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Introduction

In this paper we prove a Lefschetz-Grothendieck-Riemann-Roch formula in
higher equivariant K -theory of nonsingular projective varieties over an alge-
braically closed field k :

Let X be a variety equipped with an action of a group or more generally of a
monoid G . By a G -module on X we mean an OX -module E together with
in g ∈ G functorial homomorphisms

g : g∗E → E .

We denote the exact category of locally free G -modules on X by P(G,X)
and define the q -th equivariant K -group to be

Kq(G,X) := Kq(P(G,X))

(see [10]). Let K(G,X) be the direct sum ⊕q≥0Kq(G,X) . The Lefschetz-
Riemann-Roch problem is to compute the covariant map

f∗ : K(G,X) → K(G, Y )
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for any projective G -morphism f : X → Y . For example, if
f : X → Spec(k) is the structure morphism of X , in case q = 0 this means
for any locally free G -module E on X to compute the alternating sum∑

i≥0

(−1)i[H i(X, E)]

of the virtual representations [H i(X, E)] of G on the cohomology groups
H i(X, E) , the socalled Lefschetz trace.

Lefschetz theorem: If the action of G on X and Y factorizes through
a fixed finite abelian group G′ , after a suitable localization, the following
commtative diagram exists:

K(G,X)
λ−1(NX)−1·i∗X−→ K(G,XG)

f∗ ↓ ↓ f∗
K(G, Y )

λ−1(NY )−1·i∗Y−→ K(G, Y G);

here iX : XG → X and iY : Y G → G denote the embeddings of the fixed point
varieties and NX and NY denote the conormal sheaves of these embeddings.

The proof (see section 3) essentially consists of two ingredients: firstly the
excess intersection formula (see section 2) and secondly the computation of
higher equivariant K -theory of a projective G -fibre-bundle (see [6] or [14] or
[1]).

By combining the Lefschetz theorem with the Grothendieck-Riemann-Roch
theorem for higher K -theory (see [13] or [12]) we obtain the Lefschetz-Grothendieck-
Riemann-Roch formula mentioned in the beginning.

That formula generalizes the result of Donovan ([2]) to higher equivariant K -
theory. Further Thomason’s theorem ([15]) for étale-topological K -theory and
our Lefschetz formula overlap in case of a finite abelian group G .

1. Equivariant K -Theory

Let G be a monoid, i. e. a semigroup with 1, and let X be a noetherian
scheme equipped with an action of G (i. e., a G -scheme). An OX -module E
together with in g ∈ G functorial maps

g : g∗E → E

is called a G -module on X . The category M(G,X) respectively P(G,X) of
coherent respectively locally free G -modules on X is an abelian respectively
exact category in the sense of [10]. For any q ≥ 0 let

K ′
q(G,X) := Kq(M(G,X))
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respectively
Kq(G,X) := Kq(P(G,X))

denote the corresponding q -th K -group according to [10]. The tensor product
of G -modules makes K0(G,X) a commutative ring with identity element
[OX ] and makes Kq(G,X) and K ′

q(G,X) a K0(G,X) -module. Defining the
product of two homogenous elements of positive degree in

K(G,X) := ⊕
q≥0

Kq(G,X)

to be zero K(G,X) becomes a graded K0(G,X) -algebra. Obviously K(G,X)
is contravariant functorial under G -morphisms.

Example 1

Let G be the cyclic monoid IN and let X be a projective variety over a field
k with trivial G -action. In this case P(G,X) respectively M(G,X) is the
category of pairs (E , g) consisting of a locally free respectively coherent OX -
module E and an OX -endomorphism g of E . For any irreducible polynomial
π ∈ k[T ] let kπ be the field k[T ]/(π) and let Xπ be the base extension
X ⊗k kπ .

Proposition 1: There is a natural isomorphism of groups

K ′
q(G,X) ∼= ⊕

π∈k[T ] irreducible
K ′

q(Xπ).

