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Abstract: For any finite group G , which is a split extension with a nilpotent group, we prove a splitting formula

for K′
q(ZZ[G]) . Applying it to the group of upper (3 × 3) -matrices over a finite field we obtain the formula

conjectured by Hambleton, Taylor and Williams in [4].
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Introduction

In this note we give a new approach towards a calculation of higher K ′ -groups of integral group
rings initiated for K ′

0 by the fundamental work [5] of H. Lenstra. The idea in its simplest
nontrivial form is the following:

The spectrum of the group ring ZZ[G] ∼= ZZ[X]/(Xp − 1) associated with the cyclic group
G = ZZ/pZZ is the disjoint union of the closed subset Spec(ZZ) ∼= Spec (ZZ[X]/(X − 1)) and of
the open subset

Spec
(
ZZ[X]

[
(X − 1)−1

]
/(Xp − 1)

)
∼= Spec

(
ZZ[

1

p
][ζp]

)
.

Because of the splitting ZZ → ZZ[G] → ZZ , the localization sequence associated with this situation
splits and we obtain the well-known formula: K ′

q(ZZ[G]) ∼= K ′
q(ZZ)⊕K ′

q(ZZ[
1
p ][ζp]) .

We will generalize this observation to the case of a finite group G = π × Γ , which is a split
extension of an arbitrary group Γ with a nilpotent group π , thereby obtaining the result of T.
Mitsuda ([7]) for q = 0 and the results of D. Webb ([13], [14], [16]) and of I. Hambleton, L. R.
Taylor and E. B. Williams ([4]) for nilpotent groups. The theorem we will prove decomposes
the K ′ -groups of ZZ[G] into a direct sum of K ′ -groups of twisted group rings ZZ<Γρ>#Γ as
follows:

K ′
q(ZZ[π × Γ ]) ∼= ⊕

Γρ
K ′

q(ZZ<Γρ>#Γ );

here the direct sum is indexed by the orbits Γρ of the action of Γ on rational representations of
π and the ring ZZ<Γρ> is defined to be the product

∏
ρ′∈Γρ ZZ<ρ

′>of the maximal ZZ[#ker(ρ)
#π ] -

orders ZZ<ρ′> in the Wedderburn component Mnρ′ (Kρ′) of Q[π] .

Finally applying the theorem to the group B of upper triangular ( 3×3 )-matrices over the finite
field IFp we obtain:

K ′
q(ZZ[B]) ∼= ⊕

d|p−1

[
K ′

q

(
ZZ[

1

d
][ζd]

)m3,d

⊕K ′
q

(
ZZ[

1

p · d
][ζd]

)1+3m2,d
]
;
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here m2,d respectively m3,d denotes the number of cyclic subgroups of order d of IF×
p × IF×

p

respectively IF×
p × IF×

p × IF×
p .

§1 Notations and some General Facts

Let R be a (not necessary commutative) ring with 1 and let G be a (mulitplicative) finite
group. We will denote the group ring associated with R and G by R[G] and the canonical
basis elements of R[G] by [g] , g ∈ G . For any normal subgroup N of G the ideal IN is
defined to be the kernel of the canonical ring epimorphism R[G] → R[G/N ] .

Lemma 1: The two-sided ideal IN is generated by the elements [g]− [1] , g ∈ G , as left- and
as right ideal. In particular: If N1 , N2 are elementwise commuting normal subgroups of G ,
then: IN1 · IN2 = IN2 · IN1 .

Proof: well-known.

The (#G) -fold product
∏

g∈GR of R is denoted by R(G) and the canonical basis elements

of R(G) are denoted by eg , g ∈ G . If G acts on a ring S by ring automorphisms, then
S#G denotes the twisted group ring. Here the group G is embedded by g 7→ {g} and the
multiplication is defined by (s1 · {g1}) · (s2 · {g2}) := s1 · g1(s2) · {g1 · g2} .
We recall that a ring extension S/R is called a Galois extension with group G if S is a
finitely generated projective R -module and if G acts on S by ring automorphisms, such that
the fixed ring is R and the canonical map S#G → EndR(S) is bijective.

