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Abstract Joints are commonly used in many large-
scale engineering systems to ease assembly, and ensure
structural integrity and effective load transmission.
Most joints are designed around friction interfaces,
which can transmit large static forces, but tend to intro-
duce stick-slip transition during vibrations, leading to
a nonlinear dynamic system. Tools for the complex
numerical prediction of such nonlinear systems are
available today, but their use for large-scale applica-
tions is regularly prevented by high computational cost.
To address this issue, a novel adaptive reduced-order
model (ROM) has recently been developed, signifi-
cantly decreasing the computational time for such high
fidelity simulations. Although highly effective, signif-
icant improvements to the proposed approach is pre-
sented and demonstrated in this paper, further increas-
ing the efficiency of the ROM. An energy-based error
estimator was developed and integrated into the nonlin-
ear spectral analysis, leading to a significantly higher
computational speed by removing insignificant static
modes from the stuck contact nodes in the original
reduced basis, and improving the computational accu-
racy by eliminating numerical noise. The effective-
ness of the new approach was shown on an industrial-
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scale fan blades system with a dovetail joints, showing
that the improved adaptive method can be 2–3 times
more computationally efficient than the original adap-
tive method especially at high excitation levels but
also effectively improve the accuracy of the original
method.
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1 Introduction

The assembly of single components into a more com-
plex structure always leads to the presence of mechan-
ical joints. Most of mechanical joints are realized
through friction interfaces, which are often regarded
as the main source of non-conservative nonlinearities
in an assembled [6]. Other types of nonlinearities can
exist such as geometric nonlinearities, material nonlin-
earities and aerodynamic forces, but they still remain
less important than friction joints, especially for the
applications to turbo-machinery [1]. The contact fric-
tion can result in a significant reduction in the global
stiffness of the whole structure through the relative
motion on the joint interface, which also introduces
amplitude-dependent damping [11,16,19,28]. For an
accurate prediction of the dynamic behavior of the
assembly, the dynamics of the joint of interest must be
captured accurately [6]. In spite of the advance in com-
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putational capability, these inherent nonlinearities are
often ignored or linearized in the simulation because of
the large computational expense and numerical insta-
bility problems [35]. One feasible approach to incor-
porate the contact friction nonlinearities represented by
physically constitutive contact friction models into the
large-scale jointed structures is to employ ROM tech-
niques. In fact, they have been effectively proved that
it can reduce the size of associated high fidelity models
by ten even hundred orders with high accuracy [5].

Component mode synthesis-based ROMs are tradi-
tionally used for model-order reduction for the assem-
bly with contact friction interfaces [3,6,15,20,35]. Its
main idea is to consider the components in an assem-
bly as distinct sub-structural elements. The reduced
basis for such an assembly can be then constructed
with the linear normal modes and the static modes
associated with the retained interface nodes from the
sub-structural elements [38]. With this set of reduced
basis, Galerkin Projection is then performed formodel-
order reduction [23,35]. The subsequent reduction can
effectively eliminate most internal DOFs for each com-
ponent while retaining the whole DOFs on the joint
interfaces [39]. For example, Rubin method and Craig-
Bampton (CB) method are two of most efficient meth-
ods in a class of the CMS technique [8,25]. The benefit
of these CMS methods is that it is convenient to inte-
grate nonlinear contact constitutive model on the inter-
face. It however makes the size of final ROMs highly
depend on the size of contact interface, especially for
a large-scale system when contact interfaces are inten-
sive or meshed in a high density in order to recover
the stress level [31,35]. This would greatly limit the
computational efficient of classic CMS methods.

As a result, the concept of interface reduction was
put forward to condense static impulse modes [13].
The idea is to replace full size of static modes with
a much smaller subset of eigenvectors from a second
modal analysis of the system projected by interface
static modes. Becker andGaul applied a common inter-
face reduction technique to jointed structures in order
to optimize the classical CB constrain modes [4]. Wit-
teveen proposed another interface reduction approach
which is referred as joint interface mode (JIM) method
[31]. JIM is obtained also from an additional modal
analysis but froma statically condensed system through
respecting the Newton’s third law on the joint inter-
face. A comparative study of two method shows JIM
method has superior convergence rate over the com-

mon interface reduction method [4]. This is mainly
because JIM method allows more local flexibility on
joint interface leading to a better description of the rel-
ative motions on the joint interface. In split of a smaller
size of interfacemodes, thesemethods all require a sec-
ond eigenvalue analysis that would further increase the
off-line cost in model-order reduction. Witteveen also
proposes another approach called trial vector derivative
(TVD) method to improve the convergent rate in ROM
[22,32]. The idea is to enrich the reduced subspace by
accounting the effects of nonlinearities on the linear
CMS subspace. This TVD method is essentially based
on the modal derivatives which is obtained by the first-
order Tayler expansion to the linear CMS subspace.
The study shows the TVD method can achieve a bet-
ter convergence rate than the JIM method. This modal
derivative technique is also suitable for ROMs in geo-
metrical nonlinear problems [30,33]. However, for the
contact friction problems, it would further increase the
size of the reduced system and the associated modal
derivatives can be very much pre-loading dependent
[22].

