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stract
Traditionally lattice materials are made of a network of beams in two and three dimensions wit
jority of the lattice volume being void space. Recently researchers have started exploring ways

ploit this void space for multi-physical property modulation of lattices such as global mechanic
haviour including different elastic moduli, wave propagation, vibration, impact and acoust
tures. The elastic moduli are of crucial importance to ensure the structural viability of variou
lti-functional devices and systems where a space-filled lattice material could potentially be use
re we develop closed-form analytical expressions for the effective elastic moduli of space- fille
tices based on an exact stiffness matrix approach coupled with the unit cell method, where
nscendental shape functions are used to obtain exact solutions of the underlying differenti

uation. This can be viewed as an accurate multi-material based generalization of the classic
mulae for elastic moduli of honeycombs. Numerical results show that the effective in-plane elast
duli can increase by orders of magnitude with a relatively lower infill stiffness (∼10%).This giv
exceptional opportunity to engineer multi-material lattices with optimal specific stiffness alon

th characterizing the mechanical properties of a multitude of lattice-like artificial and natural
curring structural forms with space filling.
ywords: Hexagonal lattice; Effective elastic moduli; Space-filled lattice metamaterials;
ulti-material honeycombs; Composite lattices
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Introduction

Two and three dimensional lattice-like periodic microstructures provide an unprecedented o
rtunity to artificially engineer the global (i.e. effective) mechanical properties of materials base
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multi-functional bespoke demands of modern structural systems by identifying (or designin
e intrinsic material and micro-scale structural topology. Mechanical properties of lattice-like ho
comb structures have received tremendous attention from the scientific community over the la

decades. Traditionally such lattices are made of a network of beams in two and three dime
ns with majority of the volume of the lattice structure being void space. Recently researche
ve started exploring ways to exploit this void space for multi-functional property modulatio
lattices. For example, if we could have a filled multi-material lattice structure, the global m
anical behaviour including different elastic moduli, wave propagation, vibration, impact an
oustic features can be simultaneously modulated in a substantially expanded design space wit
ditional parameters related to the stiffness, mass and damping of the filler, leading to excitin
lti-functional properties. It may be noted that the elastic moduli are always of crucial impo
ce to ensure the structural viability of various multi-functional devices and systems where

ace-filled lattice material could potentially be used. In this article, we aim to develop efficien
alytical expressions for the effective in-plane elastic moduli of such space-filled lattices. An e
cit theoretical characterization of the elastic properties along with necessary physical insigh
derpinning the configuration space of multi-material and geometric parameters will accelera
tential exploitation of filled lattices in various engineered multi-functional materials and stru
res across different length-scales with advantage of an expanded design space.

In microstructured lattice materials the tailorable effective macro-scale mechanical properti
ch as equivalent elastic moduli, deformation, stability, energy absorption, vibration, energ
rvesting, impact and wave propagation characteristics with programmable features) are d
ed by the microstructural geometric configuration along with the intrinsic material properti
constituent members. Naturally occurring monolithic materials cannot exhibit one or mo
the fascinating multi-functional properties like negative Poisson’s ratio, extremely lightweigh
aracteristics, negative stiffness, pentamode material characteristics (meta-fluid) and a weighte
mbination of various such unusual (or usual) properties, which can effectively be obtained b
elligent and intuitive microstructural designs [1, 2, 3, 4, 5, 6]. For example, the convention
sitive effective Poisson’s ratio (which is usually exhibited by normal materials) in hexagon
tice microstructures can be converted to negative, or zero by intuitively designing the hexa
al unit cell [7, 8], as depicted in figure 1(E-G). Besides static properties [9], various unusu
t critically useful effective properties can be realized in engineered microstructures under d
mic condition, such as negative bulk modulus [10], negative mass density [11], negative Young
dulus [12], negative shear modulus [13], band structure modulation [14] and elastic cloaks [15
mputational homogenization has been widely adopted to report the effective lattice-level pro
ies of metamaterials [16, 17, 18, 19, 20, 21]. Recent developments in this filed include activ
d on-demand programming of effective elastic properties by exploiting stimuli-sensitive intrins
terials [22]. These novel class of artificially engineered metamaterials with tailorable and pr
mmable macroscale properties have extraordinary potential for applications in advanced an
uristic multi-functional engineering systems.
Normally two material properties (or more, in case of multi-material lattices) are involved

o widely apart length-scales in lattice metamaterials. One is the intrinsic material(s) (mo
an one such material may be involved in multi-material microstructural topologies) which
tually the material of the constituting elements (such as the connecting beam or cell wall mem
rs shown in figure 1(D)) at micro-scale. Materials at this relatively lower length scale (ofte
erred as the microscale) are either monolithic materials or different alloys and compounds. Th
emical composition, atomic and molecular structure of these intrinsic materials decide the m
anical properties at this length scale. The second set of material properties (at a relative
ch higher length scale) correspond to the effective macro-scale homogenized behaviour of th

tire lattice. Such macro-scale properties depend on the intrinsic lower-scale (micro) materi
operties and the lower scale microstructural topology (microstructural geometry) of the lattic
e compound effect of these two factors leads to a tremendous opportunity of achieving unprec
nted effective mechanical and multi-physical properties that are not exhibited by convention
2
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ure 1: Microstructural details of space-filled honeycombs. (A) Typical representation of a hexagon
ed honeycomb structure. Two materials (materials of the honeycomb cell walls and the filler) involved in t
iodic lattice are indicated using different colours. (B) Three dimensional view of the space-filled multi-mater
tice structure. (C) Unit cell of the periodic structure along with microstructural geometry. Here we show bo

actual unit cell and the idealized unit cell. The figure C(I) shows the actual unit cell with filler material. T
alized unit cell, which is used in the current analysis, is shown in figure C(II). In this idealized unit cell, effect
filler material is replaced by an equivalent elastic contribution. (D) Typical representation of a general bea

ment of length L where each node has two degrees of freedom. The idealisation of the effect of filler mater
the cell walls (i.e. the beam) is shown using the equivalent elastic contribution along the length of the beam
-G) The concept of modulating Poisson’s ratio based on intuitive design of microstructural geometry (primari
l angle θ). Three typical microstructures are shown here that can exhibit positive (E), negative (F) and zero (G
isson’s ratios. (H) Presence of hexagonal lattice structures across the length-scales (nano to macro) in natur

artificial systems. This shows the significance of analysing such lattices for new material development as w
characterization of existing materials and structural systems.

