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Abstract. Using Quillen’s universal transformation we verify some

(standard) properties of Adams operations on the higher K -theory of

projective modules over group rings. Furthermore, we rather explicitly

describe Adams operations on the Whitehead group K1(CΓ ) associ-

ated with the group ring CΓ of a finite group Γ over an algebraically

closed field of characteristic 0.

Introduction

Let Γ be a finite group, p a prime number, and L a finite extension of Qp .
Let OLΓ denote the group ring associated with Γ and the ring of integers
OL in L and let K0T (OLΓ ) denote the Grothendieck group of finite OLΓ -
modules possessing a OLΓ -free resolution of length 1. This Grothendieck
group is a fundamental object in the Galois module theory à la Fröhlich. In
particular, it enters the picture in studying the projective class group of the
group ring of Γ over the ring of integers in a number field.

The best way to describe K0T (OLΓ ) in a little bit more familiar terms is
the exact sequence

K1(OLΓ ) → K1(LΓ ) → K0T (OLΓ ) → 0

which comes from a localization sequence in K -theory (e. g. see sequence
(1.3) of [T] on p. 2). It leads to the so-called Hom-description

K0T (OLΓ ) ∼=
HomG(K0(L̄Γ ), L̄

×)

Det((OLΓ )×)

of K0T (OLΓ ) ; here G = Gal(L̄/L) denotes the absolute Galois group,
K0(L̄Γ ) is the classical ring of virtual characters of Γ , and Det is the
determinant map (e. g. see §2 of Chapter 1 in [T] for a precise definition of
Det and Theorem 3.2 of [T] on p. 10 for a proof of the Hom-description).
Using Taylor’s group logarithm techniques Cassou-Noguès and Taylor have
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shown that the k -th Adams operation ψk on K0(L̄Γ ) induces an operation
on K0T (OLΓ ) , if L/Qp is non-ramified (e. g. see Theorem 1.2 of [T] on p.
98). The aim of this paper is to give a more or less satisfactory explanation
of this operation in K -theoretical terms using power operations on modules.

For this we remark that we have constructed an Adams operation ψk on
K1(LΓ ) using exterior power operations (see §3 of [Ko1]) and that, if p does
not divide k , we have constructed an Adams operation ψk on K1(OLΓ )
using generalizations of Atiyah’s cyclic power operations and shuffle products
in higher K -theory (see section 3 of [Ko2]). In this paper we show that the
homomorphism K1(OLΓ ) → K1(LΓ ) in the above sequence commutes with
ψk (see Corollary c) of Proposition 1). Hence ψk induces an operation ψk

on K0T (OLΓ ) , if p does not divide k . The question whether a p -th Adams
operation ψp on K1(OLΓ ) can be canonically defined remains open.

Furthermore we show that, via the well-known Hom-description

K1(L̄Γ ) ∼= Hom(K0(L̄Γ ), L̄
×)

of K1(L̄Γ ) , the k -th exterior power operation λk on K1(L̄Γ ) (defined in §3
of [Ko1]) corresponds to the homomorphism on the right hand side induced
by (−1)k−1ψ̂k where ψ̂k is the adjoint of ψk on K0(L̄Γ ) with respect to
the classical character pairing (see Theorem 1). One easily deduces from
this that the k -th Adams operation ψk on K1(L̄Γ ) corresponds to the
homomorphism on the right hand side induced by k · ψ̂k (see Corollary 1 of
Theorem 1).

If k is coprime to the order of Γ , the adjoint homomorphism ψ̂k equals ψk
′

where k′ is a natural number which is an inverse of k modulo the order of
Γ (see the proof of formula (1.7) of [T] on p. 101). This suggests that, up to
a sign, the operation on K0T (OLΓ ) defined by Cassou-Noguès and Taylor
should be called an exterior power operation rather than an Adams opera-
tion. Since the canonical base change homomorphism K1(LΓ ) → K1(L̄Γ )
is injective (see Proposition 2.8 of [Que] on p. 247) the results explained
above prove the more precise fact that, via the above Hom-description, the
operation ψk on K0T (OLΓ ) corresponds to the homomorphism on the right
hand side induced by k · ψk′ , if k is coprime to p and to the order of Γ .
Thus it differs from the operation defined by Cassou-Noguès and Taylor by
passing from k to k′ and by the factor k .

Finally we rather explicitly describe the K0(L̄Γ ) -module structure (see The-
orem 2) and the Grothendieck filtration on K1(L̄Γ ) (see Proposition 6).

