Visualizing laser ablation using plasma
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Abstract: High power laser ablation can lead to the creation of plasma and the emission of
bright light, which can prevent the direct observation of the workpiece. Alternative techniques
for enabling the visualization of the sample during laser machining are therefore of interest.
Here, we show that the plasma created during laser ablation, when viewed perpendicular to the
sample surface, contains information regarding the appearance of the sample. Specifically, we
show that deep learning can predict the 2D appearance of the sample, directly from 2D
projected images of the plasma produced during single pulse femtosecond laser ablation. In
addition, this approach also enables the identification of the pulse energy of the most recent
laser pulse used to machine the sample. This work could have applications across laser
materials processing in research and industry, in cases where there is a requirement for real-
time visualization of the sample surface during laser ablation.

1. Introduction

Laser ablation is a technique that involves using laser energy to remove material from a solid
surface [1-3]. The process entails directing a laser beam onto a material, which then transfers
energy to the material via the absorption of photons, resulting in the potential for melting and
vaporization [4,5]. Laser ablation has a wide range of applications, including cutting [6-8],
modifying surfaces [9,10], patterning [11,12], material removal [13,14], and depositing thin
films [15,16]. However, one of the limitations is often the inability to image the surface in real-
time, since laser ablation can lead to ionization of the laser material, which emits light that can
obscure the workpiece and the machined area [17-19]. As such, a method for imaging the
surface during machining could be invaluable.

Deep learning is a machine learning subfield that involves using artificial neural networks
with multiple layers to recognize patterns in data [20]. It has found diverse applications across
many fields, including image [21,22] and speech recognition [22], natural language processing
[23], and autonomous driving [24]. In the field of photonics, deep learning has been applied to
tasks such as predictive modeling [25], video processing [26], and control of laser systems [27].
Deep learning has the potential to significantly enhance the capabilities of laser physics and
other scientific domains, enabling more efficient data analysis and system optimization [28].
For example, deep learning has been used for modelling of fibre laser cutting [29], motion
control for laser machining [30], laser welding [31,32], imaged based monitoring of
femtosecond laser machining [33], laser sintering [34] and machining optimization [35].

Previous work has shown the potential for using the plasma plume created during laser
ablation for monitoring of laser welding [36], and for real-time composition monitoring for
additive manufacturing [37]. These results confirm that the appearance of the plasma generated
during laser materials processing is correlated with the experimental conditions. In this work,
we show that deep learning can enable identification of machining conditions directly from
images of the plasma generated during single pulse femtosecond laser ablation of glass. Firstly,
we show the ability to predict the pulse energy of the previous laser pulse used for machining
the sample directly from the plasma image. Secondly, we demonstrate the capability to generate
a 2D visualisation of the sample directly from the plasma image.



2. Experimental methods
2.1 Setup

Figure 1 displays a diagram of the experimental setup used in this work, in which single 190 fs
laser pulses from a Light Conversion Pharos SP laser system (central wavelength of 1030 nm,
maximum pulse energy of 1 mJ, repetition rate of 6 kHz) were focused onto the surface of a
0.5 mm thick glass coverslip. The coverslip sample was attached to a motorised Thorlabs XYZ
translation stage, which allowed for the positioning of the sample beneath a 20x objective to
ensure that the surface of the coverslip was at the imaging camera focus and the laser focus.
One camera (Basler, acA4112-20uc, 1914 x 1200 pixels, colour) was positioned above the
sample and was used to image the surface of the coverslip, and a second camera (Basler,
daA1920-160uc, 4096 x 3000 pixels, colour) was positioned perpendicular to the laser axis and
the surface of the coverslip and was used to image the plasma plume created during laser
ablation.
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Fig. 1. Simplified diagram of the experimental setup used for recording surface images and
plasma images before, during and after single pulse laser ablation. The plasma was imaged
perpendicular to laser axis. The images in the figure are experimental data.

2.2 Data collection and processing

This work was formed of two separate experiments, as shown by the schematics in Fig. 2. For
the first experiment (see Fig. 2(a) for concept), two laser pulses were used for each position on
the sample, with “pulse 1” having a random pulse energy in the range 0.15 to 1 mJ in steps of
0.01 mJ (where a pulse energy of 1 mJ corresponded to a power density of approximately
1.7x10' W/cm? on the sample), and subsequently the “sensing pulse” having a pulse energy of
1 mJ. Note, the sensing pulse ablates the surface of the sample and creates a plasma plume.
Both pulses were incident on the sample at the same position and on an unmachined region. A
camera image of the sample surface after pulse 1 was recorded (1200 ms integration time) and
a 2D projected plasma image during the sensing pulse (300 ms integration time) was recorded.