To overcome some of the above challenges, the
adaptive CMS method was developed [36,37] that
allowing the set of static modes update adaptively
according to the varying contact conditions on the
interface during the on-line computation. This adap-
tivity can lead to a considerable computational sav-
ing for jointed structures with micro-slip motions. The
essence of this method consists in a re-written equa-
tion of motion describing the assembled structure with
an underling linearized system and an adaptive inter-
nal variable that accounts the nonlinear effects from
contact interface. Such a formulation would allow the
subsequent ROM to remove a number of redundant
static modes associated with sticking nodes adaptively.
This adaptive ROMcan also be conveniently integrated
with the popular harmonic balance method (HBM)
to obtain the most interesting steady-state response
when the system is subjected to the periodic excita-
tion. The study show this adaptive CMS method can
make the simulation 50–100 times faster than the clas-
sic CMS-based method. It provides a very promising
and appealing approach for the application to large-
scale joint assemblies when the contact interface is
enormous or meshed in a high density. Although the
original adaptive method works very well, there is still
room for improvement. The original adaptive method
[36] includes all the static modes associated with the
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stick-slip nodes on the contact interface. Many of these
stick-slip nodes are actually in a sticking dominated
mode. It means they contribute very tiny amount of
energy dissipation which does not affects the dynam-
ical behavior. These related static modes can be fur-
ther removed from adaptive reduced-order model with
a proper error estimator. Alternatively, some of the
nonzero small nonlinear penalties in the original adap-
tivemethodmight be not actually related to the partially
sliding nodes but due to the errors from automatic size
updating algorithm. Including these penalties however
would compromise the accuracy of this adaptive CMS
method.

Given that, this work proposes an improved adap-
tive ROM technique to enhance the computational effi-
ciency and accuracy of the original adaptive method.
Anenergy-based error estimator is developed and intro-
duced into automatic size update algorithm to filter out
those sliding nodes with little effects on the dynamic
behavior. We consider an industrial-scale problem as
the test case. A large-scale finite element fan blade sys-
tem with dovetail joints is used. The classical CMS-
based Rubin method and original adaptive method
are used to benchmark the results obtained from the
proposed method. The paper is organized as follows:
firstly, the formulation of the adaptive ROM and the
proposed error estimator is presented; it is followed by
the detailed description of automatic size update algo-
rithm with error estimator; after that, the fan blade FE
model as well as its modal characteristics and the gen-
eral contact mechanics in its joint will be described; the
comparison of forced responses and associated com-
putational cost between the proposed and benchmark
methods is then presented and discussed followed by
the conclusion.

2 Formulation

2.1 Equation of motion

Figure 1 illustrates a general assembled structure con-
sist of two deformable solids coupled by a friction
joint. Joint contact interface between two solids is in
red where the localized contact friction nonlinearity is
introduced into thewhole dynamical system. The equa-
tion of motion between these two deformable bodies
with the friction joint can be discretized with finite ele-
ment methods as:

Fig. 1 An illustration of a jointed structure with two deformable
bodies
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ü1

ü2
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whereM1, M2, K1, K2 is themass and stiffnessmatrix
of these two deformable bodies; F1

ex , F
2
ex is the har-

monic external forced excitation on these two compo-
nents, respectively;B1, B2 is the signedBooleanmatrix
acting on the contact interface associated with the con-
tact nodes on joint interface; Fnl is the contact friction
force vector on the joint interface, which is a function
of the joint nodes displacement u1b, u

2
b.

2.2 3D node-to-node contact model

The contact interfaces are discretized into dense mesh
grids by using 3D node-to-node contact elements
shown in Fig. 2 to have a realistic physical representa-
tion of contact friction behaviors. Each 3D friction ele-
ment ismade of two coupled Jenkins elements tomodel
a two-dimensional in-plane motion, which are coupled
with a spring in the normal direction. Normal contact
conditions are defined as two states: in-contact mode
and separation mode. If predicted normal force FN (t)
becomes negative, the separation occurs between two
contact points and the normal contact force becomes
zero. Whereas if FN (t) is positive, the contact pair is
in contact and thus there are two types of tangential
contact states: one is the sticking mode and the other is
the slippingmode. The two surfaceswould remain stick
if the total contact force (FT (t) and FN (t)) stays inside
the friction cone. However, when the predicted friction
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Fig. 2 An illustration of 3D
node-to-node contact
element

force reaches the maximum static frictionμFN (t), two
surfaces would start to slip, and the energy is dissi-
pated through the contact interface. Six parameters are
used to characterize the properties of this element: the
element area A, the friction coefficient μ, the normal
static load N , the normal static gap g0 and the tan-
gential kt and normal kn contact stiffness (also known
as ‘penalty’ coefficients). The detailed formulation of
this 3D node-to-node contact elements can be found in
[21,26]. There are also many friction rigs that are used
to experimentally identify related contact parameters
[9,10,18].

