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Abstract

Let R be a commutative ring, Γ a finite group acting on R , and let k ∈
IN be invertible in R . Generalizing a definition of Kervaire, we construct an
Adams operation ψk on the Grothendieck group and on the higher K -theory of
projective modules over the twisted group ring R#Γ . For this, we generalize
Atiyah’s cyclic power operations and use shuffle products in higher K -theory. For
the Grothendieck group, we show that ψk is multiplicative and that it commutes
with base change, with the Cartan homomorphism, and with ψl for any other l
which is invertible in R .

Introduction

On the classical ring of characters K0(Q̄Γ ) of a finite group Γ , the k -th Adams
operation ψk is defined by

ψk(χ)(γ) := χ(γk)

(for any character χ ∈ K0(Q̄Γ ) and any γ ∈ Γ ) or, equivalently, as the k -th
Newton polynomial in the exterior power operations λ1, . . . , λk .

For the Grothendieck group K0(ZZΓ ) of projective modules over the integral
group ring ZZΓ , Fröhlich has given the following description, the so-called Hom-
description:

K0(ZZΓ )

⟨free ones⟩
∼=

HomG(K0(Q̄Γ ), I(Q̄))

HomG(K0(Q̄Γ ),Q̄
×
) ·Det(U(ZZΓ ))

Here G denotes the absolute Galois group Gal(Q̄/Q), I(Q̄) the idele group of
Q̄ , Det the generalized determinant map, and U(ZZΓ ) the group of unit ideles
of ZZΓ (see [F] for precise definitions and proofs). In [CNT], Cassou-Noguès and
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Taylor have shown that (for odd k ) the homomorphism induced by ψk on the
numerator leaves the denominator of this formula invariant, i. e. ψk induces a
homomorphism ψk on K0(ZZΓ )/⟨free ones⟩ . This paper grew out of the desire to
describe this homomorphism ψk in algebraic terms, i. e. to express ψk in terms of
power operations. Investigating the proofs of Fröhlich and Cassou-Noguès/Taylor,
one is led to the conjecture that there exist Adams operations on the Whitehead
group K1(ZZpΓ ) of the group ring of Γ over the p -adic integers ZZp . The aim of
this paper is to prove this conjecture in the following much more general setting.

Let R be a commutative Γ -ring and let k ∈ IN be invertible in R . Then, for
each q ≥ 0 , there exists an algebraically defined, additive Adams operation ψk on
Quillen’s q -th K -group Kq(R#Γ ) associated with the exact category of finitely
generated, projective modules over the twisted group ring R#Γ .

To construct ψk , we generalize Kervaire’s construction of ψk on K0(KΓ ) for a
(finite) field K (cf. [Ke]). In particular, our definition is based on generalizations of
Atiyah’s cyclic power operations (cf. formula (2.7) of [At]). It uses shuffle products
in higher K -theory (cf. [Ko2]) and Grayson’s construction of power operations on
higher K -theory (cf. [Gr1]).

We show that the k -th Adams operation ψk on the Grothendieck group K0(R#Γ )
is multiplicative and that it commutes with the Cartan homomorphism

c : K0(R#Γ ) → K0(Γ,R),

with base change, and with the Adams operation ψl for any other l which is
invertible in R . Furthermore, we formulate a conjectural relationship between
cyclic powers and exterior powers which one should be able to prove in representa-
tion theory and which would suffice to prove that ψk commutes with the Cartan
homomorphism c : Kq(R#Γ ) → Kq(Γ,R) in higher K -theory. Here Kq(Γ,R)
denotes Quillen’s q -th K -group associated with finitely generated, R -projective
R#Γ -modules. Finally, if the characteristic of R is a prime number, we define
an Adams operation ψk on Kq(R#Γ ) for an arbitrary k ∈ IN by combining the
above construction with the base change homomorphism induced by the Frobenius
endomorphism of R .

For k coprime to the order |Γ | of Γ , let k′ be the inverse of k modulo |Γ | .
Then ψk′ on K0(Q̄Γ ) is the adjoint of ψk with respect to the classical character
pairing

K0(Q̄Γ )×K0(Q̄Γ ) → ZZ

(cf. the proof of Théorème 7-5 of [CNT]). I believe that the Adams operations
defined here are adjoints (in a sense which has still to be made precise) of those
defined by Cassou-Noguès and Taylor. Having established such an interpretation,
the Adams-Riemann-Roch theorem of [Ko1] and [Ko3] (for K1 ) will presumably
lead to an algebro-geometric explanation of the formula of Burns and Chinburg
in [BC] which computes the Adams operations of Cassou-Noguès and Taylor for
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certain ambiguous ideals in a tame Galois extension of a number field. These topics
are the objects of further investigations (see [Ko4] and [Ko5]).

1. The Descent Construction

Let l be a prime number, C a (multiplicative) cyclic group of order l , and c ∈ C
a fixed generator. The group G := (ZZ/lZZ)× acts on C by group automorphisms
in the usual way, and we denote the corresponding semidirect product by C × G
(defined by (ca, σ) · (cb, τ) := (ca+σb, στ) for all a , b ∈ ZZ/lZZ, σ , τ ∈ G ).

If in a commutative ring R the prime number l is invertible and if R contains
a primitive l -th root of unity ζ , then, as is well-known, any module V over the
group ring RC decomposes into the direct sum V = ⊕a∈ZZ/lZZVa of “eigenspaces”
Va := {v ∈ V : c(v) = ζav} . The object of this section is to construct an analogous
decomposition for V in the case when the assumption “R contains a primitive
l -th root of unity” is replaced by the following assumption: There is an action of
G on V which together with the given action of C on V induces an action of
C× G on V . This construction generalizes the descent argument of Kervaire given
in §5 of [Ke] and will be needed in the following sections in the even more general
situation when V in addition carries a (semilinear) action of a further group Γ .

So let Γ be an (arbitrary, abstract) group, R a commutative ring such that l is
invertible in R , Γ ×R → R an action of Γ on R by ring automorphisms, and let
R#Γ be the corresponding twisted group ring. Let Φl := 1+ . . .+X l−1 ∈ R[X] be
the l -th cyclotomic polynomial and S := R[X]/(Φl) . Then the residue class ζ of
X is a primitive l -th root of unity in S and the group G acts on S by R -algebra
automorphisms given by σ(ζ) := ζσ for σ ∈ G .

Now let V be a (C × G )-module over R#Γ . The generator c of C induces
an S -linear and R#Γ -linear automorphism of S ⊗R V which will be denoted by
c again. For any a ∈ ZZ/lZZ, the eigenspace

(S ⊗R V )a := {x ∈ S ⊗R V : c(x) = ζax}

is an S - and R#Γ -submodule of S ⊗R V . Now we define an S -semi linear and
R#Γ -linear action of G on S⊗R V by σ(α⊗ v) := σ(α)⊗σ(v) for σ ∈ G , α ∈ S
and v ∈ V .

