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W e study mechanisms to manage group purchasing among a set of buyers of a given product with a concave pur-
chase cost function. The buyers are cost-sensitive and willing to buy a range of product quantities at different

prices. We investigate two types of mechanisms that can be used by a group purchasing organization (GPO): (a) ordering
mechanisms where the buyers, without divulging private information, choose their order quantities and pay for them
according to a given cost-sharing rule or a fixed price; and (b) bidding mechanisms where the buyers announce their val-
uations for different quantities and the GPO determines their purchase quantities and cost-shares according to pre-
announced schemes. Under the choice of appropriate cost-sharing rules, we introduce a sequential joint ordering mecha-
nism and a family of ordering strategies under which some buyers’ strategic deviations never worsen other buyers. We
propose a class of bidding mechanisms with some desirable properties and show that a Nash equilibrium bid schedule
always exists wherein all buyers’ profits are at least as high as those under truthful bidding. In our proposed mechanisms,
some buyers’ strategic deviation from truthful bidding can only make the others better off. Thus, buyers need not worry
about strategic behavior of their counterparts. We compare the performances of the system under different mechanisms
and show the superiority of our proposed bidding mechanism. We show that the profits generated by our proposed bid-
ding mechanisms under the proportional cost-sharing rule are never dominated by the maximum profits of the first-best
fixed price.
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1. Introduction

Group purchasing is becoming increasingly popular
in both business-to-consumer (B2C) and business-to-
business (B2B) environments due to advances in
information technology and the development of
online markets. Group purchasing generates multiple
benefits for its participants: buyers can obtain better
prices by increasing their purchasing power and
reduce costs by consolidating their operations. The
focus of this study is on group purchasing in B2B
applications, which can be seen in many sectors and
across various industries. The spectrum of products
purchased collaboratively ranges from medical equip-
ment and hospital supplies (e.g., www.supplychainas
sociation.org), to school buses and automotive parts
(e.g., www.cooppurchase.com and www.izimotive.
nl), and even includes perishable grocery products

(e.g., www.unifiedgrocers.com) and apparel with
short life cycles (e.g., www.stagbuyinggroup.com). In
2011, 15%–20% of Fortune 1000 companies used a
buying consortium (Moore and Gray 2011). For exam-
ple, UNA Purchasing Solutions (www.unapurchas
ing.com) facilitates group purchasing and includes
FedEx, Best Buy, Office Depot, and Herman Miller
Furniture in its pool of suppliers, among others. UNA
estimates that buyers who use their services save an
average of 22% on direct and indirect spend. Essensa
(www.essensa.org) works with 3M, Nestle, Staples,
and Verizon, among others, and estimates that com-
panies can save 10%–73% of their annual purchasing
spend using their services.
Because implementing group purchasing requires a

considerable amount of effort in aligning the interests
of buyers and suppliers, it is most often organized
through a third party—a.k.a. a group purchasing
organization (GPO). The GPO negotiates with suppli-
ers to obtain discount schemes, conveys available dis-
counts to buyers, and carries out the purchasing
transactions on behalf of the buyers.1 GPOs display a
wide range of ownership structures and operating
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modes (Hu and Schwarz 2011), and, in general, oper-
ate with the goal of maximizing their own profits or
as a non-profit organization with the sole purpose of
generating surplus for their members. We call the first
group intermediary GPOs and the second group cooper-
ative GPOs. Some evidence exists suggesting that
intermediary GPOs may suffer from incentive
misalignment and underperformance when com-
pared with cooperative GPOs—see, for example,
DeLay (2009), Esquire (2011), and Robert and Hal
(2010), among others. Cooperative GPOs, the focus of
this study, usually cover their costs through fees and
aim on maximizing their members’ profits. Fees can
be collected either from GPO members (buyers) and/
or from suppliers. Both UNA Purchasing Solutions
and Essensa, the two previously mentioned GPOs,
finance their operations through administrative fees
obtained from suppliers.
GPOs are faced with a non-trivial problem. On the

one hand, potential members need to know the costs
of products before deciding whether to use a GPO.
On the other hand, the GPO needs to determine the
group’s total purchase quantity (and the correspond-
ing cost) in order to be able to answer buyers’
requests for quotes (RFQ). However, the latter cannot
be accurately calculated without knowing which buy-
ers are participating and their order quantities. Our
main goal in this analysis is to provide mechanisms
that GPOs can use to address this issue.
In practice, there are two common ways in which

GPOs approach coordination problems (Smith 2015).
In the cost-sharing approach, the GPO announces a rule
for sharing costs (or profits) according to the eventual
outcome. In the fixed price approach, the GPO
announces a unit price, while individual buyers make
purchasing decisions. Examples of both approaches
can be seen in practice and are discussed in the litera-
ture—see, for instance, Graf (2014) and www.supplyc
hainassociation.org for the cost-sharing approach,
and www.insight.com and www.izimotive.nl for the
fixed price approach. While the fixed price approach
is appealing for its simplicity, this approach may fail
to reach substantial profits if the GPO does not have
sufficient information about buyers and their prefer-
ences. Although the cost-sharing approach can lead to
higher efficiency, buyers’ decisions to participate and
share information cannot be taken for granted. If buy-
ers are concerned about the effects that other buyers’
strategic behavior can have on their profits, they may
hesitate to participate, perhaps fearing exploitation by
their competitors. In fact, the risk of being taken
advantage of by competitors is a major hurdle in
achieving reciprocal trust among companies (Wil-
liamson 1975).
An important and often neglected factor in an anal-

ysis of group purchasing is that buyers may be

willing to purchase different quantities at different
costs. Evidence of this “cost-sensitivity” in practice
currently exists. In replenishment models with multi-
ple ordering cycles, buyers’ lot sizes increase in the
presence of quantity discounts. In a single-period sce-
nario in which buyers are faced with an unknown
demand (that is, a simple newsvendor case), lower
purchase costs increase buyers’ margins and conse-
quently, motivate higher order quantities. As an illus-
tration, consider the following example. We
mentioned earlier that Herman Miller is one of the
suppliers working with UNA purchasing. Suppose
that one of UNA’s GPO members, with a budget of
$15,000, considers upgrading some office chairs to the
classic Herman Miller Aeron chair. If the member is
charged full price ($759 on the Herman Miller web-
site), his budget supports about 20 chairs; if he is
offered a 10% discount, he can purchase about 22,
while a 20% discount (the average savings for office
supplies estimated by UNA purchasing for their
members) allows for about 25 chairs. However, the lit-
erature on group purchasing usually assumes that
buyers want a fixed quantity independent of the cost
and that each buyer’s specific order quantity is com-
mon knowledge. This is sometimes referred to as the
“single-mindedness” assumption (Chu 2009, Chu and
Shen 2008, Ledyard 2007). One of the distinguishing
features of this study is a relaxation of this assump-
tion, which allows for cost-sensitive buyers.
As the main focus of this paper, we explore a cost-

sharing approach that a GPO can use to coordinate
group purchasing. As a reference point, we start with
the assumption that all information is commonly
known by all parties. We first study joint ordering
mechanisms wherein the buyers themselves deter-
mine order quantities, given the cost-sharing rule
implemented by the GPO. We then discuss a fixed
price approach as a benchmark for the performance
of our cost-sharing mechanisms. Under a fixed price
mechanism, the GPO announces a unit price for the
product, while buyers choose the purchase quantities
that maximize their individual profits. An appealing
feature of fixed price mechanisms is that one buyer’s
individual profit is no longer coupled with quantities
ordered by other buyers, thus strategic competitors’
behavior poses no threats. For comparative purposes,
we solve the GPO’s fixed price problem under the
assumption that the organization actually knows the
buyers’ valuation functions. The first-best price
obtained in this manner gives us an upper-bound on
the surplus that can be generated via fixed price
mechanisms.
We then move to the main part of our analysis

and assume that buyers’ valuations are their private
information. In our analysis, we first focus on a
sequential joint ordering mechanism, under which
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buyers can place orders in any open round, and sub-
sequently increase their orders in later rounds.
Under this mechanism, buyers are not required to
communicate their valuations. We then investigate a
bidding mechanism in which the GPO determines
both the quantities and payments for the buyers. The
GPO bases its decision on information provided by
the buyers, which consists of a list of quantities and
their respective willingness to pay for those quanti-
ties—that is, the buyers’ valuation functions. This
can be thought of as bids submitted by the buyers to
the GPO and is consistent with observations in prac-
tice. For instance, Anand and Aron (2003) references
Chennai Online (COL), in which buyers place bids
(that is, price-quantity schedules) for the platform to
clear the market. Buyers can differ in their willing-
ness to pay because of internal factors affecting their
efficiencies, for example, or their external relations
with the supplier market. A bidding mechanism
implemented by the GPO consists of a bid-purchase
rule that determines quantities purchased for each
buyer, as well as a cost-sharing rule determining the
corresponding costs. Note that the use of a fixed
price mechanisms with asymmetric information
imposes new hurdles on the GPO. Specifically, the
GPO’s choice of the right price becomes a challenge,
particularly since the GPO does not know buyers’
true valuations. With incomplete information, setting
the price too high reduces the surplus of the system,
while setting the price too low renders the transac-
tion infeasible due to insufficient funds.

1.1. Contributions of the Paper
In this study, we construct mechanisms for group
purchasing under asymmetric information and com-
pare their performances. We examine both cost-shar-
ing and fixed price mechanisms and show the
advantages of the former class of mechanisms.
We start by examining joint ordering situations in

which buyers place their orders given a cost-sharing
rule. Assuming symmetric information, we show that
under certain reasonable conditions for the cost-shar-
ing rule, the set of Nash equilibria for the associated
games is non-empty. As we demonstrate, well-known
cost-sharing rules, such as the adaptation of the Shap-
ley value (Shapley 1953) for cost allocation situations
and the proportional rule, meet these conditions. With
our choice of cost-sharing rules, we establish that buy-
ers’ incentives are aligned in such a way that the cor-
responding joint ordering game under complete
information becomes a supermodular game (Milgrom
and Roberts 1990). Supermodular games demonstrate
strategic complementarities among the players—im-
proving the profit of one player can only have a posi-
tive effect on all the other players’ profits—and
guarantee the existence of the largest Nash

equilibrium that generates the highest profits for all
players among the set of all Nash equilibria (that is, is
payoff dominant (Harsanyi and Selten 1988)). Never-
theless, we show that at equilibrium buyers tend to
order less than their system-optimal quantities. We
further evaluate the performance of our cost-sharing
mechanisms by comparing them to results from a
fixed price approach. In such an approach, the GPO
announces a unit price, while each buyer chooses his
preferred order quantity and pays the total price of
his order. We prove that even if the GPO knows all
buyers’ exact valuations, the profits generated by the
first-best price cannot exceed the profits obtained
through the largest Nash equilibrium for the joint
ordering mechanism with the proportional cost-shar-
ing rule. Therefore, the joint ordering mechanism is
superior to the best fixed price mechanism.
With asymmetric information, we introduce a

sequential joint ordering mechanism that can be used
by the GPO to receive buyers’ orders in a series of
ordering rounds. We introduce a class of ordering
strategies for the buyers—Max–min strategies—that
are guaranteed to converge to a Nash equilibrium of
the associated symmetric information game. We fur-
ther show that whenever some buyers could act
strategically—that is, when they can benefit by deviat-
ing from their Max–min strategies—no other buyers
who follow their Max–min strategies would be worse
off. Subsequently, we provide a lower-bound on the
performance of joint ordering mechanisms under
asymmetric information.
As it turns out, the performance of the system could

be improved if the GPO takes over the ordering deci-
sions and decides how much to purchase for the buy-
ers. To implement this approach, we introduce a
family of bidding mechanisms (Nisan 2007) for group
purchasing. In our context, the GPO receives bids
from the buyers on how many units they want and
their willingness to pay. Depending on the cost-shar-
ing rule, the buyers may pay the same or different
unit prices for allocated quantities. A reasonable bid-
ding mechanism should satisfy some basic properties.
First, it should guarantee that no buyer is worse off as
a result of purchasing via the GPO (individual-rational-
ity). Second, the GPO should be able to recover all the
costs that it incurs (budget-balancedness). Without bud-
get-balancedness, a cooperative GPO, which is the
focus of our study, faces additional problems—redis-
tribution of excess profit or funding of excessive pur-
chasing costs. If the mechanism also satisfies truthful
implementation the buyers have incentives to bid their
true valuations. The main strength of truthful imple-
mentation is making strategic behavior unprofitable
for all buyers. In other words, irrespective of the
information known about others, a buyer can
announce his valuation without fearing exploitation
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by other buyers. If a mechanism does not satisfy
truthful implementation, then buyers’ strategic
behavior may secure higher purchase quantities and
thus increase their individual profits. This may lead
to undesirable outcomes since this type of strategic
behavior by one buyer may, in general, hurt other
buyers and reduce their profits. We introduce a class
of randomized mechanisms that are individually-
rational, budget-balanced, and truthful. However, the
performance of such mechanisms can be arbitrarily
bad, and thus it may not perform satisfactorily in
terms of buyers’ payoffs. To remedy this, we consider
an alternative notion of implementation which relaxes
truthfulness but hedges against the detrimental
aspects of strategic behavior. We formalize this
requirement by introducing the novel notion of lower-
bound implementation, that is, the existence of strategic
bid schedules under which none of the buyers is
worse off than the buyer would be under truthful
bidding.
Our bidding mechanisms operate as follows. Given

