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Abstract: For any finite group G, which is a split extension with a nilpotent group, we prove a splitting formula
for K} (Z[G]). Applying it to the group of upper (3 x 3)-matrices over a finite field we obtain the formula
conjectured by Hambleton, Taylor and Williams in [4].
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Introduction

In this note we give a new approach towards a calculation of higher K’-groups of integral group
rings initiated for K{) by the fundamental work [5] of H. Lenstra. The idea in its simplest
nontrivial form is the following;:

The spectrum of the group ring Z[G] = Z[X]/(XP — 1) associated with the cyclic group
G = 7Z/pZL is the disjoint union of the closed subset Spec(Z) = Spec (Z[X]/(X — 1)) and of
the open subset

_ - 1
Spec (2Z[X) [(X = 1)71] /(X7 = 1)) = Spec (ZL ]G] )

Because of the splitting Z — 7Z|G| — 7L, the localization sequence associated with this situation
splits and we obtain the well-known formula: K (Z[G]) = K (Z) © KQ(Z[%][CP]).

We will generalize this observation to the case of a finite group G = 7w x I, which is a split
extension of an arbitrary group I' with a nilpotent group 7, thereby obtaining the result of T.
Mitsuda ([7]) for ¢ = 0 and the results of D. Webb ([13], [14], [16]) and of I. Hambleton, L. R.
Taylor and E. B. Williams ([4]) for nilpotent groups. The theorem we will prove decomposes
the K'-groups of Z[G] into a direct sum of K'-groups of twisted group rings Z<I'p>#I" as
follows:

K (Z[r x I') = I@BﬂKZI(Z<Fp>#F);

here the direct sum is indexed by the orbits I'p of the action of I" on rational representations of

7 and the ring Z<I'p>is defined to be the product [],cp, Z<p'>of the maximal Z[#*e/(2)].

orders Z<p'>in the Wedderburn component M, , (K,) of Q[r].

Finally applying the theorem to the group B of upper triangular (3 x 3 )-matrices over the finite
field IF,, we obtain:
1+3m2,d]
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here mg 4 respectively mg3 4 denotes the number of cyclic subgroups of order d of ]F; X IF;
respectively IF x IF x Tf’ .

§1 Notations and some General Facts

Let R be a (not necessary commutative) ring with 1 and let G be a (mulitplicative) finite
group. We will denote the group ring associated with R and G by R[G| and the canonical
basis elements of R[G] by [g], g € G. For any normal subgroup N of G the ideal Iy is
defined to be the kernel of the canonical ring epimorphism R[G] — R[G/N].

Lemma 1: The two-sided ideal Iy is generated by the elements [g] — [1], g € G, as left- and
as right ideal. In particular: If Nj, Ny are elementwise commuting normal subgroups of G,
then: In, - In, = In, - IN, .

Proof: well-known.

The (#G)-fold product [[,ce R of R is denoted by R and the canonical basis elements

of R(© are denoted by eg, g € G. If G acts on a ring S by ring automorphisms, then
S#G denotes the twisted group ring. Here the group G is embedded by g — {g} and the

multiplication is defined by (s1-{g1}) - (s2 - {g2}) :==s1-91(s2) - {91 - 92}-
We recall that a ring extension S/R is called a Galois extension with group G if S is a

finitely generated projective R-module and if G acts on S by ring automorphisms, such that
the fixed ring is R and the canonical map S#G — Endg(S) is bijective.

Examples:

a) If the prime p is a unit in R, then the extension R[] of R by a primitive p-th root of unity
is a Galois extension with Galois group IF;,< . In particular the twisted group ring R[Cp]#]F; is
isomorphic to the ring M,_1(R) of (p —1) x (p — 1)-matrices.

b) The ring R(%) is a Galois extension of R (diagonally embedded) with Galois group G. In
particular we have R(G)#G = Myc(R).

Lemma 2: Let G be a finite commutative group and I' a finite group, which acts on G by
group automorphisms. Then the map

I'x RO#G — RO#G
(v,eg{h}) = eyg{yh}

defines an action of I on RO #G by ring automorphisms and there is a canonical isomorphism
(ROpa#r = R Dya
of R-algebras.