Lemma 1.1. For each a ∈ ZZ/lZZ , the eigenspace (S ⊗R V )a is stable under
this G -action.

Proof. For each σ ∈ G , we have c◦σ = σ ◦c(σ−1) in the semidirect product C×
G . Hence, for any x ∈ (S⊗R V )a , we have c(σ(x)) = σ(c(σ

−1)(x)) = σ(ζaσ
−1
x) =

ζaσ(x) in S ⊗R V , and σ(x) is contained in (S ⊗R V )a again.

Definition 1.2. For any a ∈ ZZ/lZZ, let

Fa(V ) := (S ⊗R V )Ga
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be the R#Γ -submodule of (S ⊗R V )a consisting of the G -invariant elements in
(S ⊗R V )a .

Obviously, the association V 7→ Fa(V ) defines a functor

Fa : ((C × G)-modules over R#Γ ) → (R#Γ -modules).

Proposition 1.3. The direct sum ⊕a Fa of the functors Fa , a ∈ ZZ/lZZ , is
isomorphic to the forgetful functor.

Proof. Let V be a (C × G )-module over R#Γ . On the R#Γ -module
Maps(G, V ) , the group G acts via left translation on G and via the given ac-
tion on V . We will construct natural R#Γ -isomorphisms

⊕a Fa(V ) ∼= (S ⊗R V )G ∼= MapsG(G, V ) ∼= V,

and these prove Proposition 1.3. The first isomorphism comes from Lemma 1.1 and
the fact that the elements ea :=

1
l

∑l−1
i=0 ζ

−aici , a ∈ ZZ/lZZ, form a complete system
of orthogonal idempotents in the group ring SC with ea(S ⊗R V ) = (S ⊗R V )a
for all a ∈ ZZ/lZZ. The second isomorphism is the restriction of the G -equivariant
map Maps(G, V ) → S ⊗R V , f 7→ ∑

σ∈G σ(ζ)⊗ f(σ) which is bijective because ζ
is a normal basis element for the Galois extension S/R . The third isomorphism is
the map V → MapsG(G, V ) , v 7→ (σ 7→ σ(v)) , which obviously is bijective.

Corollary 1.4.
a) The functors Fa , a ∈ ZZ/lZZ , are exact.
b) For any (C × G )-module V over R#Γ which is projective over R#Γ (re-
spectively over R ), the modules Fa(V ) , a ∈ ZZ/lZZ , are projective over R#Γ
(respectively over R ) again.
c) (Base change) The functors Fa , a ∈ ZZ/lZZ , commute with base change with
respect to any homomorphism R → R′ of Γ -rings.

Proof. This is clear.

Examples 1.5.
a) For any (C × G )-module V over R#Γ , the module F0(V ) is isomorphic to
the fixed module V c := {v ∈ V : c(v) = v} .
b) For any a , b ∈ ZZ/lZZ\{0} , the functors Fa and Fb are isomorphic.
c) Let W be a G -module over R#Γ . The canonical maps

C × G→ Permutations(C) and C × G→ G

define an action of C × G on the R#Γ -module Maps(C,W ) . Then, for each
a ∈ ZZ/lZZ, we have Fa(Maps(C,W )) ∼= W .

Proof. It easy to see that the isomorphism V → (S⊗RV )G , v 7→ ∑
σ∈G ζ

σ⊗σ(v) ,
in the proof of Proposition 1.3 maps V c onto F0(V ) . This shows claim a). For
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claim b), we choose σ ∈ G with a = σb . Then (S ⊗R V )a → (S ⊗R V )b , α⊗ v 7→
α⊗ σ(v) , yields the desired isomorphism. For each a ∈ ZZ/lZZ, the map

S ⊗R W → (Maps(C, S ⊗R W ))a, x 7→ (ci 7→ ζ−iax),

is a well-defined isomorphism of G -modules. Restricting to G -invariants yields
the desired isomorphism in c).

The final assertions of this section will be based on the following Gauss sum
argument.

Lemma 1.6. Let S be a commutative ring such that l is invertible in S
and such that S contains a primitive l -th root of unity ζ . Then, the element∑

σ∈G ζ
σ[σ] of the group ring SG is invertible.

Proof. The following calculation shows that the element 1
l

∑
τ∈G(ζ

−τ − 1)[τ−1]
is the inverse of

∑
σ∈G ζ

σ[σ] :

(
∑
σ∈G

ζσ[σ]) · (
∑
τ∈G

(ζ−τ − 1)[τ−1])

=
∑

σ,τ∈G
ζσ(ζ−τ − 1)[στ−1] =

∑
η∈G

(
∑
τ∈G

ζητ (ζ−τ − 1))[η] = l[1].

Here, the last equality follows from

∑
τ∈G

ζ(η−1)τ −
∑
τ∈G

ζητ =

{
(l − 1) + 1 = l for η = 1
0 for η ∈ G\{1} .

Proposition 1.7. If already R contains a primitive l -th root of unity ζ̃ , then,
for each a ∈ ZZ/lZZ and for each (C × G )-module V over R#Γ , the canonical
R#Γ -linear map from Fa(V ) to the eigenspace Va := {v ∈ V : c(v) = ζ̃av} given
by ζ ⊗ v 7→ ζ̃v is an isomorphism.

Proof. The composition of the isomorphism V → (S ⊗R V )G , v 7→ ∑
σ∈G ζ

σ ⊗
σ(v) , used in the proof of Proposition 1.3 with the map (S⊗R V )G → V , ζ ⊗ v 7→
ζ̃v , is bijective by Lemma 1.6. Hence, the canonical map (S ⊗R V )G → V is an
isomorphism, and restricting to the eigenspaces yields the assertion.

Corollary 1.8. For any (C× G )-module V over R#Γ and for any a ∈ ZZ/lZZ ,
the canonical map S ⊗R Fa(V ) → (S ⊗R V )a , α⊗ x 7→ αx , is an isomorphism.

Proof. Obviously, this map is the composition of the base change isomorphism
S ⊗R Fa(V ) ∼= Fa(S ⊗R V ) with the isomorphism Fa(S ⊗R V ) ∼= (S ⊗R V )a of
Proposition 1.7.

The next example shows that our construction agrees with Kervaire’s construc-
tion given in §5 of [Ke].

Example 1.9. Let R = K be a field with (char(K), l) = 1 , L the splitting field
of the polynomial X l−1 over K , and ζ̃ ∈ L a primitive l -th root of unity. Let H
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be the Galois group of L/K considered as a subgroup of G as usual. As above, for
any (C × G )-module V over K#Γ , we have a semilinear H -action on L ⊗K V
and we let F̃a(V ) := {∑σ∈H σ(x) : x ∈ (L⊗K V )a} be the image of the eigenspace
(L ⊗K V )a under the trace map. Then the canonical map Fa(V ) → F̃a(V ) given
by ζ ⊗ v 7→ ζ̃ ⊗ v is an isomorphism.