the buyers’ announced bid schedule, a mechanism as-
sumes that the bid schedule represents buyers’ true
valuations, and the GPO chooses the largest Nash
equilibrium in the joint ordering game associated
with the announced bid schedule. The cost-shares are
also determined via rules that meet our conditions.
The family of mechanisms obtained in this manner
satisfies both budget-balancedness and individual
rationality. When the buyers are all cost-insensitive
(that is, when their order quantities are either zero or
a fixed positive amount), or when the largest Nash
equilibrium coincides with the system-optimal quan-
tities, our mechanisms achieve truthful implementa-
tion, thus bidding the true valuation is a Nash
equilibrium for all buyers. When buyers are cost-sen-
sitive and the largest Nash equilibrium is below the
system-optimal quantities, although our mechanisms
may not be truthful, they give rise to situations
wherein strategic move by one buyer never hurts
other GPO members. That is, buyers can only be posi-
tively affected by the strategic behavior of others. We
refer to this condition as strategic synergy among the
buyers and show that it is a sufficient condition for
lower-bound implementation. Consequently, the per-
formance of our bidding mechanisms are at least as
good as that under the largest Nash equilibria in cor-
responding joint ordering games with symmetric
information. We show via several examples that our
bidding mechanisms can indeed transcend the latter
and obtain the system-optimal performance.
The rest of this study is organized as follows. In sec-

tion 2, we briefly review the relevant literature. In sec-
tion 3, we formally introduce the group purchasing
model and discuss both centralized as well as decen-
tralized settings. In section 4, we study joint ordering

mechanisms with cost-sharing rules as well as fixed
prices under the symmetric information assumption.
We incorporate asymmetric information in section 5
and study joint ordering mechanisms and bidding
mechanisms for group purchasing, along with differ-
ent notions of implementation. We illustrate our
results with some numerical examples in section 6.
Section 7 concludes the study. All proofs are pre-
sented in Appendix A.

2. Literature Review

There is a rich literature that investigates the effects of
group purchasing on supply chains. In their seminal
paper, Anand and Aron (2003) provide an extensive
list of GPO examples in both B2C and B2B environ-
ments, along with their underlying mechanisms,
some theoretical analyses of operations, and suppli-
ers’ pricing schedules. Chen and Roma (2011) con-
struct a model with two competing cost-setting
retailers who jointly procure via a single supplier and
highlight the conditions under which group buying is
beneficial. Zhou and Xie (2014) consider a supplier’s
response and show that mixed discount schemes may
help prevent potential damages in group buying. In
the healthcare sector, Hu et al. (2012) analyze the
effect of group purchasing on the supply chain. In the
above-mentioned models, all information is assumed
to be common knowledge. In an asymmetric informa-
tion setting, Zhou et al. (2017) analyze the choice of
contracts and its effect on double marginalization in a
supply chain with a GPO and two suppliers. They
show that the GPO could facilitate information
sharing among the suppliers and improve system
performance.
Group purchasing and replenishment problems

have also been studied from the point of view of
cooperative games. Under the “single-minded”
assumption of buyers, Nagarajan et al. (2010) study
different stability and fairness concepts in group pur-
chasing. Using the notion of farsightedness, they relax
some of the restrictive assumptions needed for more
conventional notions of stability. Schotanus et al.
(2008) focus on the drawbacks of the equal price cost-
sharing rule and its perceived unfairness in coopera-
tive purchasing games. They also propose alternative
fairness ratios and discuss the measures that GPOs
could consider to improve fairness perceptions
among their members. Another stream of research
considers replenishment scenarios wherein buyers’
purchase frequency is the main decision variable
(Anily and Haviv 2007, Dror and Hartman 2007, Meca
et al. 2004, Zhang 2009). The main source of cost sav-
ings in these models is consolidation of logistical
operations and possibilities for leveraging economies
of scale in inventory management. Chen (2009) and
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Hezarkhani et al. (2018) further allow for savings
from suppliers’ quantity discounts. The cooperative
game approach assumes that all participants know
the buyers’ information. The relaxation of this
assumption is at the heart of our model.
The literature on non-cooperative game approaches

to joint replenishment is rather sparse. Under the
assumption of common knowledge, Meca et al. (2003)
study a single-item inventory game in strategic form
with players announcing their desired replenishment
frequencies to an intermediary that places orders with
the supplier. He et al. (2017) consider a non-coopera-
tive joint replenishment game under power-of-two
policies and prove that the choice of the Shapley value
as the cost-sharing rule results in the set of Nash equi-
libria replenishment frequencies that forms a lattice,
and show the existence of a payoff dominant Nash
equilibrium. With privately informed players,
K€orpeo�glu et al. (2012) and K€orpeo�glu et al. (2013)
investigate alternative games wherein players
announce their contribution to ordering costs. G€uler
et al. (2017) propose an indirect mechanism for joint
replenishment in economic order quantity (EOQ)
environments in which buyers’ order frequencies are
private knowledge. Although the mechanism is not
truthful, they characterize buyers’ equilibrium
announcements in one-parameter mechanisms.
Auctions have been an important tool in addressing

the coordination and information extraction issues in
group purchasing. Chandrashekar et al. (2007) present
an overview of the literature in this area. In the B2C
context, Chen et al. (2006) and Chen et al. (2010) ana-
lyze equilibrium bidding strategies of buyers in a GPO.
Assuming a discrete price curve, single unit require-
ments, limited supply, and timely arrival of buyers,
they describe an auction mechanism that induces buy-
ers to bid the price step that is closest to their willing-
ness to buy upon arrival. Hafizo�glu and Sen (2014)
allow buyers to demand more than a unit of product
and study a mechanism design problem with groups
of buyers announcing their combined reservation
prices for a product to the GPO. The authors examine
several practical and appealing cost-sharing rules, none
of which, they observe, satisfies the truthfulness prop-
erty. All of the models in previous papers use the sin-
gle-mindedness assumption. In a B2B setting, Li et al.
(2010) study a group purchasing setting with multiple
products and buyers who have heterogeneous reserva-
tion prices for different product bundles. They devise
an algorithm for organizing buyers into groups that
collaboratively purchase products and analyze alloca-
tions that belong to the core of associated cooperative
games under the assumption that buyers’ reservation
prices for different bundles are common knowledge. Li
et al. (2010) study Vickrey–Clarke–Groves (VCG)-like
mechanisms in two-sided procurement auctions by

incorporating transportation costs into their model.
Although buyers have different demands for their vari-
ous facilities, each buyer announces a single bid vector
to the auctioneer. Therefore, buyers’ cost-sensitivity
cannot be captured by the auction before purchasing
decisions are made. Although the mechanism in this
study achieves truth-telling on a supplier’s side, the
buyers are not necessarily truthful in the auction. More-
over, the mechanism may not be budget-balanced.
This research is positioned at the intersection of

operations management and economics. In fact, the
problem of cost sharing in group decision making is
of particular importance in the latter discipline. How-
ever, the extent of positive results regarding our prob-
lem in both fields is limited. While the existence of
individually rational, budget-balanced, and truthful
mechanisms has been shown under convex cost func-
tion (the scenario with dis-economies of scale) (Mou-
lin and Shenker 1992), the existence of such
appropriate mechanisms under concave costs (the
scenario with economies of scale) is proven only in
the case of public goods in which the demand of each
buyer is either zero or one (Moulin and Shenker
2001). When the buyers can order different quantities,
only negative results regarding the existence of
appropriate mechanisms exist (Moulin 1999), even
with only two buyers and concave costs. With general
utility functions, the existence of Nash equilibria in
associated symmetric information games is also not
guaranteed (de Frutos 1998). As the economics litera-
ture seems to offer no practical recommendations in
cases where a truthful mechanism cannot be found,
the importance of our problem in operations manage-
ment necessitates inventive approaches to shed light
on the coordination issues in such contexts. Our
notion of lower-bound implementation is an answer
to the latter problem.
Finally, it is worth mentioning that an extensive lit-

erature exists on procurement/replenishment auc-
tions in which a single buyer organizes an auction to
choose among a set of bidding suppliers (see Chen
et al. 2005, Parkes and Kalagnanam 2005, Chen et al.
2008, and references therein). This literature is not of
direct relevance to our work and hence is not
reviewed in detail.

3. Model

A set of buyers N = {1, 2, . . ., n} purchase a product.
Let Qi � Rþ be the set of quantities that buyer i 2 N
can possibly purchase, with 0 2 Qi. Let
Q ¼ Q1 � � � � � Qn.
Let vi : Qi ! R be the valuation function of buyer

i. The buyers’ valuation functions represent the maxi-
mum willingness to pay for different quantities of the
product. A buyer’s valuation only depends on the
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amount that he purchases and is not affected by the
other buyers’ purchase quantities. We assume that vi
is non-decreasing for every buyer i 2 N; this holds,
for example, when the buyers can simply dispose of
the excess units they receive. We further assume that
við0Þ ¼ 0 for all i 2 N. We denote the valuation func-
tions of all buyers compactly by v ¼ ðviÞi2N .
Cost function c : Rþ ! Rþ describes cost of pur-

chasing different quantities from the suppliers. We
assume that c is non-decreasing, which ascertains, for
example, that the total cost of purchasing two units of
the product is at least as high as the cost of purchasing
one unit. Furthermore, we assume that c is concave and
that c(0) = 0. The concavity condition asserts that the
marginal purchasing cost of additional units are non-
increasing. These assumptions reflect a sensible ground
for collaborative purchasing and are common in the
group buying and joint replenishment literature.2 A
group purchasing situation is denoted by (N, Q, v, c).

3.1. System Optimal Quantities
If the buyers and the GPO were all parts of the same
system, one could focus on the aggregate profit func-
tion. Consider the situation (N, Q, v, c) and let
q ¼ ðqiÞi2N 2 Q be the purchase/order quantities of n
buyers.3 The sum of elements of a vector q is denoted
by qN ¼

P
i2N

qi. The aggregate profit corresponding to
q is

UðqÞ ¼
X

i2N
viðqiÞ � cðqNÞ; ð1Þ

that is, the aggregate profit for given purchase quanti-
ties is the sum of all buyer valuations, minus the total
cost of purchasing those quantities. A system-optimal
vector of purchase quantities, q� 2 Q, is a vector such
that Uðq�Þ � UðqÞ for all q 2 Q. The set of system-
optimal purchase quantities is always non-empty,
because Q is bounded. Optimal purchase quantities,
therefore, always exist. Let Q� be the set of system-
optimal purchase quantities. The highest benchmark
for the system’s overall performance is Uðq�Þ � 0.

3.2. Decentralized System
In decentralized systems, decisions are usually not
made centrally by a single party, and information
about the situation can only be partially available to
the participants. When the opportunity arises, each
player acts in his own best interest, making decisions
that improve his individual objective function. A
buyer’s individual profit (utility) in a decentralized
system is his valuation for the units he purchases,
minus his monetary payment. For buyer i 2 N, pur-
chasing qi units and paying yi 2 R result in the utility

uiðqi; yiÞ ¼ viðqiÞ � yi: ð2Þ

Hereafter, we will use the following notation. We
use u to denote the vector of buyers’ utilities,
u ¼ ðuiÞi2N . When comparing two vectors with same
dimensions, q ¼ ðq1; . . .; qnÞ and q0 ¼ ðq01; . . .; q0nÞ, we
use qQ q0, to denote that qi Q q0i for all i = 1, . . ., n. In
addition, we use q7 q0, to denote that qi Q q0i for all
i = 1, . . ., n and q 6¼ q0.

3.3. Cost-Sharing Rules
A cost-sharing rule, u : RN ! RN , determines buyers’
payments for every vector of purchase quantities. The
i-th component of the cost-sharing rule φ, ui, is the
cost allocated to buyer i. We now define some useful
properties of cost-sharing rules.

DEFINITION 1. A cost-sharing rule φ is budget-balanced
if
P

i2N uiðqÞ ¼ cðqNÞ for all q 2 Q.

Without budget-balancedness, a cooperative
GPO faces additional problems—redistribution of
excess profit, or funding of excessive purchasing
costs.

DEFINITION 2. A cost-sharing rule φ is voluntary if
uiðqÞ ¼ 0 for every q 2 Q and i 2 N such that qi ¼ 0.

With a voluntary cost-sharing rule, buyers are
assigned positive cost-shares only when they actually
purchase positive quantities.

DEFINITION 3. Cost-sharing rule φ is monotone if, for
every q; q0 2 Q such that q [ q0, and every i 2 N, we
have uiðqÞ � uiðq0i; q�iÞ � uiðqi; q0�iÞ � uiðq0Þ.

