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Introduction

In this paper we prove a Lefschetz-Grothendieck-Riemann-Roch formula in
higher equivariant K -theory of nonsingular projective varieties over an alge-
braically closed field k:

Let X be a variety equipped with an action of a group or more generally of a
monoid GG. By a G-module on X we mean an Ox-module £ together with
in g € G functorial homomorphisms

g:g€—E.

We denote the exact category of locally free G-modules on X by P(G, X)
and define the ¢-th equivariant K -group to be

Ky(G, X) = K,(P(G, X))
(see [10]). Let K(G,X) be the direct sum @50k, (G, X). The Lefschetz-

Riemann-Roch problem is to compute the covariant map

f.  K(G,X) = K(G,Y)
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for any projective G-morphism f @ X — Y. For example, if
f : X — Spec(k) is the structure morphism of X, in case ¢ = 0 this means
for any locally free G-module £ on X to compute the alternating sum

>_(1)'H(X,€)]

i>0
of the virtual representations [H(X,£)] of G on the cohomology groups
H(X,E), the socalled Lefschetz trace.

Lefschetz theorem: If the action of G on X and Y factorizes through
a fixed finite abelian group G’, after a suitable localization, the following
commtative diagram exists:

_ N —l'i*
K(G, x) T k@, x€)

el 1 f
1 (Wy )Tt
K(@Gy) Y K6, Y9,
here ix : X¢ — X and iy : YY — G denote the embeddings of the fixed point
varieties and Ny and Ny denote the conormal sheaves of these embeddings.

The proof (see section 3) essentially consists of two ingredients: firstly the
excess intersection formula (see section 2) and secondly the computation of
higher equivariant K -theory of a projective G -fibre-bundle (see [6] or [14] or

[2D)-

By combining the Lefschetz theorem with the Grothendieck-Riemann-Roch
theorem for higher K -theory (see [13] or [12]) we obtain the Lefschetz-Grothendieck-

Riemann-Roch formula mentioned in the beginning.

That formula generalizes the result of Donovan ([2]) to higher equivariant K -
theory. Further Thomason’s theorem ([15]) for étale-topological K -theory and
our Lefschetz formula overlap in case of a finite abelian group G'.

1. Equivariant K -Theory

Let G be a monoid, i. e. a semigroup with 1, and let X be a noetherian
scheme equipped with an action of G (i. e., a G-scheme). An Ox-module &
together with in g € G functorial maps

g:9°&—E&

is called a G-module on X . The category M(G, X) respectively P(G, X) of
coherent respectively locally free G-modules on X is an abelian respectively
exact category in the sense of [10]. For any ¢ > 0 let

K (G, X) = K,(M(G, X))
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respectively
Ky(G,X) == Ky(P(G, X))

denote the corresponding ¢-th K -group according to [10]. The tensor product

of G-modules makes Ky(G,X) a commutative ring with identity element
[Ox] and makes Ky (G, X) and K[(G,X) a Ko(G, X)-module. Defining the
product of two homogenous elements of positive degree in
K(G,X) = & K,(G,X)
q20

to be zero K(G,X) becomes a graded Ky(G, X)-algebra. Obviously K(G, X)
is contravariant functorial under G -morphisms.

Example 1

Let G be the cyclic monoid IN and let X be a projective variety over a field
k with trivial G-action. In this case P(G,X) respectively M(G, X) is the
category of pairs (€, g) consisting of a locally free respectively coherent Oy -
module £ and an Ox-endomorphism ¢ of £. For any irreducible polynomial
m € Ek[T] let k; be the field k[T]/(r) and let X, be the base extension
X Qp ky .

Proposition 1: There is a natural isomorphism of groups

K,(G,X) = © . K (X,).
rek[T] irreducible

In particular, if k£ is algebraically closed, the ring homomorphism

Zk]  — Ko(G,Spec(k))
i la] = X [(K, pa,)]

from the semigroup ring ZZ[k] corresponding to the multiplicative monoid
k to Ko(G,Spec(k)) is an isomorphism and induces for any smooth X a
ringisomorphism

K(X)® Z[k] = K(G, X).