Examples:
a) If the prime p is a unit in R , then the extension R[ζp] of R by a primitive p -th root of unity
is a Galois extension with Galois group IF×

p . In particular the twisted group ring R[ζp]#IF×
p is

isomorphic to the ring Mp−1(R) of (p− 1)× (p− 1) -matrices.
b) The ring R(G) is a Galois extension of R (diagonally embedded) with Galois group G . In
particular we have R(G)#G ∼= M#G(R) .

Lemma 2: Let G be a finite commutative group and Γ a finite group, which acts on G by
group automorphisms. Then the map

Γ ×R(G)#G → R(G)#G
(γ, eg{h}) 7→ eγg{γh}

defines an action of Γ on R(G)#G by ring automorphisms and there is a canonical isomorphism

(R(G)#G)#Γ ∼= R[Γ ](G)#G

of R -algebras.

Proof: The first statement is clear. For the second statement we write G additively and Γ
mulitplicatively. We define an R -module-homomorphism α : R[Γ ](G)#G → (R(G)#G)#Γ by
[γ]eg{h} 7→ eg{γh− γg + g}{γ} . Then obviously α takes an R -basis to an R -basis and hence
α is bijective. Furthermore we have

α(1) = α(
∑
g∈G

[1]eg{0}) =
∑
g∈G

eg{0}{1} = 1

Finally the following calculation shows that α preserves products:

α([γ1]eg1{h1}) · α([γ2]eg2{h2})

2



= (eg1{γ1h1 − γ1g1 + g1}{γ1}) · (eg2{γ2h2 − γ2g2 + g2}{γ2})
= eg1{γ1h1 − γ1g1 + g1}eγ1g2{γ1γ2h2 − γ1γ2g2 + γ1g2}{γ1}{γ2}
= eg1eγ1g2+γ1h1−γ1g1+g1{γ1h1 − γ1g1 + g1}{γ1γ2h2 − γ1γ2g2 + γ1g2}{γ1γ2}
= δg1,g2+h1eg1{γ1h1 − γ1g1 + g1 + γ1γ2h2 − γ1γ2g1 + γ1γ2h1 + γ1g1 − γ1h1}{γ1γ2}
= δg1,g2+h1eg1{γ1γ2(h1 + h2)− γ1γ2g1 + g1}{γ1γ2}
= α(δg1,g2+h1 [γ1 · γ2]eg1{h1 + h2})
= α([γ1]eg1 [γ2]eg2+h1{h1}{h2})
= α([γ1]eg1{h1} · [γ2]eg2{h2}).

Now let M be an abelian category and let M1 ⊆ M be a nonempty full subcategory. We recall
that M1 is called a Serre subcategory, if for each exact sequence 0 → M ′ → M → M ′′ → 0
in M the following condition is fulfilled: the object M is in M1 if and only if the objects M ′

and M ′′ are in M1 . For any Serre subcategory M1 of M the quotient category M/M1

is defined as follows (see [3]): Its objects are those of M and the homomorphisms from M to
N are defined to be

limM ′,N ′HomM(M ′, N/N ′),

the inductive limit being taken over all subobjects M ′ ⊆ M respectively N ′ ⊆ N such that
M/M ′ ∈ M1 respectively N ′ ∈ M1 .

Lemma 3:
a) Let M2 ⊆ M1 ⊆ M be Serre subcategories. Then M1/M2 is a Serre subcategory of
M/M2 and the canonical functor

(M/M2) / (M1/M2)
can→ M/M1

is an equivalence of categories.
b) Let M1 ⊆ M be a Serre subcategory and let N ⊆ M be a nonempty, full subcategory,
closed under taking subobjects, quotients, and finite products (in particular N is an abelian
subcategory). Then N ∩M1 is a Serre subcategory of N and N/N ∩M1 canonically is a full
subcategory of M/M1 being closed under taking subobjects, quotients, and finite products.

Proof: straightforward.

