On Adams Operations on the Higher K-Theory of Group Rings

Bernhard Köck

Abstract

Using Quillen's universal transformation we verify some (standard) properties of Adams operations on the higher K-theory of projective modules over group rings. Furthermore, we rather explicitly describe Adams operations on the Whitehead group $K_{1}(C \Gamma)$ associated with the group ring $C \Gamma$ of a finite group Γ over an algebraically closed field of characteristic 0 .

Introduction

Let Γ be a finite group, p a prime number, and L a finite extension of \mathbb{Q}_{p}. Let $\mathcal{O}_{L} \Gamma$ denote the group ring associated with Γ and the ring of integers \mathcal{O}_{L} in L and let $K_{0} T\left(\mathcal{O}_{L} \Gamma\right)$ denote the Grothendieck group of finite $\mathcal{O}_{L} \Gamma$ modules possessing a $\mathcal{O}_{L} \Gamma$-free resolution of length 1 . This Grothendieck group is a fundamental object in the Galois module theory à la Fröhlich. In particular, it enters the picture in studying the projective class group of the group ring of Γ over the ring of integers in a number field.
The best way to describe $K_{0} T\left(\mathcal{O}_{L} \Gamma\right)$ in a little bit more familiar terms is the exact sequence

$$
K_{1}\left(\mathcal{O}_{L} \Gamma\right) \rightarrow K_{1}(L \Gamma) \rightarrow K_{0} T\left(\mathcal{O}_{L} \Gamma\right) \rightarrow 0
$$

which comes from a localization sequence in K-theory (e. g. see sequence (1.3) of [T] on p. 2). It leads to the so-called Hom-description

$$
K_{0} T\left(\mathcal{O}_{L} \Gamma\right) \cong \frac{\operatorname{Hom}_{G}\left(K_{0}(\bar{L} \Gamma), \bar{L}^{\times}\right)}{\operatorname{Det}\left(\left(\mathcal{O}_{L} \Gamma\right)^{\times}\right)}
$$

of $K_{0} T\left(\mathcal{O}_{L} \Gamma\right)$; here $G=\operatorname{Gal}(\bar{L} / L)$ denotes the absolute Galois group, $K_{0}(\bar{L} \Gamma)$ is the classical ring of virtual characters of Γ, and Det is the determinant map (e. g. see $\S 2$ of Chapter 1 in $[\mathrm{T}]$ for a precise definition of Det and Theorem 3.2 of $[\mathrm{T}]$ on p. 10 for a proof of the Hom-description). Using Taylor's group logarithm techniques Cassou-Noguès and Taylor have
shown that the k-th Adams operation ψ^{k} on $K_{0}(\bar{L} \Gamma)$ induces an operation on $K_{0} T\left(\mathcal{O}_{L} \Gamma\right)$, if L / Q_{p} is non-ramified (e. g. see Theorem 1.2 of [T] on p. 98). The aim of this paper is to give a more or less satisfactory explanation of this operation in K-theoretical terms using power operations on modules.
For this we remark that we have constructed an Adams operation ψ^{k} on $K_{1}(L \Gamma)$ using exterior power operations (see $\S 3$ of $[\mathrm{Ko1}]$) and that, if p does not divide k, we have constructed an Adams operation ψ^{k} on $K_{1}\left(\mathcal{O}_{L} \Gamma\right)$ using generalizations of Atiyah's cyclic power operations and shuffle products in higher K-theory (see section 3 of [Ko2]). In this paper we show that the homomorphism $K_{1}\left(\mathcal{O}_{L} \Gamma\right) \rightarrow K_{1}(L \Gamma)$ in the above sequence commutes with ψ^{k} (see Corollary c) of Proposition 1). Hence ψ^{k} induces an operation ψ^{k} on $K_{0} T\left(\mathcal{O}_{L} \Gamma\right)$, if p does not divide k. The question whether a p-th Adams operation ψ^{p} on $K_{1}\left(\mathcal{O}_{L} \Gamma\right)$ can be canonically defined remains open.

Furthermore we show that, via the well-known Hom-description

$$
K_{1}(\bar{L} \Gamma) \cong \operatorname{Hom}\left(K_{0}(\bar{L} \Gamma), \bar{L}^{\times}\right)
$$

of $K_{1}(\bar{L} \Gamma)$, the k-th exterior power operation λ^{k} on $K_{1}(\bar{L} \Gamma)$ (defined in $\S 3$ of $[\mathrm{Ko} 1]$) corresponds to the homomorphism on the right hand side induced by $(-1)^{k-1} \hat{\psi}^{k}$ where $\hat{\psi}^{k}$ is the adjoint of ψ^{k} on $K_{0}(\bar{L} \Gamma)$ with respect to the classical character pairing (see Theorem 1). One easily deduces from this that the k-th Adams operation ψ^{k} on $K_{1}(\bar{L} \Gamma)$ corresponds to the homomorphism on the right hand side induced by $k \cdot \hat{\psi}^{k}$ (see Corollary 1 of Theorem 1).
If k is coprime to the order of Γ, the adjoint homomorphism $\hat{\psi}^{k}$ equals $\psi^{k^{\prime}}$ where k^{\prime} is a natural number which is an inverse of k modulo the order of Γ (see the proof of formula (1.7) of [T] on p. 101). This suggests that, up to a sign, the operation on $K_{0} T\left(\mathcal{O}_{L} \Gamma\right)$ defined by Cassou-Noguès and Taylor should be called an exterior power operation rather than an Adams operation. Since the canonical base change homomorphism $K_{1}(L \Gamma) \rightarrow K_{1}(\bar{L} \Gamma)$ is injective (see Proposition 2.8 of [Que] on p. 247) the results explained above prove the more precise fact that, via the above Hom-description, the operation ψ^{k} on $K_{0} T\left(\mathcal{O}_{L} \Gamma\right)$ corresponds to the homomorphism on the right hand side induced by $k \cdot \psi^{k^{\prime}}$, if k is coprime to p and to the order of Γ. Thus it differs from the operation defined by Cassou-Noguès and Taylor by passing from k to k^{\prime} and by the factor k.
Finally we rather explicitly describe the $K_{0}(\bar{L} \Gamma)$-module structure (see Theorem 2) and the Grothendieck filtration on $K_{1}(\bar{L} \Gamma)$ (see Proposition 6).
As a byproduct of the explicit description (of the $K_{0}(\bar{L} \Gamma)$-module structure and) of the Adams operation on $K_{1}(\bar{L} \Gamma)$ we strengthen the induction formula (6.2) of [Ko3] in the situation considered in this paper (see Theorem $3)$.
In the appendix we give a new proof of Queyrut's Hom-description (see sec-
tion 3 of [Que]) of the Grothendieck group $K_{0}(\Gamma, l)$ associated with finitely generated $l \Gamma$-modules where l is a field of positive characteristic.
Acknowledgements. The idea for the results of this paper was born during the preparation of a lecture for the K-theory conference in Poznań in September 1995. I would like to thank G. Banaszak, W. Gajda, and P. Krason for perfectly organizing an interesting meeting and for giving me the opportunity to report on my results.