gineering materials. Though aperiodic, quasi-periodic and random microstructural topologi
ve been proposed, periodic lattice-like forms are predominant in the literature of metamateria
, 28]. A unit cell (analogous to representative volume element) based approach is adopted
del periodic microstructures with appropriate boundary conditions leading to a set of effectiv
stic moduli at macro-scale such that the lattice can be considered as an equivalent continuu
, 25, 26, 27]. Edge effects [29] can be neglected in the such a unit cell based approach of eva
3
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ting the effective elastic properties with the assumption of a substantially high number of cell
is a valid assumption in the design of lattice materials and widely followed in the literature f
taining equivalent global properties such as effective elastic moduli [25].
The fundamental mechanics for lattices (derived based on the unit cells with periodic boundar

ndition) being normally scale-independent, the scientific developments concerning the mechani
deformation are applicable (directly or indirectly) to a broad range of periodic structural form
ross nano to micro and macro scales. 2D lattices of hexagonal form are found across nano to mic
d macro scales in various natural and artificial systems abundantly [28, 30, 31, 32], as depicte
figure 1(H). Moreover, hexagonal lattices can effectively be altered to rectangular, rhomb
d auxetic configurations by taking the geometric parameters appropriately. Such widesprea
evance and applicability of hexagonal lattices have motivated our current focus on this form
crostructure while adopting a lattice geometry to explain the concept of space-filling (includin
alytical derivation and numerical results). Though we would focus here on hexagonal lattice
e basic concepts and approach of analytical derivation are generic and they would be readi
plicable (or extendable, albeit with different forms of final closed-form expressions) to variou
er 2D and 3D lattice geometries.
Most research activities for the development of mechanical metamaterials concentrate on th

crostructural topologies for modulation of mechanical and multi-physical properties, rather tha
e intrinsic materials at the lower length-scale. Thus, one single material that is suitable f
nufacturing and has adequate physical properties according to the intended application,
ditionally chosen as the constituent intrinsic material [33]. However, the recent tremendou
vancements in manufacturing microstructures with multi-material configurations based on a
ive manufacturing [34, 35, 36] have created a strong rationale for developing a new class
tamaterial, where two or more intrinsic materials at the lower scale could be adopted to for

e unit cell. Such multi-material lattices would expand the scope of multi-functional design si
cantly. Majority of the research related to multi-functional metamaterials adopt inverse desig

proach to identify the volume fractions of two or more intrinsic materials based on numeric
orithms [37, 38]. Multi-material lattice microstructures have shown exceptional promise f

hieving unusual multi-physical properties like zero and negative thermal expansion coefficien
ng with modulation of other mechanical properties [39, 40]. The current focus of space-fille
tices is a special kind of multi-material periodic topology, where the intention is to exploit th
id space in traditional lattices for enriching multifunctional properties. In principle, multim
ial topologies could have two different configurations for developing metamaterials. In the fir
crostructural configuration, the periodic unit cell have multiple intrinsic materials and the un
l is tessellated in the 2D (or 3D) space to form a lattice. In the second configuration, the latti
formed using two or more unit cells with different intrinsic material properties. The convention
it cell approach can not be adopted for analyzing the second form of multi-material lattice
may not lead to a truly periodic microstructure. The periodicity can remain unaltered (an
bsequently a unit cell based approach is applicable) in the first form of multi-material lattic
ich is the central focus of the current investigation.
We aim to investigate the effect of space-filling on the elastic moduli of honeycomb lattices wit

e notion of possible exploitation of the void space for multi-functional property augmentatio
astic moduli of space-filled lattice structures are of quite practical relevance, such as foam-fille
neycombs applied in various sandwich panels. Moreover, the biological systems which adop
hexagonal lattice-like structure at micro-scale are often found to be filled with fluids, fibr
other bulk materials. In these systems, the inner space-filling or foam-like core (with muc
ser effective elastic moduli than the celle walls) behaves like an equivalent elastic contributio
roughout the length of honeycomb cell walls, as depicted in figure 1(C-D). We would develo
alytical expressions for the effective in-plane elastic moduli of space-filled lattices based on a
act element stiffness matrix approach coupled with the unit cell method, wherein transcendent
ape functions would be used to satisfy the equilibrium at all points of the structural domain. F
ablishing the analytical model, the mechanical equivalence of space-filled lattices as equivalen
4
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twork of beams under the presence of the equivalent elastic contribution of the filler materi
ll be utilised. The results would be compared to the effective elastic moduli obtained fro
e traditional stiffness matrices of beam elements with the equivalent elastic contribution
er material. Further, separate finite element simulations would be carried out to validate th
alytical expressions for space-filled lattices.
In the following sections we systematically present the derivation for elastic moduli of spac

ed lattices based on the stiffness matrix of a beam element with the equivalent elastic contr
tion of filler material. Two different methods are followed for deriving the stiffness matrix
ividual beam elements based on transcendental shape functions and conventional shape fun
ns. Subsequent sections present numerical quantification to demonstrate the effect of spa
ing on the elastic moduli, followed by perspective and concluding remarks.