In particular, if k is algebraically closed, the ring homomorphism

ZZ[k] → K0(G, Spec(k))∑
ni · [ai] 7→ ∑

ni · [(k, µai)]

from the semigroup ring ZZ[k] corresponding to the multiplicative monoid
k to K0(G, Spec(k)) is an isomorphism and induces for any smooth X a
ringisomorphism

K(X)⊗ ZZ[k] →̃K(G,X).

Proof: For any irreducible polynomial π ∈ k[T ] let Mπ(G,X) be the full sub-
category of M(G,X) consisting of pairs (E , g) with πn(g) = 0 in EndOX

(E)
for one n ∈ IN . Then the canonical functor

⊕
π∈k[T ] irreducible

Mπ(G,X) →̃M(G,X)

is an equivalence of categories:
For any pair (E , g) ∈ M(G,X) there is a polynomial α ∈ k[T ] with α(g) = 0 ,
because EndOX

(E) = Γ (X, EndOX
(E)) is a finite dimensional k -algebra. Let
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α = πm1
1 · · · πmr

r be the decomposition of α into irreducible polynomials and
for any πi let E(πi) := ker(πmi

i (g)) ⊆ E be the πi -primary component of E
relative to g . Then the canonical map

(
r
⊕
i=1

E(πi),
r
⊕
i=1

g|E(πi)) →̃ (E , g)

is an isomorphism. This shows that the considered functor is essentially sur-
jective. It is full, because any morphism (E , g) → (F , h) in M(G,X) maps
each primary component of E relative to g to the corresponding one of F
relative to h .
Now let π ∈ k[T ] be an irreducible polynomial. The above equivalence of cate-
gories in particular yields that Mπ(G,X) is a Serre subcategory of M(G,X) ,
hence Mπ(G,X) is an abelian category. Let Mπ,1(G,X) ⊆ Mπ(G,X) be
the full subcategory consisting of pairs (E , g) with π(g) = 0 . Obviously
Mπ,1(G,X) is nonempty and closed under taking subobjects, quotients and
finite products in Mπ(G,X) , hence again an abelian category. Because any
object (E , g) in Mπ(G,X) possesses the finite filtration

0 ⊆ (ker π(g), g) ⊆ (ker π2(g), g) ⊆ . . . ⊆ (ker πn(g), g) = (E , g),

whose successive quotients are in Mπ,1(G,X) , by Quillen’s devissage theorem
([10], theorem 4, p. 112) the canonical map

Kq(Mπ,1(G,X)) →̃Kq(Mπ(G,X))

is an isomorphism.
Finally we obtain an equivalence of categories

M(Xπ) →̃Mπ,1(G,X)

by mapping an OXπ -module M to the pair ((απ)∗(M), (απ)∗(T )) , where απ

denotes the canonical projection Xπ → X and T ∈ k[T ]/(π) is considered as
multiplication endomorphism of M .
Now the first claim of the proposition is proved. For the remaining claims
observe that for any smooth X equivariant K ′ -theory equals equivariant K -
theory (see for instance [6]).

2. Excess Intersection Formula

Let G′ be a finite group and let C be the category of projective G′ -varieties
over a fixed field k . In order to study not only isomorphisms of finite order
but even homomorphisms on OX -modules we furthermore fix a monoid G
together with a monoidhomomorphism G → G′ and consider all G′ -objects
as G -objects, too.
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By [6] for any G′ -morphism f : X → Y in C of complete intersection there
is a covariant homomorphism

f∗ : K(G,X) → K(G, Y ).

