Higher K^{\prime}-Groups of Integral Group Rings

BERNHARD KÖCK
Math. Institut II der Universität Karlsruhe, Englerstr. 2, D-7500 Karlsruhe 1
e-mail: ac07@dkauni2.bitnet

Abstract

For any finite group G, which is a split extension with a nilpotent group, we prove a splitting formula for $K_{q}^{\prime}(\mathbb{Z}[G])$. Applying it to the group of upper (3×3)-matrices over a finite field we obtain the formula conjectured by Hambleton, Taylor and Williams in [4].

Key words: group ring, nilpotent group, group of triangular matrices over a finite field.

Introduction

In this note we give a new approach towards a calculation of higher K^{\prime}-groups of integral group rings initiated for K_{0}^{\prime} by the fundamental work [5] of H. Lenstra. The idea in its simplest nontrivial form is the following:
The spectrum of the group ring $\mathbb{Z}[G] \cong \mathbb{Z}[X] /\left(X^{p}-1\right)$ associated with the cyclic group $G=\mathbb{Z} / p \mathbb{Z}$ is the disjoint union of the closed subset $\operatorname{Spec}(\mathbb{Z}) \cong \operatorname{Spec}(\mathbb{Z}[X] /(X-1))$ and of the open subset

$$
\operatorname{Spec}\left(\mathbb{Z}[X]\left[(X-1)^{-1}\right] /\left(X^{p}-1\right)\right) \cong \operatorname{Spec}\left(\mathbb{Z}\left[\frac{1}{p}\right]\left[\zeta_{p}\right]\right)
$$

Because of the splitting $\mathbb{Z} \rightarrow \mathbb{Z}[G] \rightarrow \mathbb{Z}$, the localization sequence associated with this situation splits and we obtain the well-known formula: $K_{q}^{\prime}(\mathbb{Z}[G]) \cong K_{q}^{\prime}(\mathbb{Z}) \oplus K_{q}^{\prime}\left(\mathbb{Z}\left[\frac{1}{p}\right]\left[\zeta_{p}\right]\right)$.
We will generalize this observation to the case of a finite group $G=\pi \rtimes \Gamma$, which is a split extension of an arbitrary group Γ with a nilpotent group π, thereby obtaining the result of T . Mitsuda ([7]) for $q=0$ and the results of D. Webb ([13], [14], [16]) and of I. Hambleton, L. R. Taylor and E. B. Williams ([4]) for nilpotent groups. The theorem we will prove decomposes the K^{\prime}-groups of $\mathbb{Z}[G]$ into a direct sum of K^{\prime}-groups of twisted group rings $\left.\mathbb{Z}<\Gamma \rho\right\rangle \# \Gamma$ as follows:

$$
K_{q}^{\prime}(\mathbb{Z}[\pi \rtimes \Gamma]) \cong \underset{\Gamma \rho}{\oplus} K_{q}^{\prime}(\mathbb{Z}<\Gamma \rho>\# \Gamma) ;
$$

here the direct sum is indexed by the orbits $\Gamma \rho$ of the action of Γ on rational representations of π and the ring $\mathbb{Z}<\Gamma \rho>$ is defined to be the product $\prod_{\rho^{\prime} \in \Gamma \rho} \mathbb{Z}<\rho^{\prime}>$ of the maximal $\mathbb{Z}\left[\frac{\# k e r(\rho)}{\# \pi}\right]$ orders $\mathbb{Z}<\rho^{\prime}>$ in the Wedderburn component $M_{n_{\rho^{\prime}}}\left(K_{\rho^{\prime}}\right)$ of $\mathbb{Q}[\pi]$.
Finally applying the theorem to the group B of upper triangular (3×3)-matrices over the finite field \mathbb{F}_{p} we obtain:

$$
K_{q}^{\prime}(\mathbb{Z}[B]) \cong \underset{d \mid p-1}{\oplus}\left[K_{q}^{\prime}\left(\mathbb{Z}\left[\frac{1}{d}\right]\left[\zeta_{d}\right]\right)^{m_{3, d}} \oplus K_{q}^{\prime}\left(\mathbb{Z}\left[\frac{1}{p \cdot d}\right]\left[\zeta_{d}\right]\right)^{1+3 m_{2, d}}\right]
$$

here $m_{2, d}$ respectively $m_{3, d}$ denotes the number of cyclic subgroups of order d of $\mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times}$ respectively $\mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times}$.

§1 Notations and some General Facts

Let R be a (not necessary commutative) ring with 1 and let G be a (mulitplicative) finite group. We will denote the group ring associated with R and G by $R[G]$ and the canonical basis elements of $R[G]$ by $[g], g \in G$. For any normal subgroup N of G the ideal I_{N} is defined to be the kernel of the canonical ring epimorphism $R[G] \rightarrow R[G / N]$.
Lemma 1: The two-sided ideal I_{N} is generated by the elements $[g]-[1], g \in G$, as left- and as right ideal. In particular: If N_{1}, N_{2} are elementwise commuting normal subgroups of G, then: $I_{N_{1}} \cdot I_{N_{2}}=I_{N_{2}} \cdot I_{N_{1}}$.
Proof: well-known.
The $(\# G)$-fold product $\prod_{g \in G} R$ of R is denoted by $R^{(G)}$ and the canonical basis elements of $R^{(G)}$ are denoted by $e_{g}, g \in G$. If G acts on a ring S by ring automorphisms, then $S \# G$ denotes the twisted group ring. Here the group G is embedded by $g \mapsto\{g\}$ and the multiplication is defined by $\left(s_{1} \cdot\left\{g_{1}\right\}\right) \cdot\left(s_{2} \cdot\left\{g_{2}\right\}\right):=s_{1} \cdot g_{1}\left(s_{2}\right) \cdot\left\{g_{1} \cdot g_{2}\right\}$.
We recall that a ring extension S / R is called a Galois extension with group G if S is a finitely generated projective R-module and if G acts on S by ring automorphisms, such that the fixed ring is R and the canonical map $S \# G \rightarrow \operatorname{End}_{R}(S)$ is bijective.