2.3 Modified equation of motion

The adaptive ROM approach is formulated based on a
linearized system. The general EOM in Eq. (2) is lin-
earized with contact stiffness kt and kn assuming the
whole contact interface is in a sticking mode. The lin-
earized EOM of the system with joint contact stiffness
matrix can be expressed as:
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where KJoint is a full transformed global stiffness
matrix of the local stiffness matrix Knl,nl

Joint where ’nl’
is associated with joint interface DOFs. The linearized
stiffness matrix in Eq. (2) is denoted as KL.

The prediction from this linearized system is accu-
rate if the whole contact interface is in a purely sticking
condition. However, if any of the contact pairs is in a
slipping or separation condition, the prediction might
be not accurate. As such, an internal variable Δp is

introduced into the Eq. (2). The full dimension of Δp
is the half number of the total dovetail DOFs (3× Nc).
Nc is the number of contact nodes. The expression of
the internal variable for i th contact pair in a local coor-
dinate system can be formulated as:

Δpi =
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(3)

where Δub is the assembly of relative displacement of
all the contact pairs in joint interfaces. Δpi becomes
a zero vector when the contact pair is in a full stick-
ing condition. By adding the internal variable into lin-
earized system, the finalmodifiedEOMfor the adaptive
approach can be written as:
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where K1,nl
Joint is the transformed joint matrix relating to

the DOFs of Solid 1 and the internal variableΔpi . Sim-
ilarly, K2,nl

Joint is the one associated to the Solid 2. Knl,nl
Joint

is the squared joint stiffness matrix. Knl,1
Joint, Knl,2

Joint is

the transposed matrix of K1,nl
Joint, K2,nl

Joint. MG, KG are
used to denote as the new assembled global mass and
stiffness matrix.
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2.4 Adaptive transformational matrix

The adaptive reduced-order model can be then con-
structed from the new reformulated dynamic system in
Eq. (4). The reduced basis for the adaptive approach
includes two types of reduced basis: one is the linear
normal modes and the other is constrain modes related
to the interface DOFs. The ROM can be therefore con-
structed with ψ and φ as:⎡
⎣ u1

u2

Δp

⎤
⎦ =

[
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0 I

] [
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]

=
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�

[
η

ΔpR

]
(5)

where φ are the modes of the linearized system from
eigenanalysis of Eq. (2); ψ are the constrain modes
obtained by imposing unit displacement on the DOFs
associated with internal variable Δp; η is the modal
participation factors of the selected dynamic modes;
ΔpR is the nonzero part ofΔp; B is the Boolean matrix
that to capture the nonzero part of Δp; � is the overall
transformation matrix for the adaptive reduced-order
model. The size of � depends on the nonzero part of
Δp namely the contact conditions of the contact nodes.
This would allow a significantly second model-order
reduction to save computational cost. The evaluation
of φ and ψ can be found in [36]. The adaptive ROM
system is then obtained using themodal projectionwith
the �:

MR = �T MG�,

KR = �T KG� (6)

whereMR, KR is the reduced global mass and stiffness
matrix.

2.5 Error estimator

As described in Sect. 2.4, the second reduction (from
Δp to ΔpR in Eq. (5)) in original adaptive method is
achieved by the adaptive removal of zero terms in inter-
nal variable Δp. This process can be actually further
improved on the following three aspects:

– For the nonlinear vibrational computation of a
large-scale system, numerical errors are always
existing due to the use of iterative solvers to achieve

pre-setting tolerance, especially for a large-scale
system. Δp therefore would tend to include a lot of
small nonzero terms due to such numerical errors.
Using the original adaptive method, these unavoid-
able numerical noise would unnecessarily increase
the size of nonzero part in the adaptive ROM, and
that would result in a lower computational speed.
Furthermore, it is difficult to set an explicit toler-
ance level beforehand within the original updating
method to eliminate such numerical errors as it is
pretty much case dependent.

– The algorithm for real-time automatic size update
[36] may still introduce some errors itself. This
is because the contact conditions to update the
reduced system is predicted from previous solu-
tion. Although acceptable, this could lead to some
unavoidable updating errors. Using the original
updatingmethod, nonzero terms in the internal vari-
able due to these errors would be regarded as the
nonlinear penalties from the contact nodes. This
would compromise the accuracy and computational
speed of this adaptive ROM method.

– The second reduction in original method (shown
in Eq. (5)) retains all the sliding contact nodes
in ΔpR . Many of these sliding nodes are actually
in a partially sliding (namely stick-slip) condition.
Some of these sliding nodes seem to be very small
energy dissipation on the interface leading to very
little contribution to the overall dynamic perfor-
mance. Therefore, removing the staticmode associ-
atedwith these nodegives an additional opportunity
to reduce the model further.