§2 The Theorem

Let π be a finite group. We will denote the set of isomorphism classes of simple Q[π] -modules
by C(π) . Let

Q[π] =
∏

ρ∈C(π)

Mnρ(Kρ)

be the decomposition of Q[π] into simple algebras according to the structure theorem of Wedder-
burn-Artin, and for any ρ ∈ C(π) let eρ ∈Q[π] be the idempotent associated with this decom-
position. It is well-known that eρ is an element of the subring ZZ[ 1

#π ][π] (see for instance [2]).
So, if ωρ ⊆ π denotes the kernel of the representation ρ , the ring

ZZ<ρ>:= ZZ[
#ωρ

#π
][π/ωρ]eρ
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is well-defined. For any subset C ⊆ C(π) we set

ZZ<C>:=
∏
ρ∈C

ZZ<ρ>

and for any ring R we set

R<C>:= R⊗ZZ ZZ<C>=
∏
ρ∈C

R[
#ωρ

#π
][π/ωρ]eρ.

Theorem: Let π be a finite nilpotent group and let Γ be an arbitrary finite group, which
acts on π by group automorphisms. Then for any ring R and any q ≥ 0 there is a group
isomorphism

K ′
q(R[π × Γ ]) ∼= ⊕

ρ∈C(π)/Γ
K ′

q(R<Γρ>#Γ ).

(Here π × Γ denotes the semidirect product, Γρ denotes the orbit of ρ ∈ C(π) under the
induced action of Γ on C(π) and C(π)/Γ denotes the set of orbits.)

Proof: Let π = ⊕pπp be the decomposition of π into its p -Sylow-subgroups and let P (π) be
the set of primes p with πp ̸= 0. For any l ∈ P (π) we set lπ := ⊕p ̸=lπp ∼= π/πl and

Il := Il(R, π) := ker(R[π × Γ ]
can→ R[ lπ × Γ ]).

Further for any subset L ⊆ P (π) the ideal IL = IL(R, π) is defined to be
∏

l∈L Il(R, π) , which
is well-defined by Lemma 1.
Let M = M(R, π) be the abelian category of finitely generated R[π× Γ ] -modules and let ML

be the Serre subcategory of M consisting of those objects which are annihilated by some power
of IL . We define CL to be the quotient category M/ML . Now the theorem is the special case
L = O/ of the more general

Theorem’: For any subset L of P (π) and any q ≥ 0 there is a group isomorphism

K ′
q(CL) ∼= ⊕

ρ∈(C(π)−∪l∈LC( lπ))/Γ
K ′

q(R<Γρ>#Γ )

Lemma 4: For any subset L of P (π) the canonical functor

CL(R, π) → CL(R[
1

l
, l ∈ L], π)

is an equivalence of categories.

Proof: Let HL be the Serre subcategory of M consisting of those objects which are annihilated
by some power of

∏
l∈L l . We claim that HL is a subcategory of ML . Then

CL(R, π)
def
= M(R, π)/ML(R, π) =

∼= (M(R, π)/HL(R, π)) / (ML(R, π)/HL(R, π)) (Lemma 3a)

∼= M(R[1l , l ∈ L], π)/ML(R[1l , l ∈ L], π)
def
= CL(R[1l , l ∈ L], π).

For the last equation note that the well-known equivalence M/HL
∼= M(R[1l , l ∈ L], π) induces

an equivalence ML/HL
∼= ML(R[1l , l ∈ L], π) , because the ideal IL(R[1l , l ∈ L], π) arises from
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IL(R, π) by inverting the primes l ∈ L .
There remains to prove the above claim. Let M be an object in HL . We may assume that
l ·M = 0 for some l ∈ L , because obviously M possesses a filtration by submodules, such that
the successive quotients are annihilated by some prime l ∈ L . Now we proceed by induction on
#πl . The case πl = {1} being clear, we may assume that the center Z(πl) of πl is not trivial.