This process was repeated for random pulse energies for pulse 1, with each trial taking
approximately 8 seconds. After each trial, the sample was translated by 75 pm to present an
unmachined region. The sample was translated in a spiral formation, starting from the centre of
the spiral and translated in X and Y until a 10 x 10 grid of ablated holes was produced. After
completion, the sample was moved to an unmachined region and adjusted in the Z-axis to
refocus. This process of creating a 10 x 10 grid was repeated five times. One neural network
was trained to predict the pulse energy of pulse 1 directly from the plasma image of the sensing
pulse, and a second neural network was trained to predict the 2D appearance of the sample after
pulse 1 directly from the plasma image of the sensing pulse.

(a) Pulse 1
Random energy  Sensing pulse
(0.2-1 mJ) (I mJ)

—
+©_.
—
(b)

Multiple pulses
random positions ~ Sensing pulse Sample after pulse 1
(1 mlJ) (I mlJ)

> — »| Neural
network

Fig. 2. Concepts of (a) the first experiment where a random pulse energy ablated the surface then
a sensing pulse was incident onto the surface to produce plasma and (b) the second experiment
where random pulse positions ablated a surface then a sensing pulse was incident on the surface
to produce plasma. All images in the figure are schematics.

Neural | 03mJ
network pulse

Neural
network

Sensing pulse region of
random pulses

In the second experiment (see Fig. 2(b) for concept), only 1 mJ pulses were used. Randomly
positioned holes were ablated over the surface of the coverslip, with a density ensuring that
approximately 50% of the sample was ablated, with cases where two or more pulses could
potentially overlap. Again, a spiral formation of a grid of 10 x 10 single pulses were incident
on the surface, where a camera image (1200 ms integration time) of the surface was recorded
before the pulse, and a camera image (300 ms integration time) of the plasma during the pulse
was recorded. The randomness ensured that the pulses in a grid formation would be incident on
a surface with a random, yet identifiable morphology. Since only information from the region
ablated by the sensing pulse would likely be captured by the sensing pulse plasma, the images
of the random pulse ablation were masked so that only the sensing pulse region was used in the
training of the neural network. A neural network was trained to predict the 2D appearance of
the randomly machined sample directly from the plasma produced from a subsequent 1 mJ
pulse. All of the images of the ablated surface and the images of plasma for both experiments
were cropped and resized to 256 x 256 x 3 pixels prior to being used in training the neural
networks. The light used to illuminate the surface of the coverslip for imaging was blocked via
a shutter when the plasma images were recorded to enable higher signal-to-noise.



2.3 Neural networks
2.3.1 Pulse energy prediction

To predict the pulse energy of the first pulse, a convolutional neural network with a regression
output and 18 layers was used. The first layer was the plasma image from the sensing pulse,
and the final layer gave a numerical output that quantified the pulse energy of the first pulse.
The initial learn rate was 0.0002, with a learn rate drop factor of 0.1 and period of 50, whilst
the minibatch size was 2. The neural network was trained for 10 epochs. A total of 365 images
were used in the training of the network, with a 90:10 split for training/validation, with the
testing carried out on 25 images previously unseen by the neural network.

2.3.2 Ablated surface image generation

For each of set of experiments carried out, a separate convolutional generative adversarial
neural network (cCGAN) was trained to transform images of plasma into images of the ablated
surface. In the first case, images of the plasma from the sensing pulse were transformed into
images of the surface after the first pulse. In the second case, images of the plasma from the
pulse were transformed into images of the surface that had randomly positioned ablated holes.
The cGAN used in this work was based on the pix2pix architecture [38]. Both networks were
trained for 100 epochs, using a minibatch size of 2, and a generator and discriminator learn rate
of 2x10. The optimizer used was ADAM [39]. For the first case, 415 pairs of images were
used for training, and for the second case, 475 pairs of images were used for training. All test
images were not present in any of the training data.

2.3.3 Neural network training hardware

All neural networks were trained and tested on a computer that had an Intel® Xeon® Gold
5222 CPU @3.80 GHz and 3.79 GHz, 192 GB RAM and 3x NVIDIA A4050s (60 GB total).

3. Results and discussions
3.1.1 Pulse energy prediction

The capability of the neural network to predict the pulse energy of the first pulse from the
plasma image from the subsequent pulse is shown in the Fig. 3(a). The R? of the best fit is
0.9767, with a root-mean-square-error of 0.033 mJ, highlighting the accuracy of the neural
network. Figure 3(b) shows the neural network activation map at the dropout layer (the higher
the intensity, the greater the feature weighting in the neural network) and confirms that different
channel features contribute to the predicted value of the pulse energy. In some channels the
plasma near the surface has high activation, whilst in other cases the signal corresponding to
the expansion of the plume further away from the surface plays a role.
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Fig. 3. (a) The capability of the neural network to predict pulse energy directly from plasma
images and (b) activation maps at the dropout layer when feeding a 0.3 mJ pulse through
different channels.

