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Introduction

In this note we generalize Manin’s calculation of the Chow motif of projective fibre bundles (see
[10]) to homogenous spaces of the form G/P:

Theorem: Let G be a k-split reductive linear algebraic group defined over a field k and let
P be a parabolic subgroup of G. Then the Chow motif Y := (Y, Ay) of the smooth projective
k-variety Y := G/P decomposes in a direct sum of twisted Tate motifs as follows:

}N/ ~ @L®dimw_
w )

here w runs through the set of cells of Y.

In particular we obtain the Chow motif of the Grassmann variety G4 of d-planes in the vector
space k™. More generally by using Manin’s identity principle we get the Chow motif of the
Grassmann bundle G4(F) for any vector bundle E on any smooth projective k-variety X .

Being a first approach towards a universal cohomology theory for algebraic varieties the theory
of Chow motifs in particular yields a calculation of higher Chow groups. Furthermore by using
the Riemann-Roch theorem (see [1]) we get analogous statements for higher K -theory with
denominators. For example we have:

Ky(Ga(E))y = K (X)§

here N is the number of cells of the Grassmann variety Gy .

For any variety Y, which possesses a cellular decomposition, the higher Chow- and K -groups
of Y can also be obtained by using the localization sequence and the homotopy theorem (see
appendix).

I would like to thank C. Deninger, U. Jannsen and G. Tamme for many stimulating discussions.

1 Bruhat Decomposition and classical Chow Theory of G/P

Let k be a field and let G be a k-split reductive linear algebraic group defined over k. We fix
a maximal k-split k-torus 7" in G and a Borel subgroup B of G containing T and defined
over k. We consider the set of simple B-positive roots and let denote S the corresponding set
of reflections in the Weylgroup W . Then the pair (W, S) is a Coxeter system in the sense of
Bourbaki ([3]). Let

l: W — INg

be the length function relative to the system S of generators of W .



Futhermore we fix a subset 6 of S and let denote Wy the subgroup of W generated by 6.
Let Py := BWyB be the corresponding parabolic subgroup of G and let Y be the projective
smooth k-variety G/P.

Subsequently we recall the Bruhat decomposition of Y and deduce the classical Chow theory
of Y from the one of X := G/B. For this W is defined to be following subset of W :

WY ={weW :l(ws)=I(w)+1foralls e}

(1.1) Proposition: The map
We X Wg — w
(w,wy) — wwy

is bijective. Furthermore we have for any w € W and any wy € Wp:
l(wwyg) = l(w) + l(wy).

In particular W7 is precisely the elements of smallest length in each coset wWj.

Proof: [7], theorem (5.3), p. 43.

For any w € W let )%w be the locally closed Schubert cell BwB/B in X and let X,, be the

closure of )o( w in X . Similarly for any w € W? let }S'w respecively Y,, denote the cell BwP/P
respectively the closure of BwP/P in Y .

(1.2) Lemma: Let p: X — Y be the canonical projection. Then:
a) The morphism p is smooth.
b) For any w € W? we have

_1 (0] [e)
= U .
p (Y'w) wo€W,p wag

¢) For any w € W? the projection
P :Xw—=>Yuw
is an isomorphism of varieties.
Proof: By faithfully flat descent we can assume, that k is algebraically closed.
a) By definition of quotient varieties (see [8]) the map p: X — Y is separable, i. e. generically
smooth. By homogeneity the claim follows.
b) For any w € W? wy € W, we obtain from [8], Lemma A (a) in 29.3, p. 177 and from
proposition (1.1):
(%) wBwy € BwwyB.
Hence for any w € W? we have

p~ Y (Yw) = BuP/B=( U BwBuweB)/B =
wo €Wy

- BuwuwyB)/B = X oo -
(’wggWQ wie )/ ’wggWQ wae

Last union is a disjoint union of cells of X (see [4]).
c¢) By similar arguments as in a) the surjective morphism

P:Xw—Yuw



is smooth. So it suffices to show injectivity: Let bw € BwP/P :)311,. Then

~1(bw) =bwP/BN BwB/B
= {bwB/B} ((%) + Bruhat decomposition for G/B, see [4])

(1.3) Proposition (Bruhat decomposition for G/P):
a) Y = U’wEW9 YU) .

b) For any w € W the cell }310 is k-isomorphic to the affine space Agw)

of dimension [(w).
Proof: For example this follows from (1.2) and from Bruhat decomposition for X (see [4]).

