Chow Motif and Higher Chow Theory of G / P

Bernhard Köck

Introduction

In this note we generalize Manin's calculation of the Chow motif of projective fibre bundles (see [10]) to homogenous spaces of the form G / P :

Theorem: Let G be a k-split reductive linear algebraic group defined over a field k and let P be a parabolic subgroup of G . Then the Chow motif $\tilde{Y}:=\left(Y, \Delta_{Y}\right)$ of the smooth projective k-variety $Y:=G / P$ decomposes in a direct sum of twisted Tate motifs as follows:

$$
\tilde{Y} \cong \underset{w}{\oplus} L^{\otimes \operatorname{dim} w} ;
$$

here w runs through the set of cells of Y.
In particular we obtain the Chow motif of the Grassmann variety G_{d} of d-planes in the vector space k^{n}. More generally by using Manin's identity principle we get the Chow motif of the Grassmann bundle $G_{d}(E)$ for any vector bundle E on any smooth projective k-variety X.

Being a first approach towards a universal cohomology theory for algebraic varieties the theory of Chow motifs in particular yields a calculation of higher Chow groups. Furthermore by using the Riemann-Roch theorem (see [1]) we get analogous statements for higher K-theory with denominators. For example we have:

$$
K_{q}\left(G_{d}(E)\right)_{\mathbb{d}} \cong K_{q}(X)_{\mathbb{d}}^{N}
$$

here N is the number of cells of the Grassmann variety G_{d}.
For any variety Y, which possesses a cellular decomposition, the higher Chow- and K-groups of Y can also be obtained by using the localization sequence and the homotopy theorem (see appendix).
I would like to thank C. Deninger, U. Jannsen and G. Tamme for many stimulating discussions.

1 Bruhat Decomposition and classical Chow Theory of G/P

Let k be a field and let G be a k-split reductive linear algebraic group defined over k. We fix a maximal k-split k-torus T in G and a Borel subgroup B of G containing T and defined over k. We consider the set of simple B-positive roots and let denote S the corresponding set of reflections in the Weylgroup W. Then the pair (W, S) is a Coxeter system in the sense of Bourbaki ([3]). Let

$$
l: W \rightarrow \mathbb{N}_{0}
$$

be the length function relative to the system S of generators of W.

Futhermore we fix a subset θ of S and let denote W_{θ} the subgroup of W generated by θ. Let $P_{\theta}:=B W_{\theta} B$ be the corresponding parabolic subgroup of G and let Y be the projective smooth k-variety G / P.

Subsequently we recall the Bruhat decomposition of Y and deduce the classical Chow theory of Y from the one of $X:=G / B$. For this W^{θ} is defined to be following subset of W :

$$
W^{\theta}:=\{w \in W: l(w s)=l(w)+1 \text { for all } s \in \theta\}
$$

(1.1) Proposition: The map

$$
\begin{array}{ccc}
W^{\theta} \times W_{\theta} & \rightarrow & W \\
\left(w, w_{\theta}\right) & \mapsto & w w_{\theta}
\end{array}
$$

is bijective. Furthermore we have for any $w \in W^{\theta}$ and any $w_{\theta} \in W_{\theta}$:

$$
l\left(w w_{\theta}\right)=l(w)+l\left(w_{\theta}\right)
$$

In particular W^{θ} is precisely the elements of smallest length in each coset $w W_{\theta}$.
Proof: [7], theorem (5.3), p. 43.
For any $w \in W$ let $\stackrel{\circ}{X}_{w}$ be the locally closed Schubert cell $B w B / B$ in X and let X_{w} be the closure of $\stackrel{\circ}{X}_{w}$ in X. Similarly for any $w \in W^{\theta}$ let $\stackrel{\circ}{Y}_{w}$ respecively Y_{w} denote the cell $B w P / P$ respectively the closure of $B w P / P$ in Y.
(1.2) Lemma: Let $p: X \rightarrow Y$ be the canonical projection. Then:
a) The morphism p is smooth.
b) For any $w \in W^{\theta}$ we have

$$
p^{-1}\left(\stackrel{\circ}{Y}_{w}\right)=\cup_{w_{\theta} \in W_{\theta}}^{\cup} \stackrel{\circ}{X}_{w w_{\theta}} .
$$

c) For any $w \in W^{\theta}$ the projection

$$
p: \stackrel{\circ}{X}_{w} \rightarrow \stackrel{\circ}{Y}_{w}
$$

is an isomorphism of varieties.
Proof: By faithfully flat descent we can assume, that k is algebraically closed.
a) By definition of quotient varieties (see [8]) the map $p: X \rightarrow Y$ is separable, i. e. generically smooth. By homogeneity the claim follows.
b) For any $w \in W^{\theta}, w_{\theta} \in W_{\theta}$ we obtain from [8], Lemma A (a) in 29.3, p. 177 and from proposition (1.1):
$(*) \quad w B w_{\theta} \subseteq B w w_{\theta} B$.
Hence for any $w \in W^{\theta}$ we have

$$
\begin{gathered}
p^{-1}\left(\stackrel{\circ}{Y}_{w}\right)=B w P / B=\left(\underset{w_{\theta} \in W_{\theta}}{\cup} B w B w_{\theta} B\right) / B= \\
\quad=\left(\underset{w_{\theta} \in W_{\theta}}{\cup} B w w_{\theta} B\right) / B=\underset{w_{\theta} \in W_{\theta}}{\cup} \stackrel{\circ}{X}_{w w_{\theta}} .
\end{gathered}
$$