Proof. By the usual descent argument of Galois theory (e. g. see the appendix
of [Dr]), we have L ⊗K (L ⊗K V )Ha

∼= (L ⊗K V )a and hence F̃a(V ) = (L ⊗K V )Ha
because the trace map from L to K is surjective. By Proposition 1.7 and base
change, we furthermore have (L ⊗K V )a ∼= Fa(L ⊗K V ) ∼= L ⊗K Fa(V ) . Now it
easy to see that the composed isomorphism L ⊗K Fa(V ) ∼= L ⊗K (L ⊗K V )Ha is
the base change of the canonical map Fa(V ) = (S ⊗R V )Ga → (L ⊗K V )Ha which
therefore must be an isomorphism.

Remarks 1.10.
a) Like in Example 1.9, one may use the l -th cyclotomic extension of R (e. g.
see page 34 of [Gre]) in place of S = R[X]/(Φl) for the construction of Fa(V ) .
However, one striking advantage of using S = R[X]/(Φl) is that we have the more
or less canonical normal basis element ζ in S and thus, for instance, base change
becomes a very easy matter.
b) The quintessence of the above Gauss sum argument is the following assertion:
For each a ∈ ZZ/lZZ, the association V 7→ (1

l

∑
τ∈G(ζ

−τ − 1)[τ−1])Va is already
defined over ZZ[1

l
] , i. e. for any (C× G )-module V over R#Γ there exists a unique

submodule Ṽa of V such that S ⊗R Ṽa = 1
l
(
∑

τ∈G(ζ
−τ − 1)[τ−1])((S ⊗R V )a) as

submodules of S ⊗R V .

2. Adams Operations on K0(R#Γ )

As in the previous section, let Γ be a group, R a (noetherian) commutative
ring, and Γ ×R → R an action of Γ on R . In this section, for each k ∈ IN which
is invertible in R , we will construct an Adams operation ψk on the Grothendieck
group K0(R#Γ ) of projective modules over the twisted group ring R#Γ which
are finitely generated over R . Our construction generalizes the definition given by
Kervaire in §5 of [Ke] which in turn is based on formula (2.7) of Atiyah’s paper
[At]. Furthermore, we will show that these Adams operations are multiplicative
and that they commute with each other, with base change, and with the Cartan
homomorphism from K0(R#Γ ) to the Grothendieck group K0(Γ,R) of finitely
generated, projective R -modules with (semilinear) Γ -action. Finally, if the char-
acteristic of R is a prime number, we will construct an Adams operation ψk on
K0(R#Γ ) for an arbitrary k ∈ IN .

In general, there do not exist exterior power operations on K0(R#Γ ) which are
compatible with the Cartan homomorphism (see Remarque on page 19 of [Ke]).
But we still have tensor products in K0(R#Γ ) by the following lemma.
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Lemma 2.1. Let W be a projective R#Γ -module and V an R#Γ -module
such that there is an R#Γ -module V ′ with V ⊕ V ′ free over R . (For instance,
this assumption is satisfied if V is even free over R , or if V is R#Γ -projective,
or if V is projective over R and the action of Γ on R is trivial.) Then, the
R#Γ -module V ⊗R W (with diagonal Γ -action) is projective over R#Γ .

Proof. We may assume that W = R#Γ and that V is R -free, say with basis
xi , i ∈ I . Then xi ⊗ 1 , i ∈ I , is a basis of V ⊗W over R#Γ : The i -th dual
basis element (xi⊗1)∗ is given by x⊗ [γ] 7→ x∗i ([γ

−1] ·x)[γ] for x ∈ V and γ ∈ Γ .

Now let l be a prime number which is invertible in R and V an R#Γ -
module. The symmetric group Σl := Permutations(ZZ/lZZ) acts on the R#Γ -
module V ⊗l := ⊗i∈ZZ/lZZV by σ(⊗i vi) := ⊗i vσ−1(i) for σ ∈ Σl , vi ∈ V . We
consider the semidirect product C× G defined in section 1 as a subgroup of Σl by
mapping the generator c of C to the cycle ZZ/lZZ → ZZ/lZZ, i 7→ i+1, and by em-
bedding G in Σl via G = (ZZ/lZZ)× = Aut(ZZ/lZZ) ⊆ Permutations(ZZ/lZZ) = Σl .
So V ⊗l becomes a (C × G )-module over R#Γ .

Definition 2.2.
a) For any a ∈ ZZ/lZZ, the R#Γ -module

V [a] := V [a]l := Fa(V
⊗l)

is called the cyclic l -th power of V with eigenvalue ζal .
b) For any projective R#Γ -module V which is finitely generated over R , we let

ψl(V ) := V [0]− V [1] ∈ K0(R#Γ ).

c) For any finitely generated, projective R -module V with (semilinear) Γ -action,
we let

ψ̂l(V ) := V [0]− V [1] ∈ K0(Γ,R).

Remark 2.3. In [At], Atiyah gives the name “cyclic l -th power” to a different
but related object. The expression “with eigenvalue ζal ” in the above definition is
only a name and actually has not a real meaning. Definitions 2.2b) and c) make
sense because of Lemma 2.1 and Corollary 1.4b). Note that in b), if Γ is infinite, we
deal with the category of modules which are finitely generated not only over R#Γ
but even over R in contrast to the usual definition of K0(R#Γ ) . Otherwise tensor
products (over R ) and cyclic powers could not be defined within this category.

Example 2.4. For any R#Γ -module V which is projective of rank 1 over R ,
we have ψ̂l(V ) = V ⊗l in K0(Γ,R) .

Proof. The symmetric group and in particular C act on V ⊗l trivially. Hence,
we have V [0] = F0(V

⊗l) ∼= V ⊗l by Example 1.5a) and V [1] = 0 by Proposition
1.3.

Proposition 2.5. Let 0 → V0 → V1 → V2 → 0 be an exact sequence of
projective R#Γ -modules which are finitely generated over R . Then ψl(V1) =
ψl(V0) + ψl(V2) in K0(R#Γ ) . The analogous assertion holds for ψ̂l on K0(Γ,R) .
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Proof. We recall the essential steps of Kervaire’s proof (see §5 of [Ke]) for the
reader’s convenience since this proof motivates the construction of Adams oper-
ations on higher K -groups given in the next section and since some part of this
proof will be referred to in the proof of the Proposition 2.11 and Lemma 3.4.
We consider the following filtration on V ⊗l

