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Abstract

Traditionally lattice materials are made of a network of beams in two and three dimensions with
majority of the lattice volume being void space. Recently researchers have started exploring ways to
exploit this void space for multi-physical property modulation of lattices such as global mechanical
behaviour including di�erent elastic moduli, wave propagation, vibration, impact and acoustic
features. The elastic moduli are of crucial importance to ensure the structural viability of various
multi-functional devices and systems where a space-�lled lattice material could potentially be used.
Here we develop closed-form analytical expressions for the e�ective elastic moduli of space- �lled
lattices based on an exact sti�ness matrix approach coupled with the unit cell method, wherein
transcendental shape functions are used to obtain exact solutions of the underlying di�erential
equation. This can be viewed as an accurate multi-material based generalization of the classical
formulae for elastic moduli of honeycombs. Numerical results show that the e�ective in-plane elastic
moduli can increase by orders of magnitude with a relatively lower in�ll sti�ness (∼10%).This gives
an exceptional opportunity to engineer multi-material lattices with optimal speci�c sti�ness along
with characterizing the mechanical properties of a multitude of lattice-like arti�cial and naturally
occurring structural forms with space �lling.

Keywords: Hexagonal lattice; E�ective elastic moduli; Space-�lled lattice metamaterials;
Multi-material honeycombs; Composite lattices

Contents

1 Introduction 1

2 Mechanics of space-�lled lattices 5

2.1 Element sti�ness matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 E�ective elastic moduli of space-�lled lattices . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Young's modulus E1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Young's modulus E2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Poisson's ratios ν12 and ν21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Shear modulus G12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Finite element analysis 12

4 Results and discussion 13

5 Conclusions and perspective 15

1. Introduction

Two and three dimensional lattice-like periodic microstructures provide an unprecedented op-
portunity to arti�cially engineer the global (i.e. e�ective) mechanical properties of materials based
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on multi-functional bespoke demands of modern structural systems by identifying (or designing)
the intrinsic material and micro-scale structural topology. Mechanical properties of lattice-like hon-
eycomb structures have received tremendous attention from the scienti�c community over the last
few decades. Traditionally such lattices are made of a network of beams in two and three dimen-
sions with majority of the volume of the lattice structure being void space. Recently researchers
have started exploring ways to exploit this void space for multi-functional property modulation
of lattices. For example, if we could have a �lled multi-material lattice structure, the global me-
chanical behaviour including di�erent elastic moduli, wave propagation, vibration, impact and
acoustic features can be simultaneously modulated in a substantially expanded design space with
additional parameters related to the sti�ness, mass and damping of the �ller, leading to exciting
multi-functional properties. It may be noted that the elastic moduli are always of crucial impor-
tance to ensure the structural viability of various multi-functional devices and systems where a
space-�lled lattice material could potentially be used. In this article, we aim to develop e�cient
analytical expressions for the e�ective in-plane elastic moduli of such space-�lled lattices. An ex-
plicit theoretical characterization of the elastic properties along with necessary physical insights
underpinning the con�guration space of multi-material and geometric parameters will accelerate
potential exploitation of �lled lattices in various engineered multi-functional materials and struc-
tures across di�erent length-scales with advantage of an expanded design space.

In microstructured lattice materials the tailorable e�ective macro-scale mechanical properties
(such as equivalent elastic moduli, deformation, stability, energy absorption, vibration, energy
harvesting, impact and wave propagation characteristics with programmable features) are de-
�ned by the microstructural geometric con�guration along with the intrinsic material properties
of constituent members. Naturally occurring monolithic materials cannot exhibit one or more
of the fascinating multi-functional properties like negative Poisson's ratio, extremely lightweight
characteristics, negative sti�ness, pentamode material characteristics (meta-�uid) and a weighted
combination of various such unusual (or usual) properties, which can e�ectively be obtained by
intelligent and intuitive microstructural designs [1, 2, 3, 4, 5, 6, 7]. For example, the conventional
positive e�ective Poisson's ratio (which is usually exhibited by normal materials) in hexagonal
lattice microstructures can be converted to negative, or zero by intuitively designing the hexag-
onal unit cell [8, 9], as depicted in �gure 1(E-G). Besides static properties [10], various unusual
yet critically useful e�ective properties can be realized in engineered microstructures under dy-
namic condition, such as negative bulk modulus [11], negative mass density [12], negative Young's
modulus [13], negative shear modulus [14], band structure modulation [15] and elastic cloaks [16].
Computational homogenization has been widely adopted to report the e�ective lattice-level prop-
erties of metamaterials [17, 18, 19, 20, 21, 22, 23]. Recent developments in this �led include active
and on-demand programming of e�ective elastic properties by exploiting stimuli-sensitive intrinsic
materials [24, 25]. These novel class of arti�cially engineered metamaterials with tailorable and
programmable macroscale properties have extraordinary potential for applications in advanced and
futuristic multi-functional engineering systems.

Normally two material properties (or more, in case of multi-material lattices) are involved at
two widely apart length-scales in lattice metamaterials. One is the intrinsic material(s) (more
than one such material may be involved in multi-material microstructural topologies) which is
actually the material of the constituting elements (such as the connecting beam or cell wall mem-
bers shown in �gure 1(D)) at micro-scale. Materials at this relatively lower length scale (often
referred as the microscale) are either monolithic materials or di�erent alloys and compounds. The
chemical composition, atomic and molecular structure of these intrinsic materials decide the me-
chanical properties at this length scale. The second set of material properties (at a relatively
much higher length scale) correspond to the e�ective macro-scale homogenized behaviour of the
entire lattice. Such macro-scale properties depend on the intrinsic lower-scale (micro) material
properties and the lower scale microstructural topology (microstructural geometry) of the lattice.
The compound e�ect of these two factors leads to a tremendous opportunity of achieving unprece-
dented e�ective mechanical and multi-physical properties that are not exhibited by conventional