Last union is a disjoint union of cells of X (see [4]).
c) By similar arguments as in a) the surjective morphism

$$
p: \stackrel{\circ}{X}_{w} \rightarrow \stackrel{\circ}{Y}_{w}
$$

is smooth. So it suffices to show injectivity: Let $\overline{b w} \in B w P / P=\stackrel{\circ}{Y}_{w}$. Then

$$
\begin{aligned}
p^{-1}(\overline{b w}) & =b w P / B \cap B w B / B \\
& =\{b w B / B\} \quad((*)+\text { Bruhat decomposition for } G / B, \text { see [4] })
\end{aligned}
$$

(1.3) Proposition (Bruhat decomposition for G/P):

a) $Y=\cup_{w \in W^{\theta}} \stackrel{\circ}{Y}_{w}$.
b) For any $w \in W^{\theta}$ the cell $\stackrel{\circ}{Y}_{w}$ is k-isomorphic to the affine space $A_{k}^{l(w)}$ of dimension $l(w)$.

Proof: For example this follows from (1.2) and from Bruhat decomposition for X (see [4]).
Let $w_{0} \in W$ respectively $v_{0} \in W_{\theta}$ be the element of maximal length in W respectively W_{θ}. Then by (1.1) and (1.3) $l\left(w_{0}\right)$ respectively $l\left(w_{0}\right)-l\left(v_{0}\right)$ is the dimension of X respectively Y.
(1.4) Proposition (Orthogonality relations in $\mathbf{C H}^{*}(\mathbf{G} / \mathbf{P})$): Let S be a smooth k-variety and let w, w^{\prime} be two elements of W^{θ} with $l(w)+l\left(w^{\prime}\right) \leq l\left(w_{0}\right)-l\left(v_{0}\right)$. Then the intersection of the cycle $\left[Y_{w} \times S\right]$ with the cycle $\left[Y_{w^{\prime}} \times S\right]$ in $C H^{*}(Y \times S)$ is $\delta_{w, w_{0} w^{\prime} v_{0}} \cdot\left[Y_{1} \times S\right]$. (Y_{1} is the single point $\{\overline{1}\}$!)
Proof: We can assume $S=\operatorname{Spec}(k)$. Let $p: X \rightarrow Y$ denote the projection. Then:

$$
\begin{aligned}
{\left[Y_{w}\right] \cdot\left[Y_{w^{\prime}}\right] } & =\left[Y_{w}\right] \cdot p_{*}\left[X_{w^{\prime}}\right] & & (\text { Lemma (1.2)c)) } \\
& =p_{*}\left(p^{*}\left[Y_{w}\right] \cdot\left[X_{w^{\prime}}\right]\right) & & \text { (Projection formula) } \\
& =p_{*}\left(\left[X_{w v_{0}}\right] \cdot\left[X_{w^{\prime}}\right]\right) & & \text { (Lemma (1.2)b)) } \\
& =p_{*}\left(\delta_{w v_{0}} w_{0} w^{\prime} \cdot\left[X_{1}\right]\right) & & \text { ([5], Proposition 1(a), p. 69) } \\
& =\delta_{w, w_{0} w^{\prime} v_{0}} \cdot\left[Y_{1}\right] & & \text { (because } \left.v_{0}^{2}=1\right)
\end{aligned}
$$

(1.5) Corollary (Chow theory of \mathbf{G} / \mathbf{P}): Let S be a smooth k-variety. Then the map

$$
\begin{aligned}
\underset{w \in W^{\theta}}{\oplus} C H^{*}(S) & \rightarrow C H^{*}(Y \times S) \\
\left(\alpha_{w}\right)_{w \in W^{\theta}} & \mapsto \sum_{w \in W^{\theta}}\left[Y_{w} \times \alpha_{w}\right]
\end{aligned}
$$

is an isomorphism of groups. In particular:
a) $C H(Y) \cong \oplus_{w \in W^{\theta}} \mathbb{Z}\left[Y_{w}\right]$
b) The ring homomorphism

$$
\begin{array}{ccc}
C H^{*}(Y) \otimes C H^{*}(Y) & \rightarrow & C H^{*}(Y \times Y) \\
\alpha \otimes \beta & \mapsto & \alpha \times \beta
\end{array}
$$

is an isomorphism.
Proof: This follows from (1.3) and (1.4) (compare the proof of the corollary on page 69 in [5]).