As a byproduct of the explicit description (of the K0(L̄Γ ) -module structure
and) of the Adams operation on K1(L̄Γ ) we strengthen the induction for-
mula (6.2) of [Ko3] in the situation considered in this paper (see Theorem
3).

In the appendix we give a new proof of Queyrut’s Hom-description (see sec-
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tion 3 of [Que]) of the Grothendieck group K0(Γ, l) associated with finitely
generated lΓ -modules where l is a field of positive characteristic.

Acknowledgements. The idea for the results of this paper was born during the
preparation of a lecture for the K -theory conference in Poznań in September
1995. I would like to thank G. Banaszak, W. Gajda, and P. Krason for
perfectly organizing an interesting meeting and for giving me the opportunity
to report on my results.

1. Quillen’s Universal Transformation

The purpose of this section is to introduce some notations used throughout
this paper and to recall Quillen’s universal transformation introduced in
Hiller’s paper [Hi].

For any (abstract) group G and any (not necessarily commutative) G -ring
A let Kq(G,A) denote Quillen’s q -th K -group associated with the exact
category of finitely generated, projective A -modules with semilinear G -
action. (If no action of G on A is given, the trivial action is meant and the
action of G on modules is then assumed to be linear.) If G is the trivial
group, we put Kq(A) := Kq(G,A) . Furthermore let

K̃0(G,A) := ker(K0(G,A)
can−→ K0(A))

be the reduced Grothendieck group. We obviously have K0(G,A) = K0(A)⊕
K̃0(G,A) , if G acts trivially on A .

For any ring A let BGL(A)+ be the plus construction associated with the
classifying space BGL(A) of the general linear group GL(A) = ∪n≥0GLn(A)
(e. g. see [L]). For any CW-complex X let [X,BGL(A)+] denote the set of
free homotopy classes of free continuous maps from X to BGL(A)+ . This
is the same as the set of pointed homotopy classes of pointed continuous
maps from X to BGL(A)+ since BGL(A)+ is a connected H-space (see
Theorem 9 of [S] on p. 384). Now Quillen’s natural transformation

q(−) : K̃0(π1(−), A) → [−, BGL(A)+]

of functors from the category of connected finite CW-complexes to the cate-
gory of groups (or more generally to the category of pointed sets) is defined
as follows (see section 1 of [Hi]): Let X be a connected finite CW-complex
and let ρ : π1(X) → Aut(P ) be a representation of the fundamental group
π1(X) of X on a finitely generated, projective A -module P . We choose a
projective A -module P ′ such that P ⊕ P ′ is free over A , say of rank n .
Then q(X)(ρ) is defined to be the homotopy class of the composition of the
maps

X −→ Bπ1(X)
B(ρ⊕1)−→ BGLn(A)

can−→ BGL(A)
can−→ BGL(A)+.
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Here X → Bπ1(X) is the canonical 2-coskeleton. It is shown in Proposition
1.1 of [Hi] on p. 243 that q(X)(ρ) does not depend on the chosen module
P ′ and that the association ρ 7→ q(X)(ρ) induces a well-defined map q(X) :
K̃0(π1(X), A) → [X,BGL(A)+] .

Furthermore the natural transformation q(−) is universal in the following
sense (see Corollary 2.3 of [Hi] on p. 246): For any H-space Z and for any
natural transformation K̃0(π1(−), A) → [−, Z] there is a unique natural
transformation [−, BGL(A)+] → [−, Z] such that the following diagram
commutes:

K̃0(π1(−), A)
q(−)−→ [−, BGL(A)+]

↘ ↙
[−, Z].

Note that the ring A need not to be commutative neither for the construction
of q(−) nor for the proof of the universality of q(−) . In particular we may
take a group ring for A .

2. On Adams Operations on Kq(R#Γ )

Let Γ be a group, R a commutative (noetherian) Γ -ring, and k a natu-
ral number which is invertible in R . Let A := R#Γ denote the associated
twisted group ring. Using generalizations of Atiyah’s cyclic power opera-
tions, shuffle products in higher K -theory, and Grayson’s construction of
power operations on higher K -theory we have constructed an Adams op-
eration ψk on Kq(R#Γ ) , q ≥ 0 , in [Ko2]. The object of this section is
to carry over some properties of ψk proved in section 2 of [Ko2] for K0 to
higher K -theory using Quillen’s universal transformation recalled in section
1.

