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Abstract

This note discusses the possibility of fair gain sharing in cooperative situ-
ations where players optimally partition themselves across a number of al-
ternative channels. An example is group purchasing among a set of buyers
facing with a range of suppliers. We introduce channel selection games as
a new class of cooperative games and give a representation of their cores.
With two channels (suppliers), the game has a non-empty core if the gain
functions across every individual channel is supermodular.
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1. Introduction

In some collaborative situations, the participants (players) organize them-
selves across a set of alternative channels to maximize their gain. The alter-
native channels may represent different suppliers, logistics service providers,
or adopted technologies. As a special instance, consider buyers in a group
purchasing organization who collaboratively select their suppliers for differ-
ent products that they procure. An example of such a situation was recently
studied in Hezarkhani et al. [8] where buyers optimize their purchases across
two alternative channels: an intermediary and an original equipment manu-
facturer.

∗Corresponding author. Tel: +44 7856 798 974
URL: m.slikker@tue.nl (Marco Slikker), b.hezarkhani@gmail.com (Behzad

Hezarkhani)

Preprint submitted to Elsevier August 3, 2018



The supplier selection problem has been the subject of extensive study
in the literature (see for example Ghadimi et al. [5], Yu and Wong [16],
Mohammaditabar et al. [9] and references therein). The advantages of col-
laboration in this context can be intuitive—combining bargaining powers or
deliveries results in savings. Yet, the mere existence of economies of scale
does not necessarily grants the formation and sustenance of a collaborative
organization. From a cooperative game theory point of view, the possibility
of sharing the obtained savings among the players in a “fair” manner is a
crucially important requirement. A widely adopted notion of fairness in the
literature requires that each subgroup of players receives at least as much as
they could accrue on their own. Accordingly, an allocation of gains among
the players is called stable if it satisfies the latter condition. The core of a
cooperative game [13] contains all stable allocations which divide total sav-
ings among the players. It is worth mentioning that although the literature
often associates the definition of the core to Gillies [6], it was Shapley [13]
who first defined the core in its current form [17].

In this note, we introduce channel selection games where coalitions of
players optimally partition themselves across a set of given channels. The
underlying optimization problems in these games are the same as the winner-
determination problem in combinatorial auctions (see for example Sandholm
[10]) where a set of products are distributed among a set of bidders with
different valuation functions to maximize the sum of all bidders’ valuations.
However, to the best of our knowledge, previous literature does not study
cooperative games with the same structure as ours. Unlike partition games
(e.g. Deng et al. [3]), players in channel selection games choose among a
fixed number of distinct options with non-homogeneous costs, and dissimilar
to assignment games (e.g. Shapley and Shubik [15]), here multiple players
can be assigned to a single channel.

We give a representation of the cores of channel selection games in terms
of intersections of extended contra-polymatroids associated with gain func-
tions across all channels (e.g. savings obtained by joint purchasing from each
supplier), and provide two main observations regarding the existence of allo-
cations in the core of channel selection games. First, if the number of channels
is two and the gain function across every channel is supermodular, then the
core of the associated game is always non-empty. We prove this result using
the generalization of Edmond’s matroid intersection theorem [4]. This closes
an open problem in Hezarkhani et al. [8] regarding the non-emptiness of the
core of games associated with collaborative replenishment situations in the
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presence of intermediaries. Second, if the number of channels is more than
two, then the core of a channel selection game may be empty, even under
supermodularity conditions.

2. Preliminaries

Let N be a non-empty finite set, and let v : 2N → R be a set function
defined on N . The set function v is:

• monotonic if for every S, T ⊆ N , S ⊂ T we have v(S) ≤ v(T ),

• additive if for every S ⊆ N , we have v(S) =
∑

i∈S v({i}),

• superadditive if for every S, T ⊆ N , S ∩ T = ∅, we have v(S) + v(T ) ≤
v(S ∪ T ), and

• supermodular if for every S, T ⊆ N we have v(S) + v(T ) ≤ v(S ∪ T ) +
v(S ∩ T ).

A supermodular set function is also superadditive and a non-negative super-
additive set function is also monotonic.