By Lemma 1 the ideal IZ(π)
def
= ker(R[π × Γ ] → R[π/Z(πl)× Γ ]) is generated by the elements

[σ] − [1] , σ ∈ Z(πl) . Hence some power of IZ(π) is contained in the principal ideal (l) and
therefore by the inductive hypothesis

M ⊇ IZ(πl)M ⊇ . . . ⊇ InZ(πl)
M ⊇ 0 (n >> 0)

is a filtration of M by submodules, such that the successive quotients are annihilated by some
power of Il/IZ(πl) and in particular by some power of IL ⊆ Il .

Proof of Theorem’: If the order of π is a unit in R , then for each ρ ∈ C(π) the component
R[π]eρ of R[π] is isomorphic to R<ρ> and the category CL obviously is equivalent to the
category of (

∏
ρ∈(C(π)−∪l∈LC( lπ))/Γ

R<Γρ>#Γ ) -modules. This shows the theorem in this trivial
case.
For the general case we proceed by induction on #P (π) . If #P (π) = 0 , π is trivial and
there is nothing to prove. If #P (π) > 0 , we consider first the case L = P (π) . By Lemma
4 the category CP (π)(R, π) is equivalent to the category CP (π)(R[ 1

#π ], π) . Further for each

ρ ∈ C(π) − ∪l∈P (π)C( lπ) we have P (π/ωρ) = P (π) and in particular R<Γρ>= R[ 1
#π ]<Γρ>.

Now the above special case proves the theorem for L = P (π) . If L is a proper subset of P (π) ,
we can choose a prime p ∈ P (π)− L and by descending induction on #L we can assume that
the theorem is already proved for L ∪ {p} .
By Lemma 3a we have

CL∪{p} = CL/(ML∪{p}/ML)

and by Quillen’s localization sequence (see [10]) there is a long exact sequence of groups

. . . → K ′
q(ML∪{p}/ML)

i∗→ K ′
q(CL)

j∗→ K ′
q(CL∪{p}) → K ′

q−1(ML∪{p}/ML) → . . .

Now the theorem easily follows from the two inductive hypotheses and the following two claims:
a) There is an isomorphism of groups

K ′
q(ML∪{p}/ML) ∼= K ′

q(CL(R, pπ))

b) For each q ≥ 0 there is a homomorphism

ε∗ : K
′
q(CL) → K ′

q(ML∪{p}/ML)

such that ε∗ ◦ i∗ = id .

To prove claim a) let N be the full subcategory of ML∪{p} consisting of those objects M such
that IpM = 0. Then the equivalence M(R, pπ) →̃ N induces an equivalence

CL(R, pπ) →̃ N/(N ∩ML),

because IL(R, pπ) = (IL(R, π) + Ip(R, π))/Ip(R, π) . By Lemma 3b) N/(N ∩ ML) is a full
subcategory of ML∪{p}/ML closed under taking subobjects, quotients, and finite products.
Further for each M ∈ ML∪{p}/ML

M ⊃ IpM ⊃ . . . ⊃ InpM = 0 (n >> 0)

5



is a finite filtration of M by submodules, such that the successive quotients are in N/(N∩ML) .
Now Quillen’s devissage theorem ([10]) yields the desired isomorphism

K ′
q(CL(R, pπ)) ∼= K ′

q(N/(N ∩ML)) →̃K ′
q(ML∪{p}/ML).

Finally the canonical injection pπ → π yields an exact functor ε∗ : CL(R, π) → CL(R, pπ) , such
that the composition

CL(R, pπ) →̃ N/(N ∩ML) ⊆ ML∪{p}/ML
i∗→ CL(R, π)

ε∗→ CL(R, pπ)

is isomorphic to the identical functor. This proves claim b).

Remarks:
1) If Γ is trivial and π is a p -group the above approach is a slight simplification of [4].
2) If π is abelian and if the Γ -action on π stabilizes each cocyclic subgroup of π , the theorem
was established by D. Webb in Proposition (3.1) of [14].
3) In the same way an analogous result for the K ′ -groups of the category of coherent (π× Γ ) -
modules on a (noetherian) scheme can be proved.
4) In order to generalize the above proof to more general groups G note that it relies on follow-
ing facts:
a) The existence of a normal subgroup of prime power order gives the first step in the induction.
b) If there are several normal p -subgroups commuting elementwise, the induction can be con-
tinued.
c) To obtain a decomposition of K ′(ZZ[G]) into a direct sum, a decomposition of G into a
product is necessary.
If only assumption a) or b) is fulfilled, we obtain one or more localization sequences, which
indeed yield some information about K ′(ZZ[G]) (for instance Lemma 4 remains true) but which
perhaps don’t split.