Mechanics of space-filled lattices

Deformation of the overall lattice microstructure depends on the mechanical behaviour of ind
ual beams which make up the tessellating hexagonal unit cells (refer to figure 1(A-D))). Due

e elastic filling, each beam can be assumed to be acted upon by an equivalent elastic contributio
the filler material. A pictorial depiction of the beam along with the degrees of freedom at eac
de is provided in figure 1(D). Here our workflow is first to obtain the stiffness matrix of suc
eam element (with equivalent contribution of filler) following two different approaches. On

is local beam-level property is obtained, a unit cell-based homogenisation will be employed
aracterize the global elastic properties of the entire space-filled lattice.
In this context it can be noted that the determination of the equivalent filler modulus (as pr
ted by k in the subsequent derivations) is an important aspect. Two cases may arise concernin

e forward and inverse problems of space-filled lattices. (a) For designing novel space-filled b
terial lattices (inverse problem), the elastic properties of both the stiffer honeycomb cell wal
d less-stiff filler material (i.e. the two intrinsic materials) can be evaluated based on convention
chanical testing of bulk samples of the respective materials. (b) In case of characterizing th
ective elastic properties of naturally occurring and artificial lattice structures with space-fillin
rward problem), the individual elastic properties of the cell wall and filler material should b
own a priori. For various mechanical systems such as foam-filled honeycombs, it is quite straigh
ward to evaluate the elastic properties of the two constituent intrinsic materials. However,
uld involve advanced experimental techniques to characterize the intrinsic material properti
lower length scales such as space-filled micro-lattices in various biological systems.

. Element stiffness matrices
The governing equation of transverse deflection V (x) of a beam can be expressed as

EI
d4V (x)

dx4
+ kV (x) = f(x) (

fer to the supplementary material (section S1.1) for further details on the above differenti
uation. Based on Equation 1, stiffness matrix of an equivalent beam element with the contr
tion from elastic filler material is derived here following two different approaches: convention
ment stiffness matrix approach and exact element stiffness matrix approach (the accuracy
ese two approaches would be discussed at a later stage of this manuscript). We assume th
e beams under consideration follow the Euler-Bernoulli hypotheses and the elastic infill is mo
ed as an equivalent elastic contribution of the filler material throughout the beam length [41
e conventional element stiffness matrix of a beam with equivalent elastic contribution of th
er material can be obtained as (refer to the supplementary material section S1.1 for detaile
5
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rivation)

Ke = EI

∫ L

0

d2N(x)

dx2

d2NT (x)

dx2
dx+ k

∫ L

0

N(x)NT (x)dx

=
EI

L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L2

6L 2L2 −6L 4L2


+

kL

420




156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2




(

re L is the length of the beam element (i.e. cell wall of the honeycomb). E represents intrins
ung’s modulus of the cell wall members and k is the equivalent filler modulus. I represents th
ond moment of area for in-plane bending of the cell walls. For the special case when there
elastic filler material (i.e. k = 0), the stiffness matrix derived above approaches to the classic

ffness matrix of a beam [42, 43].
The exact element stiffness matrix of an individual beam element with equivalent elastic co

bution of the filler material can be given by the following closed-form expression (refer to th
pplementary material section S1.2 for detailed derivation)

e =
2EIb

(S2 − s2)




2 b2 (SC + sc) b (C2 − c2) −2 b2 (cS + sC) 2 sSb
b (C2 − c2) SC − sc −2 sSb sC − cS

−2 b2 (cS + sC) −2 sSb 2 b2 (SC + sc) −b (C2 − c2)
2 sSb sC − cS −b (C2 − c2) SC − sc


 (

ements of De are transcendental functions of (bL), where C = cosh(bL), c = cos(bL), S

h(bL), s = sin(bL) and b = 4

√
k

4EI
(refer to the supplementary material for further details)

The conventional stiffness matrix given in equation (2) appears to look different from the exa
nscendental stiffness matrix in equation (3). To understand the nature of this visible differenc

ch element of the transcendental stiffness matrix is expanded in a Taylor series about k =
bstituting the expression of b in equation (3) and differentiating all the elements with respe
k, after simplifications we have the series expansion form

e =
EI

L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L2

6L 2L2 −6L 4L2


+

L

420




156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2


 k

+
L5

69854400EI




−25488 −5352L −23022 5043L
−5352L −1136L2 −5043L 1097L2

−23022 −5043L −25488 5352L
5043L 1097L2 5352L −1136L2


 k2

+
L9

762810048000EI2




28960 113504L 522090 −112631L
113504L 24384L2 112631L −24273L2

522090 112631L 528960 −113504L
−112631L −24273L2 −113504L 24384L2


 k3 +O(k4) + · · ·

(

is interesting to note that the first two terms of this expansion are exactly the same as the co
ntional stiffness matrix in equation (2). The higher-order terms ‘included’ in the transcendent
ffness matrix account for the effect of elastic filler in an exact manner. Use of the convention
ffness matrix would, therefore, be inaccurate for higher values of filler stiffness k unless th
gth of an element is made smaller. This fact gives rise to the significant advantage of usin

e transcendental stiffness matrix in the context of cellular lattice structures. We can use on
e ‘element’ to represent the exact mechanical behaviour of the constituent parts of a unit ce
no discretisation is necessary, it is possible to avoid finite element based numerical calculation
a unit cell. This, in turn, helps us to obtain efficient and exact closed-form expression of th
uivalent elastic moduli of the entire lattice, as explained in the next section.

6
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. Effective elastic moduli of space-filled lattices
The effective elastic moduli of hexagonal honeycomb-like cellular materials without any infi

s obtained in published literature [25], as presented in the supplementary material (refer
uations S28 - S32) for ready reference. Our aim in this section is to obtain similar closed-for
pressions when the lattices is filled with an elastic material. In the preceding section, we hav
rived the element stiffness matrices for a single beam with the equivalent effect of space-fillin
sed on two different methods (exact element stiffness and conventional stiffness). From the
ffness matrices, analytical expressions of the in-plane elastic moduli are obtained in this sectio
fer to figure S1 in the supplementary material for the unit cell deformation mechanics an
tailed derivation of the elastic moduli). For the purpose of deriving such expressions concernin
ace-filled lattices, the element stiffness matrix is re-written in the following general form

De = [Aij]4×4 (
ere i, j = 1, 2, 3, 4. Terms of the above matrix have the expressions corresponding to equatio
(for exact element stiffness matrix) and equation (2) (for conventional stiffness matrix).

