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Introduction

In this note we generalize Manin’s calculation of the Chow motif of projective fibre bundles (see
[10]) to homogenous spaces of the form G/P :

Theorem: Let G be a k -split reductive linear algebraic group defined over a field k and let
P be a parabolic subgroup of G. Then the Chow motif Ỹ := (Y,∆Y ) of the smooth projective
k -variety Y := G/P decomposes in a direct sum of twisted Tate motifs as follows:

Ỹ ∼= ⊕
w
L⊗ dim w;

here w runs through the set of cells of Y .

In particular we obtain the Chow motif of the Grassmann variety Gd of d -planes in the vector
space kn . More generally by using Manin’s identity principle we get the Chow motif of the
Grassmann bundle Gd(E) for any vector bundle E on any smooth projective k -variety X .

Being a first approach towards a universal cohomology theory for algebraic varieties the theory
of Chow motifs in particular yields a calculation of higher Chow groups. Furthermore by using
the Riemann-Roch theorem (see [1]) we get analogous statements for higher K -theory with
denominators. For example we have:

Kq(Gd(E))Q
∼= Kq(X)N

Q
;

here N is the number of cells of the Grassmann variety Gd .

For any variety Y , which possesses a cellular decomposition, the higher Chow- and K -groups
of Y can also be obtained by using the localization sequence and the homotopy theorem (see
appendix).

I would like to thank C. Deninger, U. Jannsen and G. Tamme for many stimulating discussions.

1 Bruhat Decomposition and classical Chow Theory of G/P

Let k be a field and let G be a k -split reductive linear algebraic group defined over k . We fix
a maximal k -split k -torus T in G and a Borel subgroup B of G containing T and defined
over k . We consider the set of simple B -positive roots and let denote S the corresponding set
of reflections in the Weylgroup W . Then the pair (W,S) is a Coxeter system in the sense of
Bourbaki ([3]). Let

l : W → IN0

be the length function relative to the system S of generators of W .
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Futhermore we fix a subset θ of S and let denote Wθ the subgroup of W generated by θ .
Let Pθ := BWθB be the corresponding parabolic subgroup of G and let Y be the projective
smooth k -variety G/P .

Subsequently we recall the Bruhat decomposition of Y and deduce the classical Chow theory
of Y from the one of X := G/B . For this W θ is defined to be following subset of W :

W θ := {w ∈ W : l(ws) = l(w) + 1 for all s ∈ θ}

(1.1) Proposition: The map
W θ ×Wθ → W
(w,wθ) 7→ wwθ

is bijective. Furthermore we have for any w ∈ W θ and any wθ ∈ Wθ :

l(wwθ) = l(w) + l(wθ).

In particular W θ is precisely the elements of smallest length in each coset wWθ .

Proof: [7], theorem (5.3), p. 43.

For any w ∈ W let
◦
Xw be the locally closed Schubert cell BwB/B in X and let Xw be the

closure of
◦
Xw in X . Similarly for any w ∈ W θ let

◦
Y w respecively Yw denote the cell BwP/P

respectively the closure of BwP/P in Y .

(1.2) Lemma: Let p : X → Y be the canonical projection. Then:
a) The morphism p is smooth.
b) For any w ∈ W θ we have

p−1(
◦
Y w) = ∪

wθ∈Wθ

◦
Xwwθ

.

c) For any w ∈ W θ the projection

p :
◦
Xw →

◦
Y w

is an isomorphism of varieties.

Proof: By faithfully flat descent we can assume, that k is algebraically closed.
a) By definition of quotient varieties (see [8]) the map p : X → Y is separable, i. e. generically
smooth. By homogeneity the claim follows.
b) For any w ∈ W θ, wθ ∈ Wθ we obtain from [8], Lemma A (a) in 29.3, p. 177 and from
proposition (1.1):
(∗ ) wBwθ ⊆ BwwθB.
Hence for any w ∈ W θ we have

p−1(
◦
Y w) = BwP/B = ( ∪

wθ∈Wθ

BwBwθB)/B =

= ( ∪
wθ∈Wθ

BwwθB)/B = ∪
wθ∈Wθ

◦
Xwwθ

.