Let l be a prime which is invertible in R . For any a ∈ ZZ/lZZ and for any
R -module V let V [a]l be the cyclic l -th power of V with eigenvalue ζal .
It is defined as follows (see [Ko2]): Let S = R[ζl] = R[T ]/(1 + . . . + T l−1)
be the l -th cyclotomic extension of R , c : V ⊗l → V ⊗l, v0 ⊗ . . . ⊗ vl−1 7→
vl−1 ⊗ v0 ⊗ . . . ⊗ vl−2 , the cyclic permutation on V ⊗l , and G := (ZZ/lZZ)×

the group of invertible elements in ZZ/lZZ acting on S as Galois group as
usual and on V ⊗l via

σ(v0 ⊗ . . .⊗ vl−1) := vσ−1·0 ⊗ . . .⊗ vσ−1·(l−1) (for σ ∈ G, v0, . . . , vl−1 ∈ V ).

Then V [a]l is defined to be the G -fixed module associated with the ζal -
eigenspace of the endomorphism 1⊗ c of S⊗R V

⊗l (see section 2 of [Ko2]).
If V carries a (semilinear) Γ -action, then V [a]l obviously does as well. If
V is furthermore R -projective or R#Γ -projective, the same holds for V [a]l
(see Corollary b) of Proposition 1 in [Ko2]).
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The main result of section 3 in [Ko2] is that the association V 7→ V [a]l yields
an operation [a]l on Kq(R#Γ ) and on Kq(Γ,R) for any q ≥ 0 . The l -th
Adams operation on Kq(R#Γ ) is then defined to be ψl := [0]l − [1]l . Now
let X be a connected finite CW-complex. Applying this construction to the
group π1(X)×Γ in place of Γ we in particular obtain an operation [a]l on
K0(A[π1(X)]) = K0(R#(π1(X)× Γ )) and on K0(π1(X)× Γ,R) . Similarly
one can define an operation [a]l on K̃0(π1(X), A) . By the universality of
the natural transformation q(−) this operation induces a natural transfor-
mation [a]l on [−, BGL(A)+] . In particular, we have once more defined an
operation [a]l on Kq(R#Γ ) = Kq(A) = [Sq, BGL(A)+] for any q ≥ 1 .

Proposition 1. The operation [a]l on Kq(R#Γ ) , q ≥ 1 , defined in this
way agrees with the operation [a]l defined in section 3 of [Ko2].

Proof. This can be proved similarly to section 9 of [Gr].

Corollary. Let q ≥ 0 .
a) For all x ∈ K0(R#Γ ) and y ∈ Kq(R#Γ ) we have:

ψl(x · y) = ψl(x) · ψl(y) in Kq(R#Γ ).

b) Let l′ be another prime which is invertible in R . Then we have for all
x ∈ Kq(R#Γ ) :

ψl(ψl
′
(x)) = ψl

′
(ψl(x)) in Kq(R#Γ ).

c) If Γ is finite and the group order ord(Γ ) is invertible in R , then ψl

commutes with the Cartan homomorphism c : Kq(R#Γ ) → Kq(Γ,R) .

Proof. These assertions have already been proved in section 2 of [Ko2], if
q = 0. So let q ≥ 1 .
a) Tensoring with a projective A -module over R transforms projective A -
modules into projective A -modules (see Lemma 3 of [Ko2]). Hence by the
usual techniques (see [Q] or [Hi]) we obtain a K0(A) -module structure on
Kq(A) . For any x ∈ K0(A) the map

Kq(A) → Kq(A), y 7→ ψl(x) · ψl(y),

is the Sq -level of a natural transformation [−, BGL(A)+] → [−, BGL(A)+]
which makes the following diagram commutative:

z K̃0(π1(−), A)
q(−)−→ [−, BGL(A)+]

↓ ↓ ↓

ψl(x) · ψl(z) K̃0(π1(−), A)
q(−)−→ [−, BGL(A)+].

Since ψl(x) ·ψl(z) = ψl(x · z) for all z ∈ K̃0(π1(X), A) (cf. Proposition 5 of
[Ko2]) the natural transformation y 7→ ψl(x · y) makes the above diagram
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commutative as well. Now the universality of q(−) proves assertion a).
b) Similarly to a) this follows from the fact that ψl ◦ ψl′ = ψl

′ ◦ ψl on
K̃0(π1(X), A) (cf. Proposition 6 in [Ko2]).
c) If Γ is finite and ord(Γ ) is invertible in R , an R#Γ -module is finitely
generated and projective over R , if and only if it is finitely generated and
projective over R#Γ . (This is an easy generalization of Maschke’s theo-
rem.) Hence the Cartan homomorphism is an isomorphism and we only
have to show that the Adams operation ψl on Kq(Γ,R) defined via cyclic
power operations agrees with the Adams operation ψl defined via the l -
th Newton polynomial in the exterior power operations λ1, . . . , λl . Sim-
ilarly to a) this follows from the corresponding fact for K̃0(π1(X), A) =
K̃0(π1(X)× Γ,R) (cf. Proposition 4 of [Ko2]). (The same proof even shows
that [a]l = Cl,a(λ

1, . . . , λl) on Kq(R#Γ ) = Kq(Γ,R) where Cl,a is the
polynomial defined in Lemma 6 of [Ko2]).