2



Figure 1: Microstructural details of space-�lled honeycombs. (A) Typical representation of a hexagonal
�lled honeycomb structure. Two materials (materials of the honeycomb cell walls and the �ller) involved in the
periodic lattice are indicated using di�erent colours. (B) Three dimensional view of the space-�lled multi-material
lattice structure. (C) Unit cell of the periodic structure along with microstructural geometry. Here we show both
the actual unit cell and the idealized unit cell. The �gure C(I) shows the actual unit cell with �ller material. The
idealized unit cell, which is used in the current analysis, is shown in �gure C(II). In this idealized unit cell, e�ect of
the �ller material is replaced by an equivalent elastic contribution. (D) Typical representation of a general beam
element of length L where each node has two degrees of freedom. The idealisation of the e�ect of �ller material
on the cell walls (i.e. the beam) is shown using the equivalent elastic contribution along the length of the beam.
(E-G) The concept of modulating Poisson's ratio based on intuitive design of microstructural geometry (primarily,
cell angle θ). Three typical microstructures are shown here that can exhibit positive (E), negative (F) and zero (G)
Poisson's ratios. (H) Presence of hexagonal lattice structures across the length-scales (nano to macro) in natural
and arti�cial systems. This shows the signi�cance of analysing such lattices for new material development as well
as characterization of existing materials and structural systems.

engineering materials. Though aperiodic, quasi-periodic and random microstructural topologies
have been proposed, periodic lattice-like forms are predominant in the literature of metamaterials
[26, 33]. A unit cell (analogous to representative volume element) based approach is adopted to
model periodic microstructures with appropriate boundary conditions leading to a set of e�ective
elastic moduli at macro-scale such that the lattice can be considered as an equivalent continuum
[27, 28, 29, 30, 31, 32]. Edge e�ects [34] can be neglected in the such a unit cell based approach of
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evaluating the e�ective elastic properties with the assumption of a substantially high number of
cells. It is a valid assumption in the design of lattice materials and widely followed in the literature
for obtaining equivalent global properties such as e�ective elastic moduli [28].

The fundamental mechanics for lattices (derived based on the unit cells with periodic boundary
condition) being normally scale-independent, the scienti�c developments concerning the mechanics
of deformation are applicable (directly or indirectly) to a broad range of periodic structural forms
across nano to micro and macro scales. 2D lattices of hexagonal form are found across nano to micro
and macro scales in various natural and arti�cial systems abundantly [33, 35, 36, 37], as depicted
in �gure 1(H). Moreover, hexagonal lattices can e�ectively be altered to rectangular, rhombic
and auxetic con�gurations by taking the geometric parameters appropriately. Such widespread
relevance and applicability of hexagonal lattices have motivated our current focus on this form of
microstructure while adopting a lattice geometry to explain the concept of space-�lling (including
analytical derivation and numerical results). Though we would focus here on hexagonal lattices,
the basic concepts and approach of analytical derivation are generic and they would be readily
applicable (or extendable, albeit with di�erent forms of �nal closed-form expressions) to various
other 2D and 3D lattice geometries.

Most research activities for the development of mechanical metamaterials concentrate on the
microstructural topologies for modulation of mechanical and multi-physical properties, rather than
the intrinsic materials at the lower length-scale. Thus, one single material that is suitable for
manufacturing and has adequate physical properties according to the intended application, is
traditionally chosen as the constituent intrinsic material [38]. However, the recent tremendous
advancements in manufacturing microstructures with multi-material con�gurations based on ad-
ditive manufacturing [39, 40, 41] have created a strong rationale for developing a new class of
metamaterial, where two or more intrinsic materials at the lower scale could be adopted to form
the unit cell. Such multi-material lattices would expand the scope of multi-functional design sig-
ni�cantly. Majority of the research related to multi-functional metamaterials adopt inverse design
approach to identify the volume fractions of two or more intrinsic materials based on numerical
algorithms [42, 43]. Multi-material lattice microstructures have shown exceptional promise for
achieving unusual multi-physical properties like zero and negative thermal expansion coe�cient
along with modulation of other mechanical properties [44, 45]. The current focus of space-�lled
lattices is a special kind of multi-material periodic topology, where the intention is to exploit the
void space in traditional lattices for enriching multifunctional properties. In principle, multima-
terial topologies could have two di�erent con�gurations for developing metamaterials. In the �rst
microstructural con�guration, the periodic unit cell have multiple intrinsic materials and the unit
cell is tessellated in the 2D (or 3D) space to form a lattice. In the second con�guration, the lattice
is formed using two or more unit cells with di�erent intrinsic material properties. The conventional
unit cell approach can not be adopted for analyzing the second form of multi-material lattice as
it may not lead to a truly periodic microstructure. The periodicity can remain unaltered (and
subsequently a unit cell based approach is applicable) in the �rst form of multi-material lattice,
which is the central focus of the current investigation.

We aim to investigate the e�ect of space-�lling on the elastic moduli of honeycomb lattices with
the notion of possible exploitation of the void space for multi-functional property augmentation.
Elastic moduli of space-�lled lattice structures are of quite practical relevance, such as foam-�lled
honeycombs applied in various sandwich panels. Moreover, the biological systems which adopt
a hexagonal lattice-like structure at micro-scale are often found to be �lled with �uids, �bres
or other bulk materials. In these systems, the inner space-�lling or foam-like core (with much
lesser e�ective elastic moduli than the celle walls) behaves like an equivalent elastic contribution
throughout the length of honeycomb cell walls, as depicted in �gure 1(C-D). We would develop
analytical expressions for the e�ective in-plane elastic moduli of space-�lled lattices based on an
exact element sti�ness matrix approach coupled with the unit cell method, wherein transcendental
shape functions would be used to satisfy the equilibrium at all points of the structural domain. For
establishing the analytical model, the mechanical equivalence of space-�lled lattices as equivalent
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network of beams under the presence of the equivalent elastic contribution of the �ller material
will be utilised. The results would be compared to the e�ective elastic moduli obtained from
the traditional sti�ness matrices of beam elements with the equivalent elastic contribution of
�ller material. Further, separate �nite element simulations would be carried out to validate the
analytical expressions for space-�lled lattices.