Proof: For any irreducible polynomial 7 € k[T] let M, (G, X) be the full sub-
category of M(G, X) consisting of pairs (£, g) with 7"(¢) =0 in Endp, (£)
for one n € IN. Then the canonical functor

& M, (G, X) = M(G, X)

rek[T] irreducible

is an equivalence of categories:
For any pair (£, g) € M(G, X) there is a polynomial « € k[T] with a(g) =0,
because Endp, (£) = I'(X,Endo, (£)) is a finite dimensional k-algebra. Let
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a =m" - 7" be the decomposition of a into irreducible polynomials and
for any m; let £(m;) := ker(n;"(¢g)) C € be the m;-primary component of &
relative to ¢g. Then the canonical map

(& E(m), B gletmy) > (€.9)

is an isomorphism. This shows that the considered functor is essentially sur-
jective. It is full, because any morphism (€,g9) — (F,h) in M(G,X) maps
each primary component of £ relative to g to the corresponding one of F
relative to h.

Now let 7 € k[T be an irreducible polynomial. The above equivalence of cate-
gories in particular yields that M, (G, X) is a Serre subcategory of M(G, X),
hence M, (G, X) is an abelian category. Let M, 1(G,X) C M,(G,X) be
the full subcategory consisting of pairs (€,g) with m(g) = 0. Obviously
M 1(G, X) is nonempty and closed under taking subobjects, quotients and
finite products in M (G, X), hence again an abelian category. Because any
object (&£, ¢g) in M,(G, X) possesses the finite filtration

0 C (ker 7(g),g) C (ker 7(g),9) € ... C (ker 7"(g), 9) = (£, 9),

whose successive quotients are in M ;(G, X), by Quillen’s devissage theorem
([10], theorem 4, p. 112) the canonical map

KoMz (G, X)) = Ky(Mx(G, X))

is an isomorphism.
Finally we obtain an equivalence of categories

M(X;) = M1 (G, X)

by mapping an Oy, -module M to the pair ((a).(M), (ar)«(T)), where o,
denotes the canonical projection X, — X and T € k[T]/(r) is considered as
multiplication endomorphism of M.

Now the first claim of the proposition is proved. For the remaining claims
observe that for any smooth X equivariant K’-theory equals equivariant K -
theory (see for instance [6]).

2. Excess Intersection Formula

Let G be a finite group and let C be the category of projective G’-varieties
over a fixed field k. In order to study not only isomorphisms of finite order
but even homomorphisms on Ox-modules we furthermore fix a monoid G
together with a monoidhomomorphism G — G’ and consider all G’-objects
as GG-objects, too.



By [6] for any G’-morphism f: X — Y in C of complete intersection there

is a covariant homomorphism
fo  K(G,X) - K(G,Y).

For example, if f : X — Spec(k) is the structure morphism and if £ is a
locally free G-module on X, then f,[€] is the alternating sum
Si(=1D)7HHY (X, E)] of the virtual representations [H'(X,E)] of G on the

cohomology groups H'(X,€) of €.

Now let
X, By
(%) ¥l Lo
X 4 v

be a fibre square of G'-varieties in C, where f, f; are morphisms of complete
intersection. We choose a factorization

FiXSPy(F)BY

of f into a regular closed G’-embedding i and into the structure morphism
p of a projective G’-fibre-bundle Py (F) (see [6] for existence). This decom-
position induces the fibre diagram o

X, S Py (F) B v
() 6l e Lo

X & Py(F) &y,
where ¢ and i; are regular G'-embeddings. We define the G’-excess-conor-
mal-sheaf £ of diagram (%) to be the G’-excess-conormal-sheaf of the left
square in diagram (xx), i. e.

& :=ker(v* N — Ny),

where N respectively N is the G’-conormal-sheaf of i respectively ;. One
checks easily that the element [€] in Ko(G, X;) doesn’t depend on the factor-
ization of f (compare [3]).

Proposition 2 (Excess Intersection Formula): The following diagram of
K -groups commutes:

A(&) -y 1 T o
K(G,X) L5 K(GY).

Proof: If all maps ¢, ¢, f, fi are regular embeddings and if the excess
dimension is zero, the intersection formula is proved in [6]. By equivariant
deformation to normal bundle (see [6] or [1]) the intersection formula follows
from this in the case that f and f, are regular embeddings (compare [3]).
The general case can now be proved in the same way as in [3]. -
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3. Lefschetz Theorem

We assume the same situation as in section 2. In addition we assume that
G’ is abelian and that the ground field & is algebraically closed and that the
characteristic of k is prime to the order of G’.