For example, if f : X → Spec(k) is the structure morphism and if E is a
locally free G -module on X , then f∗[E ] is the alternating sum∑

i(−1)−1[H i(X, E)] of the virtual representations [H i(X, E)] of G on the
cohomology groups H i(X, E) of E .
Now let

(∗)
X1

f1→ Y1
ψ ↓ ↓ ϕ
X

f→ Y
be a fibre square of G′ -varieties in C , where f, f1 are morphisms of complete
intersection. We choose a factorization

f : X
i
↪→ IPY (F)

p→ Y

of f into a regular closed G′ -embedding i and into the structure morphism
p of a projective G′ -fibre-bundle IPY (F) (see [6] for existence). This decom-
position induces the fibre diagram

(∗∗)
X1

i1
↪→ IPY1(F1)

p1→ Y1
ψ ↓ ↓ ϕIP ↓ ϕ
X

i
↪→ IPY (F)

p→ Y,
where i and i1 are regular G′ -embeddings. We define the G′ -excess-conor-
mal-sheaf E of diagram (∗) to be the G′ -excess-conormal-sheaf of the left
square in diagram (∗∗) , i. e.

E := ker(ψ∗N → N1),

where N respectively N1 is the G′ -conormal-sheaf of i respectively i1 . One
checks easily that the element [E ] in K0(G,X1) doesn’t depend on the factor-
ization of f (compare [3]).

Proposition 2 (Excess Intersection Formula): The following diagram of
K -groups commutes:

K(G,X1)
(f1)∗−→ K(G, Y1)

λ−1(E) · ψ∗ ↑ ↑ ϕ∗

K(G,X)
f∗−→ K(G, Y ).

Proof: If all maps ψ , ϕ , f , f1 are regular embeddings and if the excess
dimension is zero, the intersection formula is proved in [6]. By equivariant
deformation to normal bundle (see [6] or [1]) the intersection formula follows
from this in the case that f and f1 are regular embeddings (compare [3]).
The general case can now be proved in the same way as in [3].
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3. Lefschetz Theorem

We assume the same situation as in section 2. In addition we assume that
G′ is abelian and that the ground field k is algebraically closed and that the
characteristic of k is prime to the order of G′ .

For any X in C let XG be the fixed point variety (we omit the apostrophe),
i. e. XG represents the functor

(Varieties/k) → Ens
T 7→ Mork(T,X)G

′
.

It is the intersection ∩g∈G′Xg of the fixed point varieties Xg defined in EGA
I, Proposition 0(1.4.10). Let iX : XG ↪→ X denote the corresponding closed
embedding and let NX denote the conormal sheaf of iX . By [5] for any smooth
X in C the fixed point variety is smooth, too. In particular NX is locally
free.

Example 2: Let E be a finite dimensional G′ -vector-space over k and let

E = ⊕
χ∈Hom(G′,k×)

Eχ

be the decomposition of E into simultanous eigenspaces Eχ := {x ∈ E :
g(x) = χ(g) · x for all g ∈ G′} . Then the canonical surjections E → Eχ

induce an isomorphism ⨿
χ

IP(Eχ) →̃ IP(E)G

between the disjoint union of the projective spaces IP(Eχ) and the fixed point
variety of the action of G′ on the projective space IP(E) . Furthermore the
fixed module NG

IP(E) of the action of G′ on the conormal sheaf NIP(E) vanishes.

Proof: The first statement is well known. For the second claim we choose a
k -basis xi, i ∈ I , of the vector space E consisting of simultanous eigenvectors.
Then G′ acts on each affine subspace D(xi) by linear automorphisms. Now
it is clear that for any i ∈ I the sheaf NG

D(xi)
vanishes, hence NG

IP(E) vanishes,
too.

Now we introduce the following set of denominators, which will be used in the
formulation of the Lefschetz theorem. For this we consider the map

Hom(G′, k×) → K0(G
′, k)

χ 7→ [χ],

which maps a character χ to the class [χ] of the onedimensionsal G′ -vector-
space k equipped with the action of G′ induced by χ . Let S denote the
set

S := {1− [χ] : χ ∈ Hom(G′, k×)\{1}}
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and let K0(G
′, k)[S−1] denote the localization of K0(G

′, k) relative to the mul-
tiplicative monoid < S > generated by S . Obviously all co- and contravariant
homomorphisms f∗ and f ∗ can be extended to

K(G,X)[S−1] := K(G,X) ⊗
K0(G′,k)

K0(G
′, k)[S−1].