With a monotonic cost-sharing rule, the reduction
in the cost-share that any buyer observes as the
result of choosing a smaller quantity never increases
when the quantities of all other buyers (weakly)
increase. As a special case, for q0i ¼ 0, monotonicity
condition asserts that as the quantities of other buy-
ers increase, the cost-share of buyer i will never
increase.
The Shapley cost-sharing rule (adapted from Shap-

ley 1953 for cost allocation situations) is a well-known
rule. Given q 2 Q, the Shapley cost-sharing rule
assigns to every buyer i 2 N the amount

uiðqÞ ¼
X

S	N;S 6¼;

ðjSj � 1Þ!ðjNj � jSjÞ!
jNj! c qSð Þ � c qSnfig

� �� �
:

Because it is based on buyers’ marginal cost contri-
butions, the Shapley rule is perceived as fair and
easily justifiable, and thus considered to be an allo-
cation method in many different settings (e.g., for
airport landing fees in Littlechild and Owen 1973;

Hezarkhani and So�si�c: Group Purchasing Mechanisms

938
Production and Operations Management 28(4), pp. 933–954, © 2018 The Authors. Production and Operations Management published by

Wiley Periodicals, Inc. on behalf of Production and Operations Management Society

 19375956, 2019, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.12968 by U
niversity O

f Southam
pton, W

iley O
nline L

ibrary on [11/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



for internal telephone billing rates in Billera et al.
1978; for allocation of transmission costs in Tan and
Lie 2002; for pollution reduction costs in Petrosjan
and Zaccour 2003, and so forth).

PROPOSITION 1. The Shapley cost-sharing rule is budget-
balanced, voluntary, and monotone.

Another practically appealing cost-sharing rule is
the proportional rule. Given a set of buyers N, a vec-
tor of their order quantities q, and a cost function c,
the proportional cost-sharing rule assigns to buyer
i 2 N the payment

uiðqÞ ¼ qic qNð Þ=qN:

With the proportional cost-sharing rule, each
buyer pays the same unit price, and cost-shares are
proportional to individual purchase quantities.
However, it does not necessarily satisfy the mono-
tone condition. For example, let n = 2, c(1) = 3,
c(2) = 5, and c(3) = 7, and consider q = (2, 1) and
q0 ¼ ð1; 0Þ. One can check that the proportional rule
violates monotonicity condition in this example
despite concavity of c. Nevertheless, under certain
condition the proportional cost-sharing rule is also
monotone.

PROPOSITION 2. Proportional cost-sharing rule is budget-
balanced and voluntary. Suppose c is such that
e1

xþ e1
cðx þ e1Þ � e2

xþ e2
cðx þ e2Þ is non-increasing in x

for every e1 [ e2 � 0. Then, the proportional cost-shar-
ing rule is also monotone.

The special condition on cost function c introduced
in Proposition 2 can be interpreted in the following
way. The term e cðxþ eÞ

xþ e can be seen as the average cost
contribution of e additional units on top of a base
order of x units. Then, the condition above requires
that when the size of the base order, x, increases, the
difference between the average cost contributions of a
larger additional quantity, e1, and a smaller additional
quantity, e2, cannot grow. This “flattening” effect of
average cost contributions guarantees the monotonic-
ity of the proportional cost-sharing rule.

3.4. Purchasing Mechanisms
As the GPO carries out the actual purchasing for the
buyers, she pays the purchasing cost to the suppliers
and receives payments from the buyers. Thus, the pur-
chasing cost is recovered from the buyers’ payments.
We assume that the GPO is non-for-profit and that its
operational costs are normalized to zero (covered, for
example, through fees). As we explain in section 5, in
particular Proposition 5, the system-optimal quanti-
ties may not always be attainable in decentralized

group purchasing systems. This means that the GPO
cannot rely on buyers to choose the system-optimal
quantities themselves, or to announce their valuations
truthfully and allow the GPO to select system-optimal
quantities. Thus, we need to look at specific decentral-
ized group purchasing systems which may differ
depending on the type of information exchanged
among the buyers and the GPO, the decision rights of
the parties, and the sequence of events. We discuss
them inmore detail in the next two sections—Section 4
considers ordering mechanisms for models with sym-
metric information, while section 5 considers ordering
mechanisms for models with asymmetric information
and proposes a bidding mechanism aimed to improve
group purchasing results.

4. Ordering Mechanisms under
Symmetric Information

Ordering mechanisms let the buyers choose their
own order quantities. This is done subject to a rule
for calculating the payments of each buyer. In this
section, we consider two types of ordering mecha-
nisms: (i) joint ordering with cost-sharing, and (ii)
fixed price ordering. While in fixed price ordering
systems each buyer’s payment is determined solely
by his order quantity at a known fixed rate, in joint
ordering systems each buyer’s payment depends on
the quantities ordered by all buyers and is deter-
mined only after all orders are placed. Throughout
this section, we assume that all information is com-
monly known by all parties. The results in this sec-
tion serve as the benchmark for our subsequent
analysis in the asymmetric information case.

4.1. Joint Ordering with Cost-Sharing
In a joint ordering mechanism, each buyer places his
individual order, having been given a cost-sharing
rule that determines the amount that each buyer must
pay to the system.
As each buyer’s individual utility in joint ordering

systems depends on the orders placed by other buy-
ers, a game arises. A joint ordering game under sym-
metric information is defined by a group purchasing
situation under symmetric information, (N, Q, v, c),
and a cost-sharing rule, φ, and is denoted by
(N, Q, v, c; φ). Utility of buyer i 2 N in game
(N, Q, v, c; φ) with order quantity q 2 Q is

uiðqjuÞ ¼ viðqiÞ � uiðqÞ: ð3Þ
A Nash equilibrium for order quantities in this

game is the vector of quantities such that no buyer
can benefit from a unilateral deviation.

DEFINITION 4. Let (N, Q, v, c; φ) be a joint ordering
game. q 2 Q is a Nash equilibrium (NE) vector of order
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quantities if for every i 2 N we have uiðqjuÞ �
uiðq0i; q�ijuÞ for all q0i 2 Qi:

We use QNE to denote the set of all Nash equilibria
for a given game (N, Q, v, c; φ). In general, the set
QNE may be empty; the appropriate choice of cost-
sharing rules in joint ordering games can guarantee
the non-emptiness of QNE. The first observation in this
study draws upon the findings of Topkis (1979) and
Milgrom and Roberts (1990)4 to establish the non-
emptiness of the set of Nash equilibria in game
(N, Q, v, c; φ).

LEMMA 1. Let (N, Q, v, c) be a joint ordering situation
and φ a cost-sharing rule that satisfies budget-balanced,
voluntary, and monotone properties. The following
statements hold with regard to a joint ordering game
(N, Q, v, c; φ):

(i) QNE is non-empty and forms a lattice, with q as
the largest and q as the smallest elements; that is,
QNE ¼ fq; . . .; qg such that q ≤ ⋯ ≤ q.

(ii) For any q; q0 2 QNE such that q [ q0, it holds
that uðqjuÞ � uðq0juÞ.

It follows from the result above that in purchasing
situations set QNE can be ordered by the magnitude of
buyers’ quantities. In addition, the largest NE maxi-
mizes both the system and individual utilities. This
means that, within QNE, the largest NE is payoff dom-
inant (Harsanyi and Selten 1988) and rational players
in the joint ordering game unanimously benefit by
choosing q. The largest NE can be calculated using an
algorithm similar to Algorithm II introduced in Top-
kis (1979) (see Appendix B, Algorithm 7). Following
examples illustrate that the largest NE may coincide
with the system-optimal order quantities, but can also
lead to arbitrary efficiency losses.
Example—Situation I: Consider two buyers, each

wanting to buy one unit, and assume that c(1) = 10
and c(2) = 15. Let v1ð1Þ ¼ v2ð1Þ ¼ 9. The associated
joint ordering game under the Shapley (equivalently,
proportional) cost-sharing rule is shown in Table 1
(left). In this case, q� ¼ ð1; 1Þ, while q = (0, 0) and
q = (1, 1). Thus, there is no inefficiency in the decen-
tralized system under q.

Example—Situation II: Consider Example—Situation
I, but assume that buyers’ valuations are now
v1ð1Þ ¼ 7, v2ð1Þ ¼ 9. The associated joint ordering
game under the Shapley (equivalently, proportional)
cost-sharing rule is shown in Table 1 (right). In this
case, we again have q� ¼ ð1; 1Þ, but q = q = (0, 0).
Thus, there is 100% efficiency loss in the decentralized
system.
A special case of our joint ordering game emerges

when u is continuous and concave for all buyers,
which can occur for different combinations of valua-
tion and cost functions; see section 6 for one example.
Let (N, Q, v, c; φ) be a joint ordering game where ui is
continuous and concave for all i 2 N. The classical
result of Rosen (1965) demonstrates that there exists a
unique NE in this situation, that is, q = q.

4.2. Fixed Price Ordering
Fixed price mechanisms are a common approach that
GPOs use to coordinate group purchasing. With a
fixed price mechanism, the GPO announces a uniform
selling price for every unit of the product, p 2 Rþ, and
the buyers choose how many units of the product to
purchase based on that price. If the total payments
associated with the buyers’ purchased units cover the
cost of their combined purchase, the GPO can carry
out the transaction; otherwise, if there are insufficient
funds, the transaction becomes infeasible and the pur-
chase cannot be completed.
Given the situation (N, Q, v, c) and the price p,

buyer i purchasing qi 2 Qi generates the utility

uiðqijpÞ ¼ viðqiÞ � qip: ð4Þ

For buyer i 2 N, the individually optimal purchase
quantity choice under fixed price p is q

p
i such that

uiðqpi jpÞ � uiðqijpÞ for all qi 2 Qi. We denote a vector
of such quantities for all buyers by qp ¼ ðqpi Þi2N .
As the main parameter of a fixed price mechanism,

the GPO needs to announce the price. We assume that
the GPO’s goal is to maximize the total surplus gener-
ated in the system. Hence, the organization needs to
find the price that maximizes the aggregate profit
generated in the system, while ensuring that the total
payments received cover the purchase cost. We call p
a feasible price if for every vector of individually opti-
mal quantities qp it holds that pq

p
N � cðqpNÞ � 0. The

first-best price generates the highest aggregate profit
in a fixed price ordering system.

DEFINITION 5. Let (N, Q, v, c) be a group purchasing
situation. The price p� is called first-best price if
Uðqp� Þ � UðqpÞ for all feasible p.

The feasibility condition in Definition 5 ensures that
the total payments received by the GPO can cover the

Table 1 Joint Ordering Game in Situation I (Left), and in Situation II
(Right). Each Element in the Table Gives the Utilities to Buyer
1 and Buyer 2, Respectively

q2 q2

q1 0 1 q1 0 1

0 0,0 0,�1 0 0,0 0,�1
1 �1,0 1.5,1.5 1 �3,0 �0.5,1.5
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purchasing cost owed to the suppliers. Our next result
gives the expression for p�.

LEMMA 2. Let (N, Q, v, c) be a group purchasing
situation. Then, a first-best price always exists. When
qp
�
[ 0, there exists a budget-balanced first-best price;

that is, p� ¼ cðqp�N Þ=qp
�

N .

With the first-best price given in Lemma 2 the GPO
breaks even, as total buyers’ payments equal the pur-
chase price paid by the GPO. Note that, in general,
there may exist other first-best prices which could
generate GPO revenue that exceeds total purchase
cost.
Similar to the joint ordering mechanisms, fixed

price ordering can also lead to system inefficiencies.
While the above Example—Situation I yields optimal
price p� ¼ 7:5, which results in qp

� ¼ q�, in Example
—Situation II, any optimal price5 generates
qp
� ¼ ð0; 0Þ. Hence, both joint ordering and fixed

price mechanisms can lead to arbitrary efficiency
losses.

4.3. Performance Benchmarking
Next, we draw a comparison among the performance
of the system under ordering mechanisms and the
centralized system. The key for this comparison is the
relationship between the buyers’ purchase quantities
in different settings.

PROPOSITION 3. Let (N, Q, v, c) be a joint ordering
situation and q� its largest system-optimal vector of
quantities. The following statements hold:

(i) Let φ be a cost-sharing rule that satisfies budget-
balanced, voluntary, and monotone properties.
Then, q � q� and UðqÞ � Uðq�Þ.

(ii) Let φ be the proportional rule that satisfies
monotone property. Then, qp

� � q � q�, and
Uðqp� Þ � UðqÞ � Uðq�Þ.

As shown above, even under the symmetric infor-
mation assumption, buyers in ordering systems
under-purchase and the system under-performs
compared to the system-optimal quantities. This
holds for any cost-sharing rule that satisfies the three
corresponding desirable properties. Furthermore,
in situations where the choice of proportional rule
makes the joint ordering mechanisms well-behaved,
individually optimal order quantities under the first-
best fixed price mechanism never exceed the largest
NE in the associated joint ordering game, hence joint
ordering systems outperform fixed price systems.
Therefore, if the GPO uses the unit-price-equivalent
from a joint ordering mechanism in a fixed price
mechanism, a buyer may respond by choosing a
smaller quantity and benefit from such a move,

while in a joint ordering mechanism, a lower quan-
tity could increase the buyer’s unit price, which
would make it unprofitable.