Last union is a disjoint union of cells of X (see [4]).
c) By similar arguments as in a) the surjective morphism

p :
◦
Xw →

◦
Y w
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is smooth. So it suffices to show injectivity: Let bw ∈ BwP/P =
◦
Y w . Then

p−1(bw) = bwP/B ∩BwB/B
= {bwB/B} ((∗) + Bruhat decomposition forG/B, see [4])

(1.3) Proposition (Bruhat decomposition for G/P):

a) Y = ∪w∈W θ

◦
Y w .

b) For any w ∈ W θ the cell
◦
Y w is k -isomorphic to the affine space A

l(w)
k of dimension l(w) .

Proof: For example this follows from (1.2) and from Bruhat decomposition for X (see [4]).

Let w0 ∈ W respectively v0 ∈ Wθ be the element of maximal length in W respectively Wθ .
Then by (1.1) and (1.3) l(w0) respectively l(w0)− l(v0) is the dimension of X respectively Y .

(1.4) Proposition (Orthogonality relations in CH∗(G/P) ): Let S be a smooth k -variety
and let w, w′ be two elements of W θ with l(w) + l(w′) ≤ l(w0)− l(v0) . Then the intersection
of the cycle [Yw ×S] with the cycle [Yw′ ×S] in CH∗(Y ×S) is δw,w0w′v0 · [Y1 ×S] . (Y1 is the
single point {1} !)
Proof: We can assume S = Spec(k) . Let p : X → Y denote the projection. Then:

[Yw] · [Yw′ ] = [Yw] · p∗[Xw′ ] (Lemma (1.2)c))
= p∗(p

∗[Yw] · [Xw′ ]) (Projection formula)
= p∗([Xwv0 ] · [Xw′ ]) (Lemma (1.2)b))
= p∗(δwv0,w0w′ · [X1]) ([5], Proposition 1(a), p. 69)
= δw,w0w′v0 · [Y1] (because v20 = 1)

(1.5) Corollary (Chow theory of G/P): Let S be a smooth k -variety. Then the map

⊕
w∈W θ

CH∗(S) → CH∗(Y × S)

(αw)w∈W θ 7→
∑

w∈W θ

[Yw × αw]

is an isomorphism of groups. In particular:
a) CH(Y ) ∼= ⊕w∈W θ ZZ[Yw]
b) The ring homomorphism

CH∗(Y )⊗CH∗(Y ) → CH∗(Y × Y )
α⊗β 7→ α× β

is an isomorphism.

Proof: This follows from (1.3) and (1.4) (compare the proof of the corollary on page 69 in [5]).

2 The Chow motif of G/P

Let V be the category of (connected) smooth projective varieties over a fixed ground field k .
Then the additive category CV0 of Chow correspondences of degree zero is defined as follows:
The objects are the objects of V and the morphisms in CV0 are defined by Hom(X,Y ) :=
CHdimX(X×Y ) . The composition of two correspondences f ∈ Hom(X,Y ) and g ∈ Hom(Y, Z)
is given by

g ◦ f := (p13)∗(p
∗
12(f) · p∗23(g)) ∈ Hom(X,Z),

3



where notation of the type p13 : X × Y × Z → X × Z means the projection onto the product
of the first and third factors. The category of Chow motifs arises from CV0 by adding formally
cernels of projectors (see [10]): The objects are pairs (X, p) with X ∈ V and p ∈ End(X) =
CHdimX(X ×X) with p ◦ p = p ; the morphisms are defined by

Hom((X, p), (Y, q)) := {f ∈ HomCV0(X,Y ) : fp = qf}/{f : fp = qf = 0}.

The n -fold twist L⊗n of the Tate motif L is the pair (IPn, [IPn × pt]) (see [10]).

Let Ỹ := (Y,∆Y ) be the motif of the smooth projective k -variety Y = G/P of section 1.

