperpolarisation 

which adds a level of complication and requires specific expertise and relatively costly 
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equipment. Our technique can be easily implemented on conventional high-resolution NMR 

hardware and this constitutes a clear advantage over other techniques. 

 

5. Conclusions 

We have presented a singlet-assisted version of the well-known diffusion tensor imaging 

technique that gives access to measurements of the full diffusion tensor of molecules diffusing 

within porous media with large pores. The diffusion tensor can be used to access structural 

information such as fractional anisotropy, pore geometry and orientation as well as tortuosity, 

an important parameter that has been so far inaccessible to NMR since conventional DTI fails 

to accurately measure it in structures with pores above 50-100 microns. Structures displaying 

such large pores includes battery electrodes, scaffoldings for tissue engineering, some rocks 

etc.      
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