In the following sections we systematically present the derivation for elastic moduli of space-
�lled lattices based on the sti�ness matrix of a beam element with the equivalent elastic contri-
bution of �ller material. Two di�erent methods are followed for deriving the sti�ness matrix of
individual beam elements based on transcendental shape functions and conventional shape func-
tions. Subsequent sections present numerical quanti�cation to demonstrate the e�ect of space
�lling on the elastic moduli, followed by perspective and concluding remarks.

2. Mechanics of space-�lled lattices

Deformation of the overall lattice microstructure depends on the mechanical behaviour of indi-
vidual beams which make up the tessellating hexagonal unit cells (refer to �gure 1(A-D))). Due to
the elastic �lling, each beam can be assumed to be acted upon by an equivalent elastic contribution
of the �ller material. A pictorial depiction of the beam along with the degrees of freedom at each
node is provided in �gure 1(D). Here our work�ow is �rst to obtain the sti�ness matrix of such
a beam element (with equivalent contribution of �ller) following two di�erent approaches. Once
this local beam-level property is obtained, a unit cell-based homogenisation will be employed to
characterize the global elastic properties of the entire space-�lled lattice.

In this context it can be noted that the determination of the equivalent �ller modulus (as pre-
sented by k in the subsequent derivations) is an important aspect. Two cases may arise concerning
the forward and inverse problems of space-�lled lattices. (a) For designing novel space-�lled bi-
material lattices (inverse problem), the elastic properties of both the sti�er honeycomb cell walls
and less-sti� �ller material (i.e. the two intrinsic materials) can be evaluated based on conventional
mechanical testing of bulk samples of the respective materials. (b) In case of characterizing the
e�ective elastic properties of naturally occurring and arti�cial lattice structures with space-�lling
(forward problem), the individual elastic properties of the cell wall and �ller material should be
known a priori. For various mechanical systems such as foam-�lled honeycombs, it is quite straight-
forward to evaluate the elastic properties of the two constituent intrinsic materials. However, it
would involve advanced experimental techniques to characterize the intrinsic material properties
at lower length scales such as space-�lled micro-lattices in various biological systems.

2.1. Element sti�ness matrices

The governing equation of transverse de�ection V (x) of a beam can be expressed as

EI
d4V (x)

dx4
+ kV (x) = f(x) (1)

Refer to the supplementary material (section S1.1) for further details on the above di�erential
equation. Based on Equation 1, sti�ness matrix of an equivalent beam element with the contri-
bution from elastic �ller material is derived here following two di�erent approaches: conventional
element sti�ness matrix approach and exact element sti�ness matrix approach (the accuracy of
these two approaches would be discussed at a later stage of this manuscript). We assume that
the beams under consideration follow the Euler-Bernoulli hypotheses and the elastic in�ll is mod-
elled as an equivalent elastic contribution of the �ller material throughout the beam length [46].
The conventional element sti�ness matrix of a beam with equivalent elastic contribution of the
�ller material can be obtained as (refer to the supplementary material section S1.1 for detailed
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derivation)

Ke = EI

∫ L

0

d2N(x)

dx2

d2NT (x)

dx2
dx+ k

∫ L

0

N(x)NT (x)dx

=
EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L2

6L 2L2 −6L 4L2

+
kL

420


156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

 (2)

Here L is the length of the beam element (i.e. cell wall of the honeycomb). E represents intrinsic
Young's modulus of the cell wall members and k is the equivalent �ller modulus. I represents the
second moment of area for in-plane bending of the cell walls. For the special case when there is
no elastic �ller material (i.e. k = 0), the sti�ness matrix derived above approaches to the classical
sti�ness matrix of a beam [47, 48].

The exact element sti�ness matrix of an individual beam element with equivalent elastic con-
tribution of the �ller material can be given by the following closed-form expression (refer to the
supplementary material section S1.2 for detailed derivation)

De =
2EIb

(S2 − s2)


2 b2 (SC + sc) b (C2 − c2) −2 b2 (cS + sC) 2 sSb
b (C2 − c2) SC − sc −2 sSb sC − cS

−2 b2 (cS + sC) −2 sSb 2 b2 (SC + sc) −b (C2 − c2)
2 sSb sC − cS −b (C2 − c2) SC − sc

 (3)

Elements of De are transcendental functions of (bL), where C = cosh(bL), c = cos(bL), S =

sinh(bL), s = sin(bL) and b = 4

√
k

4EI
(refer to the supplementary material for further details).

The conventional sti�ness matrix given in equation (2) appears to look di�erent from the exact
transcendental sti�ness matrix in equation (3). To understand the nature of this visible di�erence,
each element of the transcendental sti�ness matrix is expanded in a Taylor series about k = 0.
Substituting the expression of b in equation (3) and di�erentiating all the elements with respect
to k, after simpli�cations we have the series expansion form

De =
EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L2

6L 2L2 −6L 4L2

+
L

420


156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

 k

+
L5

69854400EI


−25488 −5352L −23022 5043L
−5352L −1136L2 −5043L 1097L2

−23022 −5043L −25488 5352L
5043L 1097L2 5352L −1136L2

 k2

+
L9

762810048000EI2


28960 113504L 522090 −112631L

113504L 24384L2 112631L −24273L2

522090 112631L 528960 −113504L
−112631L −24273L2 −113504L 24384L2

 k3 +O(k4) + · · ·

(4)

It is interesting to note that the �rst two terms of this expansion are exactly the same as the con-
ventional sti�ness matrix in equation (2). The higher-order terms `included' in the transcendental
sti�ness matrix account for the e�ect of elastic �ller in an exact manner. Use of the conventional
sti�ness matrix would, therefore, be inaccurate for higher values of �ller sti�ness k unless the
length of an element is made smaller. This fact gives rise to the signi�cant advantage of using
the transcendental sti�ness matrix in the context of cellular lattice structures. We can use only
one `element' to represent the exact mechanical behaviour of the constituent parts of a unit cell.
As no discretisation is necessary, it is possible to avoid �nite element based numerical calculations
for a unit cell. This, in turn, helps us to obtain e�cient and exact closed-form expression of the
equivalent elastic moduli of the entire lattice, as explained in the next section.
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2.2. E�ective elastic moduli of space-�lled lattices