(2.1) Theorem: The motif Ỹ decomposes in a direct sum of twisted Tate motifs as follows:

Ỹ = ⊕
w∈W θ

L⊗ l(w)

The proof of (2.1) is based on following lemma:

(2.2) Lemma:
a) End(Ỹ ) = ⊕

w,w′∈W θ, l(w)+l(w′)=l(w0)−l(v0)
ZZ[Yw × Yw′ ]

b) For any two elements [Yw × Yw′ ] , [Yv × Yv′ ] in End(Ỹ ) we have:

[Yw × Yw′ ] ◦ [Yv × Yv′ ] = δv′,w0wv0 [Yv × Yw′ ]

Proof: Statement a) is an immediate consequence of corollary (1.5). For b) let

p12, p23, p13 : Y × Y × Y → Y × Y

denote the canonical projections. Then:

[Yw × Yw′ ] ◦ [Yv × Yv′ ] =
= (p13)∗((p12)

∗[Yv × Yv′ ] · (p23)∗[Yw × Yw′ ]) (by definition of ◦)
= (p13)∗([Yv × Yv′ × Y ] · [Y × Yw × Yw′ ])
= (p13)∗([Yv × (Yv′ · Yw)× Yw′ ]) ([6], Example 8.1.4)
= (p13)∗((p13)

∗[Yv × Yw′ ] · [Y × (Yv′ · Yw)× Y ]) ([6], Example 8.1.4)
= [Yv × Yw′ ] · (p13)∗[Y × (Yv′ · Yw)× Y ] (Projection formula)
= δv′,w0wv0 · [Yv × Yw′ ]

The last equality results from proposition (1.4):

p∗(Yv′ · Yw) = δv′,w0wv0 · 1 in CH∗(pt) ∼= ZZ

hence by [6], Proposition 1.7, p. 18:

(p13)∗[Y × (Yv′ · Yw)× Y ] = δv′,w0wv0 · 1 in CH∗(Y × Y ).

Proof of (2.1): By proposition (1.1) for any w ∈ W θ the element w0wv0 is in W θ , too. So
by Lemma (2.2) the correspondences

pw := [Yw × Yw0wv0 ], w ∈ W θ

are pairwise orthogonal projectors in End(Ỹ ) with
∑

w∈W θ pw = 1. Hence:

Ỹ = ⊕
w∈W θ

(Y, [Yw × Yw0wv0 ])
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One checks easily, that the homomorphisms [Yw × pt] ∈ CHdimY (Y × IPl(w)) and
[IPl(w) × Yw0wv0 ] ∈ CH l(w)(IPl(w) × Y ) between (Y, [Yw × Yw0wv0 ]) and (IPl(w), [IPl(w) × pt]) =
L⊗ l(w) are inverse to each other. Now the claim follows.

Let
H i(−, j) : V → (Abelian groups); i, j ∈ ZZ

be a twisted cohomology theory in the sense of [2], Definition 1.1, i. e. a sequence of contravariant
functors indexed by i, j ∈ ZZ . If H i(−, j) factorizes through the category of Chow motifs

V Hi(−,j)−→ (Abelian groups)
↓

(Chow motifs) ,

then we conclude from theorem (2.1):

H i(Y, j) = ⊕
w∈W θ

H i(L⊗ l(w), j).

For instance we obtain a twisted cohomology theory by means of higher Chow groups (see [1]):

H i(X, j) := CHj(X, 2j − i).

Associating a correspondence α of degree zero the homomorphism β 7→ (p2)∗(p
∗
1(β) ·α) between

the corresponding Chow groups we get a factorization of H i(−, j) through CV0 and therefore
through the category of Chow motifs. In this case by the projective bundle theorem (see [1],
theorem (7.1)) we have H i(L⊗n, j) = H i−2n(Spec(k), j − n) and hence

H i(Y, j) = ⊕
w∈W θ

H i−2l(w)(Spec(k), j − l(w))

This conclusion generalizes the corollary of proposition 1 in [5] on p. 69 to higher Chow groups.
We will deduce it in the appendix again by an argument, which is appropriate for higher K ′ -
groups, too.