Examples:

a) If the prime p is a unit in R, then the extension $R\left[\zeta_{p}\right]$ of R by a primitive p-th root of unity is a Galois extension with Galois group \mathbb{F}_{p}^{\times}. In particular the twisted group ring $R\left[\zeta_{p}\right] \# \mathbb{F}_{p}^{\times}$is isomorphic to the ring $M_{p-1}(R)$ of $(p-1) \times(p-1)$-matrices.
b) The ring $R^{(G)}$ is a Galois extension of R (diagonally embedded) with Galois group G. In particular we have $R^{(G)} \# G \cong M_{\# G}(R)$.
Lemma 2: Let G be a finite commutative group and Γ a finite group, which acts on G by group automorphisms. Then the map

$$
\begin{array}{ccc}
\Gamma \times R^{(G)} \# G & \rightarrow & R^{(G)} \# G \\
\left(\gamma, e_{g}\{h\}\right) & \mapsto & e_{\gamma g}\{\gamma h\}
\end{array}
$$

defines an action of Γ on $R^{(G)} \# G$ by ring automorphisms and there is a canonical isomorphism

$$
\left(R^{(G)} \# G\right) \# \Gamma \cong R[\Gamma]^{(G)} \# G
$$

of R-algebras.
Proof: The first statement is clear. For the second statement we write G additively and Γ mulitplicatively. We define an R-module-homomorphism $\alpha: R[\Gamma]^{(G)} \# G \rightarrow\left(R^{(G)} \# G\right) \# \Gamma$ by $[\gamma] e_{g}\{h\} \mapsto e_{g}\{\gamma h-\gamma g+g\}\{\gamma\}$. Then obviously α takes an R-basis to an R-basis and hence α is bijective. Furthermore we have

$$
\alpha(1)=\alpha\left(\sum_{g \in G}[1] e_{g}\{0\}\right)=\sum_{g \in G} e_{g}\{0\}\{1\}=1
$$

Finally the following calculation shows that α preserves products:

$$
\alpha\left(\left[\gamma_{1}\right] e_{g_{1}}\left\{h_{1}\right\}\right) \cdot \alpha\left(\left[\gamma_{2}\right] e_{g_{2}}\left\{h_{2}\right\}\right)
$$

$$
\begin{aligned}
& =\left(e_{g_{1}}\left\{\gamma_{1} h_{1}-\gamma_{1} g_{1}+g_{1}\right\}\left\{\gamma_{1}\right\}\right) \cdot\left(e_{g_{2}}\left\{\gamma_{2} h_{2}-\gamma_{2} g_{2}+g_{2}\right\}\left\{\gamma_{2}\right\}\right) \\
& =e_{g_{1}}\left\{\gamma_{1} h_{1}-\gamma_{1} g_{1}+g_{1}\right\} e_{\gamma_{1} g_{2}}\left\{\gamma_{1} \gamma_{2} h_{2}-\gamma_{1} \gamma_{2} g_{2}+\gamma_{1} g_{2}\right\}\left\{\gamma_{1}\right\}\left\{\gamma_{2}\right\} \\
& =e_{g_{1}} e_{\gamma_{1} g_{2}+\gamma_{1} h_{1}-\gamma_{1} g_{1}+g_{1}}\left\{\gamma_{1} h_{1}-\gamma_{1} g_{1}+g_{1}\right\}\left\{\gamma_{1} \gamma_{2} h_{2}-\gamma_{1} \gamma_{2} g_{2}+\gamma_{1} g_{2}\right\}\left\{\gamma_{1} \gamma_{2}\right\} \\
& =\delta_{g_{1}, g_{2}+h_{1}} e_{g_{1}}\left\{\gamma_{1} h_{1}-\gamma_{1} g_{1}+g_{1}+\gamma_{1} \gamma_{2} h_{2}-\gamma_{1} \gamma_{2} g_{1}+\gamma_{1} \gamma_{2} h_{1}+\gamma_{1} g_{1}-\gamma_{1} h_{1}\right\}\left\{\gamma_{1} \gamma_{2}\right\} \\
& =\delta_{g_{1}, g_{2}+h_{1}} e_{g_{1}}\left\{\gamma_{1} \gamma_{2}\left(h_{1}+h_{2}\right)-\gamma_{1} \gamma_{2} g_{1}+g_{1}\right\}\left\{\gamma_{1} \gamma_{2}\right\} \\
& =\alpha\left(\delta_{g_{1}, g_{2}+h_{1}}\left[\gamma_{1} \cdot \gamma_{2}\right] e_{g_{1}}\left\{h_{1}+h_{2}\right\}\right) \\
& =\alpha\left(\left[\gamma_{1}\right] e_{g_{1}}\left[\gamma_{2}\right] e_{g_{2}+h_{1}}\left\{h_{1}\right\}\left\{h_{2}\right\}\right) \\
& =\alpha\left(\left[\gamma_{1}\right] e_{g_{1}}\left\{h_{1}\right\} \cdot\left[\gamma_{2}\right] e_{g_{2}}\left\{h_{2}\right\}\right) \text {. }
\end{aligned}
$$

