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Abstract. The use of integrally bladed-disk is now very popular in turbomachinery industry
since they feature significant aerodynamic and structural improvements along with a significant
mass reduction. However, these integrated single structures can arise a major high cycle fatigue
issue due to the lack of sufficient damping for dissipating the vibrational energy. This work
describes a numerical investigation of the nonlinear dynamic behaviour and nonlinear normal
mode for such a bladed-disk with frictional ring damper using the Harmonic Balanced Method
(HBM) with alternating Fourier transformation. Jenkins element is used to model the nonlinear
contact friction between the disc and ring damper. Using such a modeling strategy, the modal
damping and resonance amplitude are directly and efficiently computed through nonlinear
normal mode analysis. The initial results show the vibrational level on the blades can be
effectively controlled by the parameters of the ring damper model. The effectiveness of ring
damper and damping performance is evaluated. This study also indicates the nonlinear normal
mode analysis based HBM may be an effective method to analyse the dynamic behaviour of the
integrated bladed-disk with frictional ring damper.

1. Introduction
Blisk is one type of bladed-disk system used in turbomachinery analysis. It is key dynamic
components in aircraft engine, which undergoes complicated operational environment with
thermal loads, static fluid pressures and rotation-induced centrifugal loads [1]. The aeroelastic
excitation on the blisk might cause severe vibration stress leading to high cycle fatigue (HCF).
Consequently, HCF is regarded as a major reason for most of the failures in aero-engine. The
flutter effect and mistuned blisk are also potential sources of vibration in the blisk structure
[2]. In order to reduce vibration level of blisk, the frictional damper is widely used as main
damping source. In a traditional manufacture techniques of blisk, the frictional joints and
contact surfaces in assembly point between different components play an important role to
dissipate the vibrational energy. Furthermore, friction between contact surfaces is regarded as
major damping mechanism, such as friction from under-platform damper and shroud contact
surfaces. Frictional joints and contact surfaces have been investigated for past twenty years by
many researchers [3, 4, 5]. However, in integrated bladed-disk, the rotor is manufactured in a
single piece of component, in stead of an assembled structure with a disk and individual blade.
For this reason, the conventional friction joints are no longer favorable due to lack of contact
surfaces. The alternative method to introduce contact friction is defined as a ring underneath
the blisk wheel. This ring is used as a frictional damper to reduce the vibration of blisk [6].

http://creativecommons.org/licenses/by/3.0


2

1234567890 ‘’“”

Modern Practice in Stress and Vibration Analysis (MPSVA) 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1106 (2018) 012026  doi :10.1088/1742-6596/1106/1/012026

In this paper, the dynamic behaviour of integrally blisk with frictional ring damper is analysed
in two aspects, including forced frequency response and nonlinear modal analysis. There are
several numerical approaches to directly compute periodic solution for nonlinear dynamic system
in time domain or frequency domain. Time integration is traditional time domain method
using various schemes, for example, explicit Runge-Kutta scheme, matrix exponential [7] and
implicit Newmark scheme [7]. Generally, these methods can provide accurate results but with
unaffordable computational costs because small time step is required to capture dynamics
behaviour on contact surfaces [8]. Shooting method [9] is another popular method to solve
nonlinear problem in time domain by solving boundary values. It provides monodromy matrix as
a by-product which can be used for stability analysis. For frequency domain method, Harmonic
Balance Method (HBM) is widely used and it discretises the nonlinear property directly with
truncated Fourier series [10]. HBM has been extended and improved using various numerical
algorithms. HBM with alternating Fourier transformation (AFT) is one of the improved HBM,
which is proposed by Cameron in 1989 [11]. In this AFT scheme, nonlinear term is evaluated
in time domain and transferred into frequency domain. It provides better approximation than
analytical description of nonlinear term in frequency domain. In this work, HBM with AFT is
used to solve nonlinear dynamic system.

The nonlinear normal mode (NNM) can be used to describe as an autonomous behaviour of
the system. Rosenberg defined the concept of NNM as a vibration unison at the first place in
1960s [12]. For conservative system, the autonomous behaviour of the nonlinear dynamic system
is similar to a linear system as a periodic solution. However, in non-conservative nonlinear
system, the autonomous response is generally non-periodic and decays with time [1]. In the
case of blisk with contact friction, the energy of system is dissipated during the vibration and
system is non-conservative due to the friction. Shaw and Pierre proposed a definition of NNM as
invariant manifold [13], which provides an accurate solution of NNM even in the case of internal
resonance and modal localization. However, modal damping ratio and natural frequency ca
not be computed directly. Laxalde et al used a concept of nonlinear complex mode in modal
analysis of a non-conservative system [6].This nonlinear complex mode is obtained through
solving complex eigen problems. Alternatively, Krack has proposed another NNM definition
based on periodic solution by adding a negative artificial damping to compensate the frictional
loss [14]. The modal analysis in this work is following Krack’s strategy to obtain a periodic
solution.