The function of error estimator in classical CMS
method is to quantify to what degree each inter-
face static mode influences the numerical error in the
reduced solution [13]. Itwould allow for automatic con-
trol of the error in the reduced model and thus optimize
suitable dimensions of the subspace associated with
static modes. To overcome some of the above limita-
tions in original adaptive ROM, a novel real time error
estimator is proposed herein on the improvement of
the second reduction from the Δp to ΔpR in Eq. (5).
The error estimator is based on the energy dissipation
from the contact nodes in the joint interface. For i th

in-contact joint node, the corresponding part in error
estimator ei can be expressed from the integration of
tangential friction force as:

ei =
∫ T

0
Fi
nl,x (t)Δu̇ib,x (t)dt +

∫ T

0
Fi
nl,y(t)Δu̇ib,y(t)dt (7)
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where T is a period of vibrational cycle. The amount of
energy dissipation ei indicates to what extent the asso-
ciated static modes influence the vibrational behavior.
Each contact node has a corresponding part in error
estimator that would be updated at each excitation fre-
quency point. ei is supposed to be very close to zero
of the i th contact pair is in a pure sticking mode. The
associated static mode can be then removed from the
reduced subspace without having much impacts on the
dynamics. In this way, this error estimator is used as a
physical indicator to remove or add staticmodes related
to all the contact nodes adaptively. To be noted, in case
of separation in a contact pair i , a large value is assigned
to ei . The associated static modes for this pair would be
retained. The Δp in Eq. (3) can be then updated using
this error estimator expressed as:

Δpi = [
0 0 0

]
if ei ≤ ε (8)

where ε is the energy dissipation level tolerance (unit:
J) for each contact node. The energy dissipation level ei

at the i th contact node less than the εwould be removed
from the reduced basis�. ε needs to be defined before-
hand based on the allowable case-independent ratio of
the energy dissipation level to the external energy level,
e.g., 10−6. In this way, the reduced internal variable
ΔpR shown in Eq. (5) can be then further reduced to
eliminate all the nodes that fall under this threshold.

3 Steady-state vibrational response computation

3.1 Harmonic balance method

Multi-harmonic balance method (HBM) with alternat-
ing frequency time scheme (AFT) is used to evaluate
the steady-state dynamic response of the system [14].
The basic idea of HBM is to decompose nonlinear
dynamic response using truncated Fourier series with
NH harmonic series:

q(t) =
NH∑
n=0

Real
{
Q̃ne

inω0t
}

(9)

where q(t) is time-dependent dynamical response of
the reduced system; Q̃n is the complex harmonic coef-
ficients of n harmonic. AFT technique is used to switch
the response between frequency and time domain in
order to calculate the contact friction forces in time

domain where the contact law is defined [15]. The con-
tinuation technique that include prediction and correc-
tion stages is employed to track the nonlinear frequency
response with any soften or harden behavior. More
details with respect to HBM, AFT and continuation
techniques can be found in [15,27,35]. In the follow-
ing case study, the Secant method is used for predictor
while Arc-length method for the corrector.

3.2 Automatic size update with error estimator

The algorithm to achieve the automatic size updatewith
error estimator is presented in Algorithm 1. The basic
steps of this implementation are the same as that in
original adaptive method [36] which would be briefly
described in this section. The main difference from
the original adaptive method in [36] is that the pro-
posed error estimator is used in contact condition re-
evaluation process allowing to update the reduced sys-
tem more efficiently. This part is highlighted in blue in
Algorithm 1.

Algorithm 1: Improved adaptive size update with
error estimator

Result: [Q̃1, Q̃2, . . . , Q̃end ], [ω1, ω2, . . . , ωend ]
initial converged solution: Q̃o, ωo, Bo
initialization: ω = ωo, Q̃R = Q̃o, B = Bo;
while ωstart ≤ ω ≤ ωend do

Classical continuation:
(1) Predict: (Q̃ p

R, ωp) = f pre(Q̃R, ω);

(2) Correct: (Q̃c
R, ωc) = fcor (Q̃

p
R, ωp, MR, KR,�);

Expand: Q̃ = fexand (Q̃c
R,�);

Save: Q̃, ωc;
Contact condition re-evaluation:
(1) Call Fnl(Q̃c

R,�) to calculate contact force;
(2) Evaluate (Δpi , ei ) (Eq. 3 and Eq. 7) for each
contact node i ;
(3) Update Δpi with ei for each contact node i (Eq. 8);
(4) Obtain BNew for nonzero part in updated Δp;
if BNew �= B then

Update reduced system MR, KR,� with BNew
(Eq. 5 and Eq. 6);

Update the size of the converged solution Q̃c
R with

BNew;
end
Q̃R = Q̃c

R ; ω = ωc; B = BNew; ;
end
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The computation starts from the initial converged
solution (Q̃o, ωo) where the initial Bo shown in Eq.
(5) is full including all the joint DOFs. After the ini-
tialization, a while loop begins to compute the forced
response for the excitation frequency between ωstart

and ωend. Q̃R is used to note the harmonic coefficient
vector after the second adaptive reduction. For each
new frequency, the classical continuation technique
(include the prediction and iterative correction stage)
is performed firstly to obtain the converged solution
(Q̃R, ωc). The converged solution is then expanded to
ensure that all the solutions have the same dimension
and saved.