1. Quillen's Universal Transformation

The purpose of this section is to introduce some notations used throughout this paper and to recall Quillen's universal transformation introduced in Hiller's paper [Hi].

For any (abstract) group G and any (not necessarily commutative) G-ring A let $K_{q}(G, A)$ denote Quillen's q-th K-group associated with the exact category of finitely generated, projective A-modules with semilinear G action. (If no action of G on A is given, the trivial action is meant and the action of G on modules is then assumed to be linear.) If G is the trivial group, we put $K_{q}(A):=K_{q}(G, A)$. Furthermore let

$$
\tilde{K}_{0}(G, A):=\operatorname{ker}\left(K_{0}(G, A) \xrightarrow{\text { can }} K_{0}(A)\right)
$$

be the reduced Grothendieck group. We obviously have $K_{0}(G, A)=K_{0}(A) \oplus$ $\tilde{K}_{0}(G, A)$, if G acts trivially on A.

For any ring A let $B G L(A)^{+}$be the plus construction associated with the classifying space $B G L(A)$ of the general linear group $G L(A)=\cup_{n \geq 0} G L_{n}(A)$ (e. g. see [L]). For any CW-complex X let $\left[X, B G L(A)^{+}\right]$denote the set of free homotopy classes of free continuous maps from X to $B G L(A)^{+}$. This is the same as the set of pointed homotopy classes of pointed continuous maps from X to $B G L(A)^{+}$since $B G L(A)^{+}$is a connected H-space (see Theorem 9 of $[\mathrm{S}]$ on p. 384). Now Quillen's natural transformation

$$
q(-): \tilde{K}_{0}\left(\pi_{1}(-), A\right) \rightarrow\left[-, B G L(A)^{+}\right]
$$

of functors from the category of connected finite CW-complexes to the category of groups (or more generally to the category of pointed sets) is defined as follows (see section 1 of $[\mathrm{Hi}]$): Let X be a connected finite CW-complex and let $\rho: \pi_{1}(X) \rightarrow \operatorname{Aut}(P)$ be a representation of the fundamental group $\pi_{1}(X)$ of X on a finitely generated, projective A-module P. We choose a projective A-module P^{\prime} such that $P \oplus P^{\prime}$ is free over A, say of rank n. Then $q(X)(\rho)$ is defined to be the homotopy class of the composition of the maps

$$
X \longrightarrow B \pi_{1}(X) \xrightarrow{B(\rho \oplus 1)} B G L_{n}(A) \xrightarrow{\text { can }} B G L(A) \xrightarrow{\text { can }} B G L(A)^{+} .
$$

Here $X \rightarrow B \pi_{1}(X)$ is the canonical 2 -coskeleton. It is shown in Proposition 1.1 of [Hi] on p. 243 that $q(X)(\rho)$ does not depend on the chosen module P^{\prime} and that the association $\rho \mapsto q(X)(\rho)$ induces a well-defined map $q(X)$: $\tilde{K}_{0}\left(\pi_{1}(X), A\right) \rightarrow\left[X, B G L(A)^{+}\right]$.
Furthermore the natural transformation $q(-)$ is universal in the following sense (see Corollary 2.3 of [Hi] on p. 246): For any H-space Z and for any natural transformation $\tilde{K}_{0}\left(\pi_{1}(-), A\right) \rightarrow[-, Z]$ there is a unique natural transformation $\left[-, B G L(A)^{+}\right] \rightarrow[-, Z]$ such that the following diagram commutes:

Note that the ring A need not to be commutative neither for the construction of $q(-)$ nor for the proof of the universality of $q(-)$. In particular we may take a group ring for A.

2. On Adams Operations on $K_{q}(R \# \Gamma)$

Let Γ be a group, R a commutative (noetherian) Γ-ring, and k a natural number which is invertible in R. Let $A:=R \# \Gamma$ denote the associated twisted group ring. Using generalizations of Atiyah's cyclic power operations, shuffle products in higher K-theory, and Grayson's construction of power operations on higher K-theory we have constructed an Adams operation ψ^{k} on $K_{q}(R \# \Gamma), q \geq 0$, in [Ko2]. The object of this section is to carry over some properties of ψ^{k} proved in section 2 of [Ko2] for K_{0} to higher K-theory using Quillen's universal transformation recalled in section 1.

Let l be a prime which is invertible in R. For any $a \in \mathbb{Z} / l \mathbb{Z}$ and for any R-module V let $V[a]_{l}$ be the cyclic l-th power of V with eigenvalue ζ_{l}^{a}. It is defined as follows (see [Ko2]): Let $S=R\left[\zeta_{l}\right]=R[T] /\left(1+\ldots+T^{l-1}\right)$ be the l-th cyclotomic extension of $R, c: V^{\otimes l} \rightarrow V^{\otimes l}, v_{0} \otimes \ldots \otimes v_{l-1} \mapsto$ $v_{l-1} \otimes v_{0} \otimes \ldots \otimes v_{l-2}$, the cyclic permutation on $V^{\otimes l}$, and $G:=(\mathbb{Z} / l \mathbb{Z})^{\times}$ the group of invertible elements in $\mathbb{Z} / l \mathbb{Z}$ acting on S as Galois group as usual and on $V^{\otimes l}$ via
$\sigma\left(v_{0} \otimes \ldots \otimes v_{l-1}\right):=v_{\sigma^{-1.0}} \otimes \ldots \otimes v_{\sigma^{-1} .(l-1)} \quad\left(\right.$ for $\left.\sigma \in G, v_{0}, \ldots, v_{l-1} \in V\right)$.
Then $V[a]_{l}$ is defined to be the G-fixed module associated with the ζ_{l}^{a} eigenspace of the endomorphism $1 \otimes c$ of $S \otimes_{R} V^{\otimes l}$ (see section 2 of [Ko2]). If V carries a (semilinear) Γ-action, then $V[a]_{l}$ obviously does as well. If V is furthermore R-projective or $R \# \Gamma$-projective, the same holds for $V[a]_{l}$ (see Corollary b) of Proposition 1 in [Ko2]).

The main result of section 3 in [Ko2] is that the association $V \mapsto V[a]_{l}$ yields an operation $[a]_{l}$ on $K_{q}(R \# \Gamma)$ and on $K_{q}(\Gamma, R)$ for any $q \geq 0$. The l-th Adams operation on $K_{q}(R \# \Gamma)$ is then defined to be $\psi^{l}:=[0]_{l}-[1]_{l}$. Now let X be a connected finite CW-complex. Applying this construction to the group $\pi_{1}(X) \times \Gamma$ in place of Γ we in particular obtain an operation $[a]_{l}$ on $K_{0}\left(A\left[\pi_{1}(X)\right]\right)=K_{0}\left(R \#\left(\pi_{1}(X) \times \Gamma\right)\right)$ and on $K_{0}\left(\pi_{1}(X) \times \Gamma, R\right)$. Similarly one can define an operation $[a]_{l}$ on $\tilde{K}_{0}\left(\pi_{1}(X), A\right)$. By the universality of the natural transformation $q(-)$ this operation induces a natural transformation $[a]_{l}$ on $\left[-, B G L(A)^{+}\right]$. In particular, we have once more defined an operation $[a]_{l}$ on $K_{q}(R \# \Gamma)=K_{q}(A)=\left[S^{q}, B G L(A)^{+}\right]$for any $q \geq 1$.
Proposition 1. The operation $[a]_{l}$ on $K_{q}(R \# \Gamma), q \geq 1$, defined in this way agrees with the operation [a] defined in section 3 of [Ko2].