The e�ective elastic moduli of hexagonal honeycomb-like cellular materials without any in�ll
was obtained in published literature [28], as presented in the supplementary material (refer to
equations S28 - S32) for ready reference. Our aim in this section is to obtain similar closed-form
expressions when the lattices is �lled with an elastic material. In the preceding section, we have
derived the element sti�ness matrices for a single beam with the equivalent e�ect of space-�lling
based on two di�erent methods (exact element sti�ness and conventional sti�ness). From these
sti�ness matrices, analytical expressions of the in-plane elastic moduli are obtained in this section
(refer to �gure S1 in the supplementary material for the unit cell deformation mechanics and
detailed derivation of the elastic moduli). For the purpose of deriving such expressions concerning
space-�lled lattices, the element sti�ness matrix is re-written in the following general form

De = [Aij]4×4 (5)

where i, j = 1, 2, 3, 4. Terms of the above matrix have the expressions corresponding to equation
(3) (for exact element sti�ness matrix) and equation (2) (for conventional sti�ness matrix).

2.2.1. Young's modulus E1

E�ective Young's modulus E1 of the space-�lled lattice can be explicitly expressed in terms of
the A33 element of the sti�ness matrix as (refer to the supplementary material section S2.1 for
detailed derivation)

E1 =
A33l cos θ

(h+ l sin θ)b̄ sin2 θ
(6)

If the conventional element sti�ness matrix is used, the expression of A33, in view of equation
(5), can be obtained from equation (2) as

A33 =
12EI

l3
+

13kl

35
(7)

On the other hand, if the transcendental sti�ness matrix is used, the expression of A33 can be
obtained from equation (3) as

A33 =
2EIb

(S2 − s2)
2 b2 (SC + sc) =

4EIb3 (SC + sc)

(S2 − s2)
(8)

Replacing the expression for A33 and I =
b̄t3

12
, the Young's modulus E1 while using the con-

ventional sti�ness matrix can be obtained as

E1 =
A33l cos θ

(h+ l sin θ)b̄ sin2 θ
=

A33

b̄

cos θ

(h
l
+ sin θ) sin2 θ

=

E

(
t

l

)3

+ k

(
13

35

)(
l

b̄

)
︸ ︷︷ ︸

contribution of �ller sti�ness

 cos θ

(h
l
+ sin θ) sin2 θ

(9)

Here E is the intrinsic elastic modulus of the honeycomb material and t is the thickness of honey-
comb cell wall. In the absence of the elastic �ller, we have k = 0. In that case, the above expression
reduces to the exactly same expression given by Gibson and Ashby [28].

Replacing the expression for A33 using the transcendental sti�ness matrix and I =
b̄t3

12
, the

Young's modulus E1 can be obtained as

E1 =
σ1

ϵ11
=

A33

b̄

cos θ

(h
l
+ sin θ) sin2 θ

=
E(bt)3 (sinh(bl) cosh(bl) + sin(bl) cos(bl))

3
(
sinh2(bl)− sin2(bl)

) cos θ

(h
l
+ sin θ) sin2 θ

(10)
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It is useful to establish a direct relationship between two expressions of E1 given by equations
(9) and (10). Substituting the value of b and expanding A33 (Equation 8) in Taylor series about
k = 0 we have

A33 =
4EIb3 (SC + sc)

(S2 − s2)
= 12

EI

l3
+

13

35
lk − 59

161700

l5k2

EI
+

551

794593800

l9k3

EI2
+O(k4) + · · · (11)

Substituting this expansion in equation (10) and reorganizing di�erent terms, we have the Young's
modulus E1 in a series form

E1 =

(
E

(
t

l

)3

+ k

(
13

35

)(
l

b̄

)
− k

59

13475

(
t

l

)3(
l

b̄

)2(
k

E

)

+k
1102

11036025

(
t

l

)6(
l

b̄

)3(
k

E

)2

+O

(
k

E

)3

+ · · ·

)
cos θ

(h
l
+ sin θ) sin2 θ

(12)

The �rst two terms of this series is exactly the same as obtained in equation (9) using the con-
ventional sti�ness matrix. The higher-order terms in the above expression depend on the non-
dimensional ratios t

l
, l

b̄
and k

E
. In particular, if the value of the �ller sti�ness k becomes compar-

atively higher with respect to the elastic modulus of the honeycomb material E, the higher-order
terms could be signi�cant. Therefore, equation (10) naturally takes into account all possible values
the �ller sti�ness, while equation (9) can be viewed as a two-term approximation. Finally, it can be
noted that the classical result of Gibson and Ashby [28] without the �ller sti�ness is the one-term
approximation of the series in equation (12).

In order to obtain physical insights from the expressions, it useful to view the results in terms
of non-dimensional parameters describing the system. We introduce geometric non-dimensional
ratios α, η and γ as

α =
t

l
, η =

h

l
and γ =

b̄

l
(13)

For the sti�ness of the �ller material, the following non-dimensional ratio has been introduced

κ =
k

E
(14)

Using these, for the case of employing the conventional sti�ness matrix in equation (2), the equiv-
alent modulus E1 is obtained by rewriting (9) as

E1 = E

(
α3 +

13

35

κ

γ

)
cos θ

(η + sin θ) sin2 θ
(15)

When the transcendental sti�ness matrix is used, the necessary coe�cients are obtained from
equation (3). Considering the expression of constant b, we have

b =
4

√
k

4EI
= 4

√
κE

4Eb̄t3/12
=

1

l
4

√
3κ

γα3
=

β

l
(16)

where the non-dimensional coe�cient

β = 4

√
3κ

γα3
(17)

Using this, the equivalent modulus E1 is obtained in terms of non-dimensional variables by rewrit-
ing equation (10) as

E1 =
Eα3 cos θ

(η + sin θ) sin2 θ

(SC + sc)

3(S2 − s2)
(18)

In the above expressions C = cosh β, c = cos β, S = sinh β and s = sin β.
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2.2.2. Young's modulus E2

The e�ective Young's modulus E2 can be explicitly expressed in terms of the A33 element of
the sti�ness matrix as (refer to the supplementary material section S2.2 for detailed derivation)