1 . For ε ∈ {0, 1}ZZ/lZZ , let |ε| :=∑
i∈ZZ/lZZ εi , Vε := ⊗i Vεi and Wε := ⊗i Vδi with δi = 0 if εi = 0 and δi = 2

if εi = 1. Now, for λ = 0, . . . , l , let Qλ :=
∑

|ε|=λ Vε . Then, obviously,

0 ⊂ Q0 = V ⊗l
0 ⊂ Q1 ⊂ . . . ⊂ Ql = V ⊗l

1

is a filtration of V ⊗l
1 by (C × G )-submodules over R#Γ . For each λ = 0, . . . , l ,

the canonical surjections Vε → Wε induce a (C× G )-isomorphism of the successive
quotient Qλ/Qλ−1 with ⊕|ε|=λWε . (This fact has been implicitly proved in sections
2 and 3 of [Ko2] for the construction of shuffle products on higher K -theory. It
should be regarded as an analogue of the fact that the successive quotients of the
(Koszul) filtration of the exterior power Λl(V1) by the submodules V0 ∧ . . . ∧ V0 ∧
V1∧ . . .∧V1 are isomorphic to Λl−λV0⊗ΛλV2 , λ = 0, . . . , l .) Hence, the successive
quotients are projective R#Γ -modules by Lemma 2.1, and for each a ∈ ZZ/lZZ,
we have

Fa(V
⊗l
1 ) = Fa(V

⊗l
0 ) + Fa(V

⊗l
2 ) +

l−1∑
λ=1

Fa(Qλ/Qλ−1) in K0(R#Γ )

by Corollary 1.4a). Now, in order to prove Proposition 2.5, it suffices to show that
for each λ ̸= 0, l , the module Fa(Qλ/Qλ−1) is independent of a ∈ ZZ/lZZ.
By the subsequent lemma there is a G -stable system of representatives Rλ in
Mλ := {ε ∈ {0, 1}ZZ/lZZ : |ε| = λ} for the natural action of C on Mλ . Obviously,
for λ ̸= 0, l there are no fixed points for this action of C on Mλ . Hence, ⊕|ε|=λWε

may be identified with the (C× G )-module Maps(ZZ/lZZ,⊕ε∈Rλ
Wλ) where C× G

acts on ZZ/lZZ via the embedding C× G ⊂ Σl and on ⊕ε∈Rλ
Wε via the canonical

surjection C × G → G . By Example 1.5c), the R#Γ -module Fa(Qλ/Qλ−1) is
isomorphic to ⊕ε∈Rλ

Wε for each a ∈ ZZ/lZZ and, in particular, it is independent of
a ∈ ZZ/lZZ. This ends the proof of Proposition 2.5 for K0(R#Γ ) . The same proof
works for K0(Γ,R) .

Lemma 2.6. For each (C × G )-set M , there exists a G -stable system of
representatives in M for the set of C -orbits N :=M/C .

Proof. We may assume that the induced action of G on N is transitive. Let
I ⊆ G be the isotropy group of some n ∈ N . It suffices to show that there is a
preimage of n in M which is fixed by I . Let m ∈ M be any preimage of n and
σ a generator of I . There is some a ∈ ZZ/lZZ such that σm = cam . Then cbm
with b = 0 if σ = 1 and b = (1− σ)−1a if σ ̸= 1 is an I -fixed preimage of n .

By Proposition 2.5, the association V 7→ ψl(V ) extends to a well-defined ho-
momorphism

ψl : K0(R#Γ ) → K0(R#Γ ).
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Definition 2.7. The homomorphism ψl is called the l -th Adams operation on
K0(R#Γ ) .

Remarks 2.8.
a) In the next section, we will show that for any a ∈ ZZ/lZZ already the association
V 7→ V [a]l extends to a well-defined map on K0(R#Γ ) .
b) Let R = K be a field with (char(K), l) = 1 , let Γ be a finite group, and let Γ
act on R trivially. Then, Example 1.9 shows that the definition of the l -th Adams
operation given here agrees with Kervaire’s definition in §5 of [Ke].
c) Let f : R → R′ be an homomorphism of Γ -rings. Then, Corollary 1.4c) shows
that the Adams operation ψl commutes with the base change homomorphism
f ∗ : K0(R#Γ ) → K0(R

′#Γ ) given by V 7→ R′ ⊗R V .
d) Obviously, ψl commutes with the restricting homomorphism K0(R#Γ ) →
K0(R#Γ

′) with respect to any homomorphism of groups Γ ′ → Γ .

By Proposition 2.5, the association V 7→ ψ̂l(V ) induces a well-defined homo-
morphism

ψ̂l : K0(Γ,R) → K0(Γ,R).

By section (2.5) of [Ko1], the exterior power operations give K0(Γ,R) a (special)
λ -ring structure. Thus, we can define an Adams operation ψl on K0(Γ,R) via the
l -th Newton polynomial (e. g. see chapter I, §6 of [FL]).

Proposition 2.9. The l -th Adams operation ψl agrees with the homomor-
phism ψ̂l on K0(Γ,R) . In particular, the Cartan homomorphism

c : K0(R#Γ ) → K0(Γ,R)

commutes with the l -th Adams operation.

Proof. Let V be a finitely generated, projective R -module, say of rank r , with
a (semilinear) Γ -action. We have to show that ψl(V ) = ψ̂l(V ) in K0(Γ,R) . By
the geometric splitting principle (see section (2.5) of [Ko1]), there is a Γ -scheme
f : X → Spec(R) such that the base change homomorphism f ∗ : K0(Γ,R) →
K0(Γ,X) is injective and such that we have f ∗(V ) = L1 + . . . + Lr with Γ -
modules L1, . . . ,Lr on X of rank 1 . (Even if the action of Γ on R is trivial, the
action of Γ on X usually is not trivial. This is the essential reason for considering
not only usual group rings but twisted group rings in this paper.) Similarly to the
affine case, for any locally free Γ -module V on X and for any a ∈ ZZ/lZZ, we
let V [a] := p∗((p

∗V⊗l)Ga ) , where p : S ⊗R X → X is the canonical projection, and
we let ψ̂l(V) := V [0] − V [1] ∈ K0(Γ,X) . The same proofs as above show that
the association V 7→ ψ̂l(V) induces a well-defined homomorphism ψ̂l on K0(Γ,X)
and that ψ̂l commutes with the base change homomorphism f ∗ : K0(Γ,R) →
K0(Γ,X) . Now, an analogue of Example 2.4 for X shows Proposition 2.9.

By Lemma 2.1, we have a ring structure on K0(R#Γ ) (without 1 in general). If
the action of Γ on R is trivial, again by Lemma 2.1, we have a K0(Γ,R) -module
structure on K0(R#Γ ) .
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Proposition 2.10. The l -th Adams operation ψl : K0(R#Γ ) → K0(R#Γ ) is
multiplicative. If the action of Γ on R is trivial, ψl is semilinear with respect to
the l -th Adams operation ψl on K0(Γ,R) .