A cooperative game is a pair (N, v) with player set N and characteristic
function v, which is a set function defined on N such that v(∅) = 0. A
pivotal question in cooperative game theory concerns finding appropriate
ways to allocate the gains of the grand coalition among the players. Given
the game (N, v) an allocation x ∈ RN is called efficient if

∑
i∈N xi = v(N),

and stable if for every S ⊆ N we have
∑

i∈S xi ≥ v(S). Denote the set of
stable allocations for (N, v) with Q(N, v), that is

Q(N, v) =

{
x ∈ RN

∣∣∣∣∣∀S ⊆ N :
∑
i∈S

xi ≥ v(S)

}
.

In polyhedral combinatorics, the set Q(N, v) is referred to as the extended
contra-polymatroid associated with set function v. The core of a cooperative
game is the set of all efficient and stable allocations for that game. The core
of (N, v) is defined via:

C(N, v) =

{
x ∈ Q(N, v)

∣∣∣∣∣∑
i∈N

xi = v(N)

}
.
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With an allocation in the core the value of the grand coalition can be dis-
tributed among the players such that each coalition of players receives at
least as much as its endogenous value. The core of a cooperative game can
be empty. A cooperative game with a supermodular characteristic function
is called convex. The core of a convex game is always non-empty [12].

3. Channel Selection Games

Suppose a non-empty finite set of channels M exists to select from. For
a channel j ∈ M , let wj : 2N → R+ be channel j’s gain function which
gives the non-negative and finite gain obtained by every coalition of play-
ers that select channel j such that wj(∅) = 0. With the interpretation of
channels as suppliers, a gain function specifies per coalition the cost savings
from joint purchasing if all players in the coalition buy via this channel. A
channel selection situation is (N,M, (wj)j∈M) with its elements being defined
previously.

For every S ⊆ N , let (Tj)j∈M be a partition of S over the channels. That
is, for every j, k ∈M we have Tj ∩Tk = ∅ and

⋃
j∈M Tj = S. Let S the set of

all such partitions. The characteristic function of the channel selection game
(N, v) assigns to each coalition S ⊆ N the value:

v(S) = max
(Tj)j∈M∈S

∑
j∈M

wj(Tj).

Let (T S
j )j∈M be an optimal partition of S over the channels.

If all wj are supermodular functions, it is known that the optimization
problem above for |M | = 2 is solvable in polynomial time [7], but for |M | ≥ 3
the optimization problem becomes NP-hard [2]. Nevertheless, if all gain func-
tions are supermodular then there would be economies of scale in cooperation
and the characteristic function of the associated cooperative channel selection
game would at least be superadditive.

Given the definition of gain functions and games, a channel selection
game can be regarded as a combination of cooperative games associated with
its individual channels. Let (N,wj) be channel j’s individual cooperative
game. The first result of this note gives a representation of the core of a
channel selection game with respect to the stable allocations of the individual
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cooperative games associated with all its channels. Define

Ĉ(N, v) =

{
x ∈ RN

∣∣∣∑
i∈N

xi = v(N), x ∈
⋂
j∈M

Q(N,wj)

}
.

The set Ĉ(N, v) contains all efficient allocations for (N, v) which are stable
for all channels’ individual games.

Theorem 1. Given a channel selection situation (N,M, (wj)j∈M) we have

C(N, v) = Ĉ(N, v).

Proof. We proceed in two steps:
[Step 1]: C(N, v) ⊆ Ĉ(N, v): Let x ∈ C(N, v) and suppose that for j ∈M ,

x /∈ Q(N,wj). This means that there is S ⊆ N such that
∑

i∈S xi < wj(S).
Given the definition of v it follows immediately that for every j ∈ M and
every S ⊆ N we have v(S) ≥ wj(S). Thus, it must be that

∑
i∈S xi <

v(S) which contradicts the assumption. Therefore, if x ∈ C(N, v) then x ∈⋂
j∈M Q(N,wj). Since

∑
i∈N xi = v(N) it follows that C(N, v) ⊆ Ĉ(N, v).

[Step 2]: Ĉ(N, v) ⊆ C(N, v): Let x ∈ Ĉ(N, v). By definition we have∑
i∈N xi = v(N). Let S ⊆ N be an arbitrary coalition and (T S

j )j∈M an
optimal partitioning of S across channels. For every j ∈M , as x ∈ Q(N,wj)
we have

∑
i∈TS

j
xi ≥ wj(T

S
j ). Hence, we have

∑
i∈S xi ≥

∑
j∈M wj(T

S
j ) =

v(S) which implies that x ∈ C(N, v). Therefore Ĉ(N, v) ⊆ C(N, v).
Combining these two steps concludes that C(N, v) = Ĉ(N, v).