.1. Young’s modulus E1

Effective Young’s modulus E1 of the space-filled lattice can be explicitly expressed in term
the A33 element of the stiffness matrix as (refer to the supplementary material section S2.1 f
tailed derivation)

E1 =
A33l cos θ

(h+ l sin θ)b̄ sin2 θ
(

If the conventional element stiffness matrix is used, the expression of A33, in view of equatio
, can be obtained from equation (2) as

A33 =
12EI

l3
+

13kl

35
(

the other hand, if the transcendental stiffness matrix is used, the expression of A33 can b
tained from equation (3) as

A33 =
2EIb

(S2 − s2)
2 b2 (SC + sc) =

4EIb3 (SC + sc)

(S2 − s2)
(

Replacing the expression for A33 and I =
b̄t3

12
, the Young’s modulus E1 while using the co

ntional stiffness matrix can be obtained as

E1 =
A33l cos θ

(h+ l sin θ)b̄ sin2 θ
=

A33

b̄

cos θ

(h
l
+ sin θ) sin2 θ

=


E

(
t

l

)3

+ k

(
13

35

)(
l

b̄

)

︸ ︷︷ ︸
contribution of filler stiffness




cos θ

(h
l
+ sin θ) sin2 θ

(

re E is the intrinsic elastic modulus of the honeycomb material and t is the thickness of hone
mb cell wall. In the absence of the elastic filler, we have k = 0. In that case, the above expressio
uces to the exactly same expression given by Gibson and Ashby [25].

Replacing the expression for A33 using the transcendental stiffness matrix and I =
b̄t3

12
, th

ung’s modulus E1 can be obtained as

E1 =
σ1

ϵ11
=

A33

b̄

cos θ

(h
l
+ sin θ) sin2 θ

=
E(bt)3 (sinh(bl) cosh(bl) + sin(bl) cos(bl))(

2 2
) cos θ

h 2

(1
3 sinh (bl)− sin (bl) (
l
+ sin θ) sin θ

7
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It is useful to establish a direct relationship between two expressions of E1 given by equation
and (10). Substituting the value of b and expanding A33 (Equation 8) in Taylor series abou
0 we have

A33 =
4EIb3 (SC + sc)

(S2 − s2)
= 12

EI

l3
+

13

35
lk − 59

161700

l5k2

EI
+

551

794593800

l9k3

EI2
+O(k4) + · · · (1

bstituting this expansion in equation (10) and reorganizing different terms, we have the Young
dulus E1 in a series form

1 =

(
E

(
t

l

)3

+ k

(
13

35

)(
l

b̄

)
− k

59

13475

(
t

l

)3(
l

b̄

)2(
k

E

)

+k
1102

11036025

(
t

l

)6(
l

b̄

)3(
k

E

)2

+O

(
k

E

)3

+ · · ·
)

cos θ

(h
l
+ sin θ) sin2 θ

(1

e first two terms of this series is exactly the same as obtained in equation (9) using the co
ntional stiffness matrix. The higher-order terms in the above expression depend on the no

ensional ratios t
l
, l

b̄
and k

E
. In particular, if the value of the filler stiffness k becomes compa

vely higher with respect to the elastic modulus of the honeycomb material E, the higher-ord
ms could be significant. Therefore, equation (10) naturally takes into account all possible valu
e filler stiffness, while equation (9) can be viewed as a two-term approximation. Finally, it can b
ted that the classical result of Gibson and Ashby [25] without the filler stiffness is the one-ter
proximation of the series in equation (12).
In order to obtain physical insights from the expressions, it useful to view the results in term

non-dimensional parameters describing the system. We introduce geometric non-dimension
ios α, η and γ as

α =
t

l
, η =

h

l
and γ =

b̄

l
(1

r the stiffness of the filler material, the following non-dimensional ratio has been introduced

κ =
k

E
(1

ing these, for the case of employing the conventional stiffness matrix in equation (2), the equi
nt modulus E1 is obtained by rewriting (9) as

E1 = E

(
α3 +

13

35

κ

γ

)
cos θ

(η + sin θ) sin2 θ
(1

hen the transcendental stiffness matrix is used, the necessary coefficients are obtained fro
uation (3). Considering the expression of constant b, we have

b =
4

√
k

4EI
= 4

√
κE

4Eb̄t3/12
=

1

l
4

√
3κ

γα3
=

β

l
(1

ere the non-dimensional coefficient
β = 4

√
3κ

γα3
(1

ing this, the equivalent modulus E1 is obtained in terms of non-dimensional variables by rewri
equation (10) as

E1 =
Eα3 cos θ

(η + sin θ) sin2 θ

(SC + sc)

3(S2 − s2)
(1
the above expressions C = cosh β, c = cos β, S = sinh β and s = sin β.