Now let \mathcal{M} be an abelian category and let $\mathcal{M}_{1} \subseteq \mathcal{M}$ be a nonempty full subcategory. We recall that \mathcal{M}_{1} is called a Serre subcategory, if for each exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ in \mathcal{M} the following condition is fulfilled: the object M is in \mathcal{M}_{1} if and only if the objects M^{\prime} and $M^{\prime \prime}$ are in \mathcal{M}_{1}. For any Serre subcategory \mathcal{M}_{1} of \mathcal{M} the quotient category $\mathcal{M} / \mathcal{M}_{1}$ is defined as follows (see [3]): Its objects are those of \mathcal{M} and the homomorphisms from M to N are defined to be

$$
\lim _{M^{\prime}, N^{\prime}} \operatorname{Hom}_{\mathcal{M}}\left(M^{\prime}, N / N^{\prime}\right),
$$

the inductive limit being taken over all subobjects $M^{\prime} \subseteq M$ respectively $N^{\prime} \subseteq N$ such that $M / M^{\prime} \in \mathcal{M}_{1}$ respectively $N^{\prime} \in \mathcal{M}_{1}$.

Lemma 3:

a) Let $\mathcal{M}_{2} \subseteq \mathcal{M}_{1} \subseteq \mathcal{M}$ be Serre subcategories. Then $\mathcal{M}_{1} / \mathcal{M}_{2}$ is a Serre subcategory of $\mathcal{M} / \mathcal{M}_{2}$ and the canonical functor

$$
\left(\mathcal{M} / \mathcal{M}_{2}\right) /\left(\mathcal{M}_{1} / \mathcal{M}_{2}\right) \xrightarrow{\text { can }} \mathcal{M} / \mathcal{M}_{1}
$$

is an equivalence of categories.
b) Let $\mathcal{M}_{1} \subseteq \mathcal{M}$ be a Serre subcategory and let $\mathcal{N} \subseteq \mathcal{M}$ be a nonempty, full subcategory, closed under taking subobjects, quotients, and finite products (in particular \mathcal{N} is an abelian subcategory). Then $\mathcal{N} \cap \mathcal{M}_{1}$ is a Serre subcategory of \mathcal{N} and $\mathcal{N} / \mathcal{N} \cap \mathcal{M}_{1}$ canonically is a full subcategory of $\mathcal{M} / \mathcal{M}_{1}$ being closed under taking subobjects, quotients, and finite products.

Proof: straightforward.

§2 The Theorem

Let π be a finite group. We will denote the set of isomorphism classes of simple $\mathbb{Q}[\pi]$-modules by $C(\pi)$. Let

$$
\mathbb{Q}[\pi]=\prod_{\rho \in C(\pi)} M_{n_{\rho}}\left(K_{\rho}\right)
$$

be the decomposition of $\mathbb{Q}[\pi]$ into simple algebras according to the structure theorem of Wedder-burn-Artin, and for any $\rho \in C(\pi)$ let $e_{\rho} \in \mathbb{Q}[\pi]$ be the idempotent associated with this decomposition. It is well-known that e_{ρ} is an element of the subring $\mathbb{Z}\left[\frac{1}{\# \pi}\right][\pi]$ (see for instance [2]). So, if $\omega_{\rho} \subseteq \pi$ denotes the kernel of the representation ρ, the ring

$$
\mathbb{Z}<\rho>:=\mathbb{Z}\left[\frac{\# \omega_{\rho}}{\# \pi}\right]\left[\pi / \omega_{\rho}\right] e_{\rho}
$$

is well-defined. For any subset $C \subseteq C(\pi)$ we set

$$
\mathbb{Z}<C>:=\prod_{\rho \in C} \mathbb{Z}<\rho>
$$

and for any ring R we set

$$
R<C>:=R \otimes_{\mathbb{Z}} \mathbb{Z}<C>=\prod_{\rho \in C} R\left[\frac{\# \omega_{\rho}}{\# \pi}\right]\left[\pi / \omega_{\rho}\right] e_{\rho} .
$$

Theorem: Let π be a finite nilpotent group and let Γ be an arbitrary finite group, which acts on π by group automorphisms. Then for any ring R and any $q \geq 0$ there is a group isomorphism

$$
K_{q}^{\prime}(R[\pi \rtimes \Gamma]) \cong \underset{\rho \in C(\pi) / \Gamma}{\oplus} K_{q}^{\prime}(R<\Gamma \rho>\# \Gamma) .
$$