It is then followed by the contact condition re-
evaluation to update B for the proposed adaptive ROM.
The nonlinear force function coupled with AFT tech-
niques is called to re-calculate Fnl using the converged
solution. It is worth noting that not only the predicted
sliding or separation nodes, but all the contact nodes are
evaluated. Different from the original algorithm, both
the internal variable Δp and error estimator e are eval-
uated with the formulation in Eqs. (3) and 7 separately.
It is followed by a further update of theΔpwith e using
Eq. (8) to remove the nodes with extremely low energy
dissipation. After that, Bnew can be obtained with the
updated Δp by retaining the nonzero terms. It is worth
noting that such a contact condition re-evaluation is
only performed once at a frequency. The additional
computing cost is ignorable comparing to the overall
computational cost.

After the re-evaluation, the reduced system needs to
be updated for the next frequency point. However, if
the new Bnew is the same as the B in last frequency, the
reduced system remains the same and the computation
jumps to the evaluation of the next frequency point.
Otherwise, the reduced system MR, KR,� needs to be
updated according to the Bnew in Eq. (5). This iterative
process continues until the tracing frequency reaches
the end of defined excitation frequency range.

One of big advantages in this automatic updating
algorithm is the classic continuation part in the HBM
framework remains unchanged. The error estimator
can successfully detect contact nodes that never slip
but which were erroneously retained in the original
adaptive reduced system. These identified nodes can
then also be removed due to their very limited energy
dissipation which has a minimal effect on the over-
all dynamic performance. This can further increase
the computational efficiency despite the evaluation of

error estimator would take some additional computa-
tion cost. Furthermore, the error estimator can poten-
tially help to reduce the errors caused by updating
errors. The following case study is going to evaluate
how much improvement the new approach really is.

4 Case study: fan blade system

Fan blade system is the largest bladed disc assembly
in a modern turbofan engine that provides the over
60% thrust to propel the aircraft [2,34,38]. This fan
assembly consists of a number of blades and a disc
on the rotating shaft. They are commonly assembled
through a disk via curved or straight dovetail roots.
Such a design ensures easy assembly and safe load dis-
tribution, and also provides essential damping to the
system. The state-of-the-art linear vibration analysis
often leads to an over-design of the components by
ignoring the nonlinearities from the dovetail joint due
to the complex and strong nonlinear dynamic nature in
the friction joint. To further improve the fan blade root
design, it is therefore necessary to take these nonlin-
earities into account for a better dynamic design [29].
However, performing nonlinear vibrational analysis is
a well-known academic and industrial challenge partly
due to the enormous computational expense [7]. This
large-scale fan blade system is therefore used as the test
case in this paper.

4.1 Finite element model

Figure 3a shows a full scale fan blade system in turbo-
fan aero-engine that includes more than two dozens
of blades (in blue) and one disc (in red) connected
via curved dovetails joints. The fan blade system is
cyclic symmetric, and one sector of the assembly is
considered for this study. Figure 3b shows a sector of
the bladed disc assembly where the blade and disc are
entirely made of Titanium considered as a homoge-
neous and isotropic material. The blade has a low slen-
derness aspect ratio, i.e., 4, and an increasing twist from
root to tip. This high fidelity finite element model was
built with the quadratic hexahedral element and each
node has 3 DOFs. The model of each sector consists
of a blade of 27,707 nodes and a cyclic symmetric part
of the disc of 13,826 nodes. Figure 3c show the geom-
etry of zoomed dovetail joint that connects the blade
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Fig. 3 a Fan system assembly, b One fan sector, c Dovetail joint, d Contact surface

Fig. 4 The first four mode shapes of the fan bladed-disk

and disc. The matching mesh is used in the joint con-
tact interface between the blade and disc in order to
employ the Jenkin element for accurate prediction of
contact friction forces. The description of the contact
element is detailed inSect. 2.2. Figure 3d shows the root
contact interfaces (in blue) between the blade and disc.
For each dovetail joint, there are 208 contact node pairs
on the joint interface in this model leading to 208 × 6
contact friction DOFs in total. Each of the contact pair
has its own local coordinate system due to the curved
contact interface.