8
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.2. Young’s modulus E2

The effective Young’s modulus E2 can be explicitly expressed in terms of the A33 element
e stiffness matrix as (refer to the supplementary material section S2.2 for detailed derivation)

E2 =
A33

b̄

(h
l
+ sin θ)

cos3 θ
(1

ilar to the expression of E1 discussed in the previous subsection, the term A33

b̄
appears

e expression of E2 also. Consequently the final expressions of E2 can be obtained in a simil
nner by substituting the expression A33 from the conventional and transcendental stiffne
trix. Therefore, with the conventional stiffness matrix we have

E2 =

(
E

(
t

l

)3

+ k

(
13

35

)(
l

b̄

))
(h
l
+ sin θ)

cos3 θ
(2

placing the expression for A33 using the corresponding element from the transcendental stiffne
trix, the Young’s modulus E2 can be obtained as

E2 =
E(bt)3 (sinh(bl) cosh(bl) + sin(bl) cos(bl))

3
(
sinh2(bl)− sin2(bl)

) (h
l
+ sin θ)

cos3 θ
(2

It may be noted that the above general expressions approach to the classical result of Gibso
d Ashby [25] when the filler stiffness k → 0. In general, the comparative perspectives of E
tained based on conventional and transcendental stiffness matrices are similar to the case of E
bstituting the expansion of A33 from equation (11) in equation (19) and reorganising differen
ms, we have the Young’s modulus E2 in a series form

2 =

(
E

(
t

l

)3

+ k

(
13

35

)(
l

b̄

)
− k

59

13475

(
t

l

)3(
l

b̄

)2(
k

E

)

+k
1102

11036025

(
t

l

)6(
l

b̄

)3(
k

E

)2

+O

(
k

E

)3

+ · · ·
)

(h
l
+ sin θ)

cos3 θ
(2

e first two terms of this series is exactly the same as obtained in equation (20) using th
nventional stiffness matrix. The higher-order terms in the above expression depend on th
n-dimensional ratios t

l
, l

b̄
and k

E
. In particular, if the value of the filler stiffness k becom

mparatively higher with respect to the elastic modulus of the honeycomb material E, the highe
er terms could be significant. Therefore, equation (21) naturally takes into account all possib

lues the filler stiffness, while equation (20) can be viewed as a two-term approximation. Finall
can be noted that the classical result of Gibson and Ashby [25] without the filler stiffness is th
e-term approximation of the series in equation (22).
Following a similar non-dimensional scheme as E1, the expressions for E2 can be written co

ering conventional and transcendental stiffness matrix respectively as

E2 = E

(
α3 +

13

35

κ

γ

)
(η + sin θ)

cos3 θ
(2

E2 =
Eα3(η + sin θ)

cos3 θ

(SC + sc)

3(S2 − s2)
(2

the above expressions C = cosh β, c = cos β, S = sinh β and s = sin β.
9
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.3. Poisson’s ratios ν12 and ν21
We have presented the detailed derivations of the effective Poisson’s ratios of the honeycom

tices in the supplementary material (refer to section S2.3). Expression for Poisson’s ratio du
loading in direction 1 can be obtained as

ν12 =
cos2 θ

(η + sin θ) sin θ
(2

ilarly the expression for Poisson’s ratio due to loading in direction - 2 can be obtained as

ν21 =
(η + sin θ) sin θ

cos2 θ
(2

te here that η = h
l

is a non-dimensional geometric parameter. From the above expressions,
evident that Poisson’s ratios ν12 and ν21 are independent the stiffness of the filler material an

e as the expressions given by Gibson and Ashby [25]. In this context it is interesting to no
at the proposed expressions of the elastic moduli conform the reciprocal theorem as

E1ν21 = E2ν12 =
A33

b̄

1

sin θ cos θ
(2

e above equation satisfying the fundamental theories of materials science provides confiden
the presented expressions of effective elastic moduli in this article.

.4. Shear modulus G12

The effective shear modulus of the space-filled honeycomb lattices in terms of the general bea
ffness matrix elements can be expressed as (refer to the supplementary material section S2.4 f
tailed derivation)

G12 =
(h
l
+ sin θ)

b̄ cos θ

1(
h2

2lAs
43
+

4Av
44

Av
44A

v
33 − (Av

34)
2

) (2

e will utilise this expression to obtain shear modulus in terms of the geometric and intrins
terial parameters for the case of conventional and transcendental stiffness matrices.
It can be noted that four elements from two different stiffness matrices are necessary her
e conventional stiffness matrix given in equation (2) is considered first. The coefficient of th
ment stiffness matrix of the slant member is As

43. We also need other elements of the stiffne
trix of the vertical member (indicated using superscript v) with half the length. Therefore, th
r coefficients are given by

As
43 = −6

EI

l2
− 11

210
kl2, Av

33 =
12EI

(h/2)3
+ k

13

35
(h/2),

Av
34 = − 6EI

(h/2)2
− k

11

210
(h/2)2, Av

44 =
4EI

(h/2)
+ k

1

105
(h/2)3

(2

osed-form expression of G12 can be obtained by substituting these expressions in equation (28

G12 =

Eα3

η2
(η+sin θ)

cos θ(
105 γ

105 γ + 11 κ
α3

+
96 η5γ κ+ 53760α3η γ2

η8κ2

α3 + 1632 η4γ κ+ 26880α3γ2

) (3

ere α = t
l
, η = h

l
, γ = b̄

l
and κ = k

E
are non-dimensional geometric and material parameters.
10
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When the transcendental stiffness matrix is used, the necessary coefficients are obtained fro
uation (3). Considering the appropriate lengths, we have

Av
33 =

4EIb3

(Sv2 − sv2)
(SvCv + svcv) , As

43 = − 2EIb2

(S2 − s2)

(
C2 − c2

)
,

Av
34 = − 2EIb2

(Sv2 − sv2)

(
Cv2 − cv

2
)
, Av

44 =
2EIb

(Sv2 − sv2)
(SvCv − svcv)

(3

ere Cv = cosh
(
bh
2

)
cv = cos

(
bh
2

)
Sv = sinh

(
bh
2

)
and sv = sin

(
bh
2

)
. The parameter b = 4

√
k

4E

n be obtained as before. Using the coefficients from equation (31), the expression of G12 can b
tained after some algebraic simplifications as