3 Grassmann bundles

In this section we consider the general linear group Gln over a fixed ground field k . It is a
k -split reductive linear algebraic group, whose Weylgroup is the symmetric group Σn . In Σn

we fix the set
S := {< 1, 2 >,< 2, 3 >, . . . , < n− 1, n >}

of transpositions. Then the length relative to S of an element τ ∈ Σn is given by

l(τ) =
n−1∑
j=1

#{i > j : τ(i) < τ(j)}

(see [7], example (1.3a), p. 9).

We fix an integer d ∈ {1, . . . , n− 1} and let θd denote the subset

θd := S\{< d, d+ 1 >}
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of S . Then the subgroup Wd of Σn generated by θd is Σd ×Σn−d . The element of maximal
length in W respectively Wd is

w0 :=

(
1 . . . n
n . . . 1

)
respectively v0 :=

(
1 . . . d d+ 1 . . . n
d . . . 1 n . . . d+ 1

)
.

Let B be the Borel subgroup of Gln consisting of upper triangular matrices and let Pd be the

parabolic subgroup BWdB of Gln ; it consists of the matrices of the form

(
Gld ∗
0 Gln−d

)
(see

[7], p. 126).

In the case of Grassmann bundles the set

W d := {(λ1, . . . , λd) ∈ INd
0 : n− d ≥ λ1 ≥ . . . ≥ λd ≥ 0}

is a more appropriate description of the subset W θd of Σn defined in section 1. For any λ ∈ W d

we set |λ| :=
∑d

i=1 λi and λop := (n− d− λd−i+1)i=1,...,d ∈ W d .

(3.1) Lemma: The map

α : W d → Σn

(λ1, . . . , λd) 7→
(

1 . . . d d+ 1 . . . n
λd+1 . . . λ1+d increasing enumeration of complement

)

induces a 1–1–correspondence between W d and the indexset W θd ⊆ Σn defined in section 1.
Furthermore we have l(α(λ)) = |λ| and α(λop) = w0α(λ)v0 .

Proof: This follows from [7], Lemma 5.3, p.158.

Let Gd be the Grassmann variety of d -planes in the vector space kn . The stabilizer of the
d -plane < e1, . . . , ed > under the natural (transitive) action Gln × Gd → Gd is the parabolic
subgroup Pd ; hence we obtain a canonical isomorphisms

Gln/Pd →̃Gd

(see [7], p. 127).

So theorem (2.1) gives us following calculation of the Chow motif G̃d of the Grassmann variety
Gd :

G̃d
∼= ⊕

λ∈W d
L⊗ |λ|.

Subsequently we will generalize this fact to arbitrary Grassmann bundles Gd(E) . So in the rest
of this section E is a vector bundle of rank n on a smooth projective k -variety X and

π : G := Gd(E) → X

is the corresponding Grassmann bundle of d -planes in E .

(3.2) Theorem: The Chow motif G̃ := (G,∆G) of G = Gd(E) decomposes in a direct sum as
follows:

G̃ = ⊕
λ∈W d

X̃ ⊗L⊗ |λ|.

Proof: Let
0 → S → π∗E → Q → 0
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be the universal exact sequence of vector bundles on Gd(E) . For any i ∈ IN0 let ci :=
ci(Q − π∗E) ∈ CH i(Gd(E)) be the i -th Chern class of Q − π∗E . For any λ ∈ W d we
define

∆λ := ∆λ(c) := det(cλi+j−i)i,j=1,...,d ∈ CH |λ|(Gd(E)).

By [6], 14.6 we have following generalizations of (1.4) respectively (1.5):

Duality theorem: Let λ, µ ∈ W d be elements of W d with |λ| + |µ| ≤ d(n − d) and let
α ∈ CH∗(X) . Then

π∗(∆λ ·∆µ ∩ π∗α) = δλop,µ · α.