E2 =
A33

b̄

(h
l
+ sin θ)

cos3 θ
(19)

Similar to the expression of E1 discussed in the previous subsection, the term A33

b̄
appears in

the expression of E2 also. Consequently the �nal expressions of E2 can be obtained in a similar
manner by substituting the expression A33 from the conventional and transcendental sti�ness
matrix. Therefore, with the conventional sti�ness matrix we have

E2 =

(
E

(
t

l

)3

+ k

(
13

35

)(
l

b̄

))
(h
l
+ sin θ)

cos3 θ
(20)

Replacing the expression for A33 using the corresponding element from the transcendental sti�ness
matrix, the Young's modulus E2 can be obtained as

E2 =
E(bt)3 (sinh(bl) cosh(bl) + sin(bl) cos(bl))

3
(
sinh2(bl)− sin2(bl)

) (h
l
+ sin θ)

cos3 θ
(21)

It may be noted that the above general expressions approach to the classical result of Gibson
and Ashby [28] when the �ller sti�ness k → 0. In general, the comparative perspectives of E2

obtained based on conventional and transcendental sti�ness matrices are similar to the case of E1.
Substituting the expansion of A33 from equation (11) in equation (19) and reorganising di�erent
terms, we have the Young's modulus E2 in a series form

E2 =

(
E

(
t

l

)3

+ k

(
13

35

)(
l

b̄

)
− k

59

13475

(
t

l

)3(
l

b̄

)2(
k

E

)

+k
1102

11036025

(
t

l

)6(
l

b̄

)3(
k

E

)2

+O

(
k

E

)3

+ · · ·

)
(h
l
+ sin θ)

cos3 θ
(22)

The �rst two terms of this series is exactly the same as obtained in equation (20) using the
conventional sti�ness matrix. The higher-order terms in the above expression depend on the
non-dimensional ratios t

l
, l

b̄
and k

E
. In particular, if the value of the �ller sti�ness k becomes

comparatively higher with respect to the elastic modulus of the honeycomb material E, the higher-
order terms could be signi�cant. Therefore, equation (21) naturally takes into account all possible
values the �ller sti�ness, while equation (20) can be viewed as a two-term approximation. Finally,
it can be noted that the classical result of Gibson and Ashby [28] without the �ller sti�ness is the
one-term approximation of the series in equation (22).

Following a similar non-dimensional scheme as E1, the expressions for E2 can be written con-
sidering conventional and transcendental sti�ness matrix respectively as

E2 = E

(
α3 +

13

35

κ

γ

)
(η + sin θ)

cos3 θ
(23)

E2 =
Eα3(η + sin θ)

cos3 θ

(SC + sc)

3(S2 − s2)
(24)

In the above expressions C = cosh β, c = cos β, S = sinh β and s = sin β.
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2.2.3. Poisson's ratios ν12 and ν21
We have presented the detailed derivations of the e�ective Poisson's ratios of the honeycomb

lattices in the supplementary material (refer to section S2.3). Expression for Poisson's ratio due
to loading in direction 1 can be obtained as

ν12 =
cos2 θ

(η + sin θ) sin θ
(25)

Similarly the expression for Poisson's ratio due to loading in direction - 2 can be obtained as

ν21 =
(η + sin θ) sin θ

cos2 θ
(26)

Note here that η = h
l
is a non-dimensional geometric parameter. From the above expressions, it

is evident that Poisson's ratios ν12 and ν21 are independent the sti�ness of the �ller material and
same as the expressions given by Gibson and Ashby [28]. In this context it is interesting to note
that the proposed expressions of the elastic moduli conform the reciprocal theorem as

E1ν21 = E2ν12 =
A33

b̄

1

sin θ cos θ
(27)

The above equation satisfying the fundamental theories of materials science provides con�dence
on the presented expressions of e�ective elastic moduli in this article.

2.2.4. Shear modulus G12

The e�ective shear modulus of the space-�lled honeycomb lattices in terms of the general beam
sti�ness matrix elements can be expressed as (refer to the supplementary material section S2.4 for
detailed derivation)

G12 =
(h
l
+ sin θ)

b̄ cos θ

1(
h2

2lAs
43
+

4Av
44

Av
44A

v
33 − (Av

34)
2

) (28)

We will utilise this expression to obtain shear modulus in terms of the geometric and intrinsic
material parameters for the case of conventional and transcendental sti�ness matrices.

It can be noted that four elements from two di�erent sti�ness matrices are necessary here. The
conventional sti�ness matrix given in equation (2) is considered �rst. The coe�cient of the element
sti�ness matrix of the slant member is As

43. We also need other elements of the sti�ness matrix
of the vertical member (indicated using superscript v) with half the length. Therefore, the four
coe�cients are given by

As
43 = −6

EI

l2
− 11

210
kl2, Av

33 =
12EI

(h/2)3
+ k

13

35
(h/2),

Av
34 = − 6EI

(h/2)2
− k

11

210
(h/2)2, Av

44 =
4EI

(h/2)
+ k

1

105
(h/2)3

(29)

Closed-form expression of G12 can be obtained by substituting these expressions in equation (28)

G12 =

Eα3

η2
(η+sin θ)

cos θ(
105 γ

105 γ + 11 κ
α3

+
96 η5γ κ+ 53760α3η γ2

η8κ2

α3 + 1632 η4γ κ+ 26880α3γ2

) (30)

where α = t
l
, η = h

l
, γ = b̄

l
and κ = k

E
are non-dimensional geometric and material parameters.
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When the transcendental sti�ness matrix is used, the necessary coe�cients are obtained from
equation (3). Considering the appropriate lengths, we have

Av
33 =

4EIb3

(Sv2 − sv2)
(SvCv + svcv) , As

43 = − 2EIb2

(S2 − s2)

(
C2 − c2

)
,

Av
34 = − 2EIb2

(Sv2 − sv2)

(
Cv2 − cv

2
)
, Av

44 =
2EIb

(Sv2 − sv2)
(SvCv − svcv)

(31)

where Cv = cosh
(
bh
2

)
cv = cos

(
bh
2

)
Sv = sinh

(
bh
2

)
and sv = sin

(
bh
2

)
. The parameter b = 4

√
k

4EI

can be obtained as before. Using the coe�cients from equation (31), the expression of G12 can be
obtained after some algebraic simpli�cations as

G12 =

Eα3

η2
(η+sin θ)

cos θ(
3C2+3 c2−6
C2β2−β2c2

− 24(−SvCv+svcv)((Cv)2+(cv)2−2)
((cv)4+(2 (Cv)2−2)(cv)2−(Cv)4+2 (Sv)2(Cv)2)β3η2

) (32)

In the above expressions C = cosh β, c = cos β, S = sinh β, s = sin β and Cv = cosh(βη/2)
cv = cos(βη/2) Sv = sinh(βη/2) and sv = sin(βη/2).