For any X in C let X¢ be the fixed point variety (we omit the apostrophe),
i. e. X% represents the functor

(Varieties/k) — Ens
T — Mor (T, X)%".

It is the intersection Ngee X? of the fixed point varieties X9 defined in EGA
I, Proposition 0(1.4.10). Let ix : X¢ < X denote the corresponding closed
embedding and let Nx denote the conormal sheaf of ix . By @ for any smooth

X in C the fixed point variety is smooth, too. In particular N is locally
free.

Example 2: Let E be a finite dimensional G’-vector-space over k and let

E= ® E,
yeHom(a’ kx)

be the decomposition of E into simultanous eigenspaces E, = {z € E :
g(z) = x(g) -z forallg € G'}. Then the canonical surjections E — E,
induce an isomorphism

[[P(E) = P(E)"

between the disjoint union of the projective spaces IP(E, ) and the fixed point
variety of the action of G’ on the projective space IP(EF). Furthermore the
fixed module ng( ) of the action of G’ on the conormal sheaf Np(p) vanishes.

Proof: The first statement is well known. For the second claim we choose a
k-basis x;,1 € I, of the vector space E consisting of simultanous eigenvectors.
Then G’ acts on each affine subspace D(z;) by linear automorphisms. Now
it is clear that for any i € I the sheaf N g(xi) vanishes, hence N]Fq( p) vanishes,
too.

Now we introduce the following set of denominators, which will be used in the
formulation of the Lefschetz theorem. For this we consider the map
Hom(G', k*) — Ko(G' k)
X = I
which maps a character x to the class [x]| of the onedimensionsal G’-vector-

space k equipped with the action of G’ induced by x. Let S denote the
set

S:={1—[x]:x € Hom(G", k*)\{1}}

6



and let Ko(G', k)[S™!] denote the localization of Ky(G’, k) relative to the mul-
tiplicative monoid < S > generated by S. Obviously all co- and contravariant
homomorphisms f, and f* can be extended to

K(G,X)[S7=K(G.X) ® KoG k)[S™

Ko(G' k)

Lemma 1: For any smooth X in C the element
Ai(Nx) =D (=1) 7 ANK]

i>0

is a unit in Ko(G, X9)[S7.

Proof: We prove first that in the decomposition
Ny =Y €,
X

of Nx into simualtanous eigensheaves &, (see example 1) the fixed module
& = N¢ vanishes. For this we choose an equivariant embedding
1: X — IP" of X into a projective space IP" equipped with a linear G’-
action (see [6] for existence). Then the diagram of fixed point varieties

X¢ 5 X
Li Li
(PM¢ — P"

is a fibre square; hence the corresponding G’-homomorphism *Ap» — Nx is
surjective. By taking means we see that the induced homomorphism

PN — N$

between the fixed modules remains surjective. Hence by example 2 the fixed
module N¢ vanishes.

Now by multiplicativity of A_; it suffices to show that for any character y # 1
the element A_;(&,) is a unit in Ky(G', X¢)[S™!]. For this let [£] denote the
class in Ko(X%) of the underlying Ox-module € of &, and let n denote the
rank of £. Then the element

A(E) = Aa([E]- [\

= Ai(n- ) = Aa(n - [) = A1 (€] (D))
= (1= D" = S0U(F) - A€

is a unit in Ko(G’, X¢)[S7!], because (7) — [A€] is nilpotent in Ko(X¢) for
any ¢ (see [3], Proposition 1.5, page 52).
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Lefschetz Theorem: Let f: X — Y bea G’-morphism of smooth projective
G’ -varieties over k. Then the following diagram commutes:

K(G,X) TR k@, x9) s

N 1 fs
—1(Ny )Lz
K(@GYy) T @ ve)ys
In other words: The Lefschetz map
Ly = A 1(Nx) ™ -i% : K(G, X) = K(G, X%)[S™]
is natural for G'-morphisms between smooth projective G’-varieties over k.
Proof. If f is a closed embedding the diagram
X¢ X X
i Lf
ye X,y

is a fibre square and the class [£] in Ky(G, X¢) of the excess conormal sheaf
& of this square can be described in two ways:

€] = [ INy] = IWx] = ix[Nxyv] — Wxe vel
Now the following computation proves the Lefschetz formula in this case:

LA WNx) i)

= fiA-i(&) - A Ny) ™) - i%)

= A (Ny) 7t (A1 () - i) (Projection formula)
(Ny)TE b o f, (Excess intersection formula).