Basis theorem: The map

⊕
λ∈W d

CH∗(X) → CH∗(Gd(E))

(αλ)λ∈W d 7→
∑

λ∈W d

∆λ ∩ π∗(αλ)

is an isomorphism of groups.

Using this two theorems theorem (3.2) will be proved by a generalization of Manin’s calculation
of the Chow motif of projective fibre bundles (see [10], §7):

We choose a total ordering “≤” on W d , such that
(* ) λ ≤ λ′ ⇒ |λ| ≤ |λ′|.
We define correspondences pλ ∈ CH∗(G × G) , λ ∈ W d , by a downward induction on λ as
follows:

pλ := c(∆λ) ◦ c(π) ◦ c(π)t ◦ c(∆λop) ◦ (1−
∑

µ∈W d, µ>λ

pµ).

In this expression the various parts have following meaning:
1)
∑

µ>λ pµ := 0 , if λ is maximal.

2) c(∆λ) := (∆G)∗(∆λ) ∈ CH |λ|+d(n−d)+dimX(G×G) , where ∆G : G → G×G is the diagonal
embedding.
3) c(π) := (Γπ)∗(1) ∈ CHdimX(X ×G) , where Γπ : G → G×X is the graph of π .
4) c(π)t := (Γπ)∗(1) ∈ CHdimX(G×X).

Clearly the correspondences pλ, λ ∈ W d are of degree zero. We will show in Lemma (3.3), that
they form a complete system of pairwise orthogonal projectors. So we have

G̃ = ⊕
λ∈W d

(G, pλ).

One checks easily, that for any two vector bundles E′, E′′ on X of the same rank the homo-
morphism

h′λ := c(∆′′
λ) ◦ c(π′′) ◦ c(π′)t ◦ c(∆′

λop) ◦ (1−
∑
µ>λ

p′µ) ∈ CH∗(Gd(E
′)×Gd(E

′′))

and the analougously defined homomorphism h′′λ ∈ CH∗(Gd(E
′′)×Gd(E

′)) between (Gd(E
′), p′λ)

and (Gd(E
′′), p′′λ) are inverse to each other. In particular the Chow motif G̃ of G := Gd(E) is

isomorphic to the motif of Gd(A
n) ∼= ⊕λ∈W d X̃ ⊗L⊗ |λ| (Theorem (2.1) + Lemma (3.1)).

Lemma (3.3):
a) For any λ, µ ∈ W d we have: pλ ◦ pµ = δλ,µ · pλ .
b)
∑

λ∈W d pλ = 1.
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Proof: Let α ∈ Hom(Y1, Y2) = CHdimY1(Y1×Y2) be a morphism in CV0 . Then for any T ∈ V
the correspondence α induces a map

Hom(T, Y1)
αT−→ Hom(T, Y2)

∥ ∥
CHdimT (T × Y1)

αT−→ CHdimT (T × Y2)

denoted by αT .
By Manin’s identity principle it suffices to show, that for any T ∈ V the equations

(pλ)T ◦ (pµ)T = δλ,µ(pλ)T and
∑

λ∈W d

(pλ)T = 1

hold.By changing the base scheme X to X × T and E to E(X×T ) we can assume T = e :=
Spec(k) . In this case the above equations follows from the basis theorem and from following
statement: For any (αµ)µ∈W d ∈ ⊕µ∈W d CH∗(X) and for any λ ∈ W d we have

(pλ)e(
∑

µ∈W d

∆λ · π∗(αλ)) = ∆λ · π∗(αλ).

By [10], Lemma on p. 449 we have

(c(∆λ))e = multiplication with∆λ

(c(π))e = π∗

(c(π)t)e = π∗.