(Here $\pi \rtimes \Gamma$ denotes the semidirect product, $\Gamma \rho$ denotes the orbit of $\rho \in C(\pi)$ under the induced action of Γ on $C(\pi)$ and $C(\pi) / \Gamma$ denotes the set of orbits.)
Proof: Let $\pi=\oplus_{p} \pi_{p}$ be the decomposition of π into its p-Sylow-subgroups and let $P(\pi)$ be the set of primes p with $\pi_{p} \neq 0$. For any $l \in P(\pi)$ we set $l \pi:=\oplus_{p \neq l} \pi_{p} \cong \pi / \pi_{l}$ and

$$
I_{l}:=I_{l}(R, \pi):=\operatorname{ker}\left(R[\pi \rtimes \Gamma] \xrightarrow{\operatorname{can}} R\left[{ }_{l} \pi \rtimes \Gamma\right]\right) .
$$

Further for any subset $L \subseteq P(\pi)$ the ideal $I_{L}=I_{L}(R, \pi)$ is defined to be $\prod_{l \in L} I_{l}(R, \pi)$, which is well-defined by Lemma 1 .
Let $\mathcal{M}=\mathcal{M}(R, \pi)$ be the abelian category of finitely generated $R[\pi \rtimes \Gamma]$-modules and let \mathcal{M}_{L} be the Serre subcategory of \mathcal{M} consisting of those objects which are annihilated by some power of I_{L}. We define \mathcal{C}_{L} to be the quotient category $\mathcal{M} / \mathcal{M}_{L}$. Now the theorem is the special case $L=\emptyset$ of the more general

Theorem': For any subset L of $P(\pi)$ and any $q \geq 0$ there is a group isomorphism

Lemma 4: For any subset L of $P(\pi)$ the canonical functor

$$
\mathcal{C}_{L}(R, \pi) \rightarrow \mathcal{C}_{L}\left(R\left[\frac{1}{l}, l \in L\right], \pi\right)
$$

is an equivalence of categories.
Proof: Let \mathcal{H}_{L} be the Serre subcategory of \mathcal{M} consisting of those objects which are annihilated by some power of $\prod_{l \in L} l$. We claim that \mathcal{H}_{L} is a subcategory of \mathcal{M}_{L}. Then

$$
\begin{align*}
& \mathcal{C}_{L}(R, \pi) \stackrel{\text { def }}{=} \mathcal{M}(R, \pi) / \mathcal{M}_{L}(R, \pi)= \\
& \cong\left(\mathcal{M}(R, \pi) / \mathcal{H}_{L}(R, \pi)\right) /\left(\mathcal{M}_{L}(R, \pi) / \mathcal{H}_{L}(R, \pi)\right) \tag{Lemma3a}\\
& \cong \mathcal{M}\left(R\left[\frac{1}{l}, l \in L\right], \pi\right) / \mathcal{M}_{L}\left(R\left[\frac{1}{l}, l \in L\right], \pi\right) \stackrel{\text { def }}{=} \mathcal{C}_{L}\left(R\left[\frac{1}{l}, l \in L\right], \pi\right)
\end{align*}
$$

For the last equation note that the well-known equivalence $\mathcal{M} / \mathcal{H}_{L} \cong \mathcal{M}\left(R\left[\frac{1}{l}, l \in L\right], \pi\right)$ induces an equivalence $\mathcal{M}_{L} / \mathcal{H}_{L} \cong \mathcal{M}_{L}\left(R\left[\frac{1}{l}, l \in L\right], \pi\right)$, because the ideal $I_{L}\left(R\left[\frac{1}{l}, l \in L\right], \pi\right)$ arises from
$I_{L}(R, \pi)$ by inverting the primes $l \in L$.
There remains to prove the above claim. Let M be an object in \mathcal{H}_{L}. We may assume that $l \cdot M=0$ for some $l \in L$, because obviously M possesses a filtration by submodules, such that the successive quotients are annihilated by some prime $l \in L$. Now we proceed by induction on $\# \pi_{l}$. The case $\pi_{l}=\{1\}$ being clear, we may assume that the center $Z\left(\pi_{l}\right)$ of π_{l} is not trivial. By Lemma 1 the ideal $I_{Z(\pi)} \stackrel{\text { def }}{=} \operatorname{ker}\left(R[\pi \rtimes \Gamma] \rightarrow R\left[\pi / Z\left(\pi_{l}\right) \rtimes \Gamma\right]\right)$ is generated by the elements $[\sigma]-[1], \sigma \in Z\left(\pi_{l}\right)$. Hence some power of $I_{Z(\pi)}$ is contained in the principal ideal (l) and therefore by the inductive hypothesis

$$
M \supseteq I_{Z\left(\pi_{l}\right)} M \supseteq \ldots \supseteq I_{Z\left(\pi_{l}\right)}^{n} M \supseteq 0 \quad(n \gg 0)
$$