As the above theorem indicates, the core of a channel selection game is
exactly the set of efficient allocations which are situated at the intersection of
extended contra-polymatroids associated with its channels’ gain functions. In
the remainder of this note, we examine nonemptiness of the core of a channel
selection game.

4. Case of Two Channels

For the case with two channels, the characteristic function of the game
with player set N and channel gain functions w1 and w2 can be written as

v(S) = max
T⊆S
{w1(T ) + w2(S \ T )}.
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Theorem 2 in Hezarkhani et al. [8] proves that in two-channel situations if
one of the gain functions is supermodular and the other is additive, then the
characteristic function of the associated game is supermodular so the game
is convex and thus its core is non-empty. The first result of this note extends
the latter by presenting a more general sufficient condition for nonemptiness
of the cores of channel selection games with two channels.

Theorem 2. Given a two-channel situation with supermodular gain func-
tions, the core of the associated channel selection game is non-empty.

Proof. Let (N, {1, 2}, (w1, w2)) be a channel selection game and assume that
w1 and w2 are supermodular. By Theorem 1, to prove the nonemptiness of
the core it suffices to show that Ĉ(N, v) 6= ∅.

First we introduce some definitions. A system Ax ≤ b in n dimensions is
called totally dual integral if A and b are rational and for each c ∈ Zn, the
dual of the program max{cᵀx|Ax ≤ b}, i.e., min{yᵀb|y ≥ 0, yᵀA = cᵀ}, has
an integer optimum solution y if it is finite (Schrijver [11], p. 76). A system
Ax ≤ b is called box-totally dual integral if the system d ≤ x ≤ e, Ax ≤ b
is totally dual integral for each choice of vectors d, e ∈ Rn (Schrijver [11], p.
83). A box-totally dual integral system is also totally dual integral.

The following is due to Schrijver [11] (Corollary 46.1d): if w1 and w2

are supermodular set functions, then for the intersection of their associated
extended contra-polymatroids, i.e.

Q(N,w1)∩Q(N,w2) =

{
x ∈ RN

∣∣∣∀S ⊆ N :
∑
i∈S

xi ≥ w1(S) and
∑
i∈S

xi ≥ w2(S)

}

the underlying system is box-totally dual integral. Note that by changing
the sign of the objective function in the original definition, box-totally dual
integral property can be expressed in terms of a minimization primal and a
maximization dual. This means that given the optimization program:

min
x∈RN

{∑
i∈N

xi

∣∣∣x ∈ Q(N,w1) ∩Q(N,w2)

}
,

the associated dual has integer optimal solutions (note that since w1 and w2

are finite, the program above has a finite optimal value.). The dual to the
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above program is

max
y1,y2∈R2N\∅

+

 ∑
S⊆N,S 6=∅

yS1w1(S) + yS2w2(S)
∣∣∣∀i ∈ N :

∑
S⊆N,S3i

yS1 + yS2 = 1

 .

The fact that an integer optimal solution y exists for the above program
implies that (a) for every S ⊆ N,S 6= ∅, we have yS1 , y

S
2 ∈ {0, 1}; (b) for

every S ⊆ N,S 6= ∅, it holds that yS1 y
S
2 = 0; and (c) for every i ∈ N there

exists exactly one S ⊆ N,S 6= ∅, S 3 i, such that either yS1 = 1 or yS2 = 1.
The latter means that for every non-empty subsets S, S

′ ⊂ N , S 6= S
′
, such

that ySk = yS
′

k = 1, k ∈ {1, 2}, it must be that S ∩ S ′ = ∅.
Next, we show that there exists an optimal solution y to the dual wherein

for every k ∈ {1, 2} there is at most one S ⊆ N,S 6= ∅, such that ySk 6= 0. To
see this, assume the contrary and consider non-empty pair of subsets S, S ′ ⊂
N , S ∩ S ′ = ∅, such that with the optimal solution (y1, y2), we have w.l.o.g.
yS1 = yS

′
1 = 1. Consider the alternative solution (ẏ1, y2) which is identical to

(y1, y2) except that ẏS1 = ẏS
′

1 = 0 and ẏS∪S
′

1 = 1. Since w1 is supermodular,
we have

∑
S⊆N ẏS1w1(S) + yS2w2(S) ≥

∑
S⊆N yS1w1(S) + yS2w2(S). Therefore

there always exists an optimal dual solution such that for some T ⊆ N we
have yT1 = 1 and yS1 = 0 for all S ⊆ N , S 6= T , and y

N\T
2 = 1 and yS2 = 0

for all S ⊆ N , S 6= N \ T . Hence, the optimal value of the dual program is
the solution to maxT⊆N w1(T ) +w2(N \T ) = v(N). Using the strong duality
theorem we get

min
x∈RN

{∑
i∈N

xi

∣∣∣x ∈ Q(N,w1) ∩Q(N,w2)

}
= v(N).