Remark.
(i) Conjecturally assertion c) is true even when the group order is not invert-
ible in R . At the end of the paper [Ko2] some speculations are presented
how one should be able to prove this in the general case.
(ii) Let k ∈ IN be invertible in R . Using a factorization of k into prime
factors we may define an Adams operation ψk on Kq(R#Γ ) for any q ≥ 1 .
By assertion b) this does not depend on the ordering of the prime factors.
(iii) If p := char(R) is a prime, we may define an Adams operation ψk even
for all k ∈ IN by defining ψp to be the base change homomorphism asso-
ciated with the Frobenius endomorphism (see last Remark in [Ko2]). If Γ
is finite and ord(Γ ) is invertible in R , one can deduce from Proposition 7
of [Ko2] similarly to the proof of assertion a) that ψp agrees with the usual
Adams operation on Kq(R#Γ ) = Kq(Γ,R) .

3. On Adams Operations on K1(CΓ )

Let Γ be a finite group. The aim of this section is to describe the Adams
operations and the K0(CΓ ) -module structure on K1(CΓ ) (defined in [Ko1]
or [Ko2]) in explicit terms. This will enable us to strengthen the induction
formula (6.2) of [Ko3] in this situation. Computing the Grothendieck filtra-
tion on K1(CΓ ) explicitly we will furthermore show that, for any subgroup
Γ ′ of Γ , the induction map K1(CΓ

′) → K1(CΓ ) is continuous with respect
to the Grothendieck filtrations as conjectured in (5.6) of [Ko3].

More generally, let C be an algebraically closed field such that the group
order of Γ is invertible in C and let CΓ denote the group ring associated
with Γ and C . Then K0(CΓ ) is the classical ring of virtual characters of Γ .
It is a free abelian group with basis the set S of isomorphism classes of simple
finitely generated CΓ -modules. Furthermore K0(ZZ, CΓ ) can be identified
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with the Grothendieck group associated with the category of pairs (M,α)
consisting of a finitely generated CΓ -module M and a CΓ -automorphism
α of M . Let ZZ[S ×C×] denote the free abelian group with basis S ×C× .

Proposition 2. The group homomorphism

Φ : ZZ[S × C×] → K0(ZZ, CΓ ) given by (S, β) 7→ (S, β)

is bijective.

Proof. We define an inverse map as follows: Let (M,α) be a pair as above.
Then there are natural numbers nS , S ∈ S , such that M ∼= ⊕S∈SS

nS and
there are matrices AS ∈ GLnS (C) , S ∈ S , such that α corresponds to
⊕S∈SAS under M ∼= ⊕SnS . For A ∈ GLn(C) and β ∈ C let mβ(A) :=
dimCker ((A− β · id)∞) . Then the association

(M,α) 7→
∑

(S,β)∈S×C×

mβ(AS) · (S, β)

obviously defines a group homomorphism

Ψ : K0(ZZ, CΓ ) → ZZ[S × C×]

such that Ψ ◦ Φ = id .
Furthermore for all matrices A ∈ GLn(C) there is an upper triangular
matrix B ∈ GLn(C) which is equivalent to A . In other words, the ZZ -
representation (Sn, A) is isomorphic to the ZZ -representation (Sn, B) for
any S ∈ S . Now

0 ⊂ (S × 0× . . .× 0, B) ⊂ (S × S × 0× . . .× 0, B) ⊂ . . . ⊂ (Sn, B)

is a filtration of (Sn, B) by ZZ-representations whose successive quotients
are isomorphic to (S, β) for some β ∈ C× and the the pair (S, β) occurs
precisely mβ(B) = mβ(A) times. This shows that (Sn, A) =

∑
β∈C× mβ(A)·

(S, β) in K0(ZZ, CΓ ) and hence that Φ ◦ Ψ = id .