Proof. This can be proved similarly to section 9 of [Gr].
Corollary. Let $q \geq 0$.
a) For all $x \in K_{0}(R \# \Gamma)$ and $y \in K_{q}(R \# \Gamma)$ we have:

$$
\psi^{l}(x \cdot y)=\psi^{l}(x) \cdot \psi^{l}(y) \quad \text { in } \quad K_{q}(R \# \Gamma) .
$$

b) Let l^{\prime} be another prime which is invertible in R. Then we have for all $x \in K_{q}(R \# \Gamma)$:

$$
\psi^{l}\left(\psi^{l^{\prime}}(x)\right)=\psi^{l^{\prime}}\left(\psi^{l}(x)\right) \quad \text { in } \quad K_{q}(R \# \Gamma) .
$$

c) If Γ is finite and the group order $\operatorname{ord}(\Gamma)$ is invertible in R, then ψ^{l} commutes with the Cartan homomorphism $c: K_{q}(R \# \Gamma) \rightarrow K_{q}(\Gamma, R)$.
Proof. These assertions have already been proved in section 2 of [Ko2], if $q=0$. So let $q \geq 1$.
a) Tensoring with a projective A-module over R transforms projective A modules into projective A-modules (see Lemma 3 of $[\mathrm{Ko} 2]$). Hence by the usual techniques (see $[\mathrm{Q}]$ or $[\mathrm{Hi}]$) we obtain a $K_{0}(A)$-module structure on $K_{q}(A)$. For any $x \in K_{0}(A)$ the map

$$
K_{q}(A) \rightarrow K_{q}(A), \quad y \mapsto \psi^{l}(x) \cdot \psi^{l}(y),
$$

is the S^{q}-level of a natural transformation $\left[-, B G L(A)^{+}\right] \rightarrow\left[-, B G L(A)^{+}\right]$ which makes the following diagram commutative:

$$
\begin{array}{cccc}
z & \tilde{K}_{0}\left(\pi_{1}(-), A\right) & \xrightarrow{q(-)} & {\left[-, B G L(A)^{+}\right]} \\
\downarrow & \downarrow & \downarrow \\
\psi^{l}(x) \cdot \psi^{l}(z) & \tilde{K}_{0}\left(\pi_{1}(-), A\right) & \xrightarrow{q(-)} & {\left[-, B G L(A)^{+}\right] .}
\end{array}
$$

Since $\psi^{l}(x) \cdot \psi^{l}(z)=\psi^{l}(x \cdot z)$ for all $z \in \tilde{K}_{0}\left(\pi_{1}(X), A\right)$ (cf. Proposition 5 of [Ko2]) the natural transformation $y \mapsto \psi^{l}(x \cdot y)$ makes the above diagram
commutative as well. Now the universality of $q(-)$ proves assertion a).
b) Similarly to a) this follows from the fact that $\psi^{l} \circ \psi^{l^{\prime}}=\psi^{l^{\prime}} \circ \psi^{l}$ on $\tilde{K}_{0}\left(\pi_{1}(X), A\right)$ (cf. Proposition 6 in $[\mathrm{Ko} 2]$).
c) If Γ is finite and $\operatorname{ord}(\Gamma)$ is invertible in R, an $R \# \Gamma$-module is finitely generated and projective over R, if and only if it is finitely generated and projective over $R \# \Gamma$. (This is an easy generalization of Maschke's theorem.) Hence the Cartan homomorphism is an isomorphism and we only have to show that the Adams operation ψ^{l} on $K_{q}(\Gamma, R)$ defined via cyclic power operations agrees with the Adams operation ψ^{l} defined via the l th Newton polynomial in the exterior power operations $\lambda_{1}, \ldots, \lambda_{l}$. Similarly to a) this follows from the corresponding fact for $\tilde{K}_{0}\left(\pi_{1}(X), A\right)=$ $\tilde{K}_{0}\left(\pi_{1}(X) \times \Gamma, R\right)$ (cf. Proposition 4 of [Ko2]). (The same proof even shows that $[a]_{l}=C_{l, a}\left(\lambda^{1}, \ldots, \lambda^{l}\right)$ on $K_{q}(R \# \Gamma)=K_{q}(\Gamma, R)$ where $C_{l, a}$ is the polynomial defined in Lemma 6 of [Ko2]).

Remark.

(i) Conjecturally assertion c) is true even when the group order is not invertible in R. At the end of the paper [Ko2] some speculations are presented how one should be able to prove this in the general case.
(ii) Let $k \in \mathbb{N}$ be invertible in R. Using a factorization of k into prime factors we may define an Adams operation ψ^{k} on $K_{q}(R \# \Gamma)$ for any $q \geq 1$. By assertion b) this does not depend on the ordering of the prime factors.
(iii) If $p:=\operatorname{char}(R)$ is a prime, we may define an Adams operation ψ^{k} even for all $k \in \mathbb{N}$ by defining ψ^{p} to be the base change homomorphism associated with the Frobenius endomorphism (see last Remark in [Ko2]). If Γ is finite and $\operatorname{ord}(\Gamma)$ is invertible in R, one can deduce from Proposition 7 of [Ko2] similarly to the proof of assertion a) that ψ^{p} agrees with the usual Adams operation on $K_{q}(R \# \Gamma)=K_{q}(\Gamma, R)$.

3. On Adams Operations on $K_{1}(\mathbb{C} \Gamma)$

Let Γ be a finite group. The aim of this section is to describe the Adams operations and the $K_{0}(\mathbb{C} \Gamma)$-module structure on $K_{1}(\mathbb{C} \Gamma)$ (defined in [Ko1] or $[\mathrm{Ko} 2]$) in explicit terms. This will enable us to strengthen the induction formula (6.2) of [Ko3] in this situation. Computing the Grothendieck filtration on $K_{1}(\mathbb{C} \Gamma)$ explicitly we will furthermore show that, for any subgroup Γ^{\prime} of Γ, the induction map $K_{1}\left(\mathbb{C} \Gamma^{\prime}\right) \rightarrow K_{1}(\mathbb{C} \Gamma)$ is continuous with respect to the Grothendieck filtrations as conjectured in (5.6) of [Ko3].
More generally, let C be an algebraically closed field such that the group order of Γ is invertible in C and let $C \Gamma$ denote the group ring associated with Γ and C. Then $K_{0}(C \Gamma)$ is the classical ring of virtual characters of Γ. It is a free abelian group with basis the set \mathcal{S} of isomorphism classes of simple finitely generated $C \Gamma$-modules. Furthermore $K_{0}(\mathbb{Z}, C \Gamma)$ can be identified
with the Grothendieck group associated with the category of pairs (M, α) consisting of a finitely generated $C \Gamma$-module M and a $C \Gamma$-automorphism α of M. Let $\mathbb{Z}\left[\mathcal{S} \times C^{\times}\right]$denote the free abelian group with basis $\mathcal{S} \times C^{\times}$.
Proposition 2. The group homomorphism