The above implies that there exists x ∈ RN such that x ∈ Q(N,w1) ∩
Q(N,w2) and

∑
i∈N xi = v(N). Hence Ĉ(N, v) 6= ∅.

The proof of Theorem 2 draws upon the generalization of Edmond’s ma-
troid intersection theorem [4] to establish the nonemptiness of the cores of
channel selection games with two channels whose gain functions are super-
modular.

We provide two further remarks with regard to the relationships between
the properties of channels’ gain functions and their associated channel selec-
tion games. Our first observation indicates that non-emptiness of the cores

7



S ∅ {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3}{1, 2, 4}{1, 3, 4}{2, 3, 4} N
w1 0 3 0 0 0 3 3 3 0 0 0 3 3 3 0 3
w2 0 2 0 0 0 4 4 3 4 3 3 6 5 5 4 7
v 0 3 0 0 0 4 4 3 4 3 3 7 6 6 4 7

Table 1: Situation in Example 1

of cooperative games associated with individual channels does not guarantee
the same for the corresponding channel selection game because the intersec-
tion of stable allocations for the individual channel games may be empty.
Before providing a counterexample we present a condition for emptiness of
the core.

Lemma 1. Let (N, v) be a game. The core of (N, v) is empty whenever∑
i∈N v(N \ {i}) > (|N | − 1)v(N).

Proof. Let x be an allocation in the core. Given i ∈ N , the stability condition
for coalition N \ {i} requires that

∑
j∈N\{i} xi ≥ v(N \ {i}). Combined

with the efficiency condition, it must be that xi ≤ v(N) − v(N \ {i}) for
all i ∈ N . Summing the later inequalities combined with efficiency yields∑

i∈N v(N \ {i}) ≤ (|N | − 1)v(N) as a necessary condition for the existence
of allocations in the core.

The condition in Lemma 1 can also be derived as a special case of Bondavera-
Shapley theorem [1, 14] on balanced games. Consider the following example.

Example 1. Let N = {1, 2, 3, 4} and M = {1, 2}. Table 1 gives the values of
channels’ gain functions w1 and w2 (which also correspond to characteristic
functions of cooperative games (N,w1) and (N,w2) associated with indi-
vidual channels), as well as the characteristic function v of their associated
channel selection game (N, v). Since (3, 0, 0, 0) and (2, 2, 2, 1) are core allo-
cations in games (N,w1) and (N,w2) respectively, both individual channel
games have non-empty cores. However, the core of (N, v) is empty. In this
example we have v({1, 2, 3}) + v({1, 2, 4}) + v({1, 3, 4}) + v({2, 3, 4}) = 23 >
21 = 3v(N). By Lemma 1 the core of (N, v) must be empty. 4

Accordingly, we have the following remark.

Remark 1. Consider the channel selection situation (N, {1, 2}, (w1, w2)). If
the games (N,w1) and (N,w2) have non-empty cores, (N, v) does not neces-
sarily have a non-empty core.
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S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

w1 0 0 0 1 0 0 1
w2 0 0 0 0 1 0 1
v 0 0 0 1 1 0 1

Table 2: Situation in Example 2

The second observation states that supermodularity of channels’ gain
functions is not a sufficient condition for convexity of the associated channel
selection games. Consider the following example.

Example 2. Let N = {1, 2, 3} and M = {1, 2}. Table 2 gives the values of
the channels’ gain functions w1 and w2 as well as the characteristic function
of their associated game in this example. It is easily verifiable that the
gain functions over both channels are supermodular. In order for v to be
supermodular we must have v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). To test
the supermodularity of v, consider the coalitions S = {1, 2} and T = {1, 3}.
Observe that the condition for supermodularity is not preserved with the
latter choice of subcoalitions. Thus v is not supermodular and the game is
not convex. 4

The following remark expresses this observation.