Hence by downward induction on λ :

(pλ)e(
∑

µ∈W d ∆λ · π∗(αλ)) =

= ∆λ · π∗π∗ ∆λop · (1−
∑

µ>λ(pλ)e)(
∑

µ∈W d ∆λ · π∗(αµ))

= ∆λ · π∗π∗ ∆λop · (
∑

µ≤λ∆µ · π∗(αµ))

= ∆λ · π∗αλ (Duality theorem + (∗))

As in section 2 we obtain the higher Chow groups H i(G, j) := CHj(G, 2j − i) of G = Gd(E)
from theorem (3.2):

H i(G, j) ∼= ⊕
λ∈W d

H i−2|λ|(X, j − |λ|).

Using the Riemann-Roch theorem (see [1], Theorem (9.1)) we get furthermore the higher K ′ -
groups with denominators of G :

K ′(Gd(E))Q
∼= ⊕

λ∈W d
K ′(X)Q.

Appendix

Let k be a field and let C be the category of quasiprojective k -schemes. Let

Ha(−, b) : C → (Abelian groups), a, b ∈ ZZ

be a twisted homology theory in the sense of [2], Definition (1.2). We assume, that ⊕a,bHa(−, b)
is contravariant functorial under flat morphisms f : Y → X in C with constant relative dimen-
sion m := dimY − dimX :

f∗ : Ha(X, b) → Ha+2m(Y, b+m)
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and, that the projection formula holds; furthermore we assume following homotopy axiom:

Homotopy axiom: For any X ∈ C and any n ≥ 1 the contravariant map

Ha(X, b) → Ha+2m(X ×Am, b+m)

is an isomorphism.

We obtain examples by using higher K ′ -theory due to Quillen ([12]) or higher Chow theory due
to Bloch ([1]):

Ha(X, b) := K ′
a−2b(X) respectively Ha(X, b) := CHb(X, a− 2b)

(In CHb(X, a− 2b) the subscript b denotes dimension of cycles!)

Theorem (Higher K′ -theory and higher Chow theory of varieties with cellular de-
composition): Let X be an object in C and let

O/ = Y−1 ⊂ Y0 ⊂ . . . ⊂ Yn =: Y

be an increasing sequence of closed embeddings of flat quasiprojective X -schemes πk : Yk → X .
Assume, that for any k ∈ {0, . . . , n} the open complement Uk := Yk\Yk−1 is X -isomorphic to
an affine space Amk

X of relative dimension mk . Let ik denote the closed embedding Yk ↪→ Y .
Then for any a, b ∈ ZZ the map

n
⊕
k=0

Ha−2mk
(X, b−mk) → Ha(Y, b)

(α0, . . . , αn) 7→
n∑

k=0
(ik)∗(πk)

∗αk

is an isomorphism.

Proof: By induction on n we can assume, that the left vertical arrow in the commutative
diagram with exact rows

. . . → Ha(Yn−1, b)
(in−1)∗→ Ha(Yn, b)

j∗→ Ha(Un, b) → . . .

↑
∑
(i′k)∗(πk)

∗ ↑
∑
(ik)∗(πk)

∗ ↑ π∗

0 →
n−1
⊕
k=0

Ha-2mk
(X, b-mk) →

n
⊕
k=0

Ha-2mk
(X, b-mk) → Ha-2mn(X, b-mn) → 0

(α0, . . . , αn−1) 7→ (α0, . . . , αn−1, 0)
(α0, . . . , αn) 7→ αn

is an isomorphism. By the homotopy axiom π∗ is an ismomorphism and hence j∗ is surjective.
The localization sequence shows, that the map (in−1)∗ is injective. Now the claim follows.

For instance in the case of the variety Y = G/P (see section 1) we obtain for any X ∈ C and
any q ≥ 0 :

K ′
q(Y ×X) = ⊕

w∈W θ
K ′

q(X).

This fact generalizes proposition 7 of [11] to higher K -theory. Whereas Marlin uses information
about intersecting cells in G/P , the cellular decomposition of G/P is the only geometrical
ingredient in our proof.
Analogous statements can also be obtained by using equivariant K ′ -groups (see [9] or [13] for a
definition of equivariant K ′ -groups).
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