According to Proposition 2 we have K0(ZZ, CΓ ) ∼= K0(CΓ )[C
×] . Henceforth

we will write elements of K0(ZZ, CΓ ) also in the form
∑
β∈C× zβ[β] with

zβ ∈ K0(CΓ ) for all β ∈ C× . Let

⟨ , ⟩ : K0(CΓ )×K0(CΓ ) → K0(C) →̃ ZZ
(P,M) 7→ HomCΓ (P,M) =̂ dimCHomCΓ (P,M)

be the classical character pairing. It is a perfect symmetric pairing. Let ⟨ , ⟩
also denote the following pairing:

⟨ , ⟩ : K0(CΓ )×K0(ZZ, CΓ ) → K0(ZZ, C)
(P, (M,α)) 7→ (HomCΓ (P,M),HomCΓ (P, α))

.
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We will furthermore write ⟨ , ⟩ for the composition of ⟨ , ⟩ with the natural
map

K0(ZZ, C)
det−→ Pic(ZZ, C) →̃ C×

(N, γ) 7→ (Λtop
C N,Λtop

C γ) 7→ det(γ|N ).

Then for all x , z ∈ K0(CΓ ) and β ∈ C× we obviously have ⟨x, z[β]⟩ =
⟨x, z⟩[β] in K0(ZZ, C) respectively ⟨x, z[β]⟩ = β⟨x,z⟩ in C× .

For any k ≥ 1 let λk and ψk denote the k -th exterior power operation
and k -th Adams operation, respectively, on K0(ZZ, CΓ ) or K0(CΓ ) or
K0(ZZ, C) or K1(CΓ ) (see [Ko1] and section 2). Then for all z ∈ K0(CΓ )
and β ∈ C× we obviously have

λk(z[β]) = λk(z)[βk] and ψk(z[β]) = ψk(z)[βk] in K0(ZZ, CΓ ).

Since the classical character pairing is perfect there is an adjoint homomor-
phism ψ̂k on K0(CΓ ) associated with ψk . If k is coprime to ord(Γ ) , we
have ψ̂k = ψk

′
where k′ is a natural number such that k · k′ ≡ 1 mod

ord(Γ ) (see the proof of formula (1.7) of [T] on p. 101). If G is abelian,
one can easily show that ψ̂k is induced by the association M 7→ CΓ ⊗CΓ M
where CΓ is considered as an CΓ -algebra via the k -multiplication on Γ .

Proposition 3. For all x ∈ K0(CΓ ) and y ∈ K̃0(ZZ, CΓ ) we have

⟨x, λk(y)⟩ = ⟨(−1)k−1ψ̂k(x), y⟩ in C×.

Proof. Since for all z1 , z2 ∈ K0(CΓ ) and β1 , β2 ∈ C× we have

⟨x, (z1[β1]−z1[1]) ·(z2[β2]−z2[1])⟩ = (β1β2)
⟨x,z1·z2⟩ ·β−⟨x,z1·z2⟩

1 ·β−⟨x,z1·z2⟩
2 = 1

both sides of the above formula are linear in y . Hence we may assume that
y = z[β] − z[1] with some z ∈ K0(CΓ ) and β ∈ C× . Using the equation
λ′t(z) · λt(−z) = d

dt log λt(z) =
∑∞
j=1(−1)k−1ψk(z)tk−1 of power series (see

p. 23 of [FL]) we then obtain that

⟨x, λk(y)⟩ = ⟨x, λk(z)[βk] + λk−1(z)λ1(−z)[βk−1] + . . .+ λk(−z)[1]⟩
= βk⟨x,λ

k(z)⟩ · β(k−1)⟨x,λk−1(z)λ1(−z)⟩ · . . . · β⟨x,λ1(z)λk−1(−z)⟩

= β⟨x,kλ
k(z)+(k−1)λk−1(z)λ1(−z)+...+λ1(z)λk−1(−z)⟩

= β⟨x,(−1)k−1ψk(z)⟩

= β⟨(−1)k−1ψ̂k(x),z⟩

= ⟨(−1)k−1ψ̂k(x), y⟩

as was to be shown.

Now we will use the following description of the Whitehead group K1(CΓ ) =
[S1, BGL(CΓ )+] : It is the factor group of the free abelian group with basis
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the isomorphism classes of pairs (M,α) as above modulo the relations de-
fined e. g. on p. 348 of [Ba]. Furthermore, by Proposition 2.2 of [Que] on p.
244, the map

K1(CΓ ) → HomZZ(K0(CΓ ), C
×)

(M,α) 7→ (P 7→ det(HomCΓ (P, α)|HomCΓ (P,M)))

is a well-defined group isomorphism.

Theorem 1. The following diagram commutes:

K1(CΓ ) →̃ HomZZ(K0(CΓ ), C
×)

λk ↓ ↓ Hom((−1)k−1ψ̂k, C×)

K1(CΓ ) →̃ HomZZ(K0(CΓ ), C
×).