Proof. By Corollary 1.8, for any (C × G )-module V over R#Γ , the canonical
map S⊗R(S⊗RV )G → S⊗RV is an isomorphism. Hence, for any (C×G )-modules
V , W over R#Γ , the canonical map

(S ⊗R V )G ⊗R (S ⊗RW )G → (S ⊗R V ⊗RW )G, (α⊗ v)⊗ (β ⊗w) 7→ αβ ⊗ v⊗w

becomes an isomorphism after tensoring with S over R . Thus, this map it-
self is an isomorphism. Restricting to the eigenspaces yields an isomorphism
⊕a+b=c Fa(V )⊗RFb(W ) ∼= Fc(V ⊗RW ) for each c ∈ ZZ/lZZ. Hence, using Example
1.5b), we get the following equality in K0(R#Γ ) for all projective R#Γ -modules
V , W which are finitely generated over R :

ψl(V ⊗W ) =
∑

a∈ZZ/lZZ
V [a]⊗W [−a]−

∑
a∈ZZ/lZZ

V [a]⊗W [1− a]

= (V [0]⊗W [0] + (l − 1)V [1]⊗W [1])

−(V [0]⊗W [1] + V [1]⊗W [0] + (l − 2)V [1]⊗W [1])

= (V [0]− V [1]) · (W [0]−W [1]) = ψl(V ) · ψl(W ).

This shows the first assertion of Proposition 2.10. The same proof shows the second
assertion.

Proposition 2.11. Let k ∈ IN be another prime number which is invertible in
R . Then, the Adams operations ψk and ψl on K0(R#Γ ) commute.

Proof. Here, let C be the cyclic group of order kl , c a generator of C , G :=
(ZZ/klZZ)× acting on C , Φkl the kl -th cyclotomic polynomial, S := R[X]/(Φkl)
and ζ := X̄ ∈ S . We will denote the corresponding objects for k respectively l
with a subscript k respectively l . We have canonical isomorphisms

ZZ/klZZ →̃ ZZ/kZZ× ZZ/lZZ and S →̃Sk ⊗R Sl, ζ 7→ ζk ⊗ ζl,

and for any a ∈ ZZ/klZZ, we will denote both the element a + kZZ in ZZ/kZZ and
the preimage of (a+ kZZ, 0) in ZZ/klZZ by ak .
Now, let V be a projective R#Γ -module which is finitely generated over R . As
above, for any a ∈ ZZ/klZZ, let

V [a] := (S ⊗R V
⊗kl)Ga .

We claim that

V [0]− V [1k] (
def
= V [(0, 0)]− V [(0, 1)]) = V [0]k[0]l − V [0]k[1]l in K0(R#Γ ),

V [1l]− V [1] (
def
= V [(1, 0)]− V [(1, 1)]) = V [1]k[0]l − V [1]k[1]l in K0(R#Γ ).
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Then we have

ψl ◦ ψk(V ) = V [0]− V [1l]− V [1k] + V [1] in K0(R#Γ ),

and this expression is symmetric in k and l . Thus, these claims show Proposition
2.11.
To prove the above claims, we proceed like in the proof of Proposition 2.10. Using
Lemma 1.6 for k and l , one shows like in the proof of Corollary 1.8 that the
canonical map

S ⊗R

(
S ⊗R V

⊗kl
)G

→ S ⊗R V
⊗kl, α⊗ x 7→ αx,

is an isomorphism. Hence, after tensoring with S = Sk ⊗ Sl , the map

Φ :
(
Sl ⊗R ((Sk ⊗R V

⊗k)Gk)⊗l
)Gl →

(
S ⊗R V

⊗kl
)G

induced by the canonical isomorphism (V ⊗k)⊗l ∼= V ⊗kl becomes an isomorphism.
Thus, Φ itself is an isomorphism.
Now we consider the eigenspace decompositions on both sides of Φ . By Lemma 2.6,
there exists a G -stable system of representatives R in (ZZ/kZZ)ZZ/lZZ for the set of
C -orbits under the natural action of C on (ZZ/kZZ)ZZ/lZZ\{(a, . . . , a) : a ∈ ZZ/kZZ} .
Like in the proof of Proposition 2.5, this action has no fixed points, and we have

((Sk ⊗ V ⊗k)Gk)⊗l ∼= (V [0]k ⊕ . . .⊕ V [k − 1]k)
⊗l

∼= ⊕
ε∈(ZZ/kZZ)ZZlZZ

V [ε0]k ⊗ . . .⊗ V [εl−1]k

∼=
k−1
⊕
a=0

V [a]⊗l
k ⊕ ⊕

ε∈R
Maps(ZZ/lZZ, V [ε0]k ⊗ . . .⊗ V [εl−1]k).

Thus, for each b ∈ ZZ/lZZ, we have

((Sk ⊗ V ⊗k)Gk)[b]l ∼=
k−1
⊕
a=0

V [a]k[b]l ⊕ ⊕
ε∈R

V [ε0]k ⊗ . . .⊗ V [εl−1]k

by Example 1.5c). For any ε ∈ (ZZ/kZZ)ZZ/lZZ , let |ε| := ∑l−1
i=0 εi ∈ ZZ/kZZ. Then,

for each (a, b) ∈ ZZ/kZZ× ZZ/lZZ = ZZ/klZZ, we have

Φ−1(V [(a, b)]) ∼= V [l−1a]k[b]l ⊕ ⊕
ε∈R:|ε|=a

V [ε0]k ⊗ . . .⊗ V [εl−1]k.

Because of Example 1.5b), these isomorphisms show the above claims and Propo-
sition 2.11 is proved.

Remarks 2.12.
a) Let k ∈ IN be invertible in R and let k = l1 · . . . · lr be its prime factor
decomposition. Then, by Proposition 2.11, the composition ψk := ψl1◦. . .◦ψlr does
not depend on the order of the prime numbers l1, . . . , lr . We call this composition
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the k -th Adams operation on K0(R#Γ ) . Obviously, we have ψk ◦ψl = ψkl for all
k, l ∈ IN which are invertible in R . Like in the proof of Proposition 2.11, one can
prove the following formula for ψk(V ) , V a finitely generated R#Γ -module:

ψk(V ) =
∑
d|k
µ(d)Fd(V

⊗k) in K0(R#Γ )

(cf. Proposition 2 of [Be]). Here, µ is the Möbius function of multiplicative num-
ber theory, and Fd(V

⊗k) is the analogously defined cyclic k -th power of V with

eigenvalue ζ
k/d
k .

b) In the situation considered by Kervaire in [Ke] (cf. Remark 2.8b)), the Car-
tan homomorphism c is injective, and the assertions of Propositions 2.10 and 2.11
already follow from the corresponding assertions for K0(Γ,R) .

In the final part of this section, we assume in addition that the characteristic of
R is a prime number p . Let

F : R → R, r 7→ rp,

be the Frobenius endomorphism. Obviously, F is a homomorphism of Γ -rings.
Thus, we have the base change homomorphism

F ∗ : K0(R#Γ ) → K0(R#Γ ), V 7→ R⊗R V,

where the tensor product R ⊗R V is taken with respect to F and the R -module
structure of R⊗R V is given by r(s⊗ v) := rs⊗ v for r, s ∈ R , v ∈ V as usual.

Definition 2.13. The base change homomorphism F ∗ is called the p -th Adams
operation on K0(R#Γ ) and will be denoted by ψp .

Remark 2.14. By Remark 2.8c), F ∗ = ψp commutes with ψl for each prime
number l . Thus, here we can define an Adams operation ψk for an arbitrary
k ∈ IN .