Let wyg € W respectively vy € Wy be the element of maximal length in W respectively Wy.
Then by (1.1) and (1.3) I(wg) respectively I(wg) —I(vo) is the dimension of X respectively Y .
(1.4) Proposition (Orthogonality relations in CH*(G/P)): Let S be a smooth k-variety
and let w, w' be two elements of W% with [(w) + {(w') < I(wg) — I(vo) . Then the intersection
of the cycle [Yy, x S] with the cycle [V, x S] in CH*(Y x.8) is 0w wow'v, - [Y1 X S]. (Y71 is the
single point {1}!)

Proof: We can assume S = Spec(k). Let p: X — Y denote the projection. Then:

Yol - [Yor] = [Yu] - p«[Xuw] (Lemma (1.2)c))
= p«(p [ w] - [Xw])  (Projection formula)
= P«([Xwvo] - [Xur])  (Lemma (1.2)b))
= Ps(Owwo,wow’ - [X1])  ([5], Proposition 1(a), p. 69)
= 0w wow'vo * [Y1] (because v3 = 1)

(1.5) Corollary (Chow theory of G/P): Let S be a smooth k-variety. Then the map

@® CH*(S) — CH*(Y x59)
weWw?e

(Qw)wemwo =y [V X o
weWw?

is an isomorphism of groups. In particular:

a) CH(Y) = ®ewe Z[Yy)
b) The ring homomorphism

CH*(Y)®CH*(Y) — CH*(Y xY)
a®p — ax
is an isomorphism.

Proof: This follows from (1.3) and (1.4) (compare the proof of the corollary on page 69 in [5]).

2 The Chow motif of G/P

Let V be the category of (connected) smooth projective varieties over a fixed ground field k.
Then the additive category CV° of Chow correspondences of degree zero is defined as follows:
The objects are the objects of V' and the morphisms in CV° are defined by Hom(X,Y) :=
CHY™MX(X xY). The composition of two correspondences f € Hom(X,Y) and g € Hom(Y, 2)
is given by

go f:= (p13)«(pia(f) - P23(9)) € Hom(X, 2),



where notation of the type pi13 : X XY x Z — X X Z means the projection onto the product
of the first and third factors. The category of Chow motifs arises from CV° by adding formally
cernels of projectors (see [10]): The objects are pairs (X,p) with X € V and p € End(X) =
CHY™X (X x X) with pop = p; the morphisms are defined by

HOHl((X,p), (Y7 Q)) = {f € HomCVO(X7 Y) : fp = Qf}/{f : fp = Qf = O}
The n-fold twist L®™ of the Tate motif L is the pair (IP",[IP" x pt]) (see [10]).
Let Y := (Y, Ay) be the motif of the smooth projective k-variety Y = G/P of section 1.

(2.1) Theorem: The motif ¥ decomposes in a direct sum of twisted Tate motifs as follows:

y = o L®l(w)
weW?

The proof of (2.1) is based on following lemma:

(2.2) Lemma:
a) End(Y) = ® Yy X Yyl
w,w €W [(w)+1(w")=l(wo)—I(vo) ~
b) For any two elements [Y,, X Y], [V, X Yv] in End(Y) we have:

[Yw X Yw’] © va X Yv’] = 5v’,w0wvo [Y:U X Yw’]

Proof: Statement a) is an immediate consequence of corollary (1.5). For b) let
P12,P23,P13: Y XY XY =5V xY

denote the canonical projections. Then:

Yo x Yor] o [Yy x Yy =
(pls) ((pl ) Yo X Y] - (p23)*[Yo X Ya]) (by definition of o)
(p13) ([Yv X Yy’ X Y] [Y X Yw X Yw’])
= (p13)«([Yo X (Yor - Yi) X Yir]) ([6], Example 8.1.4)
= (p13)«((p13)*[Yo X Yo - [Y x (Y - Ya) x Y]) ([6], Example 8.1.4)
=Y, x Y] (p13)«]Y X (Yo - V) X Y] (Projection formula)

— Gty - [V X Yo
The last equality results from proposition (1.4):

P« (Yo - Yu) = 60 wowvo - 1 in CH*(pt) 2 Z
hence by [6], Proposition 1.7, p. 18:

(P13):[Y % (Yo - Vi) X Y] = 6y gy - 1 in CH*(Y xY).

Proof of (2.1): By proposition (1.1) for any w € W? the element wowuvy is in W, too. So
by Lemma (2.2) the correspondences

Pw = [Yw X onwvo]7 w € W

are pairwise orthogonal projectors in End(Y) with 3, cye pw = 1. Hence:

Y= @ (Y,[Yu *x Yugww))
weWw?



One checks easily, that the homomorphisms [V, x pt] € CHYI™Y (Y x P{®)) and
[P X Viyweo] € CHU ) (IPU®) % YV) between (Y, [Yiy X Yugws]) and (IPH®) [IPL®) x pt]) =
L®Uw) are inverse to each other. Now the claim follows.

Let
H'(—,j): V — (Abelian groups); 1i,j € Z

be a twisted cohomology theory in the sense of [2], Definition 1.1, i. e. a sequence of contravariant
functors indexed by i,j € ZZ. If H'(—,j) factorizes through the category of Chow motifs

% Hi) (Abelian groups)
1
(Chow motifs) ,

then we conclude from theorem (2.1):

H(Y,j)= @ H(L®'™ ).
weW?

For instance we obtain a twisted cohomology theory by means of higher Chow groups (see [1]):
HY(X,j):= CH(X,2j —i).

Associating a correspondence « of degree zero the homomorphism 5 +— (p2)«(pi(5)-«) between
the corresponding Chow groups we get a factorization of H*(—,j) through CV° and therefore
through the category of Chow motifs. In this case by the projective bundle theorem (see [1],
theorem (7.1)) we have H*(L®", j) = H*~?"(Spec(k),j —n) and hence

H'(Y,j)= @ H™"(Spec(k),j - I(w))

This conclusion generalizes the corollary of proposition 1 in [5] on p. 69 to higher Chow groups.
We will deduce it in the appendix again by an argument, which is appropriate for higher K’-
groups, too.

3 Grassmann bundles

In this section we consider the general linear group Gl, over a fixed ground field k. It is a
k-split reductive linear algebraic group, whose Weylgroup is the symmetric group ). In X,
we fix the set

S:={<1,2>,<23>,....,<n—1,n>}

of transpositions. Then the length relative to S of an element 7 € X, is given by
n—1
r) =Y #{i>7:7() <7(5)}
j=1

(see [7], example (1.3a), p. 9).
We fix an integer d € {1,...,n — 1} and let 6; denote the subset

04 := S\{< d,d+1 >}



of S. Then the subgroup Wy of X, generated by 03 is Xy x X,,_g. The element of maximal
length in W respectively Wy is

- 1 ... n respectively  un e 1 ... d d+1 ... n
L A | peevely =g o1 om o d+1 )
Let B be the Borel subgroup of Gl,, consisting of upper triangular matrices and let Py be the

parabolic subgroup BW B of Gl, ; it consists of the matrices of the form < Gold Gl* ) (see
n—d

[7], p- 126).
In the case of Grassmann bundles the set
We={(\,..., ) €ENd:n—d>XN >...> )\ >0}
is a more appropriate description of the subset W% of X, defined in section 1. For any A € W¢
we set [\ := % A and AP = (n —d — A\g_iy1)i=1,..a € WO

(3.1) Lemma: The map
Qa w — Xn

1 e 1 ...
()\1;-~-7)\d) — d fj_‘_ . " .
Ag+1 ... Ai+d increasing enumeration of complement

induces a 1-1-correspondence between W? and the indexset W% C X, defined in section 1.
Furthermore we have [(a(\)) = |A| and «a(\°P) = woa(\)vg .