2 The Chow motif of G/P

Let \mathcal{V} be the category of (connected) smooth projective varieties over a fixed ground field k. Then the additive category $\mathcal{C \mathcal { V } ^ { 0 }}$ of Chow correspondences of degree zero is defined as follows: The objects are the objects of \mathcal{V} and the morphisms in $\mathcal{C} V^{0}$ are defined by $\operatorname{Hom}(X, Y):=$ $C H^{\operatorname{dim} X}(X \times Y)$. The composition of two correspondences $f \in \operatorname{Hom}(X, Y)$ and $g \in \operatorname{Hom}(Y, Z)$ is given by

$$
g \circ f:=\left(p_{13}\right)_{*}\left(p_{12}^{*}(f) \cdot p_{23}^{*}(g)\right) \in \operatorname{Hom}(X, Z),
$$

where notation of the type $p_{13}: X \times Y \times Z \rightarrow X \times Z$ means the projection onto the product of the first and third factors. The category of Chow motifs arises from $\mathcal{C} \mathcal{V}^{0}$ by adding formally cernels of projectors (see [10]): The objects are pairs (X, p) with $X \in \mathcal{V}$ and $p \in \operatorname{End}(X)=$ $C H^{\operatorname{dim} X}(X \times X)$ with $p \circ p=p$; the morphisms are defined by

$$
\operatorname{Hom}((X, p),(Y, q)):=\left\{f \in \operatorname{Hom}_{\mathcal{C} \mathcal{V}^{0}}(X, Y): f p=q f\right\} /\{f: f p=q f=0\}
$$

The n-fold twist $L^{\otimes n}$ of the Tate motif L is the pair $\left(\mathbb{P}^{n},\left[\mathbb{P}^{n} \times \mathrm{pt}\right]\right)$ (see [10]).
Let $\tilde{Y}:=\left(Y, \Delta_{Y}\right)$ be the motif of the smooth projective k-variety $Y=G / P$ of section 1 .
(2.1) Theorem: The motif \tilde{Y} decomposes in a direct sum of twisted Tate motifs as follows:

$$
\tilde{Y}=\underset{w \in W^{\theta}}{\oplus} L^{\otimes l(w)}
$$

The proof of (2.1) is based on following lemma:

(2.2) Lemma:

a) $\operatorname{End}(\tilde{Y})=\underset{w, w^{\prime} \in W^{\theta}, l(w)+l\left(w^{\prime}\right)=l\left(w_{0}\right)-l\left(v_{0}\right)}{\oplus} \mathbb{Z}\left[Y_{w} \times Y_{w^{\prime}}\right]$
b) For any two elements $\left[Y_{w} \times Y_{w^{\prime}}\right],\left[Y_{v} \times Y_{v^{\prime}}\right]$ in $\operatorname{End}(\tilde{Y})$ we have:

$$
\left[Y_{w} \times Y_{w^{\prime}}\right] \circ\left[Y_{v} \times Y_{v^{\prime}}\right]=\delta_{v^{\prime}, w_{0} w v_{0}}\left[Y_{v} \times Y_{w^{\prime}}\right]
$$

Proof: Statement a) is an immediate consequence of corollary (1.5). For b) let

$$
p_{12}, p_{23}, p_{13}: Y \times Y \times Y \rightarrow Y \times Y
$$

denote the canonical projections. Then:

$$
\begin{array}{ll}
{\left[Y_{w} \times Y_{w^{\prime}}\right] \circ\left[Y_{v} \times Y_{v^{\prime}}\right]=} & \\
=\left(p_{13}\right)_{*}\left(\left(p_{12}\right)^{*}\left[Y_{v} \times Y_{v^{\prime}}\right] \cdot\left(p_{23}\right)^{*}\left[Y_{w} \times Y_{w^{\prime}}\right]\right) & \text { (by definition of o) } \\
=\left(p_{13}\right)_{*}\left(\left[Y_{v} \times Y_{v^{\prime}} \times Y\right] \cdot\left[Y \times Y_{w} \times Y_{w^{\prime}}\right]\right) & \\
=\left(p_{13}\right)_{*}\left(\left[Y_{v} \times\left(Y_{v^{\prime}} \cdot Y_{w}\right) \times Y_{w^{\prime}}\right]\right) & ([6], \text { Example 8.1.4) } \\
=\left(p_{13}\right)_{*}\left(\left(p_{13}\right)^{*}\left[Y_{v} \times Y_{w^{\prime}}\right] \cdot\left[Y \times\left(Y_{v^{\prime}} \cdot Y_{w}\right) \times Y\right]\right) & \text { ([6], Example 8.1.4) } \\
=\left[Y_{v} \times Y_{w^{\prime}}\right] \cdot\left(p_{13}\right)_{*}\left[Y \times\left(Y_{v^{\prime}} \cdot Y_{w}\right) \times Y\right] & \text { (Projection formula) } \\
=\delta_{v^{\prime}, w_{0} w v_{0}} \cdot\left[Y_{v} \times Y_{w^{\prime}}\right] &
\end{array}
$$