This paper is organised as follows. A detailed description of lumped parameter model and
Jenkins element model is presented in Secition 2. Numerical formulations of HBM with AFT,
computation of nonlinear normal mode and cyclic symmetric technique are explained in Section
3. Finally, the performance of ring damper is evaluated based on contact condition, damping
effectiveness and modal characteristics from numerical results in Section 4.

2. Model Description
2.1. Lumped Parameter Model
Lumped parameter model has been widely used to investigate the dynamic system at the
initial design stage, since it can provide fundamental understanding of the system with low
computational costs [15]. In turbomachinery field, several lumped models representing blisk
have been designed using a series of mass and spring. The lumped model with ring damper
used in this work is referred to existing research by Laxalde et al [16] as shown in Figure 1.
There are total four degrees of freedom (DOF) per sector is used to represent the blisk, with
two DOFs representing the motion of blade, one DOF for the disk and the other one for the
ring damper. There are overall 24 sectors within this cyclic symmetric structure, N = 24. The
model parameters are listed in Table 1.
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Figure 1. Lumped Parameter Model

Table 1. Lumped Model Parameter

Mb2 Mb1 Md Kb2 Kb1 Kd KG Kr

0.2 kg 0.3 kg 1.2 kg 2 · 106 N/m 106 N/m 5 · 107 N/m 6 · 105 N/m 2 · 107 N/m

2.2. Jenkins Element Model
Only the friction in tangential direction is considered in this work. The nonlinear force due
to friction between the disk and ring damper is computed through a Jenkins element based on
Coulomb’ law as shown in Figure 2. The relative displacement between disk and ring damper is
x, z is internal variable for sliding position. kt is tangential stiffness and N0 is normal contact
reaction force from rotation of engine. This reaction force is in radial direction about engine
rotational axis. Because of normal contact reaction, the ring is assumed to constantly stay in
contact with blisk wheel. N0 = mrRΩ2, where mr is ring damper mass for each sector, Ω is
engine rotational speed, R is distance between ring damper and rotational axis.

Figure 2. Jenkins Element Model Figure 3. Hysteresis Loop

The Coulomb friction is calculated through Eq.(1), where µ is static friction coefficient 0.3
and spring stiffness of Jenkins element Kt is 5 · 107N/m referred to the parametric study by
Schwingshackl et al [17]. There are two contact conditions in Jenkins element model, which are
sticking and sliding, as shown in hysteresis loop. In sticking condition, the contact is elastic and
no sliding happens. In sliding condition, contact point starts to slide and nonlinear force equals
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to maximum static friction µN0 against the direction of sliding velocity.

fnl(t) =

{
Kt × (x(t)− z(t)) if |Kt(x(t)− z(t))| ≤ µN0 (Sticking)
µN0 × sign(ż(t)) if |Kt(x(t)− z(t))| > µN0 (Sliding)

(1)

3. Numerical Methods
The dynamic equation of the system in time domain can be expressed as:

M · ẍ(t) + C · ẋ(t) + K · x(t) = fex(t)− fnl(ẋ,x, t) (2)

Where M, K, C are mass, stiffness and damping matrices respectively. x is displacement vector
including the displacement of four DOFs for all sectors. fnl is Coulomb friction described in
Section 2.2. fex is external excitation force applied to blisk in forced response analysis.

To simulate the operating environment of the blisk, the engine order excitation is introduced,
which is regarded as an effective traveling wave depending on the number of blades in previous
stator. To clarify, a standing wave with constant phase angle on each blisk is used to model
this traveling wave, where phase angle depends on the engine order number. The phase angle
between the nth blisk and the first blisk is ϕn and EO is engine order applied. The excitation
force vector is given by Eq.(3). Moreover, this engine order excitation is only applied to two
DOFs of blade. The excitation frequency depends on engine order and engine rotational speed,
ω = EO × Ω.

ϕn = 2π · EO(n− 1)/N

fnex(t) = f
(1)
ex × exp[i(ωt− ϕn))]

(3)

3.1. Harmonic Balance Method with Alternating Fourier Transformation
Harmonic Balance Method with alternating Fourier transformation is used to solve the nonlinear
dynamic equation Eq.(2) in frequency domain. HBM is also known as Fourier-Galerkin method,
a continuous property is discretised by Fourier seires. Therefore, χ(t) representing periodic
solution x(t), nonlinear force fnl(t) and external excitation fex(t) is estimated by Fourier series
truncated to NH order of harmonics. χ̃ is the collection of the all Fourier coefficients for both
sine and cosine terms from 0th to N th

H harmonics, where p is the order of harmonics.