is a filtration of M by submodules, such that the successive quotients are annihilated by some power of $I_{l} / I_{Z\left(\pi_{l}\right)}$ and in particular by some power of $I_{L} \subseteq I_{l}$.
Proof of Theorem': If the order of π is a unit in R, then for each $\rho \in C(\pi)$ the component $R[\pi] e_{\rho}$ of $R[\pi]$ is isomorphic to $R<\rho>$ and the category \mathcal{C}_{L} obviously is equivalent to the category of $\left.\left(\prod_{\rho \in\left(C(\pi)-\cup_{l \in L} C(\imath \pi)\right) / \Gamma} R<\Gamma \rho\right\rangle \# \Gamma\right)$-modules. This shows the theorem in this trivial case.
For the general case we proceed by induction on $\# P(\pi)$. If $\# P(\pi)=0, \pi$ is trivial and there is nothing to prove. If $\# P(\pi)>0$, we consider first the case $L=P(\pi)$. By Lemma 4 the category $\mathcal{C}_{P(\pi)}(R, \pi)$ is equivalent to the category $\mathcal{C}_{P(\pi)}\left(R\left[\frac{1}{\# \pi}\right], \pi\right)$. Further for each $\rho \in C(\pi)-\cup_{l \in P(\pi)} C(l \pi)$ we have $P\left(\pi / \omega_{\rho}\right)=P(\pi)$ and in particular $\left.R<\Gamma \rho\right\rangle=R\left[\frac{1}{\# \pi}\right]\langle\Gamma \rho\rangle$. Now the above special case proves the theorem for $L=P(\pi)$. If L is a proper subset of $P(\pi)$, we can choose a prime $p \in P(\pi)-L$ and by descending induction on $\# L$ we can assume that the theorem is already proved for $L \cup\{p\}$.
By Lemma 3a we have

$$
\mathcal{C}_{L \cup\{p\}}=\mathcal{C}_{L} /\left(\mathcal{M}_{L \cup\{p\}} / \mathcal{M}_{L}\right)
$$

and by Quillen's localization sequence (see [10]) there is a long exact sequence of groups

$$
\ldots \rightarrow K_{q}^{\prime}\left(\mathcal{M}_{L \cup\{p\}} / \mathcal{M}_{L}\right) \xrightarrow{i_{*}} K_{q}^{\prime}\left(\mathcal{C}_{L}\right) \xrightarrow{j^{*}} K_{q}^{\prime}\left(\mathcal{C}_{L \cup\{p\}}\right) \rightarrow K_{q-1}^{\prime}\left(\mathcal{M}_{L \cup\{p\}} / \mathcal{M}_{L}\right) \rightarrow \ldots
$$

Now the theorem easily follows from the two inductive hypotheses and the following two claims: a) There is an isomorphism of groups

$$
K_{q}^{\prime}\left(\mathcal{M}_{L \cup\{p\}} / \mathcal{M}_{L}\right) \cong K_{q}^{\prime}\left(\mathcal{C}_{L}\left(R,{ }_{p} \pi\right)\right)
$$

b) For each $q \geq 0$ there is a homomorphism

$$
\varepsilon_{*}: K_{q}^{\prime}\left(\mathcal{C}_{L}\right) \rightarrow K_{q}^{\prime}\left(\mathcal{M}_{L \cup\{p\}} / \mathcal{M}_{L}\right)
$$

such that $\varepsilon_{*} \circ i_{*}=\mathrm{id}$.
To prove claim a) let \mathcal{N} be the full subcategory of $\mathcal{M}_{L \cup\{p\}}$ consisting of those objects M such that $I_{p} M=0$. Then the equivalence $\mathcal{M}\left(R,{ }_{p} \pi\right) \underset{\rightarrow}{\mathcal{N}}$ induces an equivalence

$$
\mathcal{C}_{L}\left(R,{ }_{p} \pi\right) \xrightarrow{\sim} \mathcal{N} /\left(\mathcal{N} \cap \mathcal{M}_{L}\right),
$$

because $I_{L}\left(R,{ }_{p} \pi\right)=\left(I_{L}(R, \pi)+I_{p}(R, \pi)\right) / I_{p}(R, \pi)$. By Lemma 3b) $\mathcal{N} /\left(\mathcal{N} \cap \mathcal{M}_{L}\right)$ is a full subcategory of $\mathcal{M}_{L \cup\{p\}} / \mathcal{M}_{L}$ closed under taking subobjects, quotients, and finite products. Further for each $M \in \mathcal{M}_{L \cup\{p\}} / \mathcal{M}_{L}$

$$
M \supset I_{p} M \supset \ldots \supset I_{p}^{n} M=0 \quad(n \gg 0)
$$

is a finite filtration of M by submodules, such that the successive quotients are in $\mathcal{N} /\left(\mathcal{N} \cap \mathcal{M}_{L}\right)$. Now Quillen's devissage theorem ([10]) yields the desired isomorphism

$$
K_{q}^{\prime}\left(\mathcal{C}_{L}\left(R,{ }_{p} \pi\right)\right) \cong K_{q}^{\prime}\left(\mathcal{N} /\left(\mathcal{N} \cap \mathcal{M}_{L}\right)\right) \stackrel{\sim}{\rightarrow} K_{q}^{\prime}\left(\mathcal{M}_{L \cup\{p\}} / \mathcal{M}_{L}\right)
$$

Finally the canonical injection ${ }_{p} \pi \rightarrow \pi$ yields an exact functor $\varepsilon_{*}: \mathcal{C}_{L}(R, \pi) \rightarrow \mathcal{C}_{L}\left(R,{ }_{p} \pi\right)$, such that the composition

$$
\mathcal{C}_{L}\left(R,{ }_{p} \pi\right) \xrightarrow{\sim} \mathcal{N} /\left(\mathcal{N} \cap \mathcal{M}_{L}\right) \subseteq \mathcal{M}_{L \cup\{p\}} / \mathcal{M}_{L} \xrightarrow{i_{*}} \mathcal{C}_{L}(R, \pi) \xrightarrow{\varepsilon_{*}} \mathcal{C}_{L}\left(R,{ }_{p} \pi\right)
$$

is isomorphic to the identical functor. This proves claim b).