3.2.1 Surface visualization for random pulse energy

Figure 4 shows the results of generating images of an ablated surface that was machined with
a random pulse energy, directly from the plasma image from a subsequent pulse with energy of
1 mJ. The plasma images in the figure therefore correspond to a pulse energy of 1 mJ, and the
label in each plasma image shows the pulse energy of the previous pulse. The actual and
generated images correspond to the appearance of the surface prior to the 1 mJ pulse ablation.
The comparison row shows the differences between the actual and generated images. The
structural similarity index measurement (SSIM), which is a measurement of the similarity
between two images (with a value of 1 meaning the images are identical), was calculated for
each of the generated image and associated actual image pairs. The SSIM was calculated for
0.22 mJ, 0.42 mJ and 0.97 mJ laser pulse energies, and gave values of 0.67, 0.69 and 0.71,
respectively. It is evident that the generated and actual images are very similar, with the greatest
difference being the splatter and the rim of the ablation hole, as shown clearly in the comparison
images.
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Fig. 4. The capability of the neural network to generate images of the surface resulting from a
pulse with a randomly chosen pulse energy, directly from an image of the plasma produced when
a subsequent pulse was incident on the sample.

Figure 5 shows the result of passing an input image through a specific layer of the neural
network, from the input image (layer 1) to the output image (layer 54). The images are grayscale
as only the first channel is shown. The figure illustrates the transformation process, occurring
predominantly due to the convolutional filters, in reducing the image down to a 2 x 2 pixel
image and subsequently back to the original image size.
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Fig. 5. Images of the first channel of each numbered layer as the result of feeding an input image
(layer 1) into each numbered layer. The figure shows the transition from a plasma image to the
generated surface image.

3.2.2 Surface visualization for random pulse positions

Figure 6 shows the process used for masking the experimentally recorded surface images, in
preparation for training of the neural network. The figure shows how an example region of the
randomly ablated surface is masked to only include the region of the sample that would be
ablated by the subsequent 1 mJ pulse. As stated in the experimental section, a smaller masked
circle was used for image generation to account for the potential variability in the size and shape
of the 1 mJ pulse.
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Fig. 6. The process for masking the experimentally recorded surface images, showing the
position of the 1 mJ pulse (red dashed circle) and the masked region (blue dashed circle).

Figure 7 shows the capability of a neural network to generate surface images of a randomly
ablated surface directly from an image of the plasma (column 1) from the subsequent 1 mJ
pulse. The SSIM was calculated for the generated (column 2) and actual images (column 3) and
had values of (a) 0.9029, (b) 0.9132, (c) 0.9077, (d) 0.8325 and (e) 0.8982. The fourth column
in the figure shows the difference between each pair of generated and actual images, with darker
pixels indicating a lower difference between the images. The generated images show similar
features, namely, two lines in (a), the structure in the top right of (b), curved line and straight
line at the centre of (c), line at the top left of (d), and two lines in (e). However, the locations
of these structures are not exact, and some features are missing, as highlighted in the difference
images.
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Fig. 7. The capability for visualization of a randomly ablated sample directly from the image of
the plasma created from a subsequent pulse with energy of 1 mJ.

Figure 8 shows examples of images of plasma (top row) resulting from the ionisation of (a)
air, (b) cyanoacrylate and (c) non-porous carbon tape for 1 mJ pulses, along with associated
images of the ablated surfaces (bottom row). The visible plasma emission for these examples
provides strong evidence that the technique demonstrated in this work could be extended to

many other materials.
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Fig. 8. Images of plasma emission (top row) and associated images of the ablated surfaces (bottom row) for (a) air,
(b) cyanoacrylate and (c) carbon tape.

4. Conclusion

In conclusion, we have shown the capability of deep learning for the identification of pulse
energies, and for the visualization of the ablated sample, directly from images of plasma
recorded during single pulse femtosecond ablation of glass. Specifically, we have shown that
neural networks can enable the identification of the pulse energy of the most recent laser pulse
used to machine the sample, and can enable predictive visualization of the surface morphology
of a sample directly from 2D projected images of plasma. This work could have applications
across laser materials processing in research and industry, particular in cases where there is a
requirement for real-time visualization of the sample surface during laser ablation but direct
observation of the sample is not possible due to it being obscured, for example by plasma.
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