$$
\Phi: \mathbb{Z}\left[\mathcal{S} \times C^{\times}\right] \rightarrow K_{0}(\mathbb{Z}, C \Gamma) \quad \text { given by } \quad(S, \beta) \mapsto(S, \beta)
$$

is bijective.
Proof. We define an inverse map as follows: Let (M, α) be a pair as above. Then there are natural numbers $n_{S}, S \in \mathcal{S}$, such that $M \cong \oplus_{S \in \mathcal{S}} S^{n_{S}}$ and there are matrices $A_{S} \in G L_{n_{S}}(C), S \in \mathcal{S}$, such that α corresponds to $\oplus_{S \in \mathcal{S}} A_{S}$ under $M \cong \oplus S^{n_{S}}$. For $A \in G L_{n}(C)$ and $\beta \in C$ let $m_{\beta}(A):=$ $\operatorname{dim}_{C} \operatorname{ker}\left((A-\beta \cdot \mathrm{id})^{\infty}\right)$. Then the association

$$
(M, \alpha) \mapsto \sum_{(S, \beta) \in \mathcal{S} \times C^{\times}} m_{\beta}\left(A_{S}\right) \cdot(S, \beta)
$$

obviously defines a group homomorphism

$$
\Psi: K_{0}(\mathbb{Z}, C \Gamma) \rightarrow \mathbb{Z}\left[\mathcal{S} \times C^{\times}\right]
$$

such that $\Psi \circ \Phi=\mathrm{id}$.
Furthermore for all matrices $A \in G L_{n}(C)$ there is an upper triangular matrix $B \in G L_{n}(C)$ which is equivalent to A. In other words, the \mathbb{Z} representation $\left(S^{n}, A\right)$ is isomorphic to the \mathbb{Z}-representation $\left(S^{n}, B\right)$ for any $S \in \mathcal{S}$. Now

$$
0 \subset(S \times 0 \times \ldots \times 0, B) \subset(S \times S \times 0 \times \ldots \times 0, B) \subset \ldots \subset\left(S^{n}, B\right)
$$

is a filtration of $\left(S^{n}, B\right)$ by \mathbb{Z}-representations whose successive quotients are isomorphic to (S, β) for some $\beta \in C^{\times}$and the the pair (S, β) occurs precisely $m_{\beta}(B)=m_{\beta}(A)$ times. This shows that $\left(S^{n}, A\right)=\sum_{\beta \in C \times} m_{\beta}(A)$. (S, β) in $K_{0}(\mathbb{Z}, C \Gamma)$ and hence that $\Phi \circ \Psi=\mathrm{id}$.
According to Proposition 2 we have $K_{0}(\mathbb{Z}, C \Gamma) \cong K_{0}(C \Gamma)\left[C^{\times}\right]$. Henceforth we will write elements of $K_{0}(\mathbb{Z}, C \Gamma)$ also in the form $\sum_{\beta \in C^{\times}} z_{\beta}[\beta]$ with $z_{\beta} \in K_{0}(C \Gamma)$ for all $\beta \in C^{\times}$. Let

$$
\begin{array}{cllc}
\langle,\rangle: K_{0}(C \Gamma) \times K_{0}(C \Gamma) & \rightarrow & K_{0}(C) & \stackrel{\sim}{\rightarrow} \mathbb{Z} \\
(P, M) & \mapsto & \operatorname{Hom}_{C \Gamma}(P, M) & \hat{=} \operatorname{dim}_{C} \operatorname{Hom}_{C \Gamma}(P, M)
\end{array}
$$

be the classical character pairing. It is a perfect symmetric pairing. Let \langle, also denote the following pairing:

$$
\begin{array}{ccc}
\langle,\rangle: \quad K_{0}(C \Gamma) \times K_{0}(\mathbb{Z}, C \Gamma) & \rightarrow & K_{0}(\mathbb{Z}, C) \\
(P,(M, \alpha)) & \mapsto & \left(\operatorname{Hom}_{C \Gamma}(P, M), \operatorname{Hom}_{C \Gamma}(P, \alpha)\right)
\end{array} .
$$

We will furthermore write \langle,$\rangle for the composition of \langle$,$\rangle with the natural$ map

$$
\begin{array}{ccccc}
K_{0}(\mathbb{Z}, C) & \xrightarrow{\text { det }} & \operatorname{Pic}(\mathbb{Z}, C) & \underset{\rightarrow}{C^{\times}} \\
(N, \gamma) & \mapsto & \left(\Lambda_{C}^{\text {top }} N, \Lambda_{C}^{\text {top }} \gamma\right) & \mapsto & \operatorname{det}\left(\left.\gamma\right|_{N}\right) .
\end{array}
$$

Then for all $x, z \in K_{0}(C \Gamma)$ and $\beta \in C^{\times}$we obviously have $\langle x, z[\beta]\rangle=$ $\langle x, z\rangle[\beta]$ in $K_{0}(\mathbb{Z}, C)$ respectively $\langle x, z[\beta]\rangle=\beta^{\langle x, z\rangle}$ in C^{\times}.
For any $k \geq 1$ let λ^{k} and ψ^{k} denote the k-th exterior power operation and k-th Adams operation, respectively, on $K_{0}(\mathbb{Z}, C \Gamma)$ or $K_{0}(C \Gamma)$ or $K_{0}(\mathbb{Z}, C)$ or $K_{1}(C \Gamma)$ (see [Ko1] and section 2). Then for all $z \in K_{0}(C \Gamma)$ and $\beta \in C^{\times}$we obviously have

$$
\lambda^{k}(z[\beta])=\lambda^{k}(z)\left[\beta^{k}\right] \quad \text { and } \quad \psi^{k}(z[\beta])=\psi^{k}(z)\left[\beta^{k}\right] \quad \text { in } \quad K_{0}(\mathbb{Z}, С \Gamma) .
$$

Since the classical character pairing is perfect there is an adjoint homomorphism $\hat{\psi}^{k}$ on $K_{0}(C \Gamma)$ associated with ψ^{k}. If k is coprime to $\operatorname{ord}(\Gamma)$, we have $\hat{\psi}^{k}=\psi^{k^{\prime}}$ where k^{\prime} is a natural number such that $k \cdot k^{\prime} \equiv 1 \bmod$ $\operatorname{ord}(\Gamma)$ (see the proof of formula (1.7) of $[\mathrm{T}]$ on p . 101). If G is abelian, one can easily show that $\hat{\psi}^{k}$ is induced by the association $M \mapsto C \Gamma \otimes_{C \Gamma} M$ where $C \Gamma$ is considered as an $C \Gamma$-algebra via the k-multiplication on Γ.
Proposition 3. For all $x \in K_{0}(C \Gamma)$ and $y \in \tilde{K}_{0}(\mathbb{Z}, C \Gamma)$ we have

$$
\left\langle x, \lambda^{k}(y)\right\rangle=\left\langle(-1)^{k-1} \hat{\psi}^{k}(x), y\right\rangle \quad \text { in } \quad C^{\times} .
$$