Based on the analytical derivation presented in this section, for convenience of the readers, the
closed-from expressions obtained using conventional element sti�ness matrix and exact element
sti�ness matrix for space-�lled hexagonal lattices are summarized in Table 1 (refer to equations
(15) and (18), (23) and (24), (25) and (26), and (30) and (32)). It may be noted in this context
that the entire constitutive matrix of a 2D material with honeycomb-like microstructure could be
obtained based on the �ve in-plane elastic moduli reported in this article.

Table 1: Closed-form expressions of e�ective in-plane elastic moduli for space-�lled lattices obtained on the
basis of conventional element sti�ness matrix (CESM) and exact element sti�ness matrix (EESM), as presented in
equations 2 and 3 respectively. Note that these expressions can be reduced to the formulation for hexagonal lattices
without any in�ll as a special case (refer to the supplementary material section S2) [28].

Moduli Method Closed-form expression

E1 CESM E1 = E

(
α3 +

13

35

κ

γ

)
cos θ

(η + sin θ) sin2 θ

EESM E1 =
Eα3 cos θ

(η + sin θ) sin2 θ

(SC + sc)

3 (S2 − s2)

E2 CESM E2 = E

(
α3 +

13

35

κ

γ

)
η + sin θ

cos3 θ

EESM E2 =
Eα3 (η + sin θ)

cos3 θ

(SC + sc)

3 (S2 − s2)

G12 CESM G12 =
Eα3

η2
(η+sin θ)

cos θ 105 γ

105 γ + 11 κ
α3

+
96 η5γ κ+ 53760α3η γ2

η8κ2

α3 + 1632 η4γ κ+ 26880α3γ2


EESM G12 =

Eα3

η2
(η+sin θ)

cos θ(
3C2+3 c2−6

C2β2−β2c2
− 24(−SvCv+svcv)((Cv)2+(cv)2−2)

((cv)4+(2 (Cv)2−2)(cv)2−(Cv)4+2 (Sv)2(Cv)2)β3η2

)
ν12 =

1

ν21
CESM ν12 =

cos2 θ

(η + sin θ) sin θ

EESM ν12 =
cos2 θ

(η + sin θ) sin θ
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Figure 2: Finite element analysis of �lled honeycombs and validation. (A, B) The in�ll spaces are shown
in (A), which are designed to �t inside the void spaces of the lattice frame shown in (B). (C) Finite element model
of �lled honeycomb. Lattice structure embedded in the in�ll has been modelled for analysis. (D) Finite element
meshing of the �lled honeycomb model. (E) Validation results for Young's moduli ratios (E1 = E1/E1GA

, E1 =
E1/E1GA) considering loading along direction 1 and 2 (note that the non-dimensional results are same for both the
Young's moduli). (F) Validation results for shear modulus ratio (G12 = G12/G12GA) considering loading in the 12
plane. It is to be noted, for validation we have used moduli ratios of the �lled honeycomb model with that of the
conventional honeycomb model without in�ll (indicated by the subscript GA).

3. Finite element analysis

The proposed analytical formulae for space-�lled lattices (refer to Table 1) are validated with
separate �nite element simulations. We have developed a �nite element model in ANSYS for the
�lled honeycomb structure with a 12× 15 lattice. The number of unit cells is decided based on a
convergence study. We have used a cell wall angle of 30◦ and have considered the height to length
ratio of the unit cell, η = 1. For the model, the length, l is considered as 10 mm, in�ll thickness,
b̄ as 1 mm and the thickness by length ratio of the beam element, α as 0.02. After modelling,
proper bonded connections of the in�ll material have been established with the corresponding
lattice members. Fine meshing has been adopted that creates approximately 231115 tetrahedral
elements over an average total surface of 44.061 mm2 spanning over the in�ll bodies and the overall
lattice as a whole (refer to sub�gures (A) and (B) of �gure 2). More elements have been considered
at the joints considering contact sizing of the connections. The structural model and �nite element
meshing are shown in sub�gures (C) and (D) of �gure 2. Keeping the geometrical properties same
and the intrinsic Young's modulus of the lattice as 200 GPa, we have varied the Young's modulus
of the in�ll material in orders of 10. It can be noted that the mathematical section provides
equations with non dimensional parameters. Using �nite element, we have veri�ed that changing
the scale of the model uniformly does not bring variation to the results, showing good consistency
and stability in our formulation. It is to be noted that we have not used a large de�ection solver,
however program controlled non-linear analysis method is followed. To check the Young's modulus
of the �lled honeycomb model along direction 1, we �x the degree of freedoms along direction 1
for the nodes along the extreme left edge whose normal is parallel to direction 1 and apply the
loading uniformly over the nodes at the extreme right edge in direction 1. For calculation of the
Young's modulus of the �lled honeycomb model along direction 2, we �x the degree of freedoms
along direction 2 for the nodes along the extreme bottom edge whose normal is parallel to direction
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2 and apply the loading uniformly over the nodes at the extreme top edge in direction 2. For the
shear modulus of the �lled honeycomb model in the 12 plane, we �x the degree of freedoms both
along direction 1 and 2 for the nodes along the extreme bottom edge whose normal is parallel to
direction 2 and apply the loading uniformly over the nodes at the extreme top edge in direction
1. The rotational degrees of freedom at the edges are not constrained in any of the three cases.
Di�erent components of strains as per the basic de�nitions of elastic moduli are calculated based
on the deformation of the lattice under respective applied loads. The corresponding stress values
are calculated from the applied edge loads. Subsequently, the elastic moduli are evaluated based
on the stress and strain values under small deformation.