G12 =

Eα3

η2
(η+sin θ)

cos θ(
3C2+3 c2−6
C2β2−β2c2

− 24(−SvCv+svcv)((Cv)2+(cv)2−2)
((cv)4+(2 (Cv)2−2)(cv)2−(Cv)4+2 (Sv)2(Cv)2)β3η2

) (3

the above expressions C = cosh β, c = cos β, S = sinh β, s = sin β and Cv = cosh(βη/
= cos(βη/2) Sv = sinh(βη/2) and sv = sin(βη/2).
Based on the analytical derivation presented in this section, for convenience of the readers, th

sed-from expressions obtained using conventional element stiffness matrix and exact elemen
ffness matrix for space-filled hexagonal lattices are summarized in Table 1 (refer to equation
) and (18), (23) and (24), (25) and (26), and (30) and (32)). It may be noted in this contex

at the entire constitutive matrix of a 2D material with honeycomb-like microstructure could b
tained based on the five in-plane elastic moduli reported in this article.

ble 1: Closed-form expressions of effective in-plane elastic moduli for space-filled lattices obtained on t
is of conventional element stiffness matrix (CESM) and exact element stiffness matrix (EESM), as presented
ations 2 and 3 respectively. Note that these expressions can be reduced to the formulation for hexagonal lattic
hout any infill as a special case (refer to the supplementary material section S2) [25].

Moduli Method Closed-form expression

E1 CESM E1 = E

(
α3 +

13

35

κ

γ

)
cos θ

(η + sin θ) sin2 θ

EESM E1 =
Eα3 cos θ

(η + sin θ) sin2 θ

(SC + sc)

3 (S2 − s2)

E2 CESM E2 = E

(
α3 +

13

35

κ

γ

)
η + sin θ

cos3 θ

EESM E2 =
Eα3 (η + sin θ)

cos3 θ

(SC + sc)

3 (S2 − s2)

G12 CESM G12 =
Eα3

η2
(η+sin θ)

cos θ


105 γ

105 γ + 11 κ
α3

+
96 η5γ κ+ 53760α3η γ2

η8κ2

α3 + 1632 η4γ κ+ 26880α3γ2




EESM G12 =
Eα3

η2
(η+sin θ)

cos θ(
3C2+3 c2−6

C2β2−β2c2
− 24(−SvCv+svcv)((Cv)2+(cv)2−2)

((cv)4+(2 (Cv)2−2)(cv)2−(Cv)4+2 (Sv)2(Cv)2)β3η2

)

ν12 =
1

ν21
CESM ν12 =

cos2 θ

(η + sin θ) sin θ

EESM ν12 =
cos2 θ

(η + sin θ) sin θ
11
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ure 2: Finite element analysis of filled honeycombs and validation. (A, B) The infill spaces are show
(A), which are designed to fit inside the void spaces of the lattice frame shown in (B). (C) Finite element mod
filled honeycomb. Lattice structure embedded in the infill has been modelled for analysis. (D) Finite eleme
shing of the filled honeycomb model. (E) Validation results for Young’s moduli ratios (E1 = E1/E1GA , E1

/E1GA
) considering loading along direction 1 and 2 (note that the non-dimensional results are same for both t

ung’s moduli). (F) Validation results for shear modulus ratio (G12 = G12/G12GA
) considering loading in the

ne. It is to be noted, for validation we have used moduli ratios of the filled honeycomb model with that of t
ventional honeycomb model without infill (indicated by the subscript GA).

Finite element analysis

The proposed analytical formulae for space-filled lattices (refer to Table 1) are validated wit
arate finite element simulations. We have developed a finite element model in ANSYS for th
ed honeycomb structure with a 12× 15 lattice. The number of unit cells is decided based on
nvergence study. We have used a cell wall angle of 30◦ and have considered the height to lengt
io of the unit cell, η = 1. For the model, the length, l is considered as 10 mm, infill thicknes
s 1 mm and the thickness by length ratio of the beam element, α as 0.02. After modellin

oper bonded connections of the infill material have been established with the correspondin
tice members. Fine meshing has been adopted that creates approximately 231115 tetrahedr
ments over an average total surface of 44.061 mm2 spanning over the infill bodies and the overa
tice as a whole (refer to subfigures (A) and (B) of figure 2). More elements have been considere
the joints considering contact sizing of the connections. The structural model and finite elemen
shing are shown in subfigures (C) and (D) of figure 2. Keeping the geometrical properties sam
d the intrinsic Young’s modulus of the lattice as 200 GPa, we have varied the Young’s modulu
the infill material in orders of 10. It can be noted that the mathematical section provid

uations with non dimensional parameters. Using finite element, we have verified that changin
e scale of the model uniformly does not bring variation to the results, showing good consistenc
d stability in our formulation. It is to be noted that we have not used a large deflection solve
wever program controlled non-linear analysis method is followed. To check the Young’s modulu
the filled honeycomb model along direction 1, we fix the degree of freedoms along direction
the nodes along the extreme left edge whose normal is parallel to direction 1 and apply th

ding uniformly over the nodes at the extreme right edge in direction 1. For calculation of th
ung’s modulus of the filled honeycomb model along direction 2, we fix the degree of freedom

ng direction 2 for the nodes along the extreme bottom edge whose normal is parallel to direction

12
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nd apply the loading uniformly over the nodes at the extreme top edge in direction 2. For th
ear modulus of the filled honeycomb model in the 12 plane, we fix the degree of freedoms bot
ng direction 1 and 2 for the nodes along the extreme bottom edge whose normal is parallel
ection 2 and apply the loading uniformly over the nodes at the extreme top edge in directio
The rotational degrees of freedom at the edges are not constrained in any of the three case

fferent components of strains as per the basic definitions of elastic moduli are calculated base
the deformation of the lattice under respective applied loads. The corresponding stress valu
calculated from the applied edge loads. Subsequently, the elastic moduli are evaluated base

the stress and strain values under small deformation.
In this validation section, we have compared the Young’s and shear moduli of the filled ho

comb that we get from finite element analysis with that of the analytical formulation result
is shown in subfigures (E) and (F) of figure 2 that upto an order of 106 of the infill’s Young
dulus, our results match quite well. Outside this range, the mechanics of deformation involv
er modes that are beyond the scope of current the analytical model. We further note that th
ults are more accurate with respect to finite element simulations when we use the exact elemen
ffness matrix formulation (EESM) compared to the conventional element stiffness matrix fo
lation (CESM). This is expected as explained in the preceding section, particularly when th
er stiffness becomes higher.