The last equality results from proposition (1.4):

$$
p_{*}\left(Y_{v^{\prime}} \cdot Y_{w}\right)=\delta_{v^{\prime}, w_{0} w v_{0}} \cdot 1 \quad \text { in } \quad C H^{*}(\mathrm{pt}) \cong \mathbb{Z}
$$

hence by [6], Proposition 1.7, p. 18:

$$
\left(p_{13}\right)_{*}\left[Y \times\left(Y_{v^{\prime}} \cdot Y_{w}\right) \times Y\right]=\delta_{v^{\prime}, w_{0} w v_{0}} \cdot 1 \quad \text { in } \quad C H^{*}(Y \times Y)
$$

Proof of (2.1): By proposition (1.1) for any $w \in W^{\theta}$ the element $w_{0} w v_{0}$ is in W^{θ}, too. So by Lemma (2.2) the correspondences

$$
p_{w}:=\left[Y_{w} \times Y_{w_{0} w v_{0}}\right], w \in W^{\theta}
$$

are pairwise orthogonal projectors in $\operatorname{End}(\tilde{Y})$ with $\sum_{w \in W^{\theta}} p_{w}=1$. Hence:

$$
\tilde{Y}=\underset{w \in W^{\theta}}{\oplus}\left(Y,\left[Y_{w} \times Y_{w_{0} w v_{0}}\right]\right)
$$

One checks easily, that the homomorphisms $\left[Y_{w} \times \mathrm{pt}\right] \in C H^{\operatorname{dim} Y}\left(Y \times \mathbb{P}^{l(w)}\right)$ and $\left[\mathbb{P}^{l(w)} \times Y_{w_{0} w v_{0}}\right] \in C H^{l(w)}\left(\mathbb{P}^{l(w)} \times Y\right)$ between $\left(Y,\left[Y_{w} \times Y_{w_{0} w v_{0}}\right]\right)$ and $\left(\mathbb{P}^{l(w)},\left[\mathbb{P}^{l(w)} \times \mathrm{pt}\right]\right)=$ $L^{\otimes l(w)}$ are inverse to each other. Now the claim follows.

Let

$$
H^{i}(-, j): \mathcal{V} \rightarrow(\text { Abelian groups }) ; \quad i, j \in \mathbb{Z}
$$

be a twisted cohomology theory in the sense of [2], Definition 1.1, i. e. a sequence of contravariant functors indexed by $i, j \in \mathbb{Z}$. If $H^{i}(-, j)$ factorizes through the category of Chow motifs

then we conclude from theorem (2.1):

$$
H^{i}(Y, j)=\underset{w \in W^{\theta}}{\oplus} H^{i}\left(L^{\otimes l(w)}, j\right)
$$

For instance we obtain a twisted cohomology theory by means of higher Chow groups (see [1]):

$$
H^{i}(X, j):=C H^{j}(X, 2 j-i)
$$

Associating a correspondence α of degree zero the homomorphism $\beta \mapsto\left(p_{2}\right)_{*}\left(p_{1}^{*}(\beta) \cdot \alpha\right)$ between the corresponding Chow groups we get a factorization of $H^{i}(-, j)$ through $\mathcal{C} \mathcal{V}^{0}$ and therefore through the category of Chow motifs. In this case by the projective bundle theorem (see [1], theorem (7.1)) we have $H^{i}\left(L^{\otimes n}, j\right)=H^{i-2 n}(\operatorname{Spec}(k), j-n)$ and hence

$$
H^{i}(Y, j)=\underset{w \in W^{\theta}}{\oplus} H^{i-2 l(w)}(\operatorname{Spec}(k), j-l(w))
$$

This conclusion generalizes the corollary of proposition 1 in [5] on p. 69 to higher Chow groups. We will deduce it in the appendix again by an argument, which is appropriate for higher K^{\prime} groups, too.

3 Grassmann bundles

In this section we consider the general linear group $G l_{n}$ over a fixed ground field k. It is a k-split reductive linear algebraic group, whose Weylgroup is the symmetric group Σ_{n}. In Σ_{n} we fix the set

$$
S:=\{<1,2>,<2,3>, \ldots,<n-1, n>\}
$$

of transpositions. Then the length relative to S of an element $\tau \in \Sigma_{n}$ is given by

$$
l(\tau)=\sum_{j=1}^{n-1} \#\{i>j: \tau(i)<\tau(j)\}
$$

(see [7], example (1.3a), p. 9).
We fix an integer $d \in\{1, \ldots, n-1\}$ and let θ_{d} denote the subset

$$
\theta_{d}:=S \backslash\{<d, d+1>\}
$$

of S. Then the subgroup W_{d} of Σ_{n} generated by θ_{d} is $\Sigma_{d} \times \Sigma_{n-d}$. The element of maximal length in W respectively W_{d} is

$$
w_{0}:=\left(\begin{array}{ccc}
1 & \ldots & n \\
n & \ldots & 1
\end{array}\right) \quad \text { respectively } \quad v_{0}:=\left(\begin{array}{cccccc}
1 & \ldots & d & d+1 & \ldots & n \\
d & \ldots & 1 & n & \ldots & d+1
\end{array}\right)
$$