Remarks:

1) If Γ is trivial and π is a p-group the above approach is a slight simplification of [4].
2) If π is abelian and if the Γ-action on π stabilizes each cocyclic subgroup of π, the theorem was established by D. Webb in Proposition (3.1) of [14].
3) In the same way an analogous result for the K^{\prime}-groups of the category of coherent $(\pi \rtimes \Gamma)$ modules on a (noetherian) scheme can be proved.
4) In order to generalize the above proof to more general groups G note that it relies on following facts:
a) The existence of a normal subgroup of prime power order gives the first step in the induction.
b) If there are several normal p-subgroups commuting elementwise, the induction can be continued.
c) To obtain a decomposition of $K^{\prime}(\mathbb{Z}[G])$ into a direct sum, a decomposition of G into a product is necessary.
If only assumption a) or b) is fulfilled, we obtain one or more localization sequences, which indeed yield some information about $K^{\prime}(\mathbb{Z}[G])$ (for instance Lemma 4 remains true) but which perhaps don't split.

§3 Example

In this section we apply the theorem of $\S 2$ to the group of upper triangular (3×3)-matrices over a finite field \mathbb{F}_{p}. So we fix a prime p and define B to be the group

$$
B:=B_{3}\left(\mathbb{F}_{p}\right)=\left\{\left(\begin{array}{ccc}
a & x & y \\
& b & z \\
& & c
\end{array}\right): a, b, c \in \mathbb{F}_{p}^{\times}, x, y, z \in \mathbb{F}_{p}\right\}
$$

For any divisor d of $p-1$ and for any $k>0$ let $m_{k, d}$ be the number of cyclic subgroups of order d of $\left(\mathbb{F}_{p}^{\times}\right)^{k}$. An easy calculation shows that

$$
m_{k, d}=\prod_{i} q_{i}^{(k-1)\left(r_{i}-1\right)} \cdot\left(\frac{q_{i}^{k}-1}{q_{i}-1}\right)
$$

if $d=\prod_{i} q_{i}^{r_{i}}$ is the decomposition of d into prime factors.
Theorem: For any $q \geq 0$ there is a group isomorphism

$$
K_{q}^{\prime}(\mathbb{Z}[B]) \cong \underset{d \mid p-1}{\oplus}\left[K_{q}^{\prime}\left(\mathbb{Z}\left[\frac{1}{d}\right]\left[\zeta_{d}\right]\right)^{m_{3, d}} \oplus K_{q}^{\prime}\left(\mathbb{Z}\left[\frac{1}{p \cdot d}\right]\left[\zeta_{d}\right]\right)^{1+3 m_{2, d}}\right]
$$

Proof: Let $T \cong\left(\mathbb{F}_{p}^{\times}\right)^{3}$ be the subgroup of B consisting of diagonal matrices and let

$$
U:=\left\{\left(\begin{array}{ccc}
1 & x & y \\
& 1 & z \\
& & 1
\end{array}\right): x, y, z \in \mathbb{F}_{p}\right\} \subset B
$$

be the unipotent subgroup. Then B is the semidirect product $U \rtimes T$ and

$$
N:=\left\{\left(\begin{array}{ccc}
1 & 0 & y \\
& 1 & 0 \\
& & 1
\end{array}\right): y \in \mathbb{F}_{p}\right\} \cong \mathbb{F}_{p}
$$

is a T-equivariant normal subgroup of U, such that U / N is isomorphic to $\mathbb{F}_{p} \times \mathbb{F}_{p}$. Let ε, $\rho_{0}, \ldots \rho_{p}, \omega$ be the following simple $\mathbb{Q}[U]$-algebras (ζ_{p} denotes a primitive p-th root of unity):

$$
\begin{array}{lccccc}
\varepsilon: & \mathbb{Q}[U] & \stackrel{\text { can }}{\rightarrow} & \mathbb{Q} & & \\
\rho_{\alpha}: & \mathbb{Q}[U] & \xrightarrow{\text { can }} & \mathbb{Q}[U / N] & \rightarrow & \mathbb{Q}\left(\zeta_{p}\right)
\end{array} \quad(\alpha \in\{0, \ldots, p-1\})
$$

One easily checks that ω is multiplicative and surjective and that $\varepsilon, \rho_{0}, \ldots, \rho_{p}, \omega$ are the Wedderburn components of $\mathbb{Q}[U]$, i. e. $C(U) \cong\left\{\varepsilon, \rho_{0}, \ldots, \rho_{p}, \omega\right\}$.