5. Asymmetric Information

So far, we have assumed that the valuations of all
buyers are common knowledge. In practice, the valu-
ation function of each buyer is most likely known
only to him. If this is the case, how could group pur-
chasing be organized effectively? In this section, we
investigate group purchasing systems under asym-
metric information.
In a group purchasing situation with asymmetric

information, only the values (N, Q, c) are commonly
known by all parties. In this case, the individual valu-
ation of a buyer i, vi, may not be fully known by other
members of the GPO. There are two possibilities for
conducting group purchasing: either buyers commu-
nicate their valuations to the GPO, or they don’t. We
first examine the systems where valuations are not
explicitly communicated, and then we study the sys-
tems with explicit communications on valuations
under bidding mechanisms.
Before we do that, it is worth mentioning that in the

asymmetric information version of fixed price mecha-
nisms, the GPO determines the price based on its
incomplete information on buyers’ valuations. Since
finding the system-optimal solution requires com-
plete knowledge of buyers’ valuations, the GPO may
not be able to find the true first-best price, as stated
below.

COROLLARY 1. The performance of fixed price mechan-
isms under asymmetric information is always bounded by
that of first-best price mechanisms under symmetric
information.

5.1. Sequential Joint Ordering Mechanism
In this section, we introduce a sequential joint order-
ing mechanism. Under this mechanism, buyers are
not required to communicate their valuations. The
purchase cost function, c, and the cost-sharing rule, φ,
are known in advance. Buyers can place orders in any
open round, and subsequently increase their orders in
later rounds. We describe in more detail this mechan-
ism in Appendix B (Algorithm 2).
The sequential joint ordering mechanism works

through a number of rounds, t = 0, 1, 2, . . .. We start
by initializing order quantities for all buyers: q0i ¼ 0
for every i 2 N. In each round, every buyer can
increase his order size: qti � qt�1i . The sequential
ordering mechanism stops in the earliest round t > 0
such that all buyers keep their orders unchanged, that
is, qt ¼ qt�1. At t > 0, we have
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utiðqtjuÞ ¼ viðqtiÞ � uiðqtÞ: ð5Þ
Consider an arbitrary round, t. The order quantities

qt�1 are known to all buyers (as the mechanism has
revealed them at the end of the previous round). The
strategy of each buyer in round t is his choice of qti .
Thus, qt is a strategy profile for all buyers in round t.
The sequence of strategy profiles of the buyers over
all open rounds can then be described as q ¼
fq1; . . .; qt; . . .; q̂g where q̂ are the terminal order
quantities in q. The utility of buyer i, given the
sequence of strategy profiles q for the sequential joint
ordering mechanism, is then obtained via uiðq̂juÞ.
Because the set of buyers’ possible order quantities is
bounded, the above mechanism always terminates.
In order to find a lower bound on the performance

of the sequential joint ordering mechanism, we intro-
duce the Max–min strategy as a base strategy for the
buyers.
Max–min strategy: Let (N, Q, v, c) and φ be given.

Given qt�1, the Max-min strategy in round t > 0 is qM;t

such that uiðqM;t
i ; qt�1�i juÞ � uiðqi; qt�1�i juÞ for all

qi � qt�1i .
In each round, a buyer who chooses this strategy

ignores how other buyers may increase their orders in
that round. In other words, the buyer considers the
worst case scenario in which everyone but him kept
their current order quantities (hence, the “min” part
of the name, which refers to others’ quantities), and
chooses the strategy that maximizes his utility. The
sequence of Max–min strategy profiles of all buyers is
qM ¼ ðqM;1; . . .; qM;t; . . .; q̂MÞ:
In a sequential ordering mechanism under Max–

min strategies all buyers play their Max–min strate-
gies in every round. As we show in our next result,
buyers who play Max–min strategies in the sequential
joint ordering mechanism never order quantities
below the smallest NE in the associated joint ordering
game with symmetric information.

PROPOSITION 4. Let (N, Q, v, c) be a joint ordering
situation and φ a cost-sharing rule that satisfies budget-
balanced, voluntary, and monotone properties. In the
sequential ordering mechanism under φ, we have
q̂M 2 QNE.

Consequently, we get q � q̂M � q, and UðqÞ �
Uðq̂MÞ � UðqÞ. The terminal quantities of Max–min
ordering strategies in the sequential ordering mecha-
nisms can, indeed, correspond to the smallest NE,
q̂M ¼ q. This happens when the Max–min strategy for
every buyer in every round is unique and not degener-
ated. In this case, Algorithm 2 in Appendix B becomes
similar to Algorithm I introduced in Topkis (1979).
Some rational buyers may decide not to follow

their Max–min strategies, especially if they have

additional information about the valuations of other
buyers.

THEOREM 1. Let (N, Q, v, c) be a joint ordering
situation and φ a cost-sharing rule that satisfies budget-
balanced, voluntary, and monotone properties. Let q be a
sequence of strategy profiles in the sequential joint
ordering mechanism such that all buyers in N ∖ {i} play
their Max–min strategies. Let q̂ be the terminal order
quantities under this sequence of strategy profiles. If
uiðq̂juÞ [ uiðq̂MjuÞ; then uðq̂juÞ � uðq̂MjuÞ.

The above theorem shows that in the sequential
joint ordering mechanism with a monotonic cost-shar-
ing rule, if a buyer is strategic (that is, if he deviates
from his Max–min strategy in a way that eventually
improves his terminal utility compared to the case in
which he plays his Max-min strategies), then the ter-
minal utilities of all other buyers are at least as high
as those under the Max–min strategies. A similar
argument can be made for deviations by more than
one buyer. Therefore, since playing the Max–min
strategies may result in utilities of the smallest NE,
one can consider U(q) as the lower bound for the per-
formance of the decentralized system under sequen-
tial joint ordering mechanism.
Consider Example—Situation I. In round t = 1,

buyer i who plays Max–min strategy chooses
his quantities by comparing ui1ð0Þ ¼ 0 and
ui1ð1Þ ¼ 9 � 10 ¼ �1. Thus, Max–min strategies for
this case yield q̂M ¼ q ¼ ð0; 0Þ as terminal quantities,
while q = (1, 1); in other words, sequential ordering
mechanisms cannot increase the utilities from zero
in this situation.

5.2. Bidding Mechanisms
As seen in the last subsection, our sequential joint
ordering mechanisms may under some instances
only attain the aggregate profit of the smallest NE
of the decentralized system. Although ordering
mechanisms are practical and straightforward, espe-
cially if the buyers communicate through the GPO,
they could perform poorly and fail to achieve the
full potential for group purchasing. In this section,
we look at bidding mechanisms and show how they
might improve group purchasing results. In a bid-
ding mechanism, buyers announce their bids, which
are then used by the GPO to determine buyers’ pur-
chase quantities and their corresponding cost-
shares.
Let Vi be the set of possible valuation functions for

buyer i. Buyer i’s bid is the announcement bi 2 Vi.
Buyer i can bid his true valuation, bi ¼ vi, but is not
required to do so. Let b ¼ ðbiÞi2N be a bid schedule of
all buyers. A bidding mechanism (a, φ) is a pair of rules:
a bid-purchase rule a, and a cost-sharing rule φ.
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DEFINITION 6. A bid-purchase rule a: V ? Q deter-
mines the quantities to be purchased for every buyer
under every given bid schedule.

Given mechanism (a, φ), bid schedule b would
result in purchase quantity a(b) and cost-share φ(a(b)).
The bid-purchase and cost-share corresponding to
buyer i are denoted by ai and ui, respectively. In order
to be implementable, bidding mechanisms should
satisfy some basic desirable properties, which we
discuss next.
Similar to our earlier discussion, we expect bidding

mechanisms to be budget-balanced and match total
purchasing costs with aggregate buyers’ cost-shares.
This is important, because recovering less than the
total cost makes the entire transaction infeasible, while
gatheringmore than the total cost creates an additional
problem—redistribution of the leftover amount.

DEFINITION 7. The mechanism (a, φ) is budget-balanced
if
P

i2N uiðaðbÞÞ ¼ cðaNðbÞÞ for every b 2 V.

Our next desirable property ensures utility non-
negativity for every bid by every buyer.

DEFINITION 8. The mechanism (a, φ) is individually
rational if for every b 2 V and every i 2 N we have
biðaiðbÞÞ � uiðaðbÞÞ � 0.

The value biðaiðbÞÞ � uiðaðbÞÞ in the above defini-
tion is the nominal utility of i under bid b. This can
differ from buyer i’s actual utility:

uiðbja;uÞ ¼ viðaiðbÞÞ � uiðaðbÞÞ: ð6Þ

The GPO can only evaluate its performance relative
to the information that it receives. Consequently, an
individually rational mechanism ensures that nomi-
nal utilities are always non-negative.
We next investigate buyers’ bidding strategies. In

our analysis, we will use the concept of a NE bid
schedule as a reflection of stability in buyers’ behav-
ior. We say that a bid schedule is a NE if no buyer can
benefit by unilaterally changing his bid. The formal
definition is given below.
DEFINITION 9. Let (N, Q, v, c) and (a, φ) be given.
bNE 2 V is a NE bid schedule if for every i 2 N and
every bi 2 Vi we have uiðbNEja; uÞ � uiðbi; bNE

�i ja; uÞ.

5.2.1. Truthful Implementation. A mechanism
achieves truthful implementation if it ensures that
bidding the true valuation is a NE.

DEFINITION 10. Let (N, Q, v, c) be a group purchasing
situation. A bidding mechanism (a, φ) achieves truthful

implementation if there exists a NE bid schedule bNE

such that bNE ¼ v.

The main strength of truthful implementation lies
in removing buyers’ incentives for strategic behavior
—a buyer can announce his true valuation without
the fear of being exploited by other buyers. As we
show below, truthful implementation is not always
achievable, and even when it is, it may not lead to
desirable outcomes.
When implementing bid-purchase rules, the ideal

choice is the function that chooses system-optimal
quantities—which maximizes buyers’ aggregate prof-
its—under every bid schedule. However, this can be
impossible. It is well-known that there exists no indi-
vidually rational and budget-balanced bidding
mechanism that can truthfully implement the sys-
tem-optimal decisions in all situations (Groves 1985).
We show that this statement holds in simple group
purchasing situations as well. We say that a buyer i
is single-minded if Qi ¼ f0; qig. In other words, a sin-
gle-minded buyer wants a specific number of units,
qi, which he values at viðqiÞ, or nothing at all. With
single-minded buyers, the description of the situa-
tion is simplified to ðN; f0; qigi2N; ðviðqiÞÞi2N; cÞ. As
we show in the proof of our next result, the
above impossibility statement holds even in group
purchasing situations with only two single-minded
buyers.

PROPOSITION 5. There exists no individually rational
and budget-balanced bidding mechanism that can truth-
fully implement the system-optimal quantities in group
purchasing situations.

As the result of Proposition 5, group purchasing
cooperatives that choose system-optimal quantities
for their members can only do so by assuming com-
mon knowledge of the buyers’ valuations. This imme-
diately reveals a challenge with cooperative game
approach to group purchasing; that is, these games, in
general, cannot be truthfully implemented. Hence,
before concerning ourselves with cost-sharing in
cooperative group purchasing games, which puts the
emphasis on fairness and stability, we acknowledge
that the assumption of truthful information sharing
among the buyers does not hold realistically.
Although stable sharing of gains/costs can be attain-
able in a group purchasing cooperative game, truth-
fulness cannot be implemented.6

If system-optimal purchase quantities cannot be
implemented truthfully in group purchasing situa-
tions under asymmetric information, are there any
purchasing rules that can be implemented truth-
fully? Consider the mechanism that purchases zero
quantities for all buyers under any bid schedule,

Hezarkhani and So�si�c: Group Purchasing Mechanisms
Production and Operations Management 28(4), pp. 933–954, © 2018 The Authors. Production and Operations Management published by

Wiley Periodicals, Inc. on behalf of Production and Operations Management Society 943

 19375956, 2019, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.12968 by U
niversity O

f Southam
pton, W

iley O
nline L

ibrary on [11/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



and as a result any bid schedule yields zero utility
for every buyer. This trivial mechanism is truthful:
a buyer’s truthful valuation announcement does
not make any difference. Therefore, truthfulness
does not resolve the inefficiency problem. The chal-
lenge with designing truthful, budget-balanced,
and individually rational mechanisms in group
purchasing situations is thus their performance—
not their existence. In what follows, we introduce
two bidding mechanisms with some desirable
properties.
Largest Nash equilibrium (LNE) mechanism: The LNE

mechanism is the pair ðaLNE; uÞ, where φ is a cost-
sharing rule that satisfies budget-balanced, voluntary,
and monotone properties, and aLNE is the bid-pur-
chase rule which, given (N, Q, c) and the bid schedule
b, selects the largest NE in the joint ordering game
(N, Q, b, c; φ).
The LNE mechanism chooses the largest NE in the

joint ordering game associated with any given bid.
An interesting class of mechanisms are those for
which there are no instances in which a strategic
behavior by i 2 N, wherein his utility increases after
making an untruthful bid, leads to a reduction in util-
ity by one or more of the other buyers (compared to
the setting in which imakes truthful announcements).
We formalize this by introducing the strategic syn-
ergy condition below.