Proposition 2.15. The base change homomorphism F ∗ on K0(Γ,R) agrees
with the p -th Adams operation ψp on K0(Γ,R) . In particular, ψp commutes with
the Cartan homomorphism c : K0(R#Γ ) → K0(Γ,R) .

Proof (see also Theorem 5.1 in [Hi] and Proposition 5.4 in [Kr]). Let V be a
finitely generated, projective R -module with a (semilinear) Γ -action. We have to
show that ψp(V ) = F ∗(V ) in K0(Γ,R) . Like in the proof of Proposition 2.9, by
the geometric splitting principle, we may assume that V is of rank 1 . Then,

F ∗(V ) = R⊗R V → V ⊗p, r ⊗ v 7→ r · v⊗p,

is a well-defined isomorphism of R#Γ -modules. This shows Proposition 2.15.

Question 2.16. Let p be a prime number which is neither invertible nor zero
in R . Is there an Adams operation ψp on K0(R#Γ ) which commutes with both
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the base change homomorphism K0(R#Γ ) → K0(R/(p)#Γ ) and the base change
homomorphism K0(R#Γ ) → K0(R[

1
p
]#Γ )?

3. Cyclic Powers and Adams Operations on Kq(R#Γ )

Again, let Γ be a group, R a commutative Γ -ring and l a prime number
which is invertible in R . For any q ≥ 0 , let Kq(R#Γ ) denote Quillen’s q -th K -
group associated with the exact category M of projective R#Γ -modules which are
finitely generated over R . In this section, we will construct cyclic power operations
[a]l , a ∈ ZZ/lZZ, and an Adams operation ψl on Kq(R#Γ ) . This construction
uses shuffle products in higher K -theory (cf. [Ko2]) and Grayson’s techniques of
constructing exterior power operations on higher K -theory (cf. [Gr1]). We will
show that, for q = 0, this construction agrees with the construction given in section
2. Furthermore, we will give some speculations how one should be able to prove
that ψl commutes with the Cartan homomorphism c : Kq(R#Γ ) → Kq(Γ,R) .

At first, we will recall some definitions of [Gr1] and [Ko2]; in particular, we will
give a definition of Quillen’s q -th K -group Kq(R#Γ ) . Let Ord be the category of
finite, non-empty, (partially) ordered sets. For any A ∈ Ord , let the disjoint union
{L,R}∪A be ordered in such a way that A is an ordered subset, that L < a and
R < a for all a ∈ A , and that L and R are not comparable. Let Γ (A) := { i

j
: i ∈

A, j ∈ {L,R} ∪ A, j ≤ i} and, more generally, let Γ l(A) := {( i1
j1
, ∗2, . . . , ∗l, iljl ) :

for all r = 1, . . . , k : ir ∈ A, jr ∈ {L,R} ∪ A, jr ≤ ir; for all r = 2, . . . , k :
∗r ∈ {∧,⊗} and, if ∗r = ∧, then jr−1 = jr and ir−1 ≤ ir} . In section 5 of [Gr1],
Grayson defines a certain (partial) order on Γ (A) and Γ l(A) and calls certain
sequences α′ → α → α′′ in Γ (A) and Γ l(A) (short) exact sequences. Then, the
so-called G -construction is the simplicial set

GM : Ordop → Sets, A 7→ Exact(Γ (A),M),

where Exact(Γ (A),M) denotes the set of all functors of Γ (A) to M which trans-
form short exact sequences in Γ (A) to short exact sequences of M . By [GG],
the q -th homotopy group πq(|GM|) of the geometric realization |GM| of GM
is Quillen’s q -th K -group Kq(R#Γ ) . Similarly, let HlM be the simplicial set

HlM : Ordop → Sets, A 7→ Exact(Γ l(A),M).

By Lemma 2.1, we have an associative, commutative, and bi-exact tensor prod-
uct ⊗ : M×M → M . Associated with this functor, we have a simplicial map

⊗ : GM× . . .×GM︸ ︷︷ ︸
l

→ HlM,

the so-called (1, . . . , 1) -shuffle product (cf. [Ko2]). It is defined as follows: For
any A ∈ Ord and any α = ( i1

j1
, ∗2, . . . , ∗l, iljl ) ∈ Γ l(A) , let ∼α be the equivalence
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relation on Σl := Permutations{1, . . . , l} defined by σ ∼α τ , iff, for all r = 1, . . . , l ,
there are only ∧ ’s in α between the places σ(r) and τ(r) . Then, on the level A ,
the simplical map ⊗ is given by

GM(A)× . . .×GM(A) → HlM(A) = Exact(Γ l(A),M)

(M1, . . . ,Ml) 7→
(
α 7→ ⊕

σ̃∈Σl/∼α

∑
σ∈σ̃

M1

(
iσ(1)
jσ(1)

)
⊗ . . .⊗Ml

(
iσ(l)
jσ(l)

))

(cf. Remark at the end of section 3 of [Ko2]). We call the composition

⊗l : GM ∆→ GM× . . .×GM ⊗→ HlM

of the diagonal ∆ with the (1, . . . , 1) -shuffle product ⊗ the l -th shuffle power.

Next, for any A ∈ Ord and any M ∈ GM(A) , we will define a natural action
of Σl on M⊗l ∈ Exact(Γ l(A),M) = HlM(A) . Let α = ( i1

j1
, ∗2, . . . , ∗l, iljl ) ∈

Γ l(A) . Then, interchanging the direct summands yields an action of Σl on

⊕σ∈Σl
M
(

iσ(1)

jσ(1)

)
⊗. . .⊗M

(
iσ(l)

jσ(l)

)
. Obviously, for any σ1, σ2 ∈ Σl with σ1 ∼α σ2 , we

have σ1◦τ ∼α σ2◦τ for all τ ∈ Σl . Hence, by Lemma 2.1a) of [Ko2], this action of

Σl induces an action of Σl on M
⊗l(α) = ⊕σ̃∈Σl/∼α

∑
σ∈σ̃M

(
iσ(1)

jσ(1)

)
⊗. . .⊗M

(
iσ(l)

jσ(l)

)
.

Finally, for any α , β ∈ Γ l(A) with α → β , the corresponding map M⊗l(α) →
M⊗l(β) is compatible with this Σl -action. Thus, M⊗l may be viewed as an ele-
ment of Exact(Γ l(A),MΣl) ; here, MΣl denotes the category of Σl -modules over
R#Γ which are finitely generated over R and projective over R#Γ .

Remark 3.1. Let Γ = {1} be the trivial group. In the last example of [Gr1],
Grayson considers the operations

MΣn ×MΣp → MΣn+p , (V,W ) 7→ Ind
Σn+p

Σn×Σp
V ⊗R W

and

Fk(MΣn) → MΣnk , (V1 ↪→ . . . ↪→ Vk) 7→ IndΣnk

Σn

∫
Σk

∑
σ∈Σk

Vσ(1) ⊗R . . .⊗R Vσ(k)

for k , n , p ∈ IN . He claims that these operations satisfy the axioms of power
operations given in section 7 of [Gr1] (for checking this see also [GS]) and, similarly
to the above construction, he obtains simplicial maps

Λk : GMΣn → HkMΣnk , k, n ∈ IN.