Proof: This follows from [7], Lemma 5.3, p.158.
Let G4 be the Grassmann variety of d-planes in the vector space k™. The stabilizer of the

d-plane < eq,...,eq > under the natural (transitive) action Gl,, x G4 — G4 is the parabolic
subgroup FP;; hence we obtain a canonical isomorphisms

Gl,/Py = Gy

(see [7], p. 127).
So theorem (2.1) gives us following calculation of the Chow motif G, of the Grassmann variety
Gd .

édg & L®|)‘|.
Aewd

Subsequently we will generalize this fact to arbitrary Grassmann bundles G4(E). So in the rest
of this section E is a vector bundle of rank n on a smooth projective k-variety X and

m:G:=Gy(E) - X

is the corresponding Grassmann bundle of d-planes in E.

(3.2) Theorem: The Chow motif G := (G, Ag) of G = G4(E) decomposes in a direct sum as
follows:
G= o XoL®W.
Aewd
Proof: Let
0—-S—>7n"E—-Q—0



be the universal exact sequence of vector bundles on Gy4(F). For any i € INy let ¢ :=
ci(Q — mE) € CHY(Gy(E)) be the i-th Chern class of Q — 7*E. For any A € W9 we
define

Ay = A)\(C) = det(c)\i+j—i)i,j:1,‘..,d € CH'M(Gd(E))

By [6], 14.6 we have following generalizations of (1.4) respectively (1.5):

Duality theorem: Let A\, u € W? be elements of W? with |\ + |u| < d(n — d) and let
a€ CH*(X). Then
W*(A,\ . AH N 7T*Oé) = (5)\0;)7“ s Q.

Basis theorem: The map

& CHYX) —  CH*(Gq(E))
Aewd

(@) rewd =y Axna(ay)
Aewd

is an isomorphism of groups.

Using this two theorems theorem (3.2) will be proved by a generalization of Manin’s calculation
of the Chow motif of projective fibre bundles (see [10], §7):

We choose a total ordering “<” on W%, such that
(*) AS N =A< [N
We define correspondences py € CH*(G x G), A € W%, by a downward induction on A as
follows:

Py = c(Ay) oc(m) oc(m) o c(Ayor) o (1 — Z Pu)-

pueWd u>x

In this expression the various parts have following meaning:
1) > sapp =0, if A is maximal.
2) ¢(Ay) = (Ag)«(Ay) € CHWHdn=d+dimX (G @) where Ag: G — G x G is the diagonal
embedding.
3) e(r) := (Iy)«(1) € CHY™X(X x G), where I'y : G — G x X is the graph of .
4) c(m)t := (Ip)«(1) € CHI™ X (G x X).

Clearly the correspondences py, A € W@ are of degree zero. We will show in Lemma (3.3), that
they form a complete system of pairwise orthogonal projectors. So we have

One checks easily, that for any two vector bundles E’, E” on X of the same rank the homo-
morphism

By = e(A) o e(n”) o e} 0 c(Ayop) o (1= 3 p),) € CH(Ga(E') x Ga(E"))
>

and the analougously defined homomorphism A € CH*(G4(E")xGq(E')) between (G4(E'), p\)
and (G4(E"),pY) are inverse to each other. In particular the Chow motif G of G := Gy(E) is
isomorphic to the motif of Gg(A™) = @, cya X @ LM (Theorem (2.1) + Lemma (3.1)).
Lemma (3.3):

a) For any A, € W we have: py OPu =0 DPr-

b) Yxewapr=1.