Proof. Since for all $z_{1}, z_{2} \in K_{0}(C \Gamma)$ and $\beta_{1}, \beta_{2} \in C^{\times}$we have

$$
\left\langle x,\left(z_{1}\left[\beta_{1}\right]-z_{1}[1]\right) \cdot\left(z_{2}\left[\beta_{2}\right]-z_{2}[1]\right)\right\rangle=\left(\beta_{1} \beta_{2}\right)^{\left\langle x, z_{1} \cdot z_{2}\right\rangle} \cdot \beta_{1}^{-\left\langle x, z_{1} \cdot z_{2}\right\rangle} \cdot \beta_{2}^{-\left\langle x, z_{1} \cdot z_{2}\right\rangle}=1
$$

both sides of the above formula are linear in y. Hence we may assume that $y=z[\beta]-z[1]$ with some $z \in K_{0}(C \Gamma)$ and $\beta \in C^{\times}$. Using the equation $\lambda_{t}^{\prime}(z) \cdot \lambda_{t}(-z)=\frac{\mathrm{d}}{\mathrm{d} t} \log \lambda_{t}(z)=\sum_{j=1}^{\infty}(-1)^{k-1} \psi^{k}(z) t^{k-1}$ of power series (see p. 23 of [FL]) we then obtain that

$$
\begin{aligned}
& \left\langle x, \lambda^{k}(y)\right\rangle=\left\langle x, \lambda^{k}(z)\left[\beta^{k}\right]+\lambda^{k-1}(z) \lambda^{1}(-z)\left[\beta^{k-1}\right]+\ldots+\lambda^{k}(-z)[1]\right\rangle \\
& =\beta^{k\left\langle x, \lambda^{k}(z)\right\rangle} \cdot \beta^{(k-1)\left\langle x, \lambda^{k-1}(z) \lambda^{1}(-z)\right\rangle} \ldots \ldots \cdot \beta^{\left\langle x, \lambda^{1}(z) \lambda^{k-1}(-z)\right\rangle} \\
& =\beta^{\left\langle x, k \lambda^{k}(z)+(k-1) \lambda^{k-1}(z) \lambda^{1}(-z)+\ldots+\lambda^{1}(z) \lambda^{k-1}(-z)\right\rangle} \\
& =\beta^{\left\langle x,(-1)^{k-1} \psi^{k}(z)\right\rangle} \\
& =\beta^{\left\langle(-1)^{k-1} \hat{\psi}^{k}(x), z\right\rangle} \\
& =\left\langle(-1)^{k-1} \hat{\psi}^{k}(x), y\right\rangle
\end{aligned}
$$

as was to be shown.
Now we will use the following description of the Whitehead group $K_{1}(C \Gamma)=$ $\left[S^{1}, B G L(C \Gamma)^{+}\right]:$It is the factor group of the free abelian group with basis
the isomorphism classes of pairs (M, α) as above modulo the relations defined e. g. on p. 348 of [Ba]. Furthermore, by Proposition 2.2 of [Que] on p. 244, the map

$$
\begin{aligned}
K_{1}(C \Gamma) & \rightarrow \operatorname{Hom}_{\mathbb{Z}}\left(K_{0}(C \Gamma), C^{\times}\right) \\
(M, \alpha) & \mapsto\left(P \mapsto \operatorname{det}\left(\left.\operatorname{Hom}_{C \Gamma}(P, \alpha)\right|_{\operatorname{Hom}_{C \Gamma}(P, M)}\right)\right)
\end{aligned}
$$

is a well-defined group isomorphism.
Theorem 1. The following diagram commutes:

$$
\begin{array}{llc}
K_{1}(C \Gamma) & \stackrel{\sim}{\rightarrow} & \operatorname{Hom}_{\mathbb{Z}}\left(K_{0}(C \Gamma), C^{\times}\right) \\
\lambda^{k} \downarrow & & \downarrow \operatorname{Hom}\left((-1)^{k-1} \hat{\psi}^{k}, C^{\times}\right) \\
K_{1}(C \Gamma) & \stackrel{\sim}{\rightarrow} & \operatorname{Hom}_{\mathbb{Z}}\left(K_{0}(C \Gamma), C^{\times}\right) .
\end{array}
$$

Proof. We consider the following diagram:

$$
\begin{array}{ccccc}
y & \mapsto & (x \mapsto\langle x, y\rangle) & & \\
\tilde{K}_{0}(\mathbb{Z}, C \Gamma) & \rightarrow & \operatorname{Hom}_{\mathbb{Z}}\left(K_{0}(C \Gamma), C^{\times}\right) & & \\
\| & & \| & & \\
\tilde{K}_{0}(\mathbb{Z}, C \Gamma) & \xrightarrow{D} & K_{1}(C \Gamma) & & \\
\| & & \| & \searrow & G L(C \Gamma)^{\mathrm{ab}} \\
\tilde{K}_{0}\left(\pi_{1}\left(S^{1}\right), C \Gamma\right) & \xrightarrow{q\left(S^{1}\right)} & {\left[S^{1}, B G L(C \Gamma)^{+}\right]} & &
\end{array}
$$

Here the map D is defined in such a way that the upper square commutes. Then we obviously have $D(S[\beta]-S[1])=(S, \beta)$ in $K_{1}(C \Gamma)$ for all $S \in \mathcal{S}$ and $\beta \in C^{\times}$. Let S^{\prime} be a $C \Gamma$-module such that $S \oplus S^{\prime}$ is free over $C \Gamma$, say of rank n, and let $\alpha \in G L_{n}(C \Gamma)$ be the automorphism of $(C \Gamma)^{n}$ corresponding to $\beta \oplus \mathrm{id}_{S^{\prime}}$. Then by Theorem (1.2)(1) of [Ba] on p. 448 the isomorphism $K_{1}(C \Gamma) \stackrel{\sim}{\rightarrow}\left[S^{1}, B G L(C \Gamma)^{+}\right]$maps the class of (S, β) to the homotopy class of the continuous map

$$
S^{1}=B Z \mathbb{} \xrightarrow{B \alpha} B G L_{n}(C \Gamma) \xrightarrow{\text { can }} B G L(C \Gamma) \xrightarrow{\text { can }} B G L(C \Gamma)^{+} .
$$

Since $q\left(S^{1}\right)$ maps the element $S[\beta]-S[1]$ of $\tilde{K}_{0}\left(\pi_{1}\left(S^{1}\right), C \Gamma\right)$ to the same homotopy class (see section 1) the lower square commutes. Hence the map D commutes with λ^{k} by definition of λ^{k} on $K_{1}(C \Gamma)$. Now Proposition 3 proves Theorem 1 since D is surjective.