§3 Example

In this section we apply the theorem of §2 to the group of upper triangular ( 3 × 3 )-matrices
over a finite field IFp . So we fix a prime p and define B to be the group

B := B3(IFp) =


 a x y

b z
c

 : a, b, c ∈ IF×
p , x, y, z ∈ IFp

 .

For any divisor d of p − 1 and for any k > 0 let mk,d be the number of cyclic subgroups of
order d of (IF×

p )
k . An easy calculation shows that

mk,d =
∏
i

q
(k−1)(ri−1)
i ·

(
qki − 1

qi − 1

)
,

if d =
∏

i q
ri
i is the decomposition of d into prime factors.

Theorem: For any q ≥ 0 there is a group isomorphism

K ′
q(ZZ[B]) ∼= ⊕

d|p−1

[
K ′

q

(
ZZ[

1

d
][ζd]

)m3,d

⊕K ′
q

(
ZZ[

1

p · d
][ζd]

)1+3m2,d
]
.
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Proof: Let T ∼= (IF×
p )

3 be the subgroup of B consisting of diagonal matrices and let

U :=


 1 x y

1 z
1

 : x, y, z ∈ IFp

 ⊂ B

be the unipotent subgroup. Then B is the semidirect product U × T and

N :=


 1 0 y

1 0
1

 : y ∈ IFp

 ∼= IFp

is a T -equivariant normal subgroup of U , such that U/N is isomorphic to IFp × IFp . Let ε ,
ρ0, . . . ρp , ω be the following simple Q[U ] -algebras ( ζp denotes a primitive p -th root of unity):

ε : Q[U ]
can→ Q

ρα : Q[U ]
can→ Q[U/N ] → Q(ζp) (α ∈ {0, . . . , p− 1})

[(x, z)] 7→ ζx−αz
p

ρp : Q[U ]
can→ Q[U/N ] → Q(ζp)

[(x, z)] 7→ ζzp

ω : Q[U ] → Q(ζp)
(IFp)#IFp

∼= Mp(Q(ζp))

[

 1 x y
1 z

1

] 7→ ζyp{z}
∑

x′∈IFp

ζx
′x

p ex′

One easily checks that ω is multiplicative and surjective and that ε , ρ0, . . . , ρp , ω are the
Wedderburn components of Q[U ] , i. e. C(U) ∼= {ε, ρ0, . . . , ρp, ω} .
Lemma 5:
1) C(U)/T = {{ε}, {ρ0}, {ρ1, . . . , ρp−1}, {ρp}, {ω}}
2) One has the following five isomorphisms of rings:

a)ZZ<ε>#T ∼= ZZ[IF×
p × IF×

p × IF×
p ]

b)ZZ<ρ0>#T ∼= Mp−1

(
ZZ[

1

p
][IF×

p × IF×
p ]

)
c)ZZ<{ρ1, . . . , ρp−1}>#T ∼= M(p−1)2

(
ZZ[

1

p
][IF×

p ]

)
d)ZZ<ρp>#T ∼= Mp−1

(
ZZ[

1

p
][IF×

p × IF×
p ]

)
e)ZZ<ω>#T ∼= Mp(p−1)

(
ZZ[

1

p
][IF×

p × IF×
p ]

)
Applying the theorem of §2 to B = U × T and using Lemma 5 and Morita equivalence we
obtain

K ′
q(ZZ[B]) ∼= K ′

q

(
ZZ[IF×

p × IF×
p × IF×

p ]
)
⊕K ′

q

(
ZZ[

1

p
][IF×

p × IF×
p ]

)3

⊕K ′
q

(
ZZ[

1

p
][IF×

p ]

)
.
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Applying the theorem of §2 again we obtain the desired calculation of K ′
q(ZZ[B]) .