Let B be the Borel subgroup of $G l_{n}$ consisting of upper triangular matrices and let P_{d} be the parabolic subgroup $B W_{d} B$ of $G l_{n}$; it consists of the matrices of the form $\left(\begin{array}{cc}G l_{d} & { }^{*} \\ 0 & G l_{n-d}\end{array}\right)$ (see [7], p. 126).
In the case of Grassmann bundles the set

$$
W^{d}:=\left\{\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \mathbb{N}_{0}^{d}: n-d \geq \lambda_{1} \geq \ldots \geq \lambda_{d} \geq 0\right\}
$$

is a more appropriate description of the subset $W^{\theta_{d}}$ of Σ_{n} defined in section 1 . For any $\lambda \in W^{d}$ we set $|\lambda|:=\sum_{i=1}^{d} \lambda_{i}$ and $\lambda^{\text {op }}:=\left(n-d-\lambda_{d-i+1}\right)_{i=1, \ldots, d} \in W^{d}$.
(3.1) Lemma: The map

$$
\left(\begin{array}{ccccc}
1 & \ldots & d & d+1 & \ldots \\
\lambda_{d}+1 & \ldots & \lambda_{1}+d & \text { increasing enumeration of complement }
\end{array}\right)
$$

induces a 1-1-correspondence between W^{d} and the indexset $W^{\theta_{d}} \subseteq \Sigma_{n}$ defined in section 1 . Furthermore we have $l(\alpha(\lambda))=|\lambda|$ and $\alpha\left(\lambda^{\mathrm{op}}\right)=w_{0} \alpha(\lambda) v_{0}$.
Proof: This follows from [7], Lemma 5.3, p.158.
Let G_{d} be the Grassmann variety of d-planes in the vector space k^{n}. The stabilizer of the d-plane $\left\langle e_{1}, \ldots, e_{d}\right\rangle$ under the natural (transitive) action $G l_{n} \times G_{d} \rightarrow G_{d}$ is the parabolic subgroup P_{d}; hence we obtain a canonical isomorphisms

$$
G l_{n} / P_{d} \tilde{\rightarrow} G_{d}
$$

(see [7], p. 127).
So theorem (2.1) gives us following calculation of the Chow motif \tilde{G}_{d} of the Grassmann variety G_{d} :

$$
\tilde{G}_{d} \cong \underset{\lambda \in W^{d}}{\oplus} L^{\otimes|\lambda|} .
$$

Subsequently we will generalize this fact to arbitrary Grassmann bundles $G_{d}(E)$. So in the rest of this section E is a vector bundle of rank n on a smooth projective k-variety X and

$$
\pi: G:=G_{d}(E) \rightarrow X
$$

is the corresponding Grassmann bundle of d-planes in E.
(3.2) Theorem: The Chow motif $\tilde{G}:=\left(G, \Delta_{G}\right)$ of $G=G_{d}(E)$ decomposes in a direct sum as follows:

$$
\tilde{G}=\underset{\lambda \in W^{d}}{\oplus} \tilde{X} \otimes L^{\otimes|\lambda|} .
$$

Proof: Let

$$
0 \rightarrow S \rightarrow \pi^{*} E \rightarrow Q \rightarrow 0
$$

be the universal exact sequence of vector bundles on $G_{d}(E)$. For any $i \in \mathbb{N}_{0}$ let $c_{i}:=$ $c_{i}\left(Q-\pi^{*} E\right) \in C H^{i}\left(G_{d}(E)\right)$ be the i-th Chern class of $Q-\pi^{*} E$. For any $\lambda \in W^{d}$ we define

$$
\Delta_{\lambda}:=\Delta_{\lambda}(c):=\operatorname{det}\left(c_{\lambda_{i}+j-i}\right)_{i, j=1, \ldots, d} \in C H^{|\lambda|}\left(G_{d}(E)\right) .
$$

By [6], 14.6 we have following generalizations of (1.4) respectively (1.5):
Duality theorem: Let $\lambda, \mu \in W^{d}$ be elements of W^{d} with $|\lambda|+|\mu| \leq d(n-d)$ and let $\alpha \in C H^{*}(X)$. Then

$$
\pi_{*}\left(\Delta_{\lambda} \cdot \Delta_{\mu} \cap \pi^{*} \alpha\right)=\delta_{\lambda^{\circ \mathrm{P}}, \mu} \cdot \alpha .
$$

Basis theorem: The map

$$
\begin{aligned}
\underset{\lambda \in W^{d}}{\oplus} C H^{*}(X) & \rightarrow \quad C H^{*}\left(G_{d}(E)\right) \\
\left(\alpha_{\lambda}\right)_{\lambda \in W^{d}} & \mapsto \sum_{\lambda \in W^{d}} \Delta_{\lambda} \cap \pi^{*}\left(\alpha_{\lambda}\right)
\end{aligned}
$$

is an isomorphism of groups.
Using this two theorems theorem (3.2) will be proved by a generalization of Manin's calculation of the Chow motif of projective fibre bundles (see [10], §7):
We choose a total ordering " \leq " on W^{d}, such that

$$
(*) \quad \lambda \leq \lambda^{\prime} \Rightarrow|\lambda| \leq\left|\lambda^{\prime}\right| .
$$