In this validation section, we have compared the Young's and shear moduli of the �lled hon-
eycomb that we get from �nite element analysis with that of the analytical formulation results.
It is shown in sub�gures (E) and (F) of �gure 2 that upto an order of 106 of the in�ll's Young's
modulus, our results match quite well. Outside this range, the mechanics of deformation involves
other modes that are beyond the scope of current the analytical model. We further note that the
results are more accurate with respect to �nite element simulations when we use the exact element
sti�ness matrix formulation (EESM) compared to the conventional element sti�ness matrix for-
mulation (CESM). This is expected as explained in the preceding section, particularly when the
�ller sti�ness becomes higher.

4. Results and discussion

In the previous section, we have noted that the in-plane Poisson's ratios remain una�ected
by the inclusion of �ller material. For the sake of completeness variations of Poisson's ratios are
shown in the supplementary material considering auxetic and non-auxetic con�gurations (refer to
�gure S4). The feasibility of manufacturing the auxetic structures (h/l ≥ 2 sin θ) is taken into
account while presenting the results. We concentrate on the two Young's moduli and the shear
modulus for presenting numerical results in the following paragraphs. To accentuate the e�ect of
�ller material, the results are presented in non-dimensional forms. Though such numerical results
are applicable to di�erent cell angles with auxetic and non-auxetic con�gurations, one should keep
in mind the geometric feasibility for manufacturing as discussed above.

Figure 3: Normalised e�ective elastic moduli of space-�lled lattices obtained using conventional
sti�ness matrix and transcendental sti�ness matrix. (A) Normalised Young's modulus Ei/EiGA

, where
i = 1, 2. Note that although the expressions of E1 and E2 are di�erent, the ratios E1/E1GA

and E2/E2GA
are the

same. Thus we present only one plot that represents the results of both the Young's moduli. The actual value
of the two Young's moduli, which are di�erent, can be obtained by multiplying the presented numerical values by
the corresponding Young's modulus of un�lled lattices. (B) Normalised shear modulus G12/G12GA . For generality,
here the results are plotted as functions of κ = k/E for a value of η = h/l = 1, α = t/l = 0.1 and γ = b̄/l = 1. The
subscript GA is used to indicate the elastic moduli obtained based on the case of un�lled honeycomb lattices [28].
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Figure 4: The interaction e�ect of �ller sti�ness and height ratios on the in-plane elastic moduli.
Normalised Young's moduli Ei/EiGA (where i = 1, 2) and normalised shear modulus G12/G12GA are plotted as
a function of the �ller sti�ness ratio κ = k/E and the height ratio γ = b̄/l. Two values of the thickness ratio
α = 0.1 and 0.2 are considered. The subscript GA is used to indicate the elastic moduli obtained based on the
case of un�lled honeycomb lattices [28]. Note that although the expressions of E1 and E2 are di�erent, the ratios
E1/E1GA

and E2/E2GA
are the same and these two non-dimensional quantities are independent of η. Thus we

present only one plot that represents the results of both the Young's moduli. The actual value of the two Young's
moduli, which are di�erent, can be obtained by multiplying the presented numerical values by the corresponding
Young's modulus of un�lled lattices (refer to the supplementary material section S2 where closed form expressions
are provided for the e�ective Young's modulus of un�lled lattices). (A) Young's modulus with α = 0.1 (B) Young's
modulus with α = 0.2 (C) Shear modulus with microstructural con�guration: η = 1, α = 0.1 (D) Shear modulus
with microstructural con�guration: η = 2, α = 0.1.

From the expressions of E1, E2 and G12 obtained in terms of non-dimensional geometrical and
material parameters following the conventional and transcendental sti�ness matrix (refer to Table
1), it can be veri�ed that when the �ller material is not present (by taking the limit κ → 0), the
expressions reduce to the classical expressions provided in literature by Gibson and Ashby [28].
Along with the detailed �nite element validation presented in the preceding section, this renders an
exact analytical validation of the proposed derivations as a special case. Further con�dence on the
developed formulation can be obtained by comparing the numerical results from the conventional
and transcendental sti�ness matrices. In the preceding section, it is shown that the elastic moduli
obtained using transcendental sti�ness matrices are more accurate, while the formulation based on
conventional sti�ness matrix is valid only for relatively lesser sti�ness of the �ller material. Thus,
the elastic moduli obtained using the two approaches are expected to match only for a low sti�ness
of the �ller material. This aspect will be more evident from the numerical results presented later
in this section.

In order to compare both the approaches, in �gure 3, Young's moduli (E1 and E2) and shear
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modulus (G12) are shown as functions of κ = k/E. The values in the Y-axis are normalised with
respect to the equivalent classical results without any �ller [28] (the equations of �ve in-plane
elastic moduli are presented in supplementary material section S2), as indicated by subscripts
GA. Although the expressions of E1 and E2 are di�erent, the ratios E1/E1GA

and E2/E2GA
are

the same. Therefore, only Ei (where i = 1, 2) is considered in �gure 3. The parameters used
in �gure 3 are η = h/l = 1, α = t/l = 0.1 and γ = b̄/l = 1. As explained before, it can be
observed that the results obtained using the conventional sti�ness matrix is accurate only for very
small values of κ. This demonstrates the advantage of using the proposed approach with the
transcendental sti�ness matrix. The closed-form expressions in equation (18), (24) and (32) are
exact and therefore valid for higher values of the �ller sti�ness. In �gure 3, signi�cant increase in
the e�ective moduli is observed. Such enhancement can have a potential impact on engineering
applications. This motivates us to study how the e�ective moduli increase as di�erent parameters
in the model change.