Remark. If more generally C is a commutative ring such that ord (Γ) is invertible in C, the above arguments essentially show that we have $\lambda^{k}(S, \beta)=$ $\left((-1)^{k-1} \psi^{k}(S), \beta^{k}\right)$ in $K_{1}(C \Gamma)$ for any $C \Gamma$-module S and $\beta \in C^{\times}$.
Corollary 1. The following diagram commutes:

$$
\begin{array}{llll}
K_{1}(C \Gamma) & \tilde{\rightarrow} & \operatorname{Hom}_{\mathbb{Z}}\left(K_{0}(C \Gamma), C^{\times}\right) & f \\
\psi^{k} \downarrow & \downarrow & \downarrow \\
K_{1}(C \Gamma) & \tilde{\rightarrow} & \left.\operatorname{Hom}_{\mathbb{Z}}\left(K_{0} C \Gamma\right), C^{\times}\right) & \mu^{k} \circ f \circ \hat{\psi}^{k},
\end{array}
$$

where $\mu^{k}(\beta)=\beta^{k}$ for $\beta \in C^{\times}$.
Proof. Since the multiplication on $K_{1}(C \Gamma)$ is defined to be trivial we have $\psi^{k}=(-1)^{k-1} k \lambda^{k}$. Thus Theorem 1 proves Corollary 1. Alternatively Corollary 1 follows from the following proposition similarly to the proof of Theorem 1.

Proposition 4. For all $x \in K_{0}(C \Gamma)$ and $y \in K_{0}(\mathbb{Z}, C \Gamma)$ we have

$$
\left\langle x, \psi^{k}(y)\right\rangle=\psi^{k}\left(\left\langle\hat{\psi}^{k}(x), y\right\rangle\right) \quad \text { in } \quad K_{0}(\mathbb{Z}, C) .
$$

Proof. We may assume that $y=z[\beta]$ with some $z \in K_{0}(C \Gamma)$ and $\beta \in C^{\times}$. Then we have

$$
\begin{aligned}
& \left\langle x, \psi^{k}(y)\right\rangle=\left\langle x, \psi^{k}(z)\left[\beta^{k}\right]\right\rangle \\
& \quad=\left\langle\hat{\psi}^{k}(x), z\right\rangle\left[\beta^{k}\right]=\psi^{k}\left(\left\langle\hat{\psi}^{k}(x), z\right\rangle[\beta]\right)=\psi^{k}\left(\left\langle\hat{\psi}^{k}(x), y\right\rangle\right) .
\end{aligned}
$$

Corollary 2. Via the isomorphism $K_{1}(C \Gamma) \cong \operatorname{Hom}_{\mathbb{Z}}\left(K_{0}(C \Gamma), C^{\times}\right)$the Grothendieck operation γ^{k} on $K_{1}(C \Gamma)$ corresponds to the (additively written) homomorphism

$$
\begin{aligned}
& \sum_{i=0}^{k-1}(-1)^{k-i-1}\binom{k-1}{i} \operatorname{Hom}\left(\hat{\psi}^{k-i}, C^{\times}\right) \\
& \quad=(-1)^{k-1} \operatorname{Hom}\left(\hat{\psi}^{k}, C^{\times}\right)+(-1)^{k-2}(k-1) \operatorname{Hom}\left(\hat{\psi}^{k-1}, C^{\times}\right)+\ldots+\mathrm{id}
\end{aligned}
$$

on $\operatorname{Hom}\left(K_{0}(C \Gamma), C^{\times}\right)$.
Proof. By definition (see p. 47 of [FL]) we have $\gamma^{k}=\sum_{i=0}^{k-1}\binom{k-1}{i} \lambda^{k-i}$. Thus Theorem 1 proves Corollary 2.
Let

$$
{ }^{*}: K_{0}(C \Gamma) \rightarrow K_{0}(C \Gamma), \quad P \mapsto P^{*}:=\operatorname{Hom}_{C}(P, C)
$$

denote the dualizing map.
Proposition 5. For all $x, z \in K_{0}(C \Gamma)$ and $y \in K_{0}(\mathbb{Z}, C \Gamma)$ we have

$$
\langle x, z \cdot y\rangle=\left\langle z^{*} \cdot x, y\right\rangle \quad \text { in } \quad K_{0}(\mathbb{Z}, C)
$$

Proof. This follows from the canonical isomorphisms

$$
\operatorname{Hom}_{C \Gamma}\left(P \otimes_{C} Q, R\right) \cong \operatorname{Hom}_{C \Gamma}\left(Q, \operatorname{Hom}_{C}(P, R)\right) \cong \operatorname{Hom}_{C \Gamma}\left(Q, P^{*} \otimes_{C} R\right)
$$

(for all finitely generated $C \Gamma$-modules P, Q, R).
Theorem 2. For all $z \in K_{0}(C \Gamma)$ the following diagram commutes:

$$
\begin{array}{ccccc}
y & K_{1}(C \Gamma) & \tilde{\rightarrow} & \operatorname{Hom}_{\mathbb{Z}}\left(K_{0}(C \Gamma), C^{\times}\right) & f \\
\downarrow & \downarrow & \downarrow & \downarrow & \\
z \cdot y & K_{1}(C \Gamma) & \tilde{\rightarrow} & \operatorname{Hom}_{\mathbb{Z}}\left(K_{0}(C \Gamma), C^{\times}\right) & \left(x \mapsto f\left(z^{*} \cdot x\right)\right) .
\end{array}
$$

Proof. This can be deduced from Proposition 5 similarly to the proof of Theorem 1.

The next theorem strengthens the induction formula (6.2) of [Ko3] in the situation considered in this section. For this let Γ^{\prime} be a subgroup of Γ and let

$$
i_{*}: K_{1}\left(C \Gamma^{\prime}\right) \rightarrow K_{1}(C \Gamma), \quad(M, \alpha) \mapsto\left(C \Gamma \otimes_{C \Gamma^{\prime}} M, 1 \otimes \alpha\right),
$$

be the induction map (see also section 6 in [Ko3]).
Theorem 3. For all $y \in K_{1}\left(C \Gamma^{\prime}\right)$ we have

$$
\psi^{k} i_{*}(y)=i_{*} \psi^{k}(y) \quad \text { in } \quad \begin{cases}K_{1}(C \Gamma), & \text { if }(k, \operatorname{ord}(\Gamma))=1 \\ \hat{K}_{1}(C \Gamma)\left[k^{-1}\right], & \text { else. }\end{cases}
$$