Proof: The first statement is clear. For the second statement we write G additively and I
mulitplicatively. We define an R-module-homomorphism « : R[I'S#G — (RE#G)#I by
[v]eg{h} — eg{vh —vg + g}{~v}. Then obviously « takes an R-basis to an R-basis and hence
« is bijective. Furthermore we have

a(l) = a(} _[1leg{0}) = > e {0}H{1} =1
geG geG

Finally the following calculation shows that « preserves products:

a(fmleg {hi}) - allraleg {ha})



(egi{mih1 — g1 + g1 H{m}) - (eg.{r2h2 — 1292 + g2}{"2})
= eg{nhi —ma + g1}ey g {nr2he — 117292 + g2 Hyi He}
= €91y gotmhi—vigi+g1 V1R — 191 + g1 H{ 22 — v1y292 + Y192 H{ie}
= Og1gathi € {71h1 — 191 + g1 + 17202 — V17201 + M2k + 191 — iha H{me}
= Sg1.gothi € {n72(h1 + h2) — v17201 + g1 Hv2}
= a(0gy,go+hy [71 - Y2)eg {h1 + ha})
= a([mleg [v2legsn {h1}{h2})
= al[nleg {hi} - [raleg{h2}).

Now let M be an abelian category and let M; C M be a nonempty full subcategory. We recall
that M, is called a Serre subcategory, if for each exact sequence 0 — M’ — M — M" — 0
in M the following condition is fulfilled: the object M is in M if and only if the objects M’
and M" are in M;. For any Serre subcategory M; of M the quotient category M /M,
is defined as follows (see [3]): Its objects are those of M and the homomorphisms from M to
N are defined to be

limMQN/HomM(M/, N/N,),

the inductive limit being taken over all subobjects M’ C M respectively N’ C N such that
M/M’' € M respectively N’ € M;.

Lemma 3:
a) Let My C M; C M be Serre subcategories. Then M;/ My is a Serre subcategory of
M /My and the canonical functor

(M/M3) | (M1 Mz) = M /M,

is an equivalence of categories.

b) Let M; C M be a Serre subcategory and let N' C M be a nonempty, full subcategory,
closed under taking subobjects, quotients, and finite products (in particular N is an abelian
subcategory). Then N N .M is a Serre subcategory of N' and N'/N N M canonically is a full
subcategory of M /M, being closed under taking subobjects, quotients, and finite products.

Proof: straightforward.

§2 The Theorem

Let 7 be a finite group. We will denote the set of isomorphism classes of simple Q[7]-modules
by C(m). Let
Q[r] = H M,, (Kp)

peC(r)

be the decomposition of Q[7] into simple algebras according to the structure theorem of Wedder-
burn-Artin, and for any p € C(n) let e, € Q[r] be the idempotent associated with this decom-
position. It is well-known that e, is an element of the subring Z[#HT{'] (see for instance [2]).
So, if w, C 7 denotes the kernel of the representation p, the ring

Zp>i= 2T 2 (r/ ol



is well-defined. For any subset C' C C(m) we set
u<C>= [ Z<p>
peC

and for any ring R we set

R<C>:= Rz Z<C>= ][] R[ﬂ

peC

J[m/wplep.

Theorem: Let 7w be a finite nilpotent group and let I' be an arbitrary finite group, which
acts on m by group automorphisms. Then for any ring R and any ¢ > 0 there is a group
isomorphism
Ky (Rlrx I')=  @© K (R<Ip>#T).
peC(m)/T
(Here m x I' denotes the semidirect product, I'p denotes the orbit of p € C'(w) under the
induced action of I on C(7) and C(w)/I" denotes the set of orbits.)

Proof: Let m = @,m, be the decomposition of 7 into its p-Sylow-subgroups and let P(7) be
the set of primes p with 7, # 0. For any [ € P(w) we set ;7 := @pxm, = /7 and
I = (R, 7) :=ker(R[r x I R[;7 x T)).

Further for any subset L C P(w) the ideal I = Ir (R, m) is defined to be [];cz, I;(R, ), which
is well-defined by Lemma 1.

Let M = M(R, ) be the abelian category of finitely generated R[m x I']-modules and let M,
be the Serre subcategory of M consisting of those objects which are annihilated by some power
of I;,. We define Cy, to be the quotient category M /My . Now the theorem is the special case
L = @ of the more general

Theorem’: For any subset L of P(m) and any ¢ > 0 there is a group isomorphism

K}(Cr) = ® Ko (R<Ip>#T)
pE(C(m)=UierC(ym))/ T

Lemma 4: For any subset L of P(m) the canonical functor

Co(R, ) — CL(R[%,Z € 1))

is an equivalence of categories.

Proof: Let H be the Serre subcategory of M consisting of those objects which are annihilated
by some power of [[;c; !. We claim that Hy is a subcategory of M . Then

CL(R, ™) ¥ M(R, 7)/ML(R,7) =

> (M(R,)/ML(R.m)) | (Mr(R.7) [ Hi(R, 7)) (Lemma 3a)

def

=~ M(R[},l € L], m)/ML(R[},l € L], 7) = CL(R[},l € L], ).

For the last equation note that the well-known equivalence M/H, = M(R[},1 € L], 7) induces
an equivalence My /Hy = Mp(R[7,l € L], 7), because the ideal I1(R[7,l € L], ) arises from
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I (R,7) by inverting the primes [ € L.