Figure 4 shows the first four linearizedmodes of one
fan bladed disc sector where the whole joint surface is
in a fully sticking condition. The relative spacing of
the first four frequencies is 1:1.3:2:4. Due to the twist
nature of fan blade, the type of the first fourmode shape
are very mixed. The first four mode shapes are dom-
inated by out-of-plane flapping, edgewise and torsion

Fig. 5 An illustration of contact loads and external loads in the
fan blade dovetail

motions. In-plane bending, and axial stretching do not
appear in the first sixmodes. In this paper, the nonlinear
effects of dovetail joint on the dynamics related to the
first flappingmode is further studied for the assessment
of proposed ROM approach.

4.2 Contact friction motion in dovetail joint

Figure 5 shows the contact loads and external forces
on the dovetail joints in a fan blade system. The fan
is mainly loaded by the centrifugal force T generated
by the rotation of the shaft around the engine axis. The
vibration motion on the blade is mainly derived from
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Fig. 6 Comparison of
forced frequency response
between adaptive ROM- and
CMS-based Rubin method
at different excitation levels

the unsteady aerodynamic loading due to the rotation.
The vibration is then transmitted to the disc through
a closed-form connection via the dovetail joint that
would produce high local contact normal and tangen-
tial stress fields P and Q on the contact surface [24].
In spite of the dovetail joint with high centrifugal load-
ing, micro-slip motion is often present at the edges of
the interface due to the vibrational load. This stick-slip
zone in the joint allows for local slipping at the extremi-
ties of the contact zone.On the positive side, thismicro-
slipmotion can dissipate the vibrational energy through
the frictionmechanism that can contribute to the reduc-
tion of maximum dynamic stress in the blades [12,17].
Alternatively, this would give rise to fretting fatigue
problems leading to early cracking initialization as a
result of a combination of low cycle centrifugal load-
ing during taking off and landing and high cycle vibra-
tional loading. This study is focused on the assessment
of the effects of such a micro-slip motion in dovetail
joints on the dynamic response with high fidelity FE
model.

5 Results and discussions

This section is to demonstrate how well the improved
ROM technique works with the fan blade system com-
paring to the original method and show whether the
adaptive ROM method can be used for an industrial
scale problem. The results using the original adaptive
method is going to be present and analyzed firstly. It is
because that the original method has not been applied

to the large-scale structures yet. It would be therefore
sensible to see firstly how the original adaptive method
works for large models, before moving on to assess the
improved method with error estimator in comparison.

5.1 Original adaptive ROM method

Figure 6 shows the FRFs of the fan bladed disc system
using the original adaptivemethod andRubinmethod at
four excitation levels, namely 1N, 3N, 5Nand 8N.The
point force is applied to the node at the bottom of the
fan blade close to the dovetail joint in the out-of-plane
direction. The dynamic response is measured from the
node in the middle of the fan blade system. The CMS-
based Rubin method is used so that the effectiveness
of the original adaptive method can be demonstrated.
3 harmonics are used in HBM and maintained for all
the simulations. The pre-loading pressure distribution
at the contact interface under the centrifugal loading is
assumed to be uniform. It should be calculated from the
nonlinear static analysis in a real engineering design.
As a classical CMS method, the formulation of the
Rubin method can be found in [25,35,36]. The res-
onance amplitude of forced response decreases gradu-
allywith the increase in the excitation levels. This is due
to the increase in the energy dissipation from the dove-
tail joint. Comparing to the Rubin method, the origi-
nal adaptive method can obtain very similar nonlinear
dynamic response of fan blade disc at all the four exci-
tation levels. However, there are still some discrepancy
in the forced response between the original adaptive
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Fig. 7 The contact condition of interface nodes at different excitation levels (Red circle: stick-slip node)

method and Rubin method. The maximum difference
occurs in the frequency close to resonance at high exci-
tation level of 8N, which is around 2.2% lower than
that from Rubin method. It means the original adap-
tivemethod overestimates the energy dissipation on the
joint interface. This is due to the errors introduced from
automatic size updating algorithm as discussed previ-
ously in Sect. 3. The adaptive method utilizes the pre-
dictions from the current convergent solution to update
the ROM for the evaluation at the next frequency point.
Although this method has approved accurate enough
for most small scale systems [36], it may still lead to
that some elements are eliminated that maywant to slip
next time round for a large-scale system.

Figure 7 show the tangential contact condition of
208 contact pairs on the joint interface at each fre-
quency point. The frequency point is corresponding
to the frequency in forced response in Figure 6. The
red circle indicates the node is in a stick-slip condi-
tion. It shows the number of stick-slip nodes increase
significantly when the frequency approaches the res-
onance. As expected, the region where the stick-slip
node locates expands on both sides of the resonance
frequency with the increase in excitation levels. The
increase in stick-slip nodes contributes to a higher

energy dissipation through the contact friction in the
dovetail. This is why the peak of forced response
decreases in spite of the increase in the excitation level.
Figure 8 compares the distribution of the stick-slip node
(in red) and purely sticking node (in blue) on the con-
tact surface in the resonance frequency between differ-
ent excitation levels. The sliding contact node starts to
appear from the edge of the inner surface and the mid-
dle of the outboard surface. This is because the relative
displacement in these areas is relatively large when the
blade is under the first flapping motion. As the excita-
tion level increases, the region with the stick-slip node
spreads towards to the middle of the inner surface and
the edge of the outboard surface. The more these stick-
slip nodes, the higher the energy dissipation. This trend
of the increased number of stick-slip nodes is consistent
with the reduced resonance amplitude in Fig. 6.