DEFINITION 11. Let (N, Q, v, c) be a situation and
(a, φ) be a bidding mechanism. We say that (a, φ)
satisfies the strategic synergy condition if for all i 2 N
and b 2 V such that uiðbja; uÞ [ uiðvi; b�ija; uÞ, it
holds that uðbja; uÞ � uðvi; b�ija; uÞ.

Thus, under strategic synergy, a profitable yet
untruthful bid of a buyer never decreases utilities of
other individuals. The LNE mechanism introduced
above satisfies this condition.

LEMMA 3. The LNE mechanism satisfies the strategic
synergy condition.

Drawing upon the strategic synergy of the
LNE mechanism, we show that mechanism
achieves truthful implementation when joint
ordering under symmetric information yields
system-optimal decisions.

THEOREM 2. Let (N, Q, v, c) be a situation in which
q ¼ q�. Then, the LNE mechanism is individually
rational, budget-balanced, and truthful.

If the condition in Theorem 2 is met, then the LNE
mechanism is truthful and achieves centralized effi-
ciency. An illustration of this is given in Example—

Situation I. However, Example—Situation II shows
that this is not the case in general. We now focus on
situations wherein the condition above is violated
(that is, q\q�) and establish the truthfulness of the
LNE mechanism in situations with single-minded
buyers.7

LEMMA 4. In situations where all buyers are single-
minded, the LNE mechanism is individually rational,
budget-balanced, and truthful.

As a result of Lemma 4, the largest NE can be
implemented truthfully when the buyers are single-
minded (not cost-sensitive), so that announcing true
valuation is a NE. With general buyers, however, the
LNE mechanism is not necessarily truthful. We pro-
vide examples in section 6 to show how buyers can
bid strategically and increase their utility under the
LNE mechanism. We next introduce a randomized
version of the LNE mechanism, which can overcome
this obstacle.8

Randomized LNE mechanism: The Randomized LNE
mechanism (RLNE) is the pair ðaRLNE; uÞ, where φ is
a cost-sharing rule that satisfies budget-balanced,
voluntary, and monotone properties, and aRLNE is the
bid-purchase rule which, given (N, Q, c) and the bid
schedule b 2 V, first randomly selects q 2 Q and
then obtains the largest NE in the joint ordering
game with single-minded buyers ðN; f0; qigi2N;
ðbiðqiÞÞi2N; c; uÞ.
As its starting point, the RLNE mechanism reduces

the situation into one with only single-minded buy-
ers. This reduction is done randomly, but allows any
distribution of probabilities over Q. The mechanism
then yields the largest NE in the corresponding sin-
gle-minded situation. Below, we establish the truth-
fulness of the randomized LNE mechanism in all
group purchasing situations.

THEOREM 3. The RLNE mechanism is individually
rational, budget-balanced, and truthful in all group pur-
chasing situations.

Although it is truthful, the performance of the
RLNE mechanism can be arbitrarily bad. That is,
0 � UðaRLNEðvÞÞ � Uðq�Þ. Thus, achieving truthful-
ness may still lead to undesirable outcomes. This
motivates us to consider a new approach in designing
mechanisms for group purchasing, which we discuss
in the next subsection.

5.2.2. Lower-Bound Implementation: Beyond
Truthfulness. In this study, as an alternative to truth-
ful implementation, we introduce a weaker notion—
the lower-bound implementation (as defined below in
Definition 12)—that guarantees the existence of a NE
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bid schedule such that none of the buyers receives
utility below what he would receive under a truthful
announcement.

DEFINITION 12. Let (N, Q, v, c) be a situation and
(a, φ) be a bidding mechanism. The mechanism achieves
lower-bound implementation if there exists b̂NE such that
uðb̂NEja; uÞ � uðvja; uÞ.

The above definition implies that there exists a NE
bid schedule wherein all buyers’ utilities are at least as
good as those under truthful announcements of valua-
tions.9 The lower-bound implementation is weaker
than truthful implementation. First, it does not imme-
diately obtain the buyers’ best course of action (in
terms of submitted bids); second, it does not eliminate
buyers’ inclination to be strategic with their bids.
However, the lower-bound implementation does
assure the existence of a bid schedule that is stable and
attains individual utilities not dominated by those
generated under truthful announcements. Aswe show
below, strategic synergy is a sufficient condition for a
mechanism to achieve lower-bound implementation.

LEMMA 5. A mechanism (a, φ) that satisfies the
strategic synergy condition achieves lower-bound
implementation.

A mechanism that satisfies the strategic synergy
condition has a nice property—when buyers act stra-
tegically, nobody suffers. In other words, when
buyers act in their own best interest, their actions do
not just help themselves, but may also improve profit-
ability of their GPO partners. Our main result for this
section, Theorem 4, follows directly from Lemmas 3
and 5.

THEOREM 4. The LNE mechanism is individually
rational, budget-balanced, and achieves lower-bound
implementation.

We have established in Lemma 5 that strategic
synergy is a sufficient condition for lower-bound
implementation. The individual rationality is
enforced by our choice of bid-purchase rule; that is, if
the utility generated by a buyer’s bid is negative, then
the allocation of zero units is a preferred option and
thus granted by a NE. Finally, the budget-balanced-
ness condition is immediately satisfied by our choice
of cost-sharing rules.

5.3. Performance Benchmarking
We again compare the performance of different
mechanisms; we consider models with symmetric
and asymmetric information. The results in this sub-
section follow from the above analysis.

COROLLARY 2. Let (N, Q, v, c) be given. With the LNE
mechanism, truthful valuations’ announcement by all
buyers results in the utilities under largest NE; that is,
uðvjaLNE; uÞ ¼ uðqjuÞ. Furthermore, if any buyer could
improve his utility by a non-truthful bid, it would
(weakly) improve the utilities of all other buyers.

Our result indicates that the buyers’ surplus gen-
erated by the GPO under mechanism ðaLNE; uÞ is
not lower than the surplus obtained by choosing the
largest NE with actual valuation functions. This
result is significant for at least two reasons. First, it
obtains a lower bound on the surplus (as well as on
buyers’ utilities) in group purchasing, irrespective
of buyers’ strategic bidding; second, because of the
properties of lower-bound implementation, a buyer
does not need to worry about strategic behavior of
other buyers and its potentially negative effect on
his utility.
Finally, the next result compares our bidding

mechanism for the asymmetric information case
with results obtained in the symmetric information
model.

COROLLARY 3. Let (N, Q, v, c) be a group purchasing
situation and consider a cost-sharing rule that satisfies
budget-balanced, voluntary, and monotone properties. We
have

UðqÞ ¼ UðaLNEðvÞÞ�UðaLNEðb̂NEÞÞ�Uðq�Þ:

The performance of the LNE mechanism is within
the range bounded by the LNE of the joint ordering
game with symmetric information and the system-
optimal performance. Simple examples show that the
LNE mechanism can attain both extremes. Observe
that, in conjunction with Proposition 3(ii), when the
proportional rule is monotone, the LNE mechanism
also outperforms the first-best prices fixed price
mechanism under the symmetric information (which,
by Corollary 1, serves as the upper bound for perfor-
mance of fixed price mechanisms under asymmetric
information).

6. Numerical Examples

In this section, we illustrate our results from previous
sections with some numerical examples. The first
example uses discrete valuation functions, while in the
second example, we consider continuous valuations.

6.1. Discrete Valuations
Consider a case with two buyers. Each buyer can
purchase any quantity from sets Q1 ¼ Q2 ¼
f0; 1; 2; 3g. For buyer 1, the valuation function is
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v1ð0Þ ¼ 0, v1ð1Þ ¼ 24:5, v1ð2Þ ¼ 36, v1ð3Þ ¼ 44. The
valuation function for buyer 2 is v2ð0Þ ¼ 0,
v2ð1Þ ¼ 22:5, v2ð2Þ ¼ 34, v2ð3Þ ¼ 41. Suppose that
the purchasing cost function is cðxÞ ¼ 16x � x2 for
0 ≤ x ≤ 6. Let φ be the Shapley or proportional cost-
sharing rule.10

No cooperation: As a benchmark, consider the
case where buyers do not cooperate and buy
directly from the supplier given the cost func-
tion above. For buyer 1, comparing utilities
under different choices of quantities reveals the
best choice of q1 ¼ 1, resulting in utility of 9.5.
Similarly, the best choice for buyer 2 is also
q2 ¼ 2, and the corresponding utility is 7.5.
Thus, the total profit in the system without
cooperation is 17.

Optimal quantities: Table 2 summarizes the aggre-
gate profits for different purchase quantities. The
system-optimal purchase quantities (3, 3) yield
system profit of 25.

Joint ordering game: In the case of joint ordering,
Table 3 provides individual utilities. In this case,
we have q = (2, 2), q = (1, 1), yielding U(q) = 22
and U(q) = 19.
Fixed price ordering: Although q = (2, 2) implies that
under joint ordering mechanism both buyers pay
the unit price of 12, the same unit price used in a
fixed price mechanism induces different individu-
ally-optimal purchase quantities. To verify this,
note that given the price p = 12, both buyers 1 and
2 prefer to purchase 1 unit instead of 2. However,
in this case, the total payment of buyers is less than
the purchasing cost; that is, 1 9 12 + 1 9 12 =
24 < c(2) = 28. The first-best price in this case is, in

fact, p� ¼ 14, which induces system-optimal quan-
tities qp

� ¼ ð1; 1Þ and is feasible. Thus, under the
fixed price mechanism with the first-best price,
buyers’ purchase quantities are reduced. The
aggregate profit in this case is Uðqp� Þ ¼ 19, which
coincides with the aggregate profit in the joint
ordering game under smallest NE.

Sequential ordering (asymmetric information): Let
t = 1. For buyer 1, the choice of different order
quantities (assuming that buyer 2 is ordering noth-
ing, which was his “choice” in round 0) would
result in the following: u1ð0; 0juÞ ¼ 0,
u1ð1; 0juÞ ¼ 9:5, u1ð2; 0juÞ ¼ 8, u1ð3; 0juÞ ¼ 5.
Thus, the Max–min strategy for buyer 1 is
qM;1
1 ¼ 1. At the same time, buyer 2, assuming a
zero order quantity for buyer 1, chooses among
u2ð0; 0juÞ ¼ 0, u2ð0; 1juÞ ¼ 7:5, u2ð0; 2juÞ ¼ 6,
u2ð0; 3juÞ ¼ 2, hence his Max–min strategy is also
qM;1
2 ¼ 1. In round t = 2, buyers know each other’s
orders in round 1. For buyer 1, the choices are
u1ð1; 1juÞ ¼ 10:5, u1ð2; 1juÞ ¼ 10, u1ð3; 1juÞ ¼ 8,
which means that buyer 1 does not want to
increase his order according to Max–min strategy.
Buyer 2 in t = 2 evaluates: u2ð1; 1juÞ ¼ 8:5,
u2ð1; 2juÞ ¼ 8, u2ð1; 3juÞ ¼ 5, hence he also does
not increase his order. The mechanism terminates
at t = 2 with q̂M ¼ ð1; 1Þ. This is exactly the small-
est NE in the symmetric information game.

LNE bidding mechanism (asymmetric information):
Clearly, truthful bidding in this case yields
aLNEðvÞ ¼ q. However, the mechanism is not
truthful in this case, that is, buyers can increase
their utilities by strategic bidding. For example,
suppose buyer 2 submits the bid b2ð1Þ ¼
b2ð2Þ ¼ 0 and b2ð3Þ ¼ v2ð3Þ ¼ 41. In other
words, buyer 2 pretends that receiving one or
two units of the product is worthless. In this case,
the mechanism chooses allocation (3, 3), which
results in utilities of 14 and 11 for buyers 1 and 2,
respectively (see Table 3).

Note that strategic bidding in this case yields sys-
tem-optimal quantities. In addition, buyer 2’s
strategic bidding led to an increase in buyer 1’s

Table 2 Total Profit U(q) in Example—Discrete Valuations: q� ¼ ð3; 3Þ
q2

q1 0 1 2 3

0 0 7.5 6 2
1 9.5 19 19.5 17.5
2 8 19.5 22 22
3 5 18.5 23 25

Table 3 Left: Individual utilities in Example—Discrete Valuations: q=(2,2), q=(1,1); Right: Individual utilities when buyer 2 bids strategically:
aLNE ðb̂NE Þ ¼ q� ¼ ð3; 3Þ

q2 q2

q1 0 1 2 3 q1 0 1 2 3

0 0,0 0,7.5 0,6 0,2 0 0,0 0,�15 0,�28 0,2
1 9.5,0 10.5,8.5 11.5,8 12.5,5 1 9.5,0 10.5,�15 11.5,�28 12.5,5
2 8,0 10,9.5 12,10 14,8 2 8,0 10,�15 12,�28 14,8
3 5,0 8,10.5 11,12 14,11 3 5,0 8,�15 11,�28 14,11
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utility (from 12 to 14). As a result, in this exam-
ple, we have:

Uðqp� Þ ¼ UðqÞ\UðqÞ\UðaLNEðb̂NEÞÞ ¼ Uðq�Þ:

6.2. Continuous Valuations
Suppose that N = {1, 2}, v1ðqÞ ¼ v2ðqÞ ¼ 200q � 2q2,
and that cðqÞ ¼ 190q � 0:9q2. Let φ be the propor-
tional rule.11

No cooperation: In a completely decentralized sys-
tem in which buyers do not use a GPO, each
buyer i 2 {1, 2} is solving q�i ¼ argmax 200qi�
2q2i � 190qi þ 0:9q2i ¼ 10qi � 1:1q2i , which gives
q1 ¼ q2 ¼ 4:55 and corresponding utility
uið4:55; 4:55Þ ¼ 22:73. The total utility is then
45.46, a reduction of 82% compared to the central-
ized case (see below).