In �gure 4(A-B), contours of normalised Young's moduli Ei/EiGA
are plotted as a function of

the �ller sti�ness ratio κ and the height ratio γ. Two values of the thickness ratio, namely, α = 0.1
and 0.2 are shown, wherein it can be noticed that when the cell walls are thinner, the in�ll has
more in�uence on the equivalent Young's modulus (note that Ei/EiGA

for i = 1, 2 are independent
of η). For an in�ll sti�ness of only 10%, it is possible to increase the equivalent Young's modulus
by an order of magnitude. This is encouraging as lightweight elastic foams can be used as an in�ll
to substantially increase Young's modulus. Closed-form formulae derived in this paper can be used
to design such composite 2D lattices e�ciently.

Contours of normalised shear modulus G12/G12GA
are plotted as a function of the �ller sti�-

ness ratio κ and the height ratio γ in �gure 4(C-D). Two values of η, namely η = h/l = 1, 2 are
considered. The normalised shear modulus increase with η. The pattern of change with respect
to the other parameters remain similar to the case of E1 and E2. Again we note that orders of
magnitude of increase in the shear modulus is possible with the inclusion of the �ller material.
Further numerical results for the Young's moduli and shear modulus to investigate the e�ects of
α and η are presented in the supplementary material (refer to �gures S2 and S3). In general, the
numerical outcomes demonstrate that the developed analytical framework for the elastic moduli
could be utilised for e�ciently designing space-�lled lattices to simultaneously possess di�erent
values of the elastic moduli by identifying the appropriate microstructures. Such explicit modu-
lation of sti�ness corresponding to longitudinal, transverse and shear modes would facilitate the
development of engineered microstructures with programmable direction-dependent dynamic prop-
erties. The closed-form formulae would also act as a ready reference to characterise the structural
viability of di�erent mechanical and biological systems (naturally occurring and arti�cial) and
multi-functional devices where �lled-honeycombs are present.

5. Conclusions and perspective

An analytical framework leading to closed-form formulae for the e�ective in-plane elastic mod-
uli of space-�lled hexagonal lattices is proposed. In general, the elastic properties of lattice-like
honeycomb structures have received tremendous attention from the scienti�c community over the
last few decades. Traditionally such lattices are made of a network of beams in two and three
dimensions with majority of the volume of the lattice structures being void space. Recently
researchers have started exploring ways to utilise this void space for multi-functional property
modulation of lattices. For example, if we could have a �lled multi-material lattice structure,
the global mechanical behaviour including di�erent elastic moduli, wave propagation, vibration,
impact and acoustic features can be simultaneously modulated in a substantially expanded design
space with additional parameters related to the sti�ness, mass and damping of the �ller, leading
to exciting multi-functional properties. However, the e�ective elastic moduli are always of cru-
cial importance to ensure the structural viability of various multi-functional devices and systems
where a space-�lled lattice material could potentially be used. Here we have developed analytical
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expressions for the e�ective in-plane elastic moduli of such space-�lled lattices based on an exact
element sti�ness matrix approach coupled with the unit cell method, wherein the transcendental
shape functions are used to satisfy the equilibrium at all points of the structural domain. The
transcendental functions are obtained from the exact solution of the underlying di�erential equa-
tions with appropriate displacement boundary conditions. For establishing the analytical model we
have proposed a mechanical equivalence of space-�lled lattices with equivalent networks of beam
elements. The numerical results are compared with the elastic moduli obtained from traditional
sti�ness matrices, wherein a good agreement is found for relatively lesser value of the �ller sti�ness.
The proposed expressions of the elastic moduli converge to the classical closed-form expressions
provided in the scienti�c literature when the sti�ness of the �ller material tends to zero, leading
to an exact analytical validation as a special case. Further, separate �nite element simulations
are carried out to validate the closed form expressions of space-�lled lattices. From the derived
analytical expressions, it becomes evident that the two Poisson's ratios are not a�ected by the
presence of �ller material, while two Young's moduli and the shear modulus can be modulated
signi�cantly depending on the �ller sti�ness. The physics-based analytical formulae reveal that
elastic properties of the space-�lled lattice depend on the thickness of the lattice sheet unlike the
case of conventional honeycombs without any �ller material.

From the perspective of engineered material microstructures, the present investigation intro-
duces a new dimension in terms of the properties of �ller material for simultaneously modulating
multi-physical mechanical behaviour of lattice materials. The scope of explicit modulation of sti�-
ness corresponding to longitudinal, transverse and shear modes, besides rendering the possibility
of designing application-speci�c multi-objective static deformation behaviour, would facilitate the
development of engineered microstructures with programmable direction-dependent dynamic and
wave propagation properties. The numerical results show that the inclusion of �ller material with
even a relatively lower sti�ness value (normalised �ller sti�ness ∼0.1) can lead to an increase in
the e�ective elastic moduli up to few orders of magnitude. This e�ect can potentially be exploited
in the design of novel space-�lled composite lattices for having higher global sti�ness and simul-
taneously modulating di�erent in-plane normal and shear components. The e�cient analytical
framework will also act as a ready reference to characterise the structural viability of di�erent
mechanical and biological systems (naturally occurring and arti�cial) and multi-functional devices
where �lled honeycombs are present.

The proposed analytical formulae will have an impact both in the forward (for readily charac-
terising di�erent components of the sti�ness of a �lled lattice designed for other multi-functional
applications or already in existence) and inverse analyses (for identifying the lattice microstruc-
ture in a signi�cantly expanded design space to achieve multi-objective goals related to possessing
an adequate level of multiple elastic moduli with the possibility of signi�cantly enhancing them)
of lattice-like systems across the length-scales. Even though here we have concentrated on the
analysis of hexagonal lattices, the disseminated concepts (including the general methodology of
derivation and numerical results) can be extended to other forms of beam-based lattices and meta-
materials with two and three dimensional structural forms. Such closed-form analytical expressions
provide a computationally e�cient paradigm to investigate the system in intricate details and with
adequate level of physical insights, leading to the scope of material innovation without the prac-
tical hindrance of computational or experimental expenses and time. This will be particularly
appealing for innovating next-generation of application-speci�c multi-functional material micro-
structures where thousands of realisations are required to be analysed due to the involvement of
inverse identi�cation algorithms based on multi-objective optimisation.
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