Here $\hat{K}_{1}(C \Gamma)\left[k^{-1}\right]$ denotes the $F^{1} K_{0}(C \Gamma)\left[k^{-1}\right]$-adic completion of $K_{1}(C \Gamma)\left[k^{-1}\right]$.
Proof. Let $i^{*}: K_{0}(C \Gamma) \rightarrow K_{0}\left(C \Gamma^{\prime}\right)$ be the restriction map. Then by Frobenius reciprocity the diagram

$$
\begin{array}{lll}
K_{1}\left(C \Gamma^{\prime}\right) & \xrightarrow{\sim} & \operatorname{Hom}\left(K_{0}\left(C \Gamma^{\prime}\right), C^{\times}\right) \\
i_{*} \downarrow & & \downarrow \operatorname{Hom}\left(i^{*}, C^{\times}\right) \\
K_{1}(C \Gamma) & \stackrel{\sim}{\longrightarrow} & \operatorname{Hom}\left(K_{0}(C \Gamma), C^{\times}\right)
\end{array}
$$

commutes.
If $(k, \operatorname{ord}(\Gamma))=1$ we have $\hat{\psi}^{k}=\psi^{k^{\prime}}$ where k^{\prime} is a natural number such that $k \cdot k^{\prime} \equiv 1 \bmod \operatorname{ord}(\Gamma)$. Hence i^{*} commutes with $\hat{\psi}^{k}$ and thus $i_{*} \hat{=} \operatorname{Hom}\left(i^{*}, C^{\times}\right)$commutes with $\psi^{k} \hat{=} \operatorname{Hom}\left(\hat{\psi}^{k}, C^{\times}\right)$as was to be shown. If $(k, \operatorname{ord}(\Gamma)) \neq 1$, this is proved in Theorem (6.2) of [Ko3] using the equivariant Adams-Riemann-Roch theorem. Alternatively this can be proved as follows without using geometric arguments: Let $I:=F^{1} K_{0}(C \Gamma)$. By Example (6.8) of [Ko3] we have $\psi^{k} i_{*}(x)-i_{*} \psi^{k}(x) \in \cap_{n \geq 0} I\left[k^{-1}\right]^{n}$ for all
$x \in K_{0}\left(C \Gamma^{\prime}\right)$. Hence by Frobenius reciprocity we have $f \circ \hat{\psi}^{k} \circ i^{*}-f \circ i^{*} \circ \hat{\psi}^{k} \in$ $\cap_{n \geq 0} I^{n} \operatorname{Hom}\left(K_{0}(C \Gamma), \mathbb{Z}\right)\left[k^{-1}\right]$ for all $f \in \operatorname{Hom}\left(K_{0}\left(C \Gamma^{\prime}\right), \mathbb{Z}\right)$. Here the multiplication of $I^{n} \subseteq K_{0}(C \Gamma)$ on $\operatorname{Hom}\left(K_{0}(C \Gamma), \mathbb{Z}\right)$ is defined as in Theorem 2. Writing a homomorphism $f \in \operatorname{Hom}\left(K_{0}\left(C \Gamma^{\prime}\right), C^{\times}\right)$as the image of a map $K_{0}\left(C \Gamma^{\prime}\right) \rightarrow \mathbb{Z}\left[\beta_{1}\right] \oplus \ldots \oplus \mathbb{Z}\left[\beta_{r}\right]$ we deduce from this that $f \circ \hat{\psi}^{k} \circ i^{*}-f \circ i^{*} \circ \hat{\psi}^{k} \in \cap_{n \geq 0} I^{n} \operatorname{Hom}\left(K_{0}(C \Gamma), C^{\times}\right)\left[k^{-1}\right]$. Now Corollary 1 of Theorem 1 and Theorem 2 prove Theorem 3.

Now we are going to describe the Grothendieck filtration on $K_{1}(C \Gamma)$. For this let $K(C \Gamma):=K_{0}(C \Gamma) \oplus K_{1}(C \Gamma)$ be equipped with the ring structure induced by the ring structure on $K_{0}(C \Gamma)$, by the $K_{0}(C \Gamma)$-module structure on $K_{1}(C \Gamma)$, and by the trivial multiplication on $K_{1}(C \Gamma)$. Then the exterior power operations on $K_{0}(C \Gamma)$ and $K_{1}(C \Gamma)$ make $K(C \Gamma)$ a λ-ring (see $\S 2$ of [Kol]). Let

$$
F^{1} K(C \Gamma):=\operatorname{ker}\left(K(C \Gamma) \xrightarrow{\text { can }} K_{0}(C \Gamma) \xrightarrow{\operatorname{dim}} \mathbb{Z}\right)
$$

be the augmentation ideal and let $\left(F^{n} K(C \Gamma)\right)_{n \geq 0}$ be the associated Grothendieck filtration. Recall that $F^{n} K(C \Gamma)$ is generated as abelian group by the elements

$$
\gamma^{n_{1}}\left(z_{1}\right) \cdot \ldots \cdot \gamma^{n_{r}}\left(z_{r}\right), \quad z_{1}, \ldots, z_{r} \in F^{1} K(C \Gamma), \quad n_{1}+\ldots+n_{r} \geq n .
$$

The ideal $F^{n} K(C \Gamma)$ is obviously a homogeneous ideal, i. e. $F^{n} K(C \Gamma)=$ $F^{n} K_{0}(C \Gamma) \oplus F^{n} K_{1}(C \Gamma)$ with a certain subgroup $F^{n} K_{1}(C \Gamma)$ of $K_{1}(C \Gamma)$.

Proposition 6. We have

$$
F^{n} K_{1}(C \Gamma)= \begin{cases}K_{1}(C \Gamma) & \text { for } n=0,1 \\ \operatorname{ker}\left(K_{1}(C \Gamma) \xrightarrow{\text { can }} K_{1}(C)\right) & \text { for } n \geq 2 .\end{cases}
$$

In particular, the induction map $i_{*}: K_{1}\left(C \Gamma^{\prime}\right) \rightarrow K_{1}(C \Gamma)$ is continuous with respect to the Grothendieck filtrations as conjectured in (5.6) of [Ko3].

Proof. This is clear for $n=0,1$. So let $n \geq 2$. Since $F^{n} K_{1}(C)$ obviously vanishes for $n \geq 2$ we have $F^{n} K_{1}(C \Gamma) \subseteq \operatorname{ker}\left(K_{1}(C \Gamma) \rightarrow K_{1}(C)\right)=: K$. Using the isomorphisms $K \oplus K_{1}(C) \cong K_{1}(C \Gamma) \cong \operatorname{Hom}\left(K_{0}(C \Gamma), C^{\times}\right)$we see that the multiplication with $\operatorname{ord}(\Gamma)$ on K is surjective. Hence we have $K=\operatorname{ord}(\Gamma) \cdot K \subseteq F^{2} K_{1}(C \Gamma)$ by Proposition (6.1) of [Ko3]. By induction on n we thus obtain the reverse inclusion

$$
K=\operatorname{ord}(\Gamma) \cdot K=\operatorname{ord}(\Gamma) \cdot F^{n-1} K_{1}(C \Gamma) \subseteq F^{n} K_{1}(C \Gamma)
$$

for all $n \geq 2$ again by Proposition (6.1) of [Ko3].
Since the diagram

$$
\begin{array}{rlll}
K_{1}\left(C \Gamma^{\prime}\right) & \rightarrow & K_{1}(C) \\
i_{*} \downarrow & & & \downarrow\left[\Gamma: \Gamma^{\prime}\right] \\
K_{1}(C \Gamma) & \rightarrow & K_{1}(C)
\end{array}
$$

obviously commutes we finally obtain that $i_{*}\left(F^{n} K_{1}\left(C \Gamma^{\prime}\right)\right) \subseteq F^{n} K_{1}(C \Gamma)$ for all $n \geq 0$. In particular, i_{*} is continuous with respect to the Grothendieck filtrations.

Appendix

Let Γ be a finite group and let l be a finite field. In this appendix we will present a new proof for the Hom-description of the Grothendieck group $K_{0}(\Gamma, l)$ given by Queyrut in section 3 of [Que].