It is easy to see that for n = 1 and k = l this map Λk agrees with the above l -th
shuffle power ⊗l : GM → HlMΣl .

Now let a ∈ ZZ/lZZ and let Fa : MΣl
can−→ MC×G −→ M be the exact functor

constructed in section 1. We call the simplicial map

[a]l : GM → HlM
Exact(Γ (A),M) ∋M 7→ Fa ◦M⊗l ∈ Exact(Γ l(A),M)
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(A ∈ Ord) the cyclic l -th shuffle power with eigenvalue ζal .
In section 7 of [Gr1], using a certain subdivision procedure, Grayson defines a
continuous map

Ξl : |HlM| → |GlM|
from the geometric realization of HlM to the geometric realization of a certain
l -simplicial set GlM which in turn is naturally homotopy equivalent to GM .

Definition 3.2. The composition

|GM| |[a]l|−→ |HlM| Ξl−→ |GlM|

of the geometric realization |[a]l| of [a]l with the continuous map Ξl is called the
cyclic l -th power with eigenvalue ζal and will be denoted by [a]l again. For any
q ≥ 0 , we give the same name to the map

[a]l : Kq(R#Γ ) → Kq(R#Γ )

induced by [a]l on the q -th homotopy groups. The difference ψl := [0]l − [1]l is
called the l -th Adams operation on Kq(R#Γ ) .

Proposition 3.3. The l -th Adams operation on K0(R#Γ ) defined here agrees
with the l -th Adams operation defined in section 2.

Proof. This immediately follows from the “minus part” of the following lemma.

Lemma 3.4. For all finitely generated projective R#Γ -modules V , W , we
have

[a]l(V ±W ) = V [a]l ±W [a]l +
(V ±W )l − V l ∓W l

l
in K0(R#Γ ).

In particular, for l ̸= 2 , we have [a]l(−W ) = −W [a]l in K0(R#Γ ) .

Proof. First, we consider the “minus part” of this formula. Let

M : Γ ({0}) → M,
0

L
7→ V,

0

R
7→ W,

be the 0 -simplex of GM corresponding to V −W . Similarly to section 8 of [Gr1],
one easily shows:

[a]l(V −W ) =
∑

a+b1+...+bu=l
a≥0, b1,...,bu≥1

(−1)uFa

(
M⊗l(α(a, b1, . . . , bu))

)

where

α(a, b1, . . . , bu)

:=

 0

L
,∧, . . . ,∧, 0

L︸ ︷︷ ︸
a

,⊗, 0
R
,∧, . . . ,∧, 0

R︸ ︷︷ ︸
b1

,⊗, . . . ,⊗, 0
R
,∧, . . . ,∧, 0

R︸ ︷︷ ︸
bu

 ∈ Γ l(A).
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By the construction of the l -th shuffle power, we have

M⊗l(α(a, b1, . . . , bu)) = ⊕
σ̃∈Σl/∼α

M

(
0

σ̃(1)

)
⊗ . . .⊗M

(
0

σ̃(l)

)

where σ̃(i) = L , if σ(i) ≤ a for one (and then for all) σ ∈ σ̃ , and σ̃(i) = R
else. Like in the proof of Proposition 2.5, for all (a, b1, . . . , bu) ̸= (l) and ̸= (0, l) ,
the cycle < 1, . . . , l > acts without fixed points on Σl/ ∼α , and the module

Fa

(
M⊗l(α(a, b1, . . . , bu))

)
is independent of a ∈ ZZ/lZZ.

On the other hand, by the Corollary of Theorem 4.2 in [Ko2], the power (V −W )l

may be computed via the (1, . . . , 1) -shuffle product, i. e. similarly as above, we
obtain

(V −W )l = V l −W l +
∑

(a,b1,...,bu )̸=(l) and ̸=(0,l)

(−1)uM⊗l(α(a, b1, . . . , bu))

= V l −W l +
∑

(a,b1,...,bu )̸=(l) and ̸=(0,l)

l(−1)uFa

(
M⊗l(α(a, b1, . . . , bu))

)
.

Here, the second equality follows from Proposition 1.3 and the fact that

Fa

(
M⊗l(α(a, b1, . . . , bu))

)
is independent of a ∈ ZZ/lZZ. Together with the above formula for [a]l(V −W ) ,
this shows the “minus part” of the lemma. The “plus part” can be deduced in a
similar fashion from the formula

[a]l(V +W ) =
l∑

λ=0

Fa

M⊗l

 0

L
,∧, . . . ,∧, 0

L︸ ︷︷ ︸
λ

,⊗, 1
0
,∧, . . . ,∧, 1

0︸ ︷︷ ︸
l−λ




(cf. section 4 of [Gr1] and the remark in parentheses in the proof of Proposition

2.5). Here, M denotes the 1 -simplex of GM given by M
(
0
L

)
= M

(
0
R

)
= V ,

M
(
1
L

)
=M

(
1
R

)
= V ⊕W , and M

(
1
0

)
= W .

Corollary 3.5. For all x , y ∈ K0(R#Γ ) , we have

[a]l(x+ y) = [a]l(x) + [a]l(y) +
(x+ y)l − xl − yl

l
in K0(R#Γ ).

Proof. We may write x = V − W , y = V ′ − W ′ with finitely generated,
projective R#Γ -modules V,W, V ′,W ′ . Then, using Lemma 3.4, we obtain

[a]l(x+ y) = [a]l(V −W + V ′ −W ′) = [a]l(V ⊕ V ′ −W ⊕W ′)

= [a]l(V ⊕ V ′)− [a]l(W ⊕W ′)
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+
(V ⊕ V ′ −W ⊕W ′)l − (V ⊕ V ′)l + (W ⊕W ′)l

l
= [a]l(V ) + [a]l(V

′)− [a]l(W )− [a]l(W
′)

+
(V + V ′ −W −W ′)l − V l − V ′l +W l +W ′l

l
= [a]l(V −W ) + [a]l(V

′ −W ′)

+
(V + V ′ −W −W ′)l − (V −W )l − (V ′ −W ′)l

l

= [a]l(x) + [a]l(y) +
(x+ y)l − xl − yl

l
.

Remark 3.6. In order to show that exterior powers induce well-defined maps
λk : K0(R) → K0(R) , k ≥ 1 , one usually shows that the association V 7→∑

k≥0[Λ
kV ]tk extends to a well-defined homomorphism K0(R) → 1 + tK0(R)[[t]] .

I don’t know such a simple argument for the operations [a]l , a ∈ ZZ/lZZ, on
K0(R#Γ ) . However, one can show directly (i. e. without using Grayson’s tech-
niques) that the map [a]l defined by

[a]l(
∑
i

niVi) :=
∑
i

niVi[a]l +
(
∑
niVi)

l −∑
niV

l
i

l

on the free abelian group with basis the isomorphism classes of finitely generated,
projective R#Γ -modules factorizes through the Grothendieck group K0(R#Γ ) .