Remark 2. Consider the channel selection situation (N, {1, 2}, (w1, w2)). If
w1 and w2 are supermodular, v is not necessarily supermodular so (N, v) is
not necessarily convex.

5. Case of Three (or More) Channels

We provide an example to show that with three channels the cores of
channel selection games can be empty, even if the gain functions across all
channels are supermodular.

Example 3. Let N = {1, 2, 3} and M = {1, 2, 3}. Table 3 gives the values
of channels’ gain functions as well as the characteristic function of their
associated game. In this example all gain functions are supermodular. In
this example we have v({1, 2}) + v({1, 3}) + v({2, 3}) = 3 > 2 = 2v(N). By
Lemma 1 the core of (N, v) must be empty. 4

In light of the the above example, we have our last remark.
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S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

w1 0 0 0 0 0 1 1
w2 0 0 0 1 0 0 1
w3 0 0 0 0 1 0 1
v 0 0 0 1 1 1 1

Table 3: Situation in Example 3

Remark 3. The core of a channel selection game with more than three chan-
nels can be empty, even if all channels’ gain functions are supermodular.

The above result reveals a fundamental obstacle regarding finding fair
allocations in channel selection games when more than two channels exists.
In the context of collaborative supplier selection in group purchasing, this
means that buyers who aim for organizing their purchases optimally across
three or more suppliers may find it impossible to find allocations in the core
for the grand coalition—even under the supermodularity of savings obtained
from cooperative purchasing via individual suppliers.

A natural direction for future research is to find conditions, perhaps
stronger than supermodularity, that guarantee the non-emptiness of cores
of channel selection games with three or more channels.

[1] O. N. Bondareva. Some applications of linear programming methods
to the theory of cooperative games. Problemy kibernetiki, 10:119–139,
1963. (In Russian).

[2] V. Conitzer, T. Sandholm, and P. Santi. Combinatorial auctions with k-
wise dependent valuations. In Proc. 20th national conference on artificial
intelligence (AAAI-05), pages 248–254, 2005.

[3] X. Deng, T. Ibaraki, H. Nagamochi, and W. Zang. Totally balanced
combinatorial optimization games. Mathematical Programming, 87(3):
441–452, 2000.

[4] J. Edmonds. Matroid intersection. Annals of discrete Mathematics, 4:
39–49, 1979.

[5] P. Ghadimi, F. Ghassemi Toosi, and C. Heavey. A multi-agent systems
approach for sustainable supplier selection and order allocation in a
partnership supply chain. European Journal of Operational Research,
2017.

10



[6] D. B. Gillies. Solutions to general non-zero-sum games. Contributions
to the Theory of Games, 4:47–85, 1959.

[7] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and
its consequences in combinatorial optimization. Combinatorica, 1(2):
169–197, 1981.

[8] B. Hezarkhani, M. Slikker, and T. Van Woensel. Collaborative replenish-
ment in the presence of intermediaries. European Journal of Operational
Research, 266(1):135–146, 2018.

[9] D. Mohammaditabar, S. H. Ghodsypour, and A. Hafezalkotob. A game
theoretic analysis in capacity-constrained supplier-selection and cooper-
ation by considering the total supply chain inventory costs. International
Journal of Production Economics, 181:87–97, 2016.

[10] T. Sandholm. Approaches to winner determination in combinatorial
auctions. Decision Support Systems, 28(1):165–176, 2000.

[11] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, vol-
ume 24. Springer Science & Business Media, 2002.

[12] L. Shapley. Cores of convex games. International Journal of Game
Theory, 1(1):11–26, 1971.

[13] L. S. Shapley. Markets as cooperative games. Technical report, Rand
Corporation Paper P-629, 1955.

[14] L. S. Shapley. On balanced sets and cores. Naval Research Logistics
(NRL), 14(4):453–460, 1967.

[15] L. S. Shapley and M. Shubik. The assignment game i: The core. Inter-
national Journal of game theory, 1(1):111–130, 1971.

[16] C. Yu and T. N. Wong. A product bundle determination model for
multi-product supplier selection. Journal of Intelligent Manufacturing,
26(2):369–385, 2015.

[17] J. Zhao. Three little-known and yet still significant contributions of
Lloyd Shapley. Games and Economic Behavior, 108:592–599, 2018.

11


