The University of Southampton
University of Southampton Institutional Repository

Dataset of Segmented thermoelectric generator modelling and optimization using artificial neural networks by iterative training

Dataset of Segmented thermoelectric generator modelling and optimization using artificial neural networks by iterative training
Dataset of Segmented thermoelectric generator modelling and optimization using artificial neural networks by iterative training
This paper "Segmented thermoelectric generator modelling and optimization using artificial neural networks by iterative training" Published in Energy and AI. https://doi.org/10.1016/j.egyai.2022.100225
University of Southampton
Zhu, Yuxiao
0dd2c99f-c036-41dd-817d-4db9ecb051e4
Newbrook, Daniel
8eb26553-e1e2-492d-ad78-ce51a487f31f
Dai, Peng
1150a00a-e54b-438b-bf51-4e8521c07f66
De Groot, Kees
92cd2e02-fcc4-43da-8816-c86f966be90c
Huang, Ruomeng
c6187811-ef2f-4437-8333-595c0d6ac978
Liu, Jian
498b5df6-6535-4f67-bdbc-b0d8a41bdf8d
Zhu, Yuxiao
0dd2c99f-c036-41dd-817d-4db9ecb051e4
Newbrook, Daniel
8eb26553-e1e2-492d-ad78-ce51a487f31f
Dai, Peng
1150a00a-e54b-438b-bf51-4e8521c07f66
De Groot, Kees
92cd2e02-fcc4-43da-8816-c86f966be90c
Huang, Ruomeng
c6187811-ef2f-4437-8333-595c0d6ac978
Liu, Jian
498b5df6-6535-4f67-bdbc-b0d8a41bdf8d

Zhu, Yuxiao, Newbrook, Daniel, Dai, Peng, De Groot, Kees, Huang, Ruomeng and Liu, Jian (2023) Dataset of Segmented thermoelectric generator modelling and optimization using artificial neural networks by iterative training. University of Southampton doi:10.5258/SOTON/D2454 [Dataset]

Record type: Dataset

Abstract

This paper "Segmented thermoelectric generator modelling and optimization using artificial neural networks by iterative training" Published in Energy and AI. https://doi.org/10.1016/j.egyai.2022.100225

Text
README.txt - Dataset
Available under License Creative Commons Attribution.
Download (3kB)
Spreadsheet
Figure.xlsx - Dataset
Available under License Creative Commons Attribution.
Download (1MB)

More information

Published date: February 2023

Identifiers

Local EPrints ID: 478858
URI: http://eprints.soton.ac.uk/id/eprint/478858
PURE UUID: ff3ff00b-7d8e-4081-99fe-ca7e2df81f32
ORCID for Daniel Newbrook: ORCID iD orcid.org/0000-0002-5047-6168
ORCID for Peng Dai: ORCID iD orcid.org/0000-0002-5973-9155
ORCID for Kees De Groot: ORCID iD orcid.org/0000-0002-3850-7101
ORCID for Ruomeng Huang: ORCID iD orcid.org/0000-0003-1185-635X

Catalogue record

Date deposited: 11 Jul 2023 17:08
Last modified: 21 Nov 2023 02:59

Export record

Altmetrics

Contributors

Creator: Yuxiao Zhu
Creator: Daniel Newbrook ORCID iD
Creator: Peng Dai ORCID iD
Creator: Kees De Groot ORCID iD
Creator: Ruomeng Huang ORCID iD
Creator: Jian Liu

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×