Optimal quantities: In the centralized model we
solve q� ¼ argmax 200ðq1 þ q2Þ � 2ðq21þ q22Þ�
190ðq1 þ q2Þ þ 0:9ðq1 þ q2Þ2 ¼ 10ðq1 þ q2Þ�
1:1ðq21þ q22Þþ 1:8q1q2, which gives q� ¼ ð25; 25Þ
and corresponding aggregate profit U
(25, 25) = 250.

Joint ordering game: In this case, the utility func-
tions of both buyers are concave, thus the NE is
unique. To find the NE under the proportional
rule, each buyer i maximizes his utility, 200qi�
2q2i � qi

q1 þ q2
½190ðq1 þ q2Þ þ 0:9ðq1 þ q2Þ2
 ¼ 10qi�

1:1q2i þ 0:9q1q2, which gives q = q = (7.69, 7.69)
and corresponding utility uið7:69; 7:69Þ ¼ 65:09.
The aggregate profit is then U(q) = 130.18, a
reduction of 48% compared to the centralized
case and 186% improvement compared to the
decentralized case.

Fixed price ordering: In the fixed price first-best

model, each buyer i 2 {1, 2} is selecting q
p
i ¼

argmax 200qi � 2q2i � pqi, so his optimal quantity

is q
p
i ¼ 200� p

2� 2 . By Lemma 2, we have p� ¼
cðqp�1 þ q

p�

2 Þ=ðqp
�

1 þ q
p�

2 Þ, which obtains p� 200� p�

2 ¼
cð200� p�

2 Þ. Subsequently, we get p� ¼ 181:82 and

qp
� ¼ ð4:55; 4:55Þ (which coincides with the

decentralized case), and the utility uið4:55;
4:55Þ ¼ 41:32. The total utility is, then, Uðqp� Þ ¼
82:65, a reduction of 67% compared to the cen-
tralized case and 37% compared to the NE out-
come.
Sequential ordering (asymmetric information): As
shown in the theoretical results above, in this case
the Max–min strategy of each buyer in every round

is not degenerated so the performance of the sys-
tem converges to that under the smallest NE,
which in this case coincides with the largest NE.

LNE bidding mechanism (asymmetric information):
Suppose now that buyer 2 misrepresents his valu-
ation and bids b2ðqÞ ¼ 200q � 1:8q2 for any quan-
tity up to 25 units. In this case, the LNE bidding
mechanism would choose aLNEðv1; b2Þ ¼ ð8:57;
9:84Þ, and corresponding utilities would be
u1ð8:57; 9:84Þ ¼ 80:82, u2ð8:57; 9:84Þ ¼ 67:80. The
aggregate profit is, then, UðaLNEðv1; b2ÞÞ ¼ 148:61,
a reduction of 41% compared to the centralized
case and 14% improvement compared to the NE
outcome. The buyers can even do better by (mis)
representing themselves as single-minded buyers
and bid biðqiÞ ¼ 0 for qi 6¼ 25, and bið25Þ ¼ 3750,
i = 1, 2. In this case, the LNE bidding mechanism
would chose the centrally-optimal quantities
aLNEðb1; b2Þ ¼ ð25; 25Þ, and corresponding utili-
ties would be uið25; 25Þ ¼ 125. In summary, in
this example we have:

Uðqp� Þ ¼ UðqÞ ¼ UðqÞ\UðaLNEðb̂NEÞÞ ¼ Uðq�Þ:

7. Final Remarks

While group purchasing continues to generate more
interest in both theory and practice, several obsta-
cles exist for its successful implementation. Extant
literature recognizes fixed price mechanisms as
dominant mechanisms for group purchasing. Under
such mechanisms, GPOs require a significant
amount of information to find the optimal selling
price for its members. Even in the presence of com-
plete information, there is a chance of leaving a
potential surplus on the table, as a single selling
price might not be feasible for all potential buyers.
At the same time, buyers are reluctant to share
information, fearing exploitation by other buyers
within their purchasing group. This often leads to
the GPO operating with incomplete information and
generating suboptimal results. Moreover, most theo-
retical analyses thus far have focused on buyers
whose purchase quantities do not depend on the
prices paid. This may be a reasonable assumption
for commodity products, but it might not be appro-
priate for settings in which a lower price might
increase demand for products, or it might reduce a
buyer’s overage cost.
In this study, we attempt to address the abovemen-

tioned obstacles by adopting a different setting—
namely, cost-sensitive buyers who participate in a
GPO. The mechanism design problem addresses the
inherent dilemma of information asymmetry in
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purchasing groups and buyers’ reservations of
exploitation by their rivals. We investigate two types
of mechanisms for group purchasing: (a) ordering
mechanisms, and (b) bidding mechanisms. In joint
ordering mechanisms, the buyers announce directly
their order quantities to the GPO and pay for their
orders. In our analysis, we assume that the GPO pur-
chases the exact amount that the buyers order; that is,
the quantity purchased for a buyer corresponds to his
order quantity. This is a natural assumption if suppli-
ers’ capacities are not imposing any restriction so that
as long as the buyers can afford their payments, any
order quantity can be procured. This assumption is
sometimes referred to as customer sovereignty (Mou-
lin and Shenker 2001). When the GPO has to ration
limited supply among the buyers, purchase quantities
can be different than order quantities. Our model can
be extended to cover latter situations by defining an
order-purchase rule that would determine the quanti-
ties bought for the buyers in case of supply shortage.
Ordering mechanisms can operate either under cost-
sharing rules or under fixed prices where the GPO
announces a uniform price and buyers determine
their purchase quantities individually. In bidding
mechanisms, the buyers announce their valuations
for different quantities, and the GPO determines the
buyers’ purchase quantities and cost-shares according
to pre-announced schemes.
We start with a benchmark case by assuming

symmetric information and then move to asymmet-
ric information models. We introduce a sequential
joint ordering mechanism and a family of ordering
strategies for the buyers that achieve a lower
bound on the performance of the system. That is, if
some buyers strategically deviate from these strate-
gies, the remaining buyers are never worse off.
However, while joint ordering mechanisms are easy
to implement and understand, they can perform
suboptimally and lead to underperformance of
group purchasing. We propose a class of mecha-
nisms with some desirable properties that are
appealing from a practical point of view and com-
patible with the inner workings of some real-life
GPOs wherein buyers are required to submit their
quantity-price schedules (valuation functions). Our
mechanisms employ well-known cost-sharing rules,
such as the Shapley and the proportional rules,
with properties that are appealing from the point
of view of fairness and/or intuitiveness, and
choose allocations that are the largest Nash equilib-
ria (and also payoff dominant) in the correspond-
ing joint ordering games. We provide an algorithm
that obtains such allocations. As an alternative to
truthful mechanisms that might not be successfully
implementable under some scenarios, we offer an
alternative notion of implementation that is suitable

for cases with strategic complementarities among
players. By ensuring strategic synergies among the
buyers—that is, preventing buyers to exploit other
buyers via strategic behavior—our mechanisms are
able to guarantee a lower bound on the individual
utilities, as well as on total surplus. From an infor-
mation point of view, rational buyers should be
willing to participate in our bidding mechanisms
as long as it is commonly known that the GPO’s
purchasing cost function satisfies some reasonable
basic properties.
We confirm some desirable features of our bidding

mechanisms by comparing them with the fixed price
approach. We show that bidding mechanisms can
increase the purchasing volume and corresponding
utilities for the participating buyers. This result is in
line with some previous observations in the litera-
ture regarding the inefficiency of fixed price mecha-
nisms when buyers’ demands are unknown (Dana
2001). Our comparison with fixed price mechanisms
considers the upper bound of their performance by
assuming that the GPO has complete information
regarding buyers’ valuation functions. In reality, the
lack of information on a GPO’s side can significantly
reduce the performance of fixed price mechanisms,
thus our bidding mechanisms can easily outperform
them.
In practice, fixed price mechanisms are the easiest

to implement and understand, and they are appropri-
ate in settings with frequent purchases of larger vari-
ety of commodity-type products (for instance,
purchase of office supply). In environments of this
type, transaction volume might make it logistically
difficult and expensive to implement sequential join
ordering or to submit quantity-price schedules for all
items. However, for more expensive items that are
purchased less frequently (say, computers, furniture,
vehicles, and so forth), sequential joint ordering and
bidding both seem like reasonable alternatives that
might increase buyers’ benefits. The choice between
the two might depend on the features of GPO mem-
bers: while bidding mechanism in general outper-
forms joint ordering, determining quantity-price
schedules ahead of time might be a challenge for less
sophisticated buyers.
Lastly, we want to mention that our analysis

focuses on a single-period model. In an auction con-
text, this corresponds to one bidding round. When no
inventory is kept, this model extends naturally to a
multi-period case. Inclusion of inventory and buyers’
considerations for future periods make the problem
more difficult. In such a case, buyers’ valuations for
purchases in one period are affected by the possible
demands of all other buyers in upcoming periods;
thus the GPO might need to develop a measure that
smooths the quantities purchased across different

Hezarkhani and So�si�c: Group Purchasing Mechanisms

948
Production and Operations Management 28(4), pp. 933–954, © 2018 The Authors. Production and Operations Management published by

Wiley Periodicals, Inc. on behalf of Production and Operations Management Society

 19375956, 2019, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.12968 by U
niversity O

f Southam
pton, W

iley O
nline L

ibrary on [11/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



periods. Moreover, although our assumptions on
GPO purchasing costs capture well-behaved discount
schedules (e.g., all-unit discounts), they do not
address more complex discount schedules. We plan
to address these issues in follow-up work.
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Appendix A. Proofs

PROOF OF PROPOSITION 1. Budget-balanced and
voluntary properties clearly hold. To show monoto-
nicity, it suffices to show that for every i and every
S ⊆ N it holds that cðqS þ qiÞ � cðqSÞ� cðqS þ q0iÞþ
cðqSÞ � cðq0Sþ qiÞ� cðq0SÞ� cðq0S þ q0iÞ þ cðPj2S q

0
jÞ,

or that

cðq0S þ qiÞ þ cðqS þ q0iÞ� cðq0S þ q0iÞ þ cðqS þ qiÞ: ðA1Þ

For a concave function c, it holds that c[(1 � k)
x + ky] ≥ (1 � k)c(x) + kc(y) for k 2 [0, 1]. Note that
for � ¼ qS � q0S

qS � q0
S
þ qi � q0

i
we have �ðq0Sþ q0iÞþ ð1 � �Þ

ðqS þ qiÞ ¼ q0S þ qi. By concavity of c we have

cðq0S þ qiÞ� qS � q0S
qS � q0S þ qi � q0i

cðq0S þ q0iÞ

þ qi � q0i
qS � q0S þ qi � q0i

cðqS þ qiÞ:

Also, for �0 ¼ qi � q0
i

qS � q0
S
þ qi � q0

i
we have �0ðq0S þ q0iÞþ

ð1 � �0ÞðqS þ qiÞ ¼ qS þ q0i and subsequently by
concavity of c:

cðqS þ q0iÞ�
qi � q0i

qS � q0S þ qi � q0i
cðq0S þ q0iÞ

þ qS � q0S
qS � q0S þ qi � q0i

cðqS þ qiÞ:

By adding the last two inequalities we obtain (A1).

PROOF OF PROPOSITION 2. Budget-balanced and
voluntary properties clearly hold. To show monoto-

nicity, we must show that qi
qN
cðqNÞ�

q0
i

qNnfig þ q0
i
cðqNnfig þ q0iÞ� qi

q0
Nnfig þ qi

cðq0Nnfig þ qiÞ � q0
i

q0
N
cðq0NÞ:

This holds whenever the function e1
xþ e1

cðx þ e1Þ�
e2

xþ e2
cðx þ e2Þ with e1 [ e2 is non-increasing in x,

which holds by assumption.

PROOF OF LEMMA 1. We proceed in order:

(i) We use the result of Milgrom and Roberts
(1990) that shows that if a non-cooperative
game is supermodular (that is, with strate-
gic complementaries), then the set of pure
Nash equilibria is non-empty and forms a
lattice. A sufficient condition for the super-
modularity of a game is the supermodular-
ity of utility functions of all players, which
in our case means that for each buyer i 2 N
it must hold that when all other buyers
increase their strategies (that is, order
quantities), it would be more profitable for
buyer i to increase his as well. Thus, the
joint ordering game (N, Q, v, c; φ) is
supermodular if, for every q; q0 2 Q such
that q [ q0 and every i 2 N, we have
viðqiÞ � uiðqÞ � viðq0iÞþ uiðq0i; q�iÞ � viðqiÞ�
uiðqi; q0�iÞ� viðq0iÞ þ uiðq0Þ: The latter condi-
tion is clearly satisfied whenever the
cost-sharing rule is monotone.