We define correspondences $p_{\lambda} \in C H^{*}(G \times G), \lambda \in W^{d}$, by a downward induction on λ as follows:

$$
p_{\lambda}:=c\left(\Delta_{\lambda}\right) \circ c(\pi) \circ c(\pi)^{t} \circ c\left(\Delta_{\lambda^{\circ \mathrm{P}}}\right) \circ\left(1-\sum_{\mu \in W^{d}, \mu>\lambda} p_{\mu}\right) .
$$

In this expression the various parts have following meaning:

1) $\sum_{\mu>\lambda} p_{\mu}:=0$, if λ is maximal.
2) $c\left(\Delta_{\lambda}\right):=\left(\Delta_{G}\right)_{*}\left(\Delta_{\lambda}\right) \in C H^{|\lambda|+d(n-d)+\operatorname{dim} X}(G \times G)$, where $\Delta_{G}: G \rightarrow G \times G$ is the diagonal embedding.
3) $c(\pi):=\left(\Gamma_{\pi}\right)_{*}(1) \in C H^{\operatorname{dim} X}(X \times G)$, where $\Gamma_{\pi}: G \rightarrow G \times X$ is the graph of π.
4) $c(\pi)^{t}:=\left(\Gamma_{\pi}\right)_{*}(1) \in C H^{\operatorname{dim} X}(G \times X)$.

Clearly the correspondences $p_{\lambda}, \lambda \in W^{d}$ are of degree zero. We will show in Lemma (3.3), that they form a complete system of pairwise orthogonal projectors. So we have

$$
\tilde{G}=\underset{\lambda \in W^{d}}{\oplus}\left(G, p_{\lambda}\right) .
$$

One checks easily, that for any two vector bundles $E^{\prime}, E^{\prime \prime}$ on X of the same rank the homomorphism

$$
h_{\lambda}^{\prime}:=c\left(\Delta_{\lambda}^{\prime \prime}\right) \circ c\left(\pi^{\prime \prime}\right) \circ c\left(\pi^{\prime}\right)^{t} \circ c\left(\Delta_{\lambda \circ \mathrm{P}}^{\prime}\right) \circ\left(1-\sum_{\mu>\lambda} p_{\mu}^{\prime}\right) \in C H^{*}\left(G_{d}\left(E^{\prime}\right) \times G_{d}\left(E^{\prime \prime}\right)\right)
$$

and the analougously defined homomorphism $h_{\lambda}^{\prime \prime} \in C H^{*}\left(G_{d}\left(E^{\prime \prime}\right) \times G_{d}\left(E^{\prime}\right)\right)$ between $\left(G_{d}\left(E^{\prime}\right), p_{\lambda}^{\prime}\right)$ and $\left(G_{d}\left(E^{\prime \prime}\right), p_{\lambda}^{\prime \prime}\right)$ are inverse to each other. In particular the Chow motif \tilde{G} of $G:=G_{d}(E)$ is isomorphic to the motif of $G_{d}\left(A^{n}\right) \cong \oplus_{\lambda \in W^{d}} \tilde{X} \otimes L^{\otimes|\lambda|}$ (Theorem (2.1)+ Lemma (3.1)).

Lemma (3.3):

a) For any $\lambda, \mu \in W^{d}$ we have: $p_{\lambda} \circ p_{\mu}=\delta_{\lambda, \mu} \cdot p_{\lambda}$.
b) $\sum_{\lambda \in W^{d}} p_{\lambda}=1$.

Proof: Let $\alpha \in \operatorname{Hom}\left(Y_{1}, Y_{2}\right)=C H^{\operatorname{dim} Y_{1}}\left(Y_{1} \times Y_{2}\right)$ be a morphism in $\mathcal{C} \mathcal{V}^{0}$. Then for any $T \in \mathcal{V}$ the correspondence α induces a map

$$
\begin{array}{ccc}
\operatorname{Hom}\left(T, Y_{1}\right) & \xrightarrow{\alpha_{T}} & \operatorname{Hom}\left(T, Y_{2}\right) \\
\| \\
C H^{\operatorname{dim} T}\left(T \times Y_{1}\right) & \xrightarrow{\alpha_{T}} & C H^{\operatorname{dim} T}\left(T \times Y_{2}\right)
\end{array}
$$

denoted by α_{T}.
By Manin's identity principle it suffices to show, that for any $T \in \mathcal{V}$ the equations

$$
\left(p_{\lambda}\right)_{T} \circ\left(p_{\mu}\right)_{T}=\delta_{\lambda, \mu}\left(p_{\lambda}\right)_{T} \quad \text { and } \quad \sum_{\lambda \in W^{d}}\left(p_{\lambda}\right)_{T}=1
$$