Proof. We consider the following diagram:

y 7→ (x 7→ ⟨x, y⟩)

K̃0(ZZ, CΓ ) → HomZZ(K0(CΓ ), C
×)

∥ ∥

K̃0(ZZ, CΓ )
D→ K1(CΓ )

↘
∥ ∥ GL(CΓ )ab

↙

K̃0(π1(S
1), CΓ )

q(S1)→ [S1, BGL(CΓ )+]

.

Here the map D is defined in such a way that the upper square commutes.
Then we obviously have D(S[β] − S[1]) = (S, β) in K1(CΓ ) for all S ∈ S
and β ∈ C× . Let S′ be a CΓ -module such that S ⊕ S′ is free over
CΓ , say of rank n , and let α ∈ GLn(CΓ ) be the automorphism of (CΓ )n

corresponding to β ⊕ idS′ . Then by Theorem (1.2)(1) of [Ba] on p. 448 the
isomorphism K1(CΓ ) →̃ [S1, BGL(CΓ )+] maps the class of (S, β) to the
homotopy class of the continuous map

S1 = BZZ
Bα→ BGLn(CΓ )

can→ BGL(CΓ )
can→ BGL(CΓ )+.

Since q(S1) maps the element S[β]− S[1] of K̃0(π1(S
1), CΓ ) to the same

homotopy class (see section 1) the lower square commutes. Hence the map
D commutes with λk by definition of λk on K1(CΓ ) . Now Proposition 3
proves Theorem 1 since D is surjective.
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Remark. If more generally C is a commutative ring such that ord(Γ ) is in-
vertible in C , the above arguments essentially show that we have λk(S, β) =
((−1)k−1ψk(S), βk) in K1(CΓ ) for any CΓ -module S and β ∈ C× .

Corollary 1. The following diagram commutes:

K1(CΓ ) →̃ HomZZ(K0(CΓ ), C
×) f

ψk ↓ ↓ ↓

K1(CΓ ) →̃ HomZZ(K0CΓ ), C
×) µk ◦ f ◦ ψ̂k,

where µk(β) = βk for β ∈ C× .

Proof. Since the multiplication on K1(CΓ ) is defined to be trivial we have
ψk = (−1)k−1kλk . Thus Theorem 1 proves Corollary 1. Alternatively Corol-
lary 1 follows from the following proposition similarly to the proof of Theo-
rem 1.

Proposition 4. For all x ∈ K0(CΓ ) and y ∈ K0(ZZ, CΓ ) we have

⟨x, ψk(y)⟩ = ψk(⟨ψ̂k(x), y⟩) in K0(ZZ, C).

Proof. We may assume that y = z[β] with some z ∈ K0(CΓ ) and β ∈ C× .
Then we have

⟨x, ψk(y)⟩ = ⟨x, ψk(z)[βk]⟩
= ⟨ψ̂k(x), z⟩[βk] = ψk(⟨ψ̂k(x), z⟩[β]) = ψk(⟨ψ̂k(x), y⟩).

Corollary 2. Via the isomorphism K1(CΓ ) ∼= HomZZ(K0(CΓ ), C
×) the

Grothendieck operation γk on K1(CΓ ) corresponds to the (additively writ-
ten) homomorphism

k−1∑
i=0

(−1)k−i−1

(
k − 1

i

)
Hom(ψ̂k−i, C×)

= (−1)k−1Hom(ψ̂k, C×) + (−1)k−2(k − 1)Hom(ψ̂k−1, C×) + . . .+ id

on Hom(K0(CΓ ), C
×) .

Proof. By definition (see p. 47 of [FL]) we have γk =
∑k−1
i=0

(k−1
i

)
λk−i . Thus

Theorem 1 proves Corollary 2.

Let
∗ : K0(CΓ ) → K0(CΓ ), P 7→ P ∗ := HomC(P,C),

denote the dualizing map.

Proposition 5. For all x , z ∈ K0(CΓ ) and y ∈ K0(ZZ, CΓ ) we have

⟨x, z · y⟩ = ⟨z∗ · x, y⟩ in K0(ZZ, C).

10



Proof. This follows from the canonical isomorphisms

HomCΓ (P ⊗C Q,R) ∼= HomCΓ (Q,HomC(P,R)) ∼= HomCΓ (Q,P
∗ ⊗C R)

(for all finitely generated CΓ -modules P,Q,R ).

Theorem 2. For all z ∈ K0(CΓ ) the following diagram commutes:

y K1(CΓ ) →̃ HomZZ(K0(CΓ ), C
×) f

↓ ↓ ↓ ↓

z · y K1(CΓ ) →̃ HomZZ(K0(CΓ ), C
×) (x 7→ f(z∗ · x)).