(ii) Take i 2 N and consider q; q0 2 QNE such that
q [ q0. Note that by definition of NE we
have uiðqjuÞ � uiðq0i; q�ijuÞ. In this case, by
monotonicity of φ we also get uiðq0i; q�ijuÞ �
uiðq0juÞ; which implies uiðqjuÞ � uiðq0juÞ:

LEMMA A1. Let (N, Q, v, c) be a group purchasing
situation and φ a monotone cost-sharing rule. Let
q; q0 2 Q be such that q [ q0. If for i 2 N it holds that
uiðqi; q0�ijuÞ � uiðq0juÞ, then we have uiðqjuÞ �
uiðq0i; q�ijuÞ. Also, if for i 2 N it holds that uiðq0i; q�ijuÞ
� uiðqjuÞ, then we have uiðq0juÞ � uiðqi; q0�ijuÞ.

PROOF OF LEMMA A1. Suppose viðqiÞ � viðq0iÞ �
uiðqi; q0�iÞ � uiðq0Þ. By monotonicity of φ it must be
that uiðqi; q0�iÞ� uiðq0Þ � uiðqÞ � uiðq0i; q�iÞ: There-
fore, viðqiÞ � viðq0iÞ � uiðqÞ � uiðq0i; q�iÞ, which
yields uiðqjuÞ � uiðq0i; q�ijuÞ. The second part follows
from a similar argument.

LEMMA A2. Let (N, Q, v, c) be a group purchasing
situation and φ a monotone cost-sharing rule. Let q 2 Q
be such that, for every i 2 N, it holds that
uiðqjuÞ � uiðq0i; q�ijuÞ for every q0i \ qi. Then, we must
have q ≤ q.

PROOF OF LEMMA A2. If q 2 QNE, then q ≤ q. Other-
wise, if q 62 QNE, there must exist i 2 N such that
for some q00i [ qi it holds that viðq00i Þ � uiðq00i ; q�iÞ �
viðqiÞ � uiðqÞ � viðq0iÞ � uiðq0i; q�iÞ for every q0i \ qi.
In this case, let q00 ¼ ðq00i ; q�iÞ. By Lemma A1, for
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every j 2 N ∖ {i} we have vjðqjÞ � ujðq00Þ �
vjðq0jÞ � ujðq0j; q00�jÞ for every q0j \ qj. Now, either

q00 2 QNE, or there exists another buyer who prefers
a larger quantity. By repeating the above process we

converge to an element in QNE. Since q is the largest

element in QNE, we conclude that q ≤ q.

LEMMA A3. If c is concave non-decreasing and c(0) ≥ 0,
then c(x)/x is non-increasing on x > 0.

PROOF OF LEMMA A3. By definition of concavity we
have c(ky) ≥ (1 � k)c(0) + kc(y) ≥ kc(y) for c(0) ≥ 0.
For 0 < z ≤ y, let k = z/y ≤ 1. If we divide the for-
mer inequality by ky, we obtain cð�yÞ

�y ¼ cðzÞ
z � cðyÞ

y ,
and the proof follows.

PROOF OF LEMMA 2. The proof follows two steps:

Step 1. If 0\ p0\ p then qp � qp
0
: Let i 2 N and

assume the contrary; that is, suppose 0\ p0\ p and

q
p
i [ q

p0

i . By definition of q
p0

i we have viðqp
0

i Þ�
q
p0

i p
0 � viðqpi Þ � q

p
i p
0. This means viðqpi Þ� viðqp

0

i Þ �
p0ðqpi � q

p0

i Þ\ pðqpi � q
p0

i Þ, and accordingly, viðqpi Þ�
q
p
i p\ viðqp

0

i Þ � q
p0

i p, which contradicts the definition

of q
p
i . Therefore, it must be that q

p
i � q

p0

i for all i 2 N.

Step 2. For brevity, denote ~cðxÞ ¼ cðxÞ=x, and let
p� be the first-best price. By feasibility of the first-

best price we have p� � ~cðqp�N Þ. Suppose p� [ ~cðqp�N Þ,
and define p ¼ ~cðqp�N Þ. Since p\ p�, by previous step

we have qp � qp
�
. By Lemma A3 we also have

~cðqp�N Þ � ~cðqpNÞ and hence p � ~cðqpNÞ which means that
p is a feasible price. By definition of qp we have

viðqpi Þ � q
p
i p � viðqp

�

i Þ � q
p�

i p for every i 2 N. There-

fore, we have
P

i2Nðviðqpi Þ� q
p
i pÞ �

P
i2Nðviðqp

�

i Þ�
q
p�

i pÞ ¼
P

i2N viðqp
�

i Þ � cðqp�N Þ. By feasibility of p

we get
P

i2N viðqpi Þ � cðqpNÞ �
P

i2Nðviðqpi Þ � q
p
i pÞ �P

i2N viðqp
�

i Þ� cðqp�N Þ: The latter implies that UðqpÞ �
Uðqp� Þ, so p is also a first-best price, which com-
pletes the proof.

PROOF OF PROPOSITION 3. We proceed in sequence:

(i) q � q�: Note that with a budget-balanced
cost-sharing rule we have Uðq�Þ ¼P

i2N uiðq�juÞ �
P

i2N uiðqjuÞ for every q 2 Q.
Let q� be the largest system-optimal quantity
vector and suppose the contrary, that is,
there exists a non-empty set S ⊆ N such that
for every i 2 S we have qi [ q�i . Let

q ¼ ðqS; q�NnSÞ. Clearly, q [ q� and q ≥ q. By

definition of q, for every i 2 S we have
uiðqjuÞ � uiðq�i ; q�ijuÞ. By Lemma A1 we also

get uiðqi; q�ijuÞ � uiðq�i ; q�ijuÞ. For i 2 N ∖ S
monotonicity of the cost-sharing rule also
implies that uiðq�i ; q�ijuÞ � uiðq�juÞ. There-
fore, we obtain

P
i2N uiðqjuÞ �

P
i2N uiðq�juÞ,

which means that q is also a system-opti-
mal quantity vector. However, this is a
contradiction, as q� is the largest system-
optimal quantity vector. Thus, q is always
bounded from above by the largest sys-
tem-optimal quantity. It is straightforward
to see that UðqÞ � Uðq�Þ

(ii) Step 1. qp
� � q: The definition of qp

�
implies

that for every i 2 N we have viðqp
�

i Þ� q
p�

i p
� �

viðqiÞ � qip� for every qi 2 Qi. By Lemma 2,

we know that p� ¼ ~cðqp�N Þ where ~cðxÞ ¼
cðxÞ=x. For qi \ q

p�

i , Lemma A3 yields viðqiÞ�
qi~cðqp

�

N Þ � viðqiÞ� qi~cðqp
�

Nnfig þ qiÞ. Thus, for

every i 2 N and every qi � q
p�

i , it holds that

viðqp
�

i Þ� q
p�

i ~cðqp
�

N Þ � viðqiÞ � qi~cðqp
�

Nnfig þ qiÞ:
Using Lemma A2, we conclude that qp

� � q.

Step 2. It is straightforward to see that

Uðqp� Þ � Uðq�Þ. Thus, we need to compare

Uðqp� Þ and U(q). By definition of q we have

viðqiÞ� qi~cðqNÞ � viðqp
�

i Þ � q
p�

i
~cðqNnfig þ q

p�

i Þ.
By previous step and in conjunction with

Lemma A3 we have ~cðqNnfig þ q
p�

i Þ � ~cðqp�N Þ
which implies viðqiÞ� qi~cðqNÞ �
viðqp

�

i Þ � q
p�

i ~cðqp
�

N Þ: Adding over all i 2 N, we

conclude that UðqÞ � Uðqp� Þ, which com-
pletes the proof.

PROOF OF PROPOSITION 4. By definition, at q̂M no
buyer could improve his utility by unilaterally
increasing his order quantity. If, additionally, no
buyer would change his order to a smaller quantity
either, one can conclude that q̂M is a NE. Suppose

the contrary; that is, q̂M 62 QNE and there exist i 2 N

such that for some qi \ q̂Mi it holds that viðqiÞ�
uiðqi; q̂M�iÞ [ viðq̂Mi Þ � uiðq̂MÞ: If this is the case, by
Lemma A1 it also holds that viðqiÞ�
uiðqi; q�iÞ [ viðq̂Mi Þ � uiðq̂Mi ; q�iÞ for any q�i � q̂M�i.

Let t be the round in which qM;t
i [ qi for the first

time. In this round, we must have

viðqiÞ � uiðqi; qM;t�1
�i Þ � viðqM;t

i Þ � uiðqM;t
i ; qM;t�1

�i Þ: But
since qM;t�1

�i � q̂M�i, the latter leads to a contradiction.

We conclude that q̂M 2 QNE.

Hezarkhani and So�si�c: Group Purchasing Mechanisms

950
Production and Operations Management 28(4), pp. 933–954, © 2018 The Authors. Production and Operations Management published by

Wiley Periodicals, Inc. on behalf of Production and Operations Management Society

 19375956, 2019, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.12968 by U
niversity O

f Southam
pton, W

iley O
nline L

ibrary on [11/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



PROOF OF THEOREM 1. Consider a buyer i, as
described in the theorem. There are two possibilities
with regard to q̂i: either q̂i \ q̂Mi , or q̂i � q̂Mi .

Consider the first case; that is, q̂i \ q̂Mi and

uiðq̂juÞ [ uiðq̂MjuÞ. We first show that if q̂i \ q̂Mi ,

then it must also be that q̂\ q̂M. Suppose the con-
trary; that is, there exists a non-empty set
S ⊆ N ∖ {i} such that for every j 2 S we have

q̂j [ q̂Mj . Let t be the earliest round such that for the

first time for some j 2 S we have qtj [ q̂Mj . This

means that qt�1j � q̂Mj for all j 2 N. Since qtj is a Max-

min strategy for j, it must be that vjðqtjÞ�
ujðqtj ; qt�1�j Þ � vjðq̂Mj Þ � ujðq̂Mj ; qt�1�j Þ: If this is the case,

then by Lemma A1 we also get vjðqtjÞ�
ujðqtj ; q̂M�jÞ � vjðq̂Mj Þ � ujðq̂MÞ: However, the latter

means that ðqtj ; q̂M�jÞ is also a terminal order under

the sequence of Max–min strategies. Repeating this
procedure for all buyers in S, we conclude that there
must exist a terminal order under the sequence of

Max–min strategies such that q̂\ q̂M. Next, note that
in this case we have viðq̂iÞ � uiðq̂Þ � viðq̂iÞ�
uiðq̂i; q̂M�iÞ � viðq̂Mi Þ� uiðq̂MÞ; where the last inequal-

ity follows from the fact that q̂M is a Max–min strat-
egy. This, however, contradicts the assumption that

uiðq̂juÞ [ uiðq̂MjuÞ. Therefore, we conclude that if

the latter holds then it must be that q̂i � q̂Mi .
In the second case, that is, when q̂i � q̂Mi , a similar

line of argument as above yields that q̂ � q̂M. To
show that this strategy is non-detrimental to all
buyers other than i, consider a buyer j 2 N ∖ {i}.
By Lemma A1 we have vjðq̂Mj Þ � ujðq̂Mj ; q̂�jÞ �
vjðq̂Mj Þ� ujðq̂MÞ. Let t be the earliest round such that

qtj � q̂Mj . Because j is playing his Max–min strategy,

we must have vjðqtjÞ � ujðqtj ; qt�1�j Þ � vjðq̂Mj Þ�
ujðq̂Mj ; qt�1�j Þ: Since qtj � q̂Mj , it must also hold that

vjðqtjÞ� ujðqtj ; q̂�jÞ � vjðq̂Mj Þ � ujðq̂Mj ; q̂�jÞ; and as a

result we obtain vjðqtjÞ � ujðqtj ; q̂�jÞ � vjðq̂Mj Þ�ujðq̂MÞ:
Repeating the above line of reasoning leads to vjðq̂jÞ�
ujðq̂Þ � vjðq̂Mj Þ � ujðq̂MÞ; which completes the proof.

PROOF OF PROPOSITION 5. Consider the example with
two single-minded buyers, where v1ð1Þ ¼ v2ð1Þ ¼ 8,
c(1) = 10 and c(2) = 15. In this example, the system-
optimal quantities are q� ¼ ð1; 1Þ, which results in
Uðq�Þ ¼ 1. Consider a mechanism ða�; uÞ that
chooses the system-optimal quantities under every
bid schedule and is individually rational and budget
balanced. Suppose buyer one bids b1ð1Þ ¼ 7, while

buyer two is truthful. The system-optimal quantity
under this bid is still q� ¼ ð1; 1Þ. To preserve budget-
balancedness under this bid, we must have
u1ða�ðb1; v2ÞÞ þ u2ða�ðb1; v2ÞÞ ¼ 15, and to maintain
individual rationality, we need u1ða�ðb1; v2ÞÞ �
b1ð1Þ ¼ 7 and u2ða�ðb1; v2ÞÞ � v2ð1Þ ¼ 8. Hence, it
must hold that u1ða�ðb1; v2ÞÞ ¼ 7, which results in
u1ðb1; v2ja�; uÞ ¼ 1;that is, buyer 1 gains 1 unit of
utility by misrepresenting his valuation. Therefore, to
induce truthfulness, we must have u1ðvja�;
uÞ ¼ v1ð1Þ � u1ða�ðvÞÞ � 1. Symmetry of buyers’
valuations implies that we must also have u2ðvja�;
uÞ ¼ v2ð1Þ � u2ða�ðvÞÞ � 1. Adding the two inequal-
ities and using the budget-balancedness, we must
have Uðq�Þ ¼ v1ð1Þ þ v2ð1Þ � cð2Þ � 2, which is a
contradiction. Therefore, no individually rational and
budget balanced mechanism can implement the sys-
tem-optimal quantities truthfully in this case.