Results and discussion

In the previous section, we have noted that the in-plane Poisson’s ratios remain unaffecte
the inclusion of filler material. For the sake of completeness variations of Poisson’s ratios a

own in the supplementary material considering auxetic and non-auxetic configurations (refer
ure S4). The feasibility of manufacturing the auxetic structures (h/l ≥ 2 sin θ) is taken in
count while presenting the results. We concentrate on the two Young’s moduli and the she
dulus for presenting numerical results in the following paragraphs. To accentuate the effect
er material, the results are presented in non-dimensional forms. Though such numerical resul
applicable to different cell angles with auxetic and non-auxetic configurations, one should kee

mind the geometric feasibility for manufacturing as discussed above.

ure 3: Normalised effective elastic moduli of space-filled lattices obtained using convention
ffness matrix and transcendental stiffness matrix. (A) Normalised Young’s modulus Ei/EiGA

, whe
1, 2. Note that although the expressions of E1 and E2 are different, the ratios E1/E1GA

and E2/E2GA
are t

e. Thus we present only one plot that represents the results of both the Young’s moduli. The actual val
the two Young’s moduli, which are different, can be obtained by multiplying the presented numerical values
corresponding Young’s modulus of unfilled lattices. (B) Normalised shear modulus G12/G12GA

. For generalit
e the results are plotted as functions of κ = k/E for a value of η = h/l = 1, α = t/l = 0.1 and γ = b̄/l = 1. T
script GA is used to indicate the elastic moduli obtained based on the case of unfilled honeycomb lattices [25
13
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ure 4: The interaction effect of filler stiffness and height ratios on the in-plane elastic modu
rmalised Young’s moduli Ei/EiGA

(where i = 1, 2) and normalised shear modulus G12/G12GA
are plotted

unction of the filler stiffness ratio κ = k/E and the height ratio γ = b̄/l. Two values of the thickness rat
0.1 and 0.2 are considered. The subscript GA is used to indicate the elastic moduli obtained based on t

e of unfilled honeycomb lattices [25]. Note that although the expressions of E1 and E2 are different, the rati
/E1GA

and E2/E2GA
are the same and these two non-dimensional quantities are independent of η. Thus w

sent only one plot that represents the results of both the Young’s moduli. The actual value of the two Young
duli, which are different, can be obtained by multiplying the presented numerical values by the correspondi
ung’s modulus of unfilled lattices (refer to the supplementary material section S2 where closed form expressio
provided for the effective Young’s modulus of unfilled lattices). (A) Young’s modulus with α = 0.1 (B) Young
dulus with α = 0.2 (C) Shear modulus with microstructural configuration: η = 1, α = 0.1 (D) Shear modul
h microstructural configuration: η = 2, α = 0.1.

From the expressions of E1, E2 and G12 obtained in terms of non-dimensional geometrical an
terial parameters following the conventional and transcendental stiffness matrix (refer to Tab
it can be verified that when the filler material is not present (by taking the limit κ → 0), th

pressions reduce to the classical expressions provided in literature by Gibson and Ashby [25
ong with the detailed finite element validation presented in the preceding section, this renders a
act analytical validation of the proposed derivations as a special case. Further confidence on th
veloped formulation can be obtained by comparing the numerical results from the convention
d transcendental stiffness matrices. In the preceding section, it is shown that the elastic modu
tained using transcendental stiffness matrices are more accurate, while the formulation based o
nventional stiffness matrix is valid only for relatively lesser stiffness of the filler material. Thu
e elastic moduli obtained using the two approaches are expected to match only for a low stiffne
the filler material. This aspect will be more evident from the numerical results presented lat
this section.
In order to compare both the approaches, in figure 3, Young’s moduli (E1 and E2) and she
14
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dulus (G12) are shown as functions of κ = k/E. The values in the Y-axis are normalised wit
pect to the equivalent classical results without any filler [25] (the equations of five in-plan
stic moduli are presented in supplementary material section S2), as indicated by subscrip
. Although the expressions of E1 and E2 are different, the ratios E1/E1GA

and E2/E2GA
a

e same. Therefore, only Ei (where i = 1, 2) is considered in figure 3. The parameters use
figure 3 are η = h/l = 1, α = t/l = 0.1 and γ = b̄/l = 1. As explained before, it can b
served that the results obtained using the conventional stiffness matrix is accurate only for ver
all values of κ. This demonstrates the advantage of using the proposed approach with th
nscendental stiffness matrix. The closed-form expressions in equation (18), (24) and (32) a

act and therefore valid for higher values of the filler stiffness. In figure 3, significant increase
e effective moduli is observed. Such enhancement can have a potential impact on engineerin
plications. This motivates us to study how the effective moduli increase as different paramete
the model change.
In figure 4(A-B), contours of normalised Young’s moduli Ei/EiGA

are plotted as a function
e filler stiffness ratio κ and the height ratio γ. Two values of the thickness ratio, namely, α = 0
d 0.2 are shown, wherein it can be noticed that when the cell walls are thinner, the infill h
re influence on the equivalent Young’s modulus (note that Ei/EiGA

for i = 1, 2 are independen
η). For an infill stiffness of only 10%, it is possible to increase the equivalent Young’s modulu
an order of magnitude. This is encouraging as lightweight elastic foams can be used as an infi
substantially increase Young’s modulus. Closed-form formulae derived in this paper can be use
design such composite 2D lattices efficiently.
Contours of normalised shear modulus G12/G12GA