Proof. This can be deduced from Proposition 5 similarly to the proof of
Theorem 1.

The next theorem strengthens the induction formula (6.2) of [Ko3] in the
situation considered in this section. For this let Γ ′ be a subgroup of Γ and
let

i∗ : K1(CΓ
′) → K1(CΓ ), (M,α) 7→ (CΓ ⊗CΓ ′ M, 1⊗ α),

be the induction map (see also section 6 in [Ko3]).

Theorem 3. For all y ∈ K1(CΓ
′) we have

ψki∗(y) = i∗ψ
k(y) in

{
K1(CΓ ), if (k, ord(Γ )) = 1

K̂1(CΓ )[k
−1], else.

Here K̂1(CΓ )[k
−1] denotes the F 1K0(CΓ )[k

−1] -adic completion of
K1(CΓ )[k

−1] .

Proof. Let i∗ : K0(CΓ ) → K0(CΓ
′) be the restriction map. Then by

Frobenius reciprocity the diagram

K1(CΓ
′) −̃→ Hom(K0(CΓ

′), C×)

i∗ ↓ ↓ Hom(i∗, C×)

K1(CΓ ) −̃→ Hom(K0(CΓ ), C
×)

commutes.
If (k, ord(Γ )) = 1 we have ψ̂k = ψk

′
where k′ is a natural number such

that k · k′ ≡ 1 mod ord(Γ ) . Hence i∗ commutes with ψ̂k and thus
i∗ =̂ Hom(i∗, C×) commutes with ψk =̂ Hom(ψ̂k, C×) as was to be shown.
If (k, ord(Γ )) ̸= 1, this is proved in Theorem (6.2) of [Ko3] using the equiv-
ariant Adams-Riemann-Roch theorem. Alternatively this can be proved
as follows without using geometric arguments: Let I := F 1K0(CΓ ) . By
Example (6.8) of [Ko3] we have ψki∗(x) − i∗ψ

k(x) ∈ ∩n≥0I[k
−1]n for all

11



x ∈ K0(CΓ
′) . Hence by Frobenius reciprocity we have f◦ψ̂k◦i∗−f◦i∗◦ψ̂k ∈

∩n≥0I
nHom(K0(CΓ ),ZZ)[k

−1] for all f ∈ Hom(K0(CΓ
′),ZZ) . Here the mul-

tiplication of In ⊆ K0(CΓ ) on Hom(K0(CΓ ),ZZ) is defined as in The-
orem 2. Writing a homomorphism f ∈ Hom(K0(CΓ

′), C×) as the im-
age of a map K0(CΓ

′) → ZZ[β1] ⊕ . . . ⊕ ZZ[βr] we deduce from this that
f ◦ ψ̂k ◦ i∗ − f ◦ i∗ ◦ ψ̂k ∈ ∩n≥0I

nHom(K0(CΓ ), C
×)[k−1] . Now Corollary 1

of Theorem 1 and Theorem 2 prove Theorem 3.

Now we are going to describe the Grothendieck filtration on K1(CΓ ) . For
this let K(CΓ ) := K0(CΓ )⊕K1(CΓ ) be equipped with the ring structure
induced by the ring structure on K0(CΓ ) , by the K0(CΓ ) -module structure
on K1(CΓ ) , and by the trivial multiplication on K1(CΓ ) . Then the exterior
power operations on K0(CΓ ) and K1(CΓ ) make K(CΓ ) a λ -ring (see §2
of [Ko1]). Let

F 1K(CΓ ) := ker(K(CΓ )
can−→ K0(CΓ )

dim−→ ZZ)

be the augmentation ideal and let (FnK(CΓ ))n≥0 be the associated Grothen-
dieck filtration. Recall that FnK(CΓ ) is generated as abelian group by the
elements

γn1(z1) · . . . · γnr(zr), z1, . . . , zr ∈ F 1K(CΓ ), n1 + . . .+ nr ≥ n.

The ideal FnK(CΓ ) is obviously a homogeneous ideal, i. e. FnK(CΓ ) =
FnK0(CΓ )⊕ FnK1(CΓ ) with a certain subgroup FnK1(CΓ ) of K1(CΓ ) .

Proposition 6. We have

FnK1(CΓ ) =

{
K1(CΓ ) for n = 0, 1

ker(K1(CΓ )
can−→ K1(C)) for n ≥ 2.

In particular, the induction map i∗ : K1(CΓ
′) → K1(CΓ ) is continuous

with respect to the Grothendieck filtrations as conjectured in (5.6) of [Ko3].