Proof: Let a € Hom(Yy,Ys) = CHY™Y1(Y] x Y3) be a morphism in CV°. Then for any T € V
the correspondence « induces a map

«

Hom(7,Y7) s Hom(T,Y3)

| |
CHI™T(T xy) 25 CHI™T(T x Yy)

denoted by a7 .
By Manin’s identity principle it suffices to show, that for any T € V' the equations

(p/\)T o (p,u)T = 6)\,u<p)\)T and Z (p)\)T =1
Aewd

hold.By changing the base scheme X to X X T and E to E(xyr) we can assume 1" = e :=
Spec(k). In this case the above equations follows from the basis theorem and from following
statement: For any (a,),cwd € ®,eppa CH*(X) and for any A € W9 we have

(PA)e( D Ax-7(an)) = Ay -7 ().
puewd
By [10], Lemma on p. 449 we have
(c(Ay))e = multiplication with Ay
(c(m))
(c(m)")

Hence by downward induction on A:

(PA)e(Xpewa Ax - (an)) =

= Ax - Ayor - (1 — Zu>>\(p>\)e)(zuewd Ay -1 (ap))
= A)\ . 7T*7T* A)\op . (ZHS)\ AH . 77*(04”))

= Ay -7 ay (Duality theorem + (x))

e

*
e = i
e

T

As in section 2 we obtain the higher Chow groups H(G, j) := CH/(G,2j — i) of G = G4(E)
from theorem (3.2):

H(G,j)= o H7P(X,j—|\).
Aewd

Using the Riemann-Roch theorem (see [1], Theorem (9.1)) we get furthermore the higher K'-
groups with denominators of G':

K'(Ga(E)g= @ K'(X)

b
Aewd
Appendix

Let k be a field and let C be the category of quasiprojective k-schemes. Let
H,(—,b) : C — (Abelian groups), a,b € Z

be a twisted homology theory in the sense of [2], Definition (1.2). We assume, that &, Hy(—,b)
is contravariant functorial under flat morphisms f:Y — X in C with constant relative dimen-
sion m :=dimY —dim X :

f* i Ho(X,b) = Hopom (Y, 0+ m)



and, that the projection formula holds; furthermore we assume following homotopy axiom:

Homotopy axiom: For any X € C and any n > 1 the contravariant map
Ho(X,b) = Horom(X x A™ b+ m)

is an isomorphism.

We obtain examples by using higher K’-theory due to Quillen ([12]) or higher Chow theory due
to Bloch ([1]):

Hy(X,b) := K. _5,(X) respectively Hy(X,b) := CHy(X,a — 2b)

(In CHp(X,a — 2b) the subscript b denotes dimension of cycles!)

Theorem (Higher K’-theory and higher Chow theory of varieties with cellular de-
composition): Let X be an object in C and let

=Y. ,CYyC...CY, =Y

be an increasing sequence of closed embeddings of flat quasiprojective X -schemes 7y : Y — X .
Assume, that for any k € {0,...,n} the open complement Uy := Y;\Y;_1 is X -isomorphic to
an affine space A'Y* of relative dimension my,. Let i; denote the closed embedding Yy < Y.
Then for any a,b € Z the map
n
k@jo Ha_gmk(X,b — mk) — Ha(Y, b)
(ao,...,an) — (Zk)*<77k)*04k

Eal
Ivs-

is an isomorphism.

Proof: By induction on n we can assume, that the left vertical arrow in the commutative
diagram with exact rows

. Ho(Yn_1,b) (ing)e Ho (Y, b) N H,(Uwb) ..
T 220« (7)™ T 22 (k)« () T
n—1 n
0— k@o H -2, (X, b—mk) — k@o Ha—?mk (X, b—mk) — Ha—2mn (X, b—mn) —0
(ao,...,an_l) — (ao,...,an_l,O)
(g, ..y 0) > o

is an isomorphism. By the homotopy axiom 7* is an ismomorphism and hence j* is surjective.
The localization sequence shows, that the map (i,—1)« is injective. Now the claim follows.

For instance in the case of the variety Y = G/P (see section 1) we obtain for any X € C and
any q > 0:

KQ(Y x X) = we@WH K;(X).
This fact generalizes proposition 7 of [11] to higher K -theory. Whereas Marlin uses information
about intersecting cells in G/P, the cellular decomposition of G/P is the only geometrical
ingredient in our proof.
Analogous statements can also be obtained by using equivariant K’-groups (see [9] or [13] for a
definition of equivariant K’-groups).
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