χ(t) =
NH∑
p=0

real {(χ̃p,c + i · χ̃p,s)× [cos(pωt) + i · sin(pωt)]} (4)

χ̃ = [χ̃0,c, χ̃1,c + iχ̃1,s, · · · , χ̃NH ,c + iχ̃NH ,s]T, χ ∈ [x, f ex, fnl]

After implementing Fourier-Galerkin method, the dynamic equation can be expressed as Eq.(5)
and Eq.(6), where A(ω) is dynamic stiffness matrix in frequency domain shown in Eq.(7). Kp,
Mp and Cp are cyclic reduced stiffness, mass and damping matrices and will be discussed in
details in Section 3.2.

A(ω)× x̃ = f̃ ex − f̃nl(x̃) (5)

R(x̃, ω) ≡ A(ω)× x̃− f̃ ex + f̃nl(x̃) = 0 (6)

A(ω) = diag(A0,A1,A2, · · · ,ANH ) (7)

Ap = Kp − (pω)2Mp + i× pωCp (8)

R(x̃, ω) is residual of the HBM method expected to be solved iteratively based on Newton-
Raphson method. In each iteration, the direct Fourier transformation(DFT) and inverse Fourier
transformation(IFT) is alternated to compute f̃nl. The procedure is demonstrated in Eq.(9).

x̃
IFT−→ x(t), ẋ(t)

Coulomb Friction−→ fnl(ẋ,x, t)
DFT−→ f̃nl (9)
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3.2. Cyclic Symmetric Techniques
In order to improve computational efficiency, the cyclic symmetric technique is applied based on
the periodicity and cyclic symmetry of the blisk. The detailed description about cyclic symmetry
has been demonstrated by Thomas [18]. In his work, he proposed xR = exp(θ)xL, where xR

and xL are displacement of right and left boundaries. θ is purely imaginary value measuring
the periodicity of mode shape. The periodicity of mode shape depends on harmonic order and
engine order in this case. According to Wildheim’s theory [19], θ is product of harmonic order
and phase shift of each blisk, θ = ϕnp. Therefore, the matrix for cyclic symmetric transformation
is given in Eq.(10,11).

ΦEO
p = [I, I× exp(ipϕ1), I× exp(ipϕ2), · · · , I× exp(ipϕN )]T (10)

ΦEO = diag(I,ΦEO
1 ,ΦEO

2 , · · · ,ΦEO
NH

) (11)

The ΦEO
p for specific harmonic order p is used to obtained cyclic reduced mass, stiffness and

damping matrices in Eq.(7). ΦEO is globally transformation matrix including harmonic order

from 0 to NH and used to computing the cyclic reduced χ̃cyclic and vice versa. A+ is Moore-
Penrose pseudoinverse matrix of A.

Λp
cyclic = (ΦEO

p )+ΛΦEO
p , Λ ∈ [M, K, C] (12)

χ̃cyclic = (ΦEO)+ × χ̃ (13)

3.3. Nonlinear Normal Mode
According to Krack’ work, a negative artificial damping is introduced into this system [20].
The autonomous system is expressed as Eq.(14), where ζK is an artificial stiffness proportional
damping term. α is modal amplitude and ω0 is natural frequency. The same Fourier-Galerkin
process in Section 3.1 is applied and residual is given by Eq.(16). Compared to Eq.(6), there
are two extra variables ζ and α. Hence, two additional constrians are expected which are mass
normalization and phase normalization as shown in Eq.(17, 18). Firstly, mass normalization
ensures a positive modal amplitude α. Secondly, a phase normalization is required, because
absolute phase is arbitrary in autonomous system [14].

M · ẍ(t)− (ζ ×K) · ẋ(t) + K · x(t) + fnl(ẋ,x, t) = 0 (14)

x(t) = α
NH∑
p=0

real {(x̃p,c + i · x̃p,s)× [cos(pω0t) + i · sin(pω0t)]} (15)

R1(x̃, ω0, ζ, α) = A(ω0, ζ)× αx̃− f̃nl(αx̃) (16)

R2(x̃) = x̃T ·M · x̃− I (17)

R3(x̃) = imag(x̃1
p=1) (18)