hold. By changing the base scheme X to $X \times T$ and E to $E_{(X \times T)}$ we can assume $T=e:=$ $\operatorname{Spec}(k)$. In this case the above equations follows from the basis theorem and from following statement: For any $\left(\alpha_{\mu}\right)_{\mu \in W^{d}} \in \oplus_{\mu \in W^{d}} C H^{*}(X)$ and for any $\lambda \in W^{d}$ we have

$$
\left(p_{\lambda}\right)_{e}\left(\sum_{\mu \in W^{d}} \Delta_{\lambda} \cdot \pi^{*}\left(\alpha_{\lambda}\right)\right)=\Delta_{\lambda} \cdot \pi^{*}\left(\alpha_{\lambda}\right) .
$$

By [10], Lemma on p. 449 we have

$$
\begin{aligned}
\left(c\left(\Delta_{\lambda}\right)\right)_{e} & =\text { multiplication with } \Delta_{\lambda} \\
(c(\pi))_{e} & =\pi^{*} \\
\left(c(\pi)^{t}\right)_{e} & =\pi_{*} .
\end{aligned}
$$

Hence by downward induction on λ :

$$
\begin{aligned}
& \left(p_{\lambda}\right)_{e}\left(\sum_{\mu \in W^{d}} \Delta_{\lambda} \cdot \pi^{*}\left(\alpha_{\lambda}\right)\right)= \\
& =\Delta_{\lambda} \cdot \pi^{*} \pi_{*} \Delta_{\lambda^{\text {op }}} \cdot\left(1-\sum_{\mu>\lambda}\left(p_{\lambda}\right)_{e}\right)\left(\sum_{\mu \in W^{d}} \Delta_{\lambda} \cdot \pi^{*}\left(\alpha_{\mu}\right)\right) \\
& =\Delta_{\lambda} \cdot \pi^{*} \pi_{*} \Delta_{\lambda^{\mathrm{op}}} \cdot\left(\sum_{\mu \leq \lambda} \Delta_{\mu} \cdot \pi^{*}\left(\alpha_{\mu}\right)\right) \\
& =\Delta_{\lambda} \cdot \pi^{*} \alpha_{\lambda} \quad \text { (Duality theorem + (*)) }
\end{aligned}
$$

As in section 2 we obtain the higher Chow groups $H^{i}(G, j):=C H^{j}(G, 2 j-i)$ of $G=G_{d}(E)$ from theorem (3.2):

$$
H^{i}(G, j) \cong \underset{\lambda \in W^{d}}{\oplus} H^{i-2|\lambda|}(X, j-|\lambda|)
$$

Using the Riemann-Roch theorem (see [1], Theorem (9.1)) we get furthermore the higher K^{\prime} groups with denominators of G :

$$
K^{\prime}\left(G_{d}(E)\right)_{\mathbb{Q}} \cong \underset{\lambda \in W^{d}}{\oplus} K^{\prime}(X)_{\mathbb{Q}}
$$

Appendix

Let k be a field and let \mathcal{C} be the category of quasiprojective k-schemes. Let

$$
H_{a}(-, b): \mathcal{C} \rightarrow \text { (Abelian groups), } a, b \in \mathbb{Z}
$$

be a twisted homology theory in the sense of [2], Definition (1.2). We assume, that $\oplus_{a, b} H_{a}(-, b)$ is contravariant functorial under flat morphisms $f: Y \rightarrow X$ in \mathcal{C} with constant relative dimension $m:=\operatorname{dim} Y-\operatorname{dim} X$:

$$
f^{*}: H_{a}(X, b) \rightarrow H_{a+2 m}(Y, b+m)
$$

and, that the projection formula holds; furthermore we assume following homotopy axiom:
Homotopy axiom: For any $X \in \mathcal{C}$ and any $n \geq 1$ the contravariant map

$$
H_{a}(X, b) \rightarrow H_{a+2 m}\left(X \times A^{m}, b+m\right)
$$

is an isomorphism.
We obtain examples by using higher K^{\prime}-theory due to Quillen ([12]) or higher Chow theory due to Bloch ([1]):

$$
H_{a}(X, b):=K_{a-2 b}^{\prime}(X) \quad \text { respectively } \quad H_{a}(X, b):=C H_{b}(X, a-2 b)
$$