Lemma 5:

1) $C(U) / T=\left\{\{\varepsilon\},\left\{\rho_{0}\right\},\left\{\rho_{1}, \ldots, \rho_{p-1}\right\},\left\{\rho_{p}\right\},\{\omega\}\right\}$
2) One has the following five isomorphisms of rings:
a) $\mathbb{Z}<\varepsilon>\# T \cong \mathbb{Z}\left[\mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times}\right]$
b) $\mathbb{Z}<\rho_{0}>\# T \cong M_{p-1}\left(\mathbb{Z}\left[\frac{1}{p}\right]\left[\mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times}\right]\right)$
c) $\mathbb{Z}<\left\{\rho_{1}, \ldots, \rho_{p-1}\right\}>\# T \cong M_{(p-1)^{2}}\left(\mathbb{Z}\left[\frac{1}{p}\right]\left[\mathbb{F}_{p}^{\times}\right]\right)$
d) $\mathbb{Z}<\rho_{p}>\# T \cong M_{p-1}\left(\mathbb{Z}\left[\frac{1}{p}\right]\left[\mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times}\right]\right)$
e) $\mathbb{Z}<\omega>\# T \cong M_{p(p-1)}\left(\mathbb{Z}\left[\frac{1}{p}\right]\left[\mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times}\right]\right)$

Applying the theorem of $\S 2$ to $B=U \rtimes T$ and using Lemma 5 and Morita equivalence we obtain

$$
K_{q}^{\prime}(\mathbb{Z}[B]) \cong K_{q}^{\prime}\left(\mathbb{Z}\left[\mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times}\right]\right) \oplus K_{q}^{\prime}\left(\mathbb{Z}\left[\frac{1}{p}\right]\left[\mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times}\right]\right)^{3} \oplus K_{q}^{\prime}\left(\mathbb{Z}\left[\frac{1}{p}\right]\left[\mathbb{F}_{p}^{\times}\right]\right)
$$

Applying the theorem of $\S 2$ again we obtain the desired calculation of $K_{q}^{\prime}(\mathbb{Z}[B])$.
Proof of Lemma 5: Obviously T fixes ε and ω. Using the identity

$$
\left(\begin{array}{lll}
a & & \tag{*}\\
& b & \\
& & c
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & x & y \\
& 1 & z \\
& & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
a & & \\
& b & \\
& & c
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & a b^{-1} x & a c^{-1} y \\
& 1 & b c^{-1} z \\
& & 1
\end{array}\right)
$$

we easily see that T fixes ρ_{0} and ρ_{p} and permutes $\rho_{1}, \ldots, \rho_{p-1}$ transitively. This proves the first statement.
Ad a): This is clear.
Ad b): By definition we have $\mathbb{Z}<\rho_{0}>\cong \mathbb{Z}\left[\frac{1}{p}\right]\left[\zeta_{p}\right]$ and because of $(*)$ the element $(a, b, c) \in T$ acts on $\mathbb{Z}<\rho_{0}>$ by $\zeta_{p} \mapsto \zeta_{p}^{a b^{-1}}$. Hence the subgroup $T_{1}:=\left\{(a, 1,1): a \in \mathbb{F}_{p}^{\times}\right\} \subset T$ acts as Galois group on $\mathbb{Z}\left[\frac{1}{p}\right]\left[\zeta_{p}\right]$ and $T_{2,3}:=\left\{(b, b, c): b, c \in \mathbb{F}_{p}^{\times}\right\}$acts trivially. This yields the desired isomorphism

$$
\mathbb{Z}<\rho_{0}>\# T=\mathbb{Z}\left[\frac{1}{p}\right]\left[\zeta_{p}\right] \#\left(T_{1} \times T_{2,3}\right) \cong M_{p-1}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)\left[T_{2,3}\right] \cong M_{p-1}\left(\mathbb{Z}\left[\frac{1}{p}\right]\left[\mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times}\right]\right)
$$

Ad c): By definition we have $\mathbb{Z}<\left\{\rho_{1}, \ldots, \rho_{p-1}\right\}>\cong\left(\mathbb{Z}\left[\frac{1}{p}\right]\left[\zeta_{p}\right]\right)^{\left(\mathbb{F}_{p}^{\times}\right)}$and because of $(*)$ the element $(a, b, c) \in T$ acts on $\mathbb{Z}<\left\{\rho_{1}, \ldots, \rho_{p-1}\right\}>$ by $\zeta_{p} e_{\alpha} \mapsto \zeta_{p}^{a b^{-1}} e_{a b^{-2} c \alpha}$. Hence the subgroup $\Delta:=\left\{(a, a, a): a \in \mathbb{F}_{p}^{\times}\right\}$acts trivially, $T_{2}:=\left\{\left(1, b, b^{2}\right): b \in \mathbb{F}_{p}^{\times}\right\}$acts as Galois group on each factor and $T_{3}:=\left\{(1,1, c): c \in \mathbb{F}_{p}^{\times}\right\}$acts by permuting the factors. This yields the desired isomorphism:

$$
\begin{gathered}
\mathbb{Z}<\left\{\rho_{1}, \ldots, \rho_{p-1}\right\}>\# T=\left(\mathbb{Z}\left[\frac{1}{p}\right]\left[\zeta_{p}\right]^{\left(\mathbb{F}_{p}^{\times}\right)}\right) \#\left(T_{2} \times T_{3} \times \Delta\right) \\
\cong\left(M_{p-1}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)^{\left(\mathbb{F}_{p}^{\times}\right)}\right) \#\left(T_{3} \times \Delta\right) \cong M_{p-1}\left(M_{p-1}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)\right)[\Delta] \cong M_{(p-1)^{2}}\left(\mathbb{Z}\left[\frac{1}{p}\right]\left[\mathbb{F}_{p}^{\times}\right]\right)
\end{gathered}
$$