There remains to prove the above claim. Let M be an object in Hy. We may assume that
l-M =0 for some [ € L, because obviously M possesses a filtration by submodules, such that
the successive quotients are annihilated by some prime [ € L. Now we proceed by induction on
#m;. The case m = {1} being clear, we may assume that the center Z(m;) of m is not trivial.
By Lemma 1 the ideal Iy o ker(R[mr x '] = R[r/Z(m) x I']) is generated by the elements
[o] = [1], o € Z(m). Hence some power of Iy is contained in the principal ideal (/) and
therefore by the inductive hypothesis

M2 IyuyM2... 215, \M20  (n>>0)

is a filtration of M by submodules, such that the successive quotients are annihilated by some
power of Il/[Z(m) and in particular by some power of I C I.

Proof of Theorem’: If the order of 7 is a unit in R, then for each p € C(7) the component
R[rn]e, of R[m] is isomorphic to R<p> and the category Cp obviously is equivalent to the
category of (I1,c(c(r)—ue,c(,m))/r B<I'p>#1")-modules. This shows the theorem in this trivial
case.

For the general case we proceed by induction on #P(w). If #P(r) = 0, 7 is trivial and
there is nothing to prove. If #P(w) > 0, we consider first the case L = P(m). By Lemma
4 the category Cp(r)(R,7) is equivalent to the category Cp(ﬂ-)(R[#],ﬂ'). Further for each
p € C(m) — UiepnC(1m) we have P(m/w,) = P(r) and in particular R<I'p>= R[#]<F,o>.
Now the above special case proves the theorem for L = P(nw). If L is a proper subset of P(7),
we can choose a prime p € P(w) — L and by descending induction on #L we can assume that
the theorem is already proved for LU {p}.

By Lemma 3a we have

Crupy = CL/(Mpugpy/ ML)
and by Quillen’s localization sequence (see [10]) there is a long exact sequence of groups

o= K;(MLU{p}/ML) k) K(/J(CL) j—> Ké(cLu{p}) — K(;fl(MLU{p}/ML) — ...

Now the theorem easily follows from the two inductive hypotheses and the following two claims:
a) There is an isomorphism of groups

K(/](MLU{p}/ML) = K(;(CL(R7 pﬂ-))
b) For each ¢ > 0 there is a homomorphism
ex t Kg(Cr) = Ko(Mrygpy/Mr)

such that e, 014, =id.

To prove claim a) let N be the full subcategory of M Lufp} consisting of those objects M such
that I,M = 0. Then the equivalence M(R, ,m) = N induces an equivalence

CL(R, pm) S N/(N N Myp),

because IL(R, p7) = (IL(R,n) + I,(R,7))/I,(R, 7). By Lemma 3b) N /(N N Mp) is a full
subcategory of My /My closed under taking subobjects, quotients, and finite products.
Further for each M € M)/ My

M>I,M>...2I;M=0 (n>>0)
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is a finite filtration of M by submodules, such that the successive quotients are in N'/(NNMy).
Now Quillen’s devissage theorem ([10]) yields the desired isomorphism

KJ(CL(R, ) = KJN /(N 1 M) 5 Ky(Mpgy /M),

Finally the canonical injection ,m — 7 yields an exact functor e, : Cr(R,m) = Cr(R, pm), such
that the composition

CL(R, pm) > N/(N N ML) C My /Mr 2 CL(R,m) %5 CL(R, )

is isomorphic to the identical functor. This proves claim b).

Remarks:

1) If I' is trivial and 7 is a p-group the above approach is a slight simplification of [4].

2) If 7 is abelian and if the I'-action on 7 stabilizes each cocyclic subgroup of 7, the theorem
was established by D. Webb in Proposition (3.1) of [14].

3) In the same way an analogous result for the K’-groups of the category of coherent (7w x I")-
modules on a (noetherian) scheme can be proved.

4) In order to generalize the above proof to more general groups G note that it relies on follow-
ing facts:

a) The existence of a normal subgroup of prime power order gives the first step in the induction.
b) If there are several normal p-subgroups commuting elementwise, the induction can be con-
tinued.

c) To obtain a decomposition of K'(Z[G]) into a direct sum, a decomposition of G into a
product is necessary.

If only assumption a) or b) is fulfilled, we obtain one or more localization sequences, which
indeed yield some information about K'(Z[G]) (for instance Lemma 4 remains true) but which
perhaps don’t split.