Lemma 1: For any smooth X in C the element

λ−1(NX) :=
∑
i≥0

(−1)−1[ΛiNX ]

is a unit in K0(G,X
G)[S−1] .

Proof: We prove first that in the decomposition

NX =
∑
χ

Eχ

of NX into simualtanous eigensheaves Eχ (see example 1) the fixed module
E1 = NG

X vanishes. For this we choose an equivariant embedding
i : X ↪→ IPn of X into a projective space IPn equipped with a linear G′ -
action (see [6] for existence). Then the diagram of fixed point varieties

XG → X
↓ i ↓ i

(IPn)G → IPn

is a fibre square; hence the corresponding G′ -homomorphism i∗NIPn → NX is
surjective. By taking means we see that the induced homomorphism

i∗NG
IPn → NG

X

between the fixed modules remains surjective. Hence by example 2 the fixed
module NG

X vanishes.
Now by multiplicativity of λ−1 it suffices to show that for any character χ ̸= 1
the element λ−1(Eχ) is a unit in K0(G

′, XG)[S−1] . For this let [E ] denote the
class in K0(X

G) of the underlying OX -module E of Eχ and let n denote the
rank of E . Then the element

λ−1(Eχ) = λ−1([E ] · [χ])
= λ−1(n · [χ])− (λ−1(n · [χ])− λ−1([E ] · [χ]))
= (1− [χ])n −∑

i
(−1)i(

(
n
i

)
− [ΛiE ])[χi]

is a unit in K0(G
′, XG)[S−1] , because

(
n
i

)
− [ΛiE ] is nilpotent in K0(X

G) for

any i (see [3], Proposition 1.5, page 52).
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Lefschetz Theorem: Let f : X → Y be a G′ -morphism of smooth projective
G′ -varieties over k . Then the following diagram commutes:

K(G,X)
λ−1(NX)−1·i∗X−→ K(G,XG)[S−1]

↓ f∗ ↓ f∗
K(G, Y )

λ−1(NY )−1·i∗Y−→ K(G, Y G)[S−1]

In other words: The Lefschetz map

LX := λ−1(NX)
−1 · i∗X : K(G,X) → K(G,XG)[S−1]

is natural for G′ -morphisms between smooth projective G′ -varieties over k .

Proof. If f is a closed embedding the diagram

XG iX−→ X
f ↓ ↓ f
Y G iY−→ Y

is a fibre square and the class [E ] in K0(G,X
G) of the excess conormal sheaf

E of this square can be described in two ways:

[E ] = f ∗[NY ]− [NX ] = i∗X [NX/Y ]− [NXG/Y G ]

Now the following computation proves the Lefschetz formula in this case:

f∗(λ−1(NX)
−1 · i∗X)

= f∗(λ−1(E) · f ∗(λ−1(NY )
−1) · i∗X)

= λ−1(NY )
−1 · f∗(λ−1(E) · i∗X) (Projection formula)

= λ−1(NY )
−1 · i∗Y ◦ f∗ (Excess intersection formula).

For the general case we choose an equivariant G′ -embedding X ↪→ IP(E) ,
where E is a finite dimensional G′ -vector-space (see [6] for existence). It
induces a factorization

X
i
↪→ IP(E)× Y

p→ Y

of f into a closed immersion i and the G′ -projection p . Now the Lefschetz
theorem amounts to prove that following diagram commutes:

K(G,X)
λ−1(NX)−1·i∗X−→ K(G,XG)[S−1]

i∗ ↓ ↓ i∗

K(G, IP(E)× Y )
λ−1(NIP(E)×Y )−1·i∗

IP(E)×Y−→ K(G, IP(E)G × Y G)[S−1]
∥ ↓ (iIP(E) × 1)∗

K(G, IP(E)× Y )
p∗λ−1(NY )−1·(1×iY )∗−→ K(G, IP(E)× Y G)[S−1]

p∗ ↓ ↓ p∗
K(G, Y )