Proof. This is clear for n = 0, 1 . So let n ≥ 2 . Since FnK1(C) obviously
vanishes for n ≥ 2 we have FnK1(CΓ ) ⊆ ker(K1(CΓ ) → K1(C)) =: K .
Using the isomorphisms K ⊕ K1(C) ∼= K1(CΓ ) ∼= Hom(K0(CΓ ), C

×) we
see that the multiplication with ord(Γ ) on K is surjective. Hence we have
K = ord(Γ ) ·K ⊆ F 2K1(CΓ ) by Proposition (6.1) of [Ko3]. By induction
on n we thus obtain the reverse inclusion

K = ord(Γ ) ·K = ord(Γ ) · Fn−1K1(CΓ ) ⊆ FnK1(CΓ )

for all n ≥ 2 again by Proposition (6.1) of [Ko3].
Since the diagram

K1(CΓ
′) → K1(C)

i∗ ↓ ↓ [Γ : Γ ′]

K1(CΓ ) → K1(C)

12



obviously commutes we finally obtain that i∗(F
nK1(CΓ

′)) ⊆ FnK1(CΓ ) for
all n ≥ 0 . In particular, i∗ is continuous with respect to the Grothendieck
filtrations.

Appendix

Let Γ be a finite group and let l be a finite field. In this appendix we
will present a new proof for the Hom-description of the Grothendieck group
K0(Γ, l) given by Queyrut in section 3 of [Que].

To recall this Hom-description, let L be a local field of characteristic 0 with
residue classfield l . Let Lnr be the maximal non-ramified extension in the
algebraic closure L̄ of L . Then the residue classfield of Lnr (and L̄ ) is an
algebraic closure l̄ of l . Let OLnr and OL̄ denote the ring of integers in Lnr

and L̄ , respectively. Let GL := Gal(L̄/L) and Gl := Gal(l̄/l) denote the
corresponding absolute Galois groups. We will identify Gl with Gal(Lnr/L) .
Our proof of the Hom-description will be based on the following two facts:

(i) In the Swan triangle

K0(l̄Γ )
e−→ K0(L̄Γ )

c↘ ↙ d
K0(Γ, l̄)

all homomorphisms are compatible with the obvious GL -action (see [Se]).

(ii) The pairing

K0(l̄Γ )×K0(Γ, l̄) → ZZ
(P,M) 7→ diml̄Homl̄Γ (P,M)

induces an isomorphism of groups

K0(Γ, l) →̃ HomGl
(K0(l̄Γ ),ZZ)

via base extension (see Théorème 2.7 of [Que] on p. 247).

Let v : L̄× →Q be the valuation normalized by v(πL) = 1 where πL is a
prime element of L (and then of Lnr as well). We put

H(l, Γ ) := {f ∈ HomGL
(K0(L̄Γ ), L̄

×) : f(Image(e)) ⊆ O×
L̄
}.

Theorem 4 (Hom-description of K0(Γ, l) ). The homomorphism

HomGL
(K0(L̄Γ ), L̄

×) → HomGl
(K0(l̄Γ ),ZZ)

f 7→ (y 7→ v ◦ f ◦ e(y))

induces an isomorphism

HomGL
(K0(L̄Γ ), L̄

×)

H(l, Γ )
−̃→ K0(Γ, l).

13



Proof. Note that v ◦f ◦ e(y) lies in ZZ since e(y) and hence f ◦ e(y) is fixed
by the inertia group.
The split exact sequence

0 → O×
Lnr

→ L×
nr

v→ ZZ → 0

of Gl -modules induces the exact sequence

0 → HomGl
(K,O×

Lnr
) → HomGl

(K,L×
nr) → HomGl

(K,ZZ) → 0

where K := K0(l̄Γ ) . Since K is fixed by the inertia group we have
HomGl

(K,L×
nr) = HomGL

(K, L̄×) and HomGl
(K,O×

Lnr
) = HomGL

(K,O×
L̄
) .

Furthermore the map e : K → K0(L̄Γ ) of the Swan triangle is a direct
injection of GL -modules (see [Se]). Hence the pull-back diagram

0 → H(l, Γ ) → HomGL
(K0(L̄Γ ), L̄

×) → HomGl
(K,ZZ) → 0

↓ ↓ e ∥

0 → HomGL
(K,O×

L̄
) → HomGL

(K, L̄×) → HomGl
(K,ZZ) → 0

proves Theorem 4.
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[Ko1] B. Köck, Das Adams-Riemann-Roch-Theorem in der höheren äquivarianten
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