are plotted as a function of the filler stiff
ss ratio κ and the height ratio γ in figure 4(C-D). Two values of η, namely η = h/l = 1, 2 a
nsidered. The normalised shear modulus increase with η. The pattern of change with respe
the other parameters remain similar to the case of E1 and E2. Again we note that orders
gnitude of increase in the shear modulus is possible with the inclusion of the filler materia
rther numerical results for the Young’s moduli and shear modulus to investigate the effects
and η are presented in the supplementary material (refer to figures S2 and S3). In general, th
merical outcomes demonstrate that the developed analytical framework for the elastic modu
uld be utilised for efficiently designing space-filled lattices to simultaneously possess differen
lues of the elastic moduli by identifying the appropriate microstructures. Such explicit mod
ion of stiffness corresponding to longitudinal, transverse and shear modes would facilitate th
velopment of engineered microstructures with programmable direction-dependent dynamic pro
ies. The closed-form formulae would also act as a ready reference to characterise the structur
bility of different mechanical and biological systems (naturally occurring and artificial) an
lti-functional devices where filled-honeycombs are present.

Conclusions and perspective

An analytical framework leading to closed-form formulae for the effective in-plane elastic mo
of space-filled hexagonal lattices is proposed. In general, the elastic properties of lattice-lik

neycomb structures have received tremendous attention from the scientific community over th
t few decades. Traditionally such lattices are made of a network of beams in two and thr
ensions with majority of the volume of the lattice structures being void space. Recent

earchers have started exploring ways to utilise this void space for multi-functional proper
dulation of lattices. For example, if we could have a filled multi-material lattice structur

e global mechanical behaviour including different elastic moduli, wave propagation, vibratio
pact and acoustic features can be simultaneously modulated in a substantially expanded desig
ace with additional parameters related to the stiffness, mass and damping of the filler, leadin
exciting multi-functional properties. However, the effective elastic moduli are always of cr
l importance to ensure the structural viability of various multi-functional devices and system
ere a space-filled lattice material could potentially be used. Here we have developed analytic
15
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pressions for the effective in-plane elastic moduli of such space-filled lattices based on an exa
ment stiffness matrix approach coupled with the unit cell method, wherein the transcendent
ape functions are used to satisfy the equilibrium at all points of the structural domain. Th
nscendental functions are obtained from the exact solution of the underlying differential equ
ns with appropriate displacement boundary conditions. For establishing the analytical model w
ve proposed a mechanical equivalence of space-filled lattices with equivalent networks of bea
ments. The numerical results are compared with the elastic moduli obtained from tradition
ffness matrices, wherein a good agreement is found for relatively lesser value of the filler stiffnes
e proposed expressions of the elastic moduli converge to the classical closed-form expression

ovided in the scientific literature when the stiffness of the filler material tends to zero, leadin
an exact analytical validation as a special case. Further, separate finite element simulation
carried out to validate the closed form expressions of space-filled lattices. From the derive

alytical expressions, it becomes evident that the two Poisson’s ratios are not affected by th
esence of filler material, while two Young’s moduli and the shear modulus can be modulate
nificantly depending on the filler stiffness. The physics-based analytical formulae reveal th
stic properties of the space-filled lattice depend on the thickness of the lattice sheet unlike th
se of conventional honeycombs without any filler material.

From the perspective of engineered material microstructures, the present investigation intr
ces a new dimension in terms of the properties of filler material for simultaneously modulatin
lti-physical mechanical behaviour of lattice materials. The scope of explicit modulation of stiff

ss corresponding to longitudinal, transverse and shear modes, besides rendering the possibili
designing application-specific multi-objective static deformation behaviour, would facilitate th
velopment of engineered microstructures with programmable direction-dependent dynamic an
ve propagation properties. The numerical results show that the inclusion of filler material wit
en a relatively lower stiffness value (normalised filler stiffness ∼0.1) can lead to an increase
e effective elastic moduli up to few orders of magnitude. This effect can potentially be exploite
the design of novel space-filled composite lattices for having higher global stiffness and simu
eously modulating different in-plane normal and shear components. The efficient analytic
mework will also act as a ready reference to characterise the structural viability of differen
chanical and biological systems (naturally occurring and artificial) and multi-functional devic
ere filled honeycombs are present.
The proposed analytical formulae will have an impact both in the forward (for readily chara

ising different components of the stiffness of a filled lattice designed for other multi-function
plications or already in existence) and inverse analyses (for identifying the lattice microstru
re in a significantly expanded design space to achieve multi-objective goals related to possessin
adequate level of multiple elastic moduli with the possibility of significantly enhancing them
lattice-like systems across the length-scales. Even though here we have concentrated on th
alysis of hexagonal lattices, the disseminated concepts (including the general methodology
rivation and numerical results) can be extended to other forms of beam-based lattices and met
terials with two and three dimensional structural forms. Such closed-form analytical expression

ovide a computationally efficient paradigm to investigate the system in intricate details and wit
equate level of physical insights, leading to the scope of material innovation without the pra
al hindrance of computational or experimental expenses and time. This will be particular
pealing for innovating next-generation of application-specific multi-functional material micr
uctures where thousands of realisations are required to be analysed due to the involvement
erse identification algorithms based on multi-objective optimisation.
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ighlights 

 Traditionally lattice materials are made of a network of beams in two and three dimensions with majority o

the volume being void space, which is explored here for prospective exploitation.  

 We have developed closed-form analytical expressions for the effective elastic moduli of space-filled lattice

based on an exact stiffness matrix approach coupled with the unit cell method.  

 Numerical results show that the effective in-plane elastic moduli can increase by orders of magnitude with 

relatively lower infill stiffness (~10%).  

 The composite lattices can potentially be exploited in the design of novel space-filled metamaterials for mult

directional and multi-modal stiffness demands.  

 The efficient analytical framework will act as a ready reference to characterize the structural viability o

different mechanical and biological systems (naturally occurring and artificial) and multi-functional devices
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