Proof of Lemma 5: Obviously T fixes ε and ω . Using the identity

(*)

 a
b

c

 ·

 1 x y
1 z

1

 ·

 a
b

c


−1

=

 1 ab−1x ac−1y
1 bc−1z

1

 ,

we easily see that T fixes ρ0 and ρp and permutes ρ1, . . . , ρp−1 transitively. This proves the
first statement.
Ad a): This is clear.
Ad b): By definition we have ZZ<ρ0>∼= ZZ[1p ][ζp] and because of (*) the element (a, b, c) ∈ T

acts on ZZ<ρ0> by ζp 7→ ζab
−1

p . Hence the subgroup T1 := {(a, 1, 1) : a ∈ IF×
p } ⊂ T acts as

Galois group on ZZ[1p ][ζp] and T2,3 := {(b, b, c) : b, c ∈ IF×
p } acts trivially. This yields the desired

isomorphism

ZZ<ρ0>#T = ZZ[
1

p
][ζp]#(T1 × T2,3) ∼= Mp−1

(
ZZ[

1

p
]

)
[T2,3] ∼= Mp−1

(
ZZ[

1

p
][IF×

p × IF×
p ]

)
.

Ad c): By definition we have ZZ<{ρ1, . . . , ρp−1}>∼=
(
ZZ[1p ][ζp]

)(IF×
p )

and because of (*) the

element (a, b, c) ∈ T acts on ZZ<{ρ1, . . . , ρp−1}>by ζpeα 7→ ζab
−1

p eab−2cα . Hence the subgroup
∆ := {(a, a, a) : a ∈ IF×

p } acts trivially, T2 := {(1, b, b2) : b ∈ IF×
p } acts as Galois group on each

factor and T3 := {(1, 1, c) : c ∈ IF×
p } acts by permuting the factors. This yields the desired

isomorphism:

ZZ<{ρ1, . . . , ρp−1}>#T =

(
ZZ[

1

p
][ζp]

(IF×
p )
)
#(T2 × T3 ×∆)

∼=
(
Mp−1

(
ZZ[

1

p
]

)(IF×
p )
)
#(T3 ×∆) ∼= Mp−1

(
Mp−1

(
ZZ[

1

p
]

))
[∆] ∼= M(p−1)2

(
ZZ[

1

p
][IF×

p ]

)
Ad d): This can be proved in the same way as b).

Ad e): Because det
(
(ζxx

′
p )x,x′∈IFp

)
is a unit in ZZ[1p ][ζp] (Vandermonde), the restricted map

ω : ZZ[1p ][U ] → ZZ[1p ][ζp]
(IFp)#IFp remains surjective and we have ZZ<ω>∼= ZZ[1p ][ζp]

(IFp)#IFp .

Because of (*) the element (a, b, c) ∈ T acts on ZZ<ω> by ζpex{z} 7→ ζac
−1

p ebc−1{bc−1z} .
Hence the subgroup ∆ acts trivially, T1 acts as Galois group on ZZ[1p ][ζp] and the element

(c−1, 1, c−1) ∈ T ′
3 := {(c, 1, c) : c ∈ IF×

p } acts by ζpex{z} 7→ ζpecx{cz} . By Lemma 2 this yields
the desired isomorphism:

ZZ<ω>#T ∼=
(
ZZ[

1

p
][ζp]

(IFp)#IFp

)
#(T1 × T ′

3 ×∆) ∼=
((

Mp−1

(
ZZ[

1

p
]

))(IFp)

#IFp

)
#(T ′

3 ×∆)

∼=
((

Mp−1

(
ZZ[

1

p
]

)
[T ′

3]

)(IFp)

#IFp

)
[∆] ∼= Mp(p−1)

(
ZZ[

1

p
][IF×

p × IF×
p ]

)
.

Remark: One easily checks that this example confirms the conjecture of Hambleton, Taylor
and Williams ([4]).
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