Ad d): This can be proved in the same way as b).
Ad e): Because $\operatorname{det}\left(\left(\zeta_{p}^{x x^{\prime}}\right)_{x, x^{\prime} \in \mathbb{F}_{p}}\right)$ is a unit in $\mathbb{Z}\left[\frac{1}{p}\right]\left[\zeta_{p}\right]$ (Vandermonde), the restricted map $\omega: \mathbb{Z}\left[\frac{1}{p}\right][U] \rightarrow \mathbb{Z}\left[\frac{1}{p}\right]\left[\zeta_{p}\right]^{\left(\mathbb{F}_{p}\right)} \# \mathbb{F}_{p}$ remains surjective and we have $\mathbb{Z}<\omega>\cong \mathbb{Z}\left[\frac{1}{p}\right]\left[\zeta_{p}\right]{ }^{\left(\mathbb{F}_{p}\right)} \# \mathbb{F}_{p}$. Because of $\left(^{*}\right)$ the element $(a, b, c) \in T$ acts on $\mathbb{Z}<\omega>$ by $\zeta_{p} e_{x}\{z\} \mapsto \zeta_{p}^{a c^{-1}} e_{b c^{-1}}\left\{b c^{-1} z\right\}$. Hence the subgroup Δ acts trivially, T_{1} acts as Galois group on $\mathbb{Z}\left[\frac{1}{p}\right]\left[\zeta_{p}\right]$ and the element $\left(c^{-1}, 1, c^{-1}\right) \in T_{3}^{\prime}:=\left\{(c, 1, c): c \in \mathbb{F}_{p}^{\times}\right\}$acts by $\zeta_{p} e_{x}\{z\} \mapsto \zeta_{p} e_{c x}\{c z\}$. By Lemma 2 this yields the desired isomorphism:

$$
\begin{aligned}
\mathbb{Z}<\omega>\# T & \cong\left(\mathbb{Z}\left[\frac{1}{p}\right]\left[\zeta_{p}\right]^{\left(\mathbb{F}_{p}\right)} \# \mathbb{F}_{p}\right) \#\left(T_{1} \times T_{3}^{\prime} \times \Delta\right) \cong\left(\left(M_{p-1}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)\right)^{\left(\mathbb{F}_{p}\right)} \# \mathbb{F}_{p}\right) \#\left(T_{3}^{\prime} \times \Delta\right) \\
& \cong\left(\left(M_{p-1}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)\left[T_{3}^{\prime}\right]\right)^{\left(\mathbb{F}_{p}\right)} \# \mathbb{F}_{p}\right)[\Delta] \cong M_{p(p-1)}\left(\mathbb{Z}\left[\frac{1}{p}\right]\left[\mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times}\right]\right)
\end{aligned}
$$

Remark: One easily checks that this example confirms the conjecture of Hambleton, Taylor and Williams ([4]).

Acknowledgement

I would like to thank C. Greither and C.-G. Schmidt for many helpful discussions especially concerning the example in section 3 .

References

[1] Bass, H.: Lenstra's calculation of $G_{0}(R \pi)$, and applications to Morse-Smale diffeomorphisms, in Integral Representations and Applications, Springer-Verlag, LNM 882 (1981), 287-318.
[2] Curtis, C. W. and Reiner, I.: Methods of Representation Theory, Wiley, New York (1981).
[3] Gabriel, P.: Des catégories abéliennes, Bull. Soc. math. France 90 (1962), 323-448.
[4] Hambleton, I., Taylor, L. R., and Williams, E. B.: On $G_{n}(R G)$ for G a finite nilpotent group, J. Algebra 116 (1988), 466-470.
[5] Lenstra, H. L.: Grothendieck groups of abelian group rings, J. Pure Appl. Algebra 20 (1981), 173-193.
[6] Liu, M.: The group $G_{1}(R \pi)$ for π a finite abelian group, J. Pure Appl. Algebra 24 (1982), 287-291.
[7] Mitsuda, T.: The Grothendieck group of a finite group which is a split extension by a nilpotent group, Tokyo J. Math. 7 (1984), 215-219.
[8] Miyamoto, M.: Grothendieck group of integral nilpotent group rings, J. Algebra 91 (1984), 32-35.
[9] Miyamoto, M.: The group $G_{1}(R G)$ for a nilpotent group G, J. Pure Appl. Algebra 29 (1983), 151-153.
[10] Quillen, D.: Higher algebraic K-theory I, in Algebraic K-Theory I, Springer-Verlag, LNM 341 (1973), 85-147.
[11] Reiner, I.: Maximal Orders, Academic Press, London (1975).
[12] Webb, D. L.: Grothendieck groups of dihedral and quaternion group rings, J. Pure Appl. Algebra 35 (1985), 197-223.
[13] Webb, D. L.: Quillen G-theory of abelian group rings, J. Pure Appl. Algebra 39 (1986), 177-195.
[14] Webb, D. L.: The Lenstra map on classifying spaces and G-theory of group rings, Invent. Math. 84 (1986), 73-89.
[15] Webb, D. L.: G-theory of groups rings for groups of square-free order, K-Theory $\mathbf{1}$ (1987), 417-422.
[16] Webb, D. L.: Higher G-theory of nilpotent group rings, J. Algebra 116 (1988), 457-465.