The following considerations are concerned with the question how to prove
that the Adams operation ψl commutes with the Cartan homomorphism c :
Kq(R#Γ ) → Kq(Γ,R) (see also Remark 3.8). Here, Kq(Γ,R) denotes Quillen’s
q -th K -group associated with the exact category of finitely generated, projective
R -modules with (semilinear) Γ -action, and ψl on Kq(Γ,R) is defined via the l -th
Newton polynomial in the exterior power operations λ1, . . . , λl on Kq(Γ,R) which
in turn were constructed by Grayson in [Gr1]. As above, for any a ∈ ZZ/lZZ and
any q ≥ 0 , we can define the cyclic l -th power [a]l on Kq(Γ,R) .

Lemma 3.7. The operations [0]l and [1]l on K0(Γ,R) are natural transforma-
tions of λ -rings, i. e. they can be expressed as polynomials in the exterior power
operations λk , k ≥ 1 .

Proof. We view the symmetric polynomials

Cl,1 :=
(t1 + . . .+ tl)

l − (tl1 + . . .+ tll)

l
∈ ZZ[t1, . . . , tl]

and
Cl,0 := (t1 + . . .+ tl)

l − (l − 1)Cl,1 ∈ ZZ[t1, . . . , tl]

as polynomials in the elementary symmetric polynomials λ1 := t1 + . . . + tl , . . . ,
λl := t1 · . . . · tl and claim that

[1]l = Cl,1(λ1, . . . , λl) and [0]l = Cl,0(λ1, . . . , λl) on K0(Γ,R)
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where now λ1, . . . , λl are the exterior power operations. Obviously, we have

Cl,1 =
λl1 − ψl

l
and Cl,0 =

λl1 + (l − 1)ψl

l
,

and Lemma 3.4 holds for K0(Γ,R) with [a]l replaced by Cl,0 or Cl,1 . Hence, like
in the proof of Proposition 2.9, by the geometric splitting principle, it suffices to
show [0]l(V ) = Cl,0(V ) and [1]l(V ) = Cl,1(V ) in K0(Γ,R) for any R#Γ -module
V which is projective of rank 1 over R . But this follows from (the proof of)
Example 2.4.

Now, in order to show that ψl commutes with the Cartan homomorphism c :
Kq(R#Γ ) → Kq(Γ,R) , it suffices to show that

[1]l = Cl,1(λ1, . . . , λl) and [0]l = Cl,0(λ1, . . . , λl) on Kq(Γ,R).

This is certainly true for l = 2 because [1]2 = λ2 and [0]2 is the symmetric square
σ2 which in turn equals λ21 − λ2 by Theorem 6.1 of [Ko2].

For l = 3, one can show that, for any finitely generated, projective R -module
V with (semilinear) Γ -action, the sequence

0 → Λ3V → Λ2V ⊗ V → V [1]3 → 0

is exact. Here, the first arrow comes from the Koszul complex and the second
arrow is the composition of the natural embedding Λ2V ⊗ V ↪→ V ⊗3 with the
projection V ⊗3 → V [1]3 coming from Proposition 1. Furthermore, this sequence
can be completed to a diagram as in Fig. 2 of [Ko2]. Like there, one can deduce
from this that [1]3 = λ1 ·λ2−λ3 already on the simplicial level. Together with the
fact

(l − 1)[1]l + [0]l = λl1

coming from Proposition 1.3 and Example 1.5b), this shows the above claims for
l = 3.

For l > 3 , the essential problem is to find (universal) exact sequences which
relate the cyclic power [1]l to exterior powers. The previous examples make it not
unreasonable to conjecture that, for any finitely generated, projective R -module
V with (semilinear) Γ -action, there is a (universal) resolution

0 → D1V → D2V → . . .→ Dl−1V → V [1]l → 0

of V [1]l where, for each r = 1, . . . , l−1 , DrV is the following direct sum of tensor
products of exterior powers of V :

DrV = ⊕
n1≥...≥nr≥1

(Λn1V ⊗ . . .⊗ ΛnrV )m(n1,...,nr) .
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Here (−1)l−r+1m(n1,...,nr) is the coefficient of the monomial λn1
1 · . . . · λnr

r in the
polynomial Cl,1 . This coefficient can be rather easily computed by the formula

Cl,1 =
λl1 − ψl

l
=
λl1 −

∑l
i=1(−1)i−1iλi · sl−i

l

(cf. section 3 of [Gr2]). In particular, one can deduce from this formula that the
multiplicity m(n1,...,nr) is positive for all r = 1, . . . , l−1 and all n1 ≥ . . . ≥ nr with
n1+. . .+nr = l , and zero otherwise (e. g. D1V = ΛlV , Dl−1V = Λ2V⊗V⊗. . .⊗V ).
There is a canonical choice for the map Dl−1 → V [1]l in the above resolution,
namely the composition of the canonical embedding Λ2V ⊗ V ⊗ . . . ⊗ V ↪→ V ⊗l

with the projection V ⊗l → V [1]l coming from Proposition 1.3. One can show
that this composition is surjective. Thus, the remaining problem is to construct
(universal) homomorphisms, Dr → Dr+1 , r = 1, . . . , l − 2 , which make the above
sequence exact. For instance, for l = 5, one should be able to define arrows in the
sequence

0 → Λ5V → Λ4V ⊗ V ⊕ Λ3V ⊗ Λ2V → Λ3V ⊗ V ⊗ V ⊕ Λ2V ⊗ Λ2V ⊗ V

→ Λ2V ⊗ V ⊗ V ⊗ V → V [1]5 → 0

such that this becomes an exact sequence and one should be able to generalize this
sequence like in Fig. 1 and Fig. 2 of section 6 of [Ko2].

Remark 3.8. Obviously, using standard techniques, one can prove that the
Adams operation ψl and the cyclic l -th powers [a]l , a ∈ ZZ/lZZ, commute with
the base change homomorphism Kq(R#Γ ) → Kq(R

′#Γ ) with respect to any
homomorphism R → R′ of Γ -rings. If the characteristic of R is a prime number
p , one can define ψp on Kq(R#Γ ) to be the base change homomorphism F ∗ with
respect to the Frobenius endomorphism F . Then, ψp commutes with each ψl .
Using Quillen’s universal transformation, we show in [Ko4] that (for finite Γ )
the Adams operations constructed above commute with each other, that they are
semilinear with respect to the corresponding Adams operations on K0(R#Γ ) ,
and, finally, that they commute with the Cartan homomorphism c : Kq(R#Γ ) →
Kq(Γ,R) , if the order of Γ is invertible in R .
In particular, using a prime decomposition of k , we can define an Adams operation
ψk on Kq(R#Γ ) , q ≥ 1 , for each k ∈ IN which is invertible in R .
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