Figure 9 compares the size of the adaptive reduced-
ordermodel at each frequency point for these four exci-
tation levels. One can clearly observe that the size of
reduced system is updated consistently according to the
number of the sliding contact nodes as shown in Fig.
7. At a low excitation level, for example 1N, all the
contact nodes are in a sticking condition. The size of
system remains at a minimum size of 700 for all fre-
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Fig. 8 The distribution of
stick-slip nodes (red) and
stick nodes (blue) in the
projected contact surface at
the resonance a F = 8N b
F = 5N, c F = 3N, d
F = 1N
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Fig. 9 The size of adaptive reduced-order model at different excitation levels
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Fig. 10 Computing
speed-up factor of adaptive
ROM against the
CMS-based Rubin method

quency points, which is 100 × (2NH +1). 100 is the
total number of vibrational modes from the blade and
disc. NH is the number of harmonics used in harmonic
balance method. Consistent with contact condition,
as the excitation level increases, the size of adaptive
reduced system increases and expands toward to the
further sides of resonance frequency point. Figure 10
shows the computational speedup between the original
adaptive ROM- and CMS-based Rubin method at dif-
ferent excitation levels. The computing speedup varies
from 36 to 120 as the excitation level decreases from
8 to 1N. The advantages are somewhat reduced as full
slip is reached, since in that case all nonlinear modes
need to maintain in the model. This demonstrates that
the original adaptive ROMmethod can achieve impres-
sive computing speedups for such large-scale industrial
models as it is similar to the small scale systems studied
in [36].

Now that it can be confirmed, that the previous orig-
inal method can be used for large-scale systems, the
effectiveness of the improved adaptive ROM on the
further improvement of computational efficiency will
be then evaluated.

5.2 Improved adaptive ROM method

Figure 11 shows the comparison of the FRFs between
the improved adaptive ROM- and CMS-based Rubin
method at the same four excitation levels. The improved
adaptiveROMwith error estimator canmore accurately
capture the forced responses obtained from the Rubin

method at all the excitation levels. In comparison with
Fig. 6, one can clearly observe the improved adap-
tive method reduces most of the difference between
the original adaptive method and Rubin method. This
improvement is more obvious at the excitation levels
when the sliding takes place on the joint interface. The
proposed error estimator can help to reduce 2.2% dif-
ference at the excitation level of 8N. This suggests that
the improved adaptive method can not only retain the
accuracy of the forced response but also help reduce
to the errors from the auto updating algorithm. More
importantly, it also indicates that the numerical errors
due to the updating algorithm may actually contribute
to the tiny amounts of “dissipating energy” captured in
the contact interface that should have been removed.
Otherwise, the accuracy of the forced response would
be compromised.

Table 1 compares the computational time between
improved and original adaptive methods at the differ-
ent excitation levels. The computing speedup of the
improved adaptive method against the original method
is highlighted in the Table. It shows the improved adap-
tive method can speed up the simulations by 2.38 and
2.07 times at 8 and 5N, respectively, when compared
to the original method that has already achieved the
impressive speed-ups shown in Fig. 10. As expected,
the speedup of the improved adaptivemethod gradually
decreases to one as the excitation level is reduced. It is
because the number of sliding nodes reduces to zero if
the whole contact interface is in a sticking condition,
and hence the novel approach cannot remove any more
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Fig. 11 Comparison of forced frequency response between improved adaptive ROM and CMS Rubin method at different excitation
levels

Table 1 Comparison of computational cost between original and improved adaptive ROM

Force level Improved adaptive ROM Original adaptive ROM Speedup
Time Evaluations Points Time Evaluations Points Time per evaluation

F = 8N 831.3 s 374 98 2272.6 s 429 98 2.38

F = 5N 468.5 s 322 98 1103.9 s 367 98 2.07

F = 3N 387.9 s 304 98 483.6 s 320 98 1.18

F = 1N 409.2 s 297 98 413.7 s 297 98 1.00

elements that have not already been removed from the
original approach.