3.4. Continuation Method
For forced response analysis, system solution is expected to be computed within a range of
excitation frequency ω. In the analysis of NNM, modal characteristics are required within a
range of modal amplitude α. The continuation method is implemented to track the evolution
of system behaviour as varying parameter, ω or α. A proper continuation process requires two
steps. At the prediction step, the predicted point is found from previous solution to approximate
accurate solution. Then, a new solution is updated from predicted point using Newton’s method
in correction step. The tangent prediction method and arc-length correction method is selected
algorithms for predictor and corrector respectively. The reader can refer to [21] for a detailed
description of continuation process.
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4. Numerical Results
All natural frequencies (NF) of the lumped parameter model(without the ring damper) are
plotted against nodal diameter(ND) in Figure 4. There are three families of mode, where
each family of mode is associated with a nodal circle. The modal stiffness of disk increases
dramatically with a growing ND [22]. Therefore, disk-dominated modes appear at the mode
with relatively larger slop and strong blade-disk coupling, particularly at lower ND. The modes
at higher ND tending to a horizontal line are blade-dominated modes with weaker blade-disk
coupling. This blade-disk coupling is important because it gives access for communication of
vibration energy between blade and disk. There is a veering region between 2nd and 3rd family
of mode near ND 3. The modes in veering region tend to show high probability of mode
interactions [23]. In order to evaluate the damping performance, the mode at 1st family ND 2
with strong coupling effect is excited. Due to strong bladed-disk coupling, both blade and disk
show relatively large displacement when excitation is applied to blade.

Figure 4. NF / ND Plot Figure 5. Different Excitation

4.1. Performance of Ring Damper
In this section, the damping ability of ring is discussed with the help of frequency response for
a forced system. The amplitude of frequency response is recorded from xb2.

The frequency response with different excitation level is plotted in Figure 5. As can be
seen, the magnitude of excitation force affects the contact condition resulting a softening effect.
At excitation below 0.5 N, the contact is fully stuck and system shows linear behaviour. With
greater excitation level, the displacement of system increases and sliding condition appears. The
resonance frequency starts to shift left. When excitation is greater than 50 N, the contact is
fully sliding and system becomes linear again with a lower resonance frequency.

The effect of damper mass and engine rotation speed on damping performance is analysed
and results are shown in Figure 6 and Figure 7. This suggests that the optimal performance
is reached with 30 g damper mass at rotational speed around 3000 rpm. As the increasing
damper mass or rotation speed, the resonance peak shift right. The main reason contributing
to this phenomenon is nonlinear softening effect as explained above. Normal contact force N0 is
proportional to the damper mass and squared of rotation speed. For this reason, N0 is crucial
factor in this case. The contact is fully stuck with larger normal contact force excited by same
force level. When the normal contact force decreases, contact starts to slide and the resonance
frequency is declining.

4.2. Modal Characteristics
During computation of nonlinear mode, the modal characteristics are obtained, including eigen-
frequency, mode shape and damping ratio. Eigen-frequency and damping ratio are plotted
against system energy shown in Figure 8 and Figure 9. As the system energy increases, natural
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Figure 6. Different Damper Mass [g] Figure 7. Different Rotation Speed [rpm]

frequency is decreasing due to softening effect caused by friction, which corresponds to the
backbone curve in Figure 5. In terms of damping ratio, it stays at zero with lower system
energy. At this point, the contact is fully stuck. It follows that there is no energy dissipation
due to friction. At the transition from sticking to sliding, damping ratio reaches its maximum
point and ring damper provides the optimal damping performance. When system energy is
larger enough, damping ratio begins to drop because of fully sliding contact. The damping ratio
will return to zero asymptotically with infinity system energy.

Figure 8. Frequency Energy Plot Figure 9. Damping Ratio / Energy

5. Conclusion
In summary, a lumped parameter model with Jenkins element model is used to simulate the
nonlinear dynamic behavior of blisk with a frictional ring damper. This nonlinear dynamic
system is analysed through forced frequency response and nonlinear modal analysis. The
numerical results provided a qualitative analysis for nonlinear dynamic behaviour of the blisk
with frictional ring damper.

Generally, both effectiveness and limitations of this ring damper are clearly pointed out from
the analysis. The performance of the damper is highly depending on the relative motion between
disk and ring. Ring damper is able to provide considerable damping when relative displacement
is large. In other words, if a mode with weak bladed-disk coupling effect is excited, the motion
of disk is relatively small and ring damper will show less effectiveness. In addition, the normal
contact reaction force is also crucial for damping effect. In a sense, if the ring is well designed
for blisk, this damping technique can be regarded as an alternative to classical friction joints.

In terms of numerical methodology, modal damping ratio and natural frequency are directly
and efficiently computed within modal analysis. Forced response analysis provides corresponding
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results to the modal characteristics. Finally, this paper indicates that nonlinear normal mode is
an efficient way to study dynamic behaviour of blisk with frictional ring damper.
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