λ−1(NY )−1·i∗Y−→ K(G, Y G)[S−1]
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In this diagram the upper square is commutative by the case considered above.
The excess intersection formula (for elementary projections) yields the commu-
tativity of the lower square. For the middle square notice that NIP(E)×Y is the
sum of the preimages of NIP(E) and NY . Therefore using the multiplicativity
of λ−1 and the projection formula we may assume that Y = Spec(k) . Then
the commutativity of the middle square follows from the formula
(∗) (iIP(E))∗(λ−1(NIP(E))

−1) = 1 in K0(G, IP(E))[S
−1]

by means of the projection formula. We prove the equation (∗) by generalizing
[1] to our situation:
The composition

K0(G, IP(E)
G)[S−1]

i∗→ K0(G, IP(E))[S
−1]

i∗→ K0(G, IP(E)
G)[S−1]

is multiplication with λ−1(NIP(E)) by the excess intersection formula, hence an
isomorphism by lemma 1. Further both K0(G, IP(E)) and K0(G, IP(E)

G) are
free K0(G, Spec(k)) -modules of rank dim(E ) (see example 2 and for instance
[6]), so i∗ is injective and formula (∗) follows from i∗i∗(λ−1(NIP(E))

−1)
= 1 .

Example 3: Let X be a projective k -variety and let g be an automorphism
of X of finite order being prime to char(k ). We assume that g fixes only
one point, say x . Then NX is the cotangent space Ťx in x . Writing [Ťx] =∑

i ni[ai] in K0(IN, k) ∼= ZZ[k] according to example 1 we have

λ−1(NX) =
∏
i

(1− [ai])
ni

and in particular we obtain for any locally free OX -module E equipped with
an OX -homomorphism g : g∗E → E :

∑
i≥0

(−1)itrace(H i(g)|H i(X, E)) = trace(gx|Ex)
det(1− g|Ťx)

;

here Ex denotes the fibre of E in x . Obviously this formula can be generalized
to the case of several isolated fixed points.

Finally we combine the Lefschetz formula with the Grothendieck-Riemann-
Roch formula, which we first recall (see [13] or [12]):

For any smooth k -variety X let K(X) :=
∑

q≥0Kq(X) denote the “Grothen-
dieck ring” of X . It carries a λ -ring structure augmented by the binomial
ring H0(X,ZZ) . Let Gr·K(X) denote the induced graded ring and let

ch : K(X) → Gr·K(X)Q

be the Chern character. Then for any projective morphism f : X → Y
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between smooth k -varieties X , Y the following diagram commutes:

K(X)
Td(TX)·ch−→ Gr·K(X)Q

↓ f∗ ↓ f∗
K(Y )

Td(TY )·ch−→ Gr·K(Y )Q;

here Td(TX) respectively Td(TY ) denotes the Todd class of the tangent ele-
ment TX respectively TY of X respectively Y .

Corollary (Lefschetz-Grothendieck-Riemann-Roch Theorem): Let G
be the cyclic monoid IN and let G′ be the cyclic group ZZ/(n) (where n
is prime to char(k )) and let G → G′ be the canonical monoidhomomor-
phism. Then for any G′ -morphism f : X → Y between projective smooth
G′ -varieties over k the following diagram commutes:

K(G,X)
Td(T

XG )·(ch⊗1)◦(λ−1(NX)−1·i∗X)
−→ Gr·K(XG)⊗Q[k][S−1]

↓ f∗ ↓ f∗ ⊗ 1

K(G, Y )
Td(T

Y G )·(ch⊗1)◦(λ−1(NY )−1·i∗Y )
−→ Gr·K(Y G)⊗Q[k][S−1]

Proof. Note that K(G,XG) = K(XG)⊗ ZZ[k] by Proposition 1.
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[7] Köck, B., Das Lefschetz- und Riemmann-Roch-Theorem in der höheren
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