Figure 12 compares the retained slipping nodes
between the original adaptivemethod and the improved
one with error estimator at the excitation level of 8N.
The contact nodes in a stick-slip condition are plotted
in a colored circle. Different colors represent the dif-
ferent levels of energy dissipation as it is shown in the
colorbar. One can clearly observe that the number of
retained stick-slip nodes is reduced significantly using
the improved adaptive method. It is worth noting here

that a very conservative value of ε, 10−10 (J), is used in
error estimator. It means a sliding contact node needs
to reach the dissipated energy of 10−10 (J) before it is
retained in the reduced set. This suggests that there is
a large number of retained sliding nodes in the original
method having actually very tiny contributions to the
energy dissipation. This tiny energy dissipation may
also be due to the errors in the automatic size update
and/or numerical errors from the iterative solver. As
shown in Fig. 12b, removing these sliding nodes from
the reduced set does not actually affect the capture of
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Fig. 12 Comparison of retained slipping nodes (with energy dissipation level) at excitation level of 8N a The original adaptive method,
b The improved adaptive method

Fig. 13 The comparison of
total dissipated energy
between the original and
improved adaptive method
at an excitation level of 8N
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Fig. 14 The 2D distribution of retained slipping nodes with energy dissipation level at the resonance frequency a The original adaptive
method, b The improved adaptive method

Fig. 15 The comparison of
the system size (DOFs)
between the original and
improved adaptive method
at an excitation level of 8N
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the sliding nodes with significant energy dissipation
during the automatic size updating. Figure 13 compares
the cumulated total energy dissipation of all the con-
tact nodes between these two methods at the frequency
points where the sliding occurs. The improved adap-
tive ROM can retain the almost same dissipated energy
level as the original adaptivemethod for each frequency
point.

Figure 14 compares the distribution of included
stick-slip nodes between the original and improved
adaptivemethods in the resonance frequency.Thedissi-
pated energy of each retained stick-slip contact node is

also displayed. As it is similar in Fig. 8, due to the twist
in the fan blade and asymmetry of the contact surface,
the distribution of the stick-slip is rather asymmetric.
With the help of the error estimator, 54 stick-slip nodes
with extremely low energy dissipation levels are suc-
cessfully removed from the original adaptive method
that accounts about 40% of total number of contact
nodes. As expected, the sliding nodes with the energy
dissipation over than ε are retained in the improved
reduced-order model. Figure 15 compares the size of
the reduced model between the improved and original
adaptive ROM, respectively. One can clearly see that,
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compared to improved adaptive ROM, the size of orig-
inal method is reduced tremendously at the frequency
close to the resonance.When the whole contact surface
is in a sticking condition, the size of reduced model for
both methods are kept same. In this case, the improved
adaptive method does not improve the computational
efficiency further. This is why, at the excitation level
of 1N, the improved adaptive method does not offer a
further speedup against the original method.

Overall, it confirms that the proposed error estima-
tor indeed plays a very effective role in removing the
low energy stick-slip nodes from the original adaptive
ROM contributing to a further computing speedup in
compared with the original adaptive method without
the compromise of the accuracy in vibration predic-
tions.

6 Conclusions

This paper described an improved adaptive ROM tech-
nique to enhance the computational efficiency and
accuracy of nonlinear vibrations of the large-scale
assembly. An energy-based adaptive error estimator
was proposed and integrated into the original adaptive
formulation for an improved automatic size update. It
was effectively used as amonitoring indicator to update
the set of reduced basis through adding or removing
associated staticmodes during the on-line computation.
The integration of this error estimator into the auto-
matic size update algorithm within the HBM frame-
work was also presented.

The proposed adaptive ROM method was studied
with an industrial scale problem in jet engines. A fan
blade system with curved dovetail joints was used as
a test case. The study confirms that the adaptive ROM
method can work well for the large-scale problem. It
achieves an extremely high speed up when compared
to the classical CMS technique. In comparison with the
Rubin method, the original adaptive ROM can reduce
the computational time by up to 100 times. Even at a
high excitation level when most of the contact is in a
sliding condition, the original adaptive method is still
50 times fast.

It also proves that the improved adaptive method
is able to further reduce the computing time when
compared to the original method thanks to the pro-
posed error estimator. The error estimator is able to
help remove those static modes associated with the

stick-slip nodes with extremely low energy dissipa-
tion. It leads to a considerable computational boost by
up to 2.3 times especially at a high excitation level.
It was found, at an excitation level of 8N, the num-
ber of retained sliding nodes is reduced by 40% when
compared to the original adaptive method. In terms of
the computational accuracy, the FRFs obtained from
the improved adaptive ROM are actually more accu-
rate than that from the original method. The case study
showed up to 2.2% difference between the original
method and Rubin method is completely eliminated
on the use of improved adaptive method. It indicates
that the tiny amounts of so-called “dissipating energy”
captured on the contact interface may also be due to
the automatic updating errors or the numerical errors
from the iterative solver. This evidences that the pro-
posed error estimator can also improve the computa-
tional accuracy significantly as the error estimator can
exclude the update error and/or numerical errors from
the original automatic size update algorithm.

In conclusion, the study confirms that the proposed
improved adaptive method is an efficient and accu-
rate ROM technique for nonlinear vibration analysis of
large-scale assembly with contact friction interfaces,
particularly when the joint is in a micro-slip motion.
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