For the general case we choose an equivariant G’-embedding X — P(E),
where FE is a finite dimensional G’-vector-space (see [6] for existence). It
induces a factorization , o

XSIPE)xY By
of f into a closed immersion ¢ and the G’-projection p. Now the Lefschetz
theorem amounts to prove that following diagram commutes:

K(G, X) ST (@, XO) S
iy 4 1 iy
A 1VpE xy) ™ i xy
K(G,IP(E) x Y) P e ga, ]P( )G x YG)[S 1

| L (ipm) x 1),
K(GP(E)xY) "0 g6 pE) YG)[S 4
D« \L o i/ Dx
AT K(G,Y)[s]
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In this diagram the upper square is commutative by the case considered above.
The excess intersection formula (for elementary projections) yields the commu-
tativity of the lower square. For the middle square notice that Npg)xy is the
sum of the preimages of Np(g) and Ny . Therefore using the multiplicativity
of A_; and the projection formula we may assume that Y = Spec(k). Then
the commutativity of the middle square follows from the formula

(*) (ip () (A1 (Np) 1) = 1 in Ko(G, IP(E))[S™]

by means of the projection formula. We prove the equation () by generalizing
[1] to our situation:

The composition
Ko(G,IP(E)?)[S™] = Ko(G,P(E))[S™'] & Ko(G, P(E)%)[S ]

is multiplication with A_; (Np(g)) by the excess intersection formula, hence an
isomorphism by lemma 1. Further both Ko(G,IP(E)) and Ko(G,IP(E)%) are
free Ko(G,Spec(k))-modules of rank dim( E) (see example 2 and for instance
[6]), so i* is injective and formula (x) follows from *i,(A_1(Npg)) ')

=1.

Example 3: Let X be a projective k-variety and let g be an automorphism
of X of finite order being prime to char(k). We assume that ¢ fixes only

one point, say x. Then Ny is the cotangent space T, in x. Writing [T,] =
Singla;] in Ko(IN, k) = ZZ[k] according to example 1 we have

Aa(WNx) =TI = [a])™
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and in particular we obtain for any locally free Ox-module £ equipped with
an Oy -homomorphism ¢ : g*€ — &

here £, denotes the fibre of £ in x. Obviously this formula can be generalized
to the case of several isolated fixed points.

Finally we combine the Lefschetz formula with the Grothendieck-Riemann-
Roch formula, which we first recall (see [13] or [12]):

For any smooth k-variety X let K(X) :=3 5, K,(X) denote the “Grothen-
dieck ring” of X . It carries a A-ring structure augmented by the binomial
ring H°(X,Z). Let Gr K(X) denote the induced graded ring and let

ch: K(X) = Gr K(X)y,

be the Chern character. Then for any projective morphism f : X — Y



between smooth k-varieties X, Y the following diagram commutes:

K(x) " arr(X),
K() " GrR(Y)y

here T'd(Tx) respectively Td(Ty) denotes the Todd class of the tangent ele-
ment Ty respectively Ty of X respectively Y.

Corollary (Lefschetz-Grothendieck-Riemann-Roch Theorem): Let G

be the cyclic monoid IN and let G’ be the cyclic group 7Z/(n) (where n

is prime to char(k)) and let G — G’ be the canonical monoidhomomor-

phism. Then for any G’'-morphism f : X — Y between projective smooth
G’ -varieties over k the following diagram commutes:
(e o(A—1(Wx) L%

K(G,x) T @Rt o (X9 @ QK]S

b ey

(e o(A_1(Ny )~ L

K(G.Y) Td(TYc)(h®1)_>(A 1WNy)™Hiy) GT'K(YG)®Q[I<;][S‘1]

Proof. Note that K(G, X%) = K(X%) ® Z[k] by Proposition 1.
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