LEMMA A4. Let (N, Q, v, c) be a group purchasing
situation and φ be a voluntary and monotone cost-shar-
ing rule. Under the mechanism ðaLNE; uÞ, if for b 2 V it
holds that aLNE

i ðvi; b�iÞ � aLNE
i ðbÞ for i 2 N, then

aLNEðvi; b�iÞ � aLNEðbÞ.

PROOF OF LEMMA A4. Suppose the contrary; that is,

for i 2 N we have aLNE
i ðvi; b�iÞ � aLNE

i ðbÞ and for

S ⊂ N it holds that aLNE
j ðvi; b�iÞ\ aLNE

j ðbÞ for every

j 2 S. Assume S is the set of all such buyers, that is,

aLNE
j ðvi; b�iÞ � aLNE

j ðbÞ for every j 2 N ∖ S. Since

aLNEðvi; b�iÞ is the largest NE in the joint ordering
game ðN; Q; ðvi; b�iÞ; c; uÞ, for every j 2 N ∖ {i} we

have bjðaLNE
j ðvi; b�iÞÞ� ujðaLNEðvi; b�iÞÞ � bjðq0jÞ�

ujðq0j; aLNE
�j ðvi; b�iÞÞ for every q0j 2 Qj. Also, as aLNEðbÞ

is the largest NE in the joint ordering game
(N, Q, b, c; φ), for every j 2 N we have

bjðaLNE
j ðbÞÞ � ujðaLNEðbÞÞ � bjðq0jÞ � ujðq0j; aLNE

�j ðbÞÞ for
every q0j 2 Qj. Let q ¼ ðaLNE

S ðbÞ; aLNE
NnSðvi; b�iÞÞ. Note

that q [ aLNEðvi; b�iÞ. By Lemma A1, for every
j 2 N ∖ {i} and every q0j 2 Qj such that q0j \ qj, it

holds that bjðqjÞ � ujðqÞ � bjðq0jÞ � ujðq0j; q�jÞ. Finally,
we have viðqiÞ � uiðqÞ � viðq0iÞ � uiðq0i; q�iÞ for every
q0i 2 Qi such that q0i \ qi. By Lemma A2, we must have

q � aLNEðvi; b�iÞ. We arrived at a contradiction, which
implies that S = ∅ and the claim follows.

PROOF OF LEMMA 3. Let (N, Q, v, c) be given. We first
show that, given b�i 2 V�i, there exists no bid for
buyer i which (weakly) reduces his allocated quantity
and at the same time increases his utility; that is,
there is no bi such that aLNE

i ðvi; b�iÞ � aLNE
i ðbÞ and
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viðaLNE
i ðvi; b�iÞÞ � uiðaLNEðvi; b�iÞÞ

\viðaLNE
i ðbÞÞ � uiðaLNEðbÞÞ: ðA2Þ

To see this, suppose the contrary is true and assume
that the above holds for bi. Because aLNE is the lar-
gest NE, we have viðaLNE

i ðvi; b�iÞÞ�
uiðaLNEðvi; b�iÞÞ � viðqiÞ � uiðqi; aLNE

�i ðvi; b�iÞÞ for
every qi 2 Qi. In particular, for qi ¼ aLNE

i ðbÞ we have

viðaLNE
i ðvi; b�iÞÞ � uiðaLNEðvi; b�iÞÞ

� viðaLNE
i ðbÞÞ � uiðaLNE

i ðbÞ; aLNE
�i ðvi; b�iÞÞ:

ðA3Þ

Equations (A2) and (A3) hold at the same time only

if uiðaLNE
i ðbÞ; aLNE

�i ðvi; b�iÞÞ [ uiðaLNEðbÞÞ. By Lemma

A4, if aLNE
i ðvi; b�iÞ � aLNE

i ðbÞ, then aLNEðvi; b�iÞ �
aLNEðbÞ. Then, the voluntary and monotone proper-
ties of the cost-sharing rule implies that

uiðaLNE
i ðbÞ; aLNE

�i ðvi; b�iÞÞ � uiðaLNEðbÞÞ, which leads

to a contradiction. Therefore, if viðaLNE
i ðvi; b�iÞÞ�

uiðaLNEðvi; b�iÞÞ\ viðaLNE
i ðbÞÞ � uiðaLNEðbÞÞ, then

aLNE
i ðvi; b�iÞ\ aLNE

i ðbÞ, and by Lemma A4,

aLNEðvi; b�iÞ\ aLNEðbÞ. Given the properties of φ,
then for every j 2 N ∖ {i} it holds

that vjðaLNE
j ðvi; b�iÞÞ � ujðaLNEðvi; b�iÞÞ � vjðaLNE

j ðbÞÞ
� ujðaLNEðbÞÞ, which completes the proof.

PROOF OF THEOREM 2. Let (N, Q, v, c) be given and
let φ be a budget-balanced, voluntary, and mono-
tone cost-sharing rule. Note that by definition of
q� it must be that

P
i2N uiðq�juÞ �

P
i2N uiðqjuÞ for

every q 2 Q. Suppose that q ¼ q�. Under truthful
announcement, the LNE mechanism obtains q�.
Suppose the contrary is true; that is, there exists
i 2 N that benefits from an untruthful bid when
all others are bidding truthfully. Specifically,
assume for i 2 N there exists bi 2 Vi such that
uiðbi; v�ijaLNE; uÞ [ uiðvjaLNE; uÞ. By strategic
synergy property we infer that for all j 2 N ∖ {i}
we also have ujðbi; v�ij aLNE; uÞ � ujðvjaLNE; uÞ.
Therefore, we get

P
i2N uiðbi; v�ij aLNE; uÞ [P

i2N uiðaLNEðvÞjuÞ ¼ P
i2N uiðq�juÞ, where the

equality follows because aLNEðvÞ ¼ q ¼ q�. This is
a contradiction. We conclude that no buyer can
make a unilateral deviation and benefit from an
untruthful bid. Hence, LNE mechanism is truthful.

PROOF OF LEMMA 4. Let (N, Q, v, c) be a situation
with single-minded buyers and suppose φ is a bud-
get-balanced, voluntary, and monotone cost-sharing
rule. The mechanism ðaLNE; uÞ is clearly budget-

balanced and individually-rational. Consider buyer
i 2 N and suppose b�i 2 V�i is fixed. Since the
mechanism is individually-rational, if i receives
qi [ 0 under vi, any untruthful bid which results in
him receiving zero units cannot be beneficial. It is
straightforward to see that if an untruthful
announcement does not change the allocation of i,
the allocation to all other buyers also remain
unchanged, thus i’s utility remains unchanged. We
next show that if i receives zero units under vi, any
strategic bid which results in him receiving qi [ 0
cannot be beneficial. In this case, we must have
viðqiÞ � uiðqi; aLNE

�i ðvi; b�iÞÞ\ 0. Suppose the con-
trary is true; that is, there is bi 2 Vi, which makes i
better off. This means viðqiÞ � uiðaLNEðbÞÞ [ 0.
Because aLNEðvi; b�iÞ is a NE in the game
ðN; Q; ðvi; b�iÞ; c; uÞ, for every j 2 N ∖ {i} we must
have bjðaLNE

j ðvi; b�iÞÞ � ujðaLNEðvi; b�iÞÞ � 0. Because
aLNEðbÞ is also a NE in the game (N, Q, b, c; φ), for
every j 2 N ∖ {i} we must have bjðaLNE

j ðbÞÞ�
ujðaLNEðbÞÞ � 0. The latter, in conjunction with the
fact that viðqiÞ � uiðaLNEðbÞÞ [ 0, yields that aLNEðbÞ
is also a NE in the game ðN; Q; ðvi; b�iÞ; c; uÞ. How-
ever, as aLNE

i ðvi; b�iÞ\ aLNE
i ðbÞ we get by Lemma A4

that aLNEðvi; b�iÞ\ aLNEðbÞ, which contradicts the
fact that aLNE

i ðvi; b�iÞ is a LNE in the game
ðN; Q; ðvi; b�iÞ; c; uÞ. Therefore, in this case strategic
bidding cannot improve i’s utility. Hence, LNE
mechanism is also truthful.

PROOF OF THEOREM 3. Let (N, Q, v, c) be given and
suppose f is a function that yields a random element
in Q. For a risk-neutral buyer, the expected utility
under the bid schedule b is

P
q2Q uiððbjðqjÞÞj2Nj

aLNE; uÞfðqÞ. The bid announcement does not affect
the choice of q. Once a q is randomly chosen, i
receives the utility under the LNE mechanism for
the associated single-minded situation, wherein by
Lemma 4 truthful bidding is a NE. We conclude that
RLNE mechanism is also truthful.

PROOF OF LEMMA 5. We construct a NE that satisfies
the condition in Definition 12. Let v be the starting
bid schedule. If no i 2 N and bi 2 Vi exist for
whichviðaiðbi;v�iÞÞ�uiðaðbi;v�iÞÞ[viðaiðvÞÞ�uiðaðvÞÞ,
then v is a NE. Otherwise, let b¼ðbi;v�iÞ. If the strate-
gic synergy condition holds, then we
have vjðaiðbÞÞ�ujðaðbÞÞ�vjðajðvÞÞ�ujðaðvÞÞ for every
j 2 N. Now, if there is no i 2 N which can improve
their utility by submitting an alternative bid, then b
is a NE; otherwise, repeating the last step and updat-
ing b would not make any buyer worse off. Since the
buyers’ utility functions are bounded and every
move is improving, the process converges to a NE.
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PROOF OF THEOREM 4. Follows immediately from
Lemmas 3 and 5.

Appendix B. Algorithms

ALGORITHM 1 (THE LARGEST NE). Given (N, Q, v, c; φ):

(a) Let qi ¼ supQi for all i 2 N and set q ¼ ðqiÞi2N.
(b) If for all i 2 N it holds that uiðqjuÞ �

uiðq0i; q�ijuÞ for every q0i 2 Qi, stop.
(c) Otherwise, select i 2 N and find the largest

q0i 2 Qi such that uiðq0i; q�ijuÞ [ uiðqjuÞ.
(d) Set q ¼ ðq0i; q�iÞ and go to step (b).

ALGORITHM 2 (SEQUENTIAL JOINT ORDERING MECHANISM).
The sequential joint ordering mechanism with cost-sharing
rule φ works as follows:

(a) Let t = 0 and q0 ¼ 0;
(b) t  t + 1;
(c) Every buyer updates his order to qti , such that

qti � qt�1i ;
(d) If qt ¼ qt�1 stop and let q̂ ¼ qt, otherwise com-

municate qt to buyers and go to step (b);
(e) Calculate the final payments as uðq̂Þ.

Notes
1Some GPOs provide additional value-added service. For
example, healthcare GPOs offer benchmarking data, clini-
cal support, and so forth. The focus of our study is on
organizations that provide access to discounts of products
and services.
2Anand and Aron (2003), Chen et al. (2008), Chen and
Roma (2011), Zhou and Xie (2014), and Chen et al. (2005).
3We assume ample capacity on the suppliers’ side and use
the terms purchase and order quantities interchangeably.
We elaborate on situations where the two terms can be
different in section 7.
4Topkis (1979) and Milgrom and Roberts (1990) character-
ize the structure of QNE in games with strategic comple-
mentaries (that is, in supermodular non-cooperative
games). A game is supermodular if the utility of every
buyer is supermodular on the set of strategy profiles.
5Any price p > 9 in this situation is a first-best price.
6The equal sharing of aggregate profit in the two-buyer
situation used in the proof of Proposition 5 obtains an
allocation in the core of the corresponding cooperative
game, but one cannot make an assumption on information
symmetry, and as the proof shows, buyers in this example
would always be better off by not telling the truth.
7When all buyers are single-minded, the LNE mechanism
resembles the mechanism proposed by Moulin and Shen-
ker (2001) for allocating a public good, which achieves
truthful implementation.

8We assume the buyers are risk-neutral, thus if a buyer
is confronted with an uncertain outcome, the expected
utility over all possible outcomes is the basis for his
decision.
9A mechanism can allow for multiple Nash equilibria, some
of which do not satisfy the condition in Definition 12.
10The Shapley and proportional cost-sharing rules gener-
ate the same results in this situation.
11Note that in this situation the proportional rule satisfies
the monotonicity condition.
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