To recall this Hom-description, let L be a local field of characteristic 0 with residue classfield l. Let L_{nr} be the maximal non-ramified extension in the algebraic closure \bar{L} of L. Then the residue classfield of L_{nr} (and \bar{L}) is an algebraic closure \bar{l} of l. Let $\mathcal{O}_{L_{\mathrm{nr}}}$ and $\mathcal{O}_{\bar{L}}$ denote the ring of integers in L_{nr} and \bar{L}, respectively. Let $G_{L}:=\operatorname{Gal}(\bar{L} / L)$ and $G_{l}:=\operatorname{Gal}(\bar{l} / l)$ denote the corresponding absolute Galois groups. We will identify G_{l} with $\operatorname{Gal}\left(L_{\mathrm{nr}} / L\right)$. Our proof of the Hom-description will be based on the following two facts:
(i) In the Swan triangle

all homomorphisms are compatible with the obvious G_{L}-action (see [Se]).
(ii) The pairing

$$
\begin{array}{ccc}
K_{0}(\bar{l} \Gamma) \times K_{0}(\Gamma, \bar{l}) & \rightarrow & \mathbb{Z} \\
(P, M) & \mapsto & \operatorname{dim}_{\bar{l}} \operatorname{Hom}_{\bar{l} \Gamma}(P, M)
\end{array}
$$

induces an isomorphism of groups

$$
K_{0}(\Gamma, l) \xrightarrow[\rightarrow]{\sim} \operatorname{Hom}_{G_{l}}\left(K_{0}(\bar{l} \Gamma), \mathbb{Z}\right)
$$

via base extension (see Théorème 2.7 of [Que] on p. 247).
Let $v: \bar{L}^{\times} \rightarrow \mathbb{Q}$ be the valuation normalized by $v\left(\pi_{L}\right)=1$ where π_{L} is a prime element of L (and then of L_{nr} as well). We put

$$
H(l, \Gamma):=\left\{f \in \operatorname{Hom}_{G_{L}}\left(K_{0}(\bar{L} \Gamma), \bar{L}^{\times}\right): f(\operatorname{Image}(e)) \subseteq \mathcal{O}_{\bar{L}}^{\times}\right\}
$$

Theorem 4 (Hom-description of $K_{0}(\Gamma, l)$). The homomorphism

$$
\begin{array}{cl}
\operatorname{Hom}_{G_{L}}\left(K_{0}(\bar{L} \Gamma), \bar{L}^{\times}\right) & \rightarrow \quad \operatorname{Hom}_{G_{l}}\left(K_{0}(\bar{l} \Gamma), \mathbb{Z}\right) \\
f & \mapsto \\
& (y \mapsto v \circ f \circ e(y))
\end{array}
$$

induces an isomorphism

$$
\frac{\operatorname{Hom}_{G_{L}}\left(K_{0}(\bar{L} \Gamma), \bar{L}^{\times}\right)}{H(l, \Gamma)} \xrightarrow{\sim} \quad K_{0}(\Gamma, l) .
$$

Proof. Note that $v \circ f \circ e(y)$ lies in \mathbb{Z} since $e(y)$ and hence $f \circ e(y)$ is fixed by the inertia group.
The split exact sequence

$$
0 \rightarrow \mathcal{O}_{L_{\mathrm{nr}}}^{\times} \rightarrow L_{\mathrm{nr}}^{\times} \xrightarrow{v} \mathbb{Z} \rightarrow 0
$$

of G_{l}-modules induces the exact sequence

$$
0 \rightarrow \operatorname{Hom}_{G_{l}}\left(K, \mathcal{O}_{L_{\mathrm{nr}}}^{\times}\right) \rightarrow \operatorname{Hom}_{G_{l}}\left(K, L_{\mathrm{nr}}^{\times}\right) \rightarrow \operatorname{Hom}_{G_{l}}(K, \mathbb{Z}) \rightarrow 0
$$

where $K:=K_{0}(\bar{l} \Gamma)$. Since K is fixed by the inertia group we have $\operatorname{Hom}_{G_{l}}\left(K, L_{\mathrm{nr}}^{\times}\right)=\operatorname{Hom}_{G_{L}}\left(K, \bar{L}^{\times}\right)$and $\operatorname{Hom}_{G_{l}}\left(K, \mathcal{O}_{L_{\mathrm{nr}}}^{\times}\right)=\operatorname{Hom}_{G_{L}}\left(K, \mathcal{O}_{\bar{L}}^{\times}\right)$. Furthermore the map $e: K \rightarrow K_{0}(\bar{L} \Gamma)$ of the Swan triangle is a direct injection of G_{L}-modules (see [Se]). Hence the pull-back diagram

$$
\left.\begin{array}{ccc}
0 \rightarrow \quad H(l, \Gamma) & \rightarrow & \operatorname{Hom}_{G_{L}}\left(K_{0}(\bar{L} \Gamma), \bar{L}^{\times}\right)
\end{array}\right) \rightarrow \operatorname{Hom}_{G_{l}}(K, \mathbb{Z}) \rightarrow 0
$$

proves Theorem 4.

References

[Ba] H. Bass, Algebraic K-theory, Math. Lecture Note Series, Benjamin, New York, 1968.
[FL] W. Fulton and S. Lang, Riemann-Roch algebra, Grundlehren Math. Wiss. 277, Springer, New York, 1985.
[Gr] D. R. Grayson, Exterior power operations on higher K-theory, K-Theory 3 (1989), 247-260.
[Hi] H. L. Hiller, λ-rings and algebraic K-theory, J. Pure Appl. Algebra 20 (1981), 241-266.
[Ko1] B. Köck, Das Adams-Riemann-Roch-Theorem in der höheren äquivarianten K-Theorie, J. Reine Angew. Math. 421 (1991), 189-217.
[Ko2] B. Köck, Adams operations for projective modules over group rings, to appear in Math. Proc. Cambridge Philos. Soc. 121 (1996).
[Ko3] B. Köck, The Grothendieck-Riemann-Roch theorem in the higher K-theory of group scheme actions, Habilitationsschrift, Karlsruhe, 1995.
[L] J.-L. Loday, K-théorie algébrique et représentations de groupes, Ann. Sci. École Norm. Sup. (4) 9 (1976), 309-377.
[Que] J. Queyrut, S-Groupes des classes d'un ordre arithmétique, J. Algebra 76 (1982), 234-260.
[Q] D. Quillen, Higher algebraic K-theory: I, in H. Bass (ed.), Algebraic K theory I (Seattle, 1972), Lecture Notes in Math. 341, Springer, New York, 1973, 85-147.
[Se] J.-P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1967.
[S] E. H. Spanier, Algebraic topology, McGraw-Hill Ser. Higher Math., McGrawHill, New York, 1966.
[T] M. Taylor, Classgroups of group rings, Lecture Note Series 91, Cambridge Univ. Press, Cambridge, 1984.

Math. Institut II der Universität Karlsruhe, D-76128 Karlsruhe, Germany
E-mail address: bk@ma2s2.mathematik.uni-karlsruhe.de