§3 Example

In this section we apply the theorem of §2 to the group of upper triangular (3 x 3 )-matrices
over a finite field IF},. So we fix a prime p and define B to be the group

a

x
B := Bs(F,) = b ta, b, celF), x,y, 2z €1F,

(SRS

For any divisor d of p — 1 and for any k > 0 let my 4 be the number of cyclic subgroups of
order d of (]F;)k An easy calculation shows that

1) (rs— k1
Mp,d = qu(k DD (qz ) ’

g —1

if d=TJ,;¢q;" is the decomposition of d into prime factors.

Theorem: For any ¢ > 0 there is a group isomorphism

wygie) = o | ()™ o ()

1+3m2,d]



Proof: Let T = (IF;:)3 be the subgroup of B consisting of diagonal matrices and let

1

x
U .= 1 cx,y,z€lF,, CB

— n <

be the unipotent subgroup. Then B is the semidirect product U x T and

10
1

N := yelF, =21k,

—ow

is a T'-equivariant normal subgroup of U, such that U/N is isomorphic to IF, x IF,. Let ¢,
pos - - - Pp, w be the following simple Q[U]-algebras ((, denotes a primitive p-th root of unity):

£: Q[U] = Q

Pa QU] = Q[U/N] = Q%) (ae{0,...,p—1})
[(z, )] = G

Pp: QU] = Q[U/N] - Q%)
[(z, )] — G

w: Q[U] = QG)IHF, = MQG))

1 =z y
[ 1z [l » ¢z} X Foew
1 z'elFy,
One easily checks that w is multiplicative and surjective and that e, po,...,pp, w are the

Wedderburn components of Q[U], i. e. C(U) = {e,po,...,pp,w}.

Lemma 5:

1) CU)/T = {{5}7 {PO}> {Pl, cee 7pp*1}7 {pp}v {w}}

2) One has the following five isomorphisms of rings:

a)U<e>HT = U ; < B x F]

D<o 4T = My (ZLI; 5]

VL o T = My 1y (215

1
DL<p>HT = My (2L T3] )
1
) Z<ws#T = My, ) (mp][m; « m;])

Applying the theorem of §2 to B = U x T and using Lemma 5 and Morita equivalence we
obtain

KY(ZIB) = K} (ZIF) x ¥} < F})) o K, (m}g][mg x IF;]>3 oK (m}g][mg]) .



Applying the theorem of §2 again we obtain the desired calculation of K (Z[B]).

Proof of Lemma 5: Obviously T fixes ¢ and w. Using the identity
-1

a 1 =z y a 1 ab 'z acly
*) b 1 =z b = 1 b=tz |,
c 1 c 1
we easily see that T fixes pg and p, and permutes pi,...,pp—1 transitively. This proves the

first statement.

Ad a): This is clear.

Ad b): By definition we have Z<py>= Z[%][(p] and because of (*) the element (a,b,c) € T
acts on Z<po>by (, — Cgb_l. Hence the subgroup 7 := {(a,1,1) : a € F;} C T acts as
Galois group on Z[%][Cp] and Ty 3 := {(b,b,¢c) : b,c € IF '} acts trivially. This yields the desired
isomorphism

1 1 1
ZpiAT = TG x Tas) = Myor (Z0)) (Tas) = M, (21 < 7).
s -~ 1 (F5)
Ad c): By definition we have Z <{p1,...,pp—1}>= (Z[E][Cp])
element (a,b,c) € T acts on Z<{p1,...,pp—1}>by (peq — {;jbileabfzm. Hence the subgroup
A:={(a,a,a) : a € T} acts trivially, T5 := {(1,b,b%) : b € IF} acts as Galois group on each
factor and T3 := {(1,1,¢) : ¢ € ]F;} acts by permuting the factors. This yields the desired
isomorphism:

and because of (*) the

Z<{pr,.... ppr}>#T = (m;m](m) 4(Ty x Ty x A)

o <M ()" )> (T x 2) 2= Myoy (Myor (2203)) ) (4] 2 Moo (2]05))

Ad d): This can be proved in the same way as b).

Ad e): Because det ((ng/)x@/e]pp) is a unit in Z[%][Cp] (Vandermonde), the restricted map

w Z[%][U] — Z[%]Kp](F?)#]Fp remains surjective and we have ZZ<w>2 Z[%][Cp](Fp)#IFp.
Because of (*) the element (a,b,c) € T acts on Z<w>by (e {z} — (gcilebc-l{bc_lz}.
Hence the subgroup A acts trivially, 77 acts as Galois group on Z[%][Cp] and the element
(chl,eh el :={(c,1,c): c€ IF )} acts by (pex{z} = (pecr{cz}. By Lemma 2 this yields
the desired isomorphism:

T T = (LGN T, ) #(T X T x 4) = ((M (m;]))%) #m> #(T) % A)

I

<(M () )™ #le) 4= My ) (I < 51).

Remark: One easily checks that this example confirms the conjecture of Hambleton, Taylor
and Williams ([4]).
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