(In $C H_{b}(X, a-2 b)$ the subscript b denotes dimension of cycles!)
Theorem (Higher \mathbf{K}^{\prime}-theory and higher Chow theory of varieties with cellular decomposition): Let X be an object in \mathcal{C} and let

$$
\phi=Y_{-1} \subset Y_{0} \subset \ldots \subset Y_{n}=: Y
$$

be an increasing sequence of closed embeddings of flat quasiprojective X-schemes $\pi_{k}: Y_{k} \rightarrow X$. Assume, that for any $k \in\{0, \ldots, n\}$ the open complement $U_{k}:=Y_{k} \backslash Y_{k-1}$ is X-isomorphic to an affine space $A_{X}^{m_{k}}$ of relative dimension m_{k}. Let i_{k} denote the closed embedding $Y_{k} \hookrightarrow Y$. Then for any $a, b \in \mathbb{Z}$ the map

$$
\begin{array}{rlc}
\stackrel{n}{\oplus}{ }_{k=0} H_{a-2 m_{k}}\left(X, b-m_{k}\right) & \rightarrow & H_{a}(Y, b) \\
\left(\alpha_{0}, \ldots, \alpha_{n}\right) & \mapsto \sum_{k=0}^{n}\left(i_{k}\right)_{*}\left(\pi_{k}\right)^{*} \alpha_{k}
\end{array}
$$

is an isomorphism.
Proof: By induction on n we can assume, that the left vertical arrow in the commutative diagram with exact rows

$$
\begin{array}{ccccccc}
\ldots \rightarrow & H_{a}\left(Y_{n-1}, b\right) & \stackrel{\left(i_{n-1}\right)_{*}}{\rightarrow} & H_{a}\left(Y_{n}, b\right) & \xrightarrow{j^{*}} & H_{a}\left(U_{n}, b\right) & \rightarrow \ldots \\
& \uparrow \sum\left(i_{k}^{\prime}\right)_{*}\left(\pi_{k}\right)^{*} \\
& & \uparrow \sum\left(i_{k}\right)_{*}\left(\pi_{k}\right)^{*} & & \uparrow \pi^{*} & \\
0 \rightarrow \begin{array}{ccccc}
n-1 \\
k=0
\end{array} H_{a-2 m_{k}}\left(X, b-m_{k}\right) & \rightarrow & \underset{k=0}{\oplus} H_{a-2 m_{k}}\left(X, b-m_{k}\right) & \rightarrow & H_{a-2 m_{n}}\left(X, b-m_{n}\right) & \rightarrow 0 \\
& \left(\alpha_{0}, \ldots, \alpha_{n-1}\right) & \mapsto & \left(\alpha_{0}, \ldots, \alpha_{n-1}, 0\right) \\
& & \left(\alpha_{0}, \ldots, \alpha_{n}\right) & \mapsto & \alpha_{n}
\end{array}
$$

is an isomorphism. By the homotopy axiom π^{*} is an ismomorphism and hence j^{*} is surjective. The localization sequence shows, that the map $\left(i_{n-1}\right)_{*}$ is injective. Now the claim follows.
For instance in the case of the variety $Y=G / P$ (see section 1) we obtain for any $X \in \mathcal{C}$ and any $q \geq 0$:

$$
K_{q}^{\prime}(Y \times X)=\underset{w \in W^{\theta}}{\oplus} K_{q}^{\prime}(X)
$$

This fact generalizes proposition 7 of [11] to higher K-theory. Whereas Marlin uses information about intersecting cells in G / P, the cellular decomposition of G / P is the only geometrical ingredient in our proof.
Analogous statements can also be obtained by using equivariant K^{\prime}-groups (see [9] or [13] for a definition of equivariant K^{\prime}-groups).

References

[1] Bloch, S., Algebraic cycles and higher K-theory, Advances in Math. 61 (1986), 267-304, and a correction (preprint, March 1989).
[2] Bloch, S. and Ogus, A., Gersten's conjecture and the homology of schemes, Ann. Scient. ENS 7 (1974), 181-202.
[3] Bourbaki, N., Groupes et Algèbres de Lie, Chapitres 4,5 et 6, Masson (1981).
[4] Borel, A., Linear algebraic groups, notes by H. Bass, New York, W. A. Benjamin (1969).
[5] Demazure, M., Désingularisation des Variétiés de Schubert généraliseés, Ann. Scient. ENS 7 (1974), 53-88.
[6] Fulton, W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band2, Springer-Verlag (1984).
[7] Hiller, H., Geometry of Coxeter groups, Research Notes in Math. 54 (1982), Pitman Publ.
[8] Humphreys, J. E., Linear algebraic groups, Graduate Texts in Mathematics, SpringerVerlag (1975).
[9] Köck, B., Das Lefschetz- und Riemann-Roch-Theorem in der höheren äquivarianten K Theorie, Dissertation (1989, Regensburg).
[10] Manin, Ju. I., Correspondences, motifs and monoidal transformations, Math. of the USSR Sbornik 6 (1986), 439-470.
[11] Marlin, R., Anneaux des Grothendieck des Variétés de Drapeaux, Bull. Soc. Math. France 104 (1976), 337-348.
[12] Quillen, D., Higher algebraic K-theory I, in Algebraic K-theory I, LNM 341, SpringerVerlag (1973), 85-147.
[13] Thomason, R. W., Algebraic K-theory of group scheme actions, in Algebraic Topology and Algebraic K-Theory, edited by William Browder, Annals of Math. Studies 113, Princeton University Press (1987), 539-563.

Bernhard Köck
Mathematisches Institut II
der Universität Karlsruhe
Englerstraße